JP2013209721A - Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME - Google Patents

Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2013209721A
JP2013209721A JP2012081525A JP2012081525A JP2013209721A JP 2013209721 A JP2013209721 A JP 2013209721A JP 2012081525 A JP2012081525 A JP 2012081525A JP 2012081525 A JP2012081525 A JP 2012081525A JP 2013209721 A JP2013209721 A JP 2013209721A
Authority
JP
Japan
Prior art keywords
less
alloy
strength
crystal grain
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081525A
Other languages
Japanese (ja)
Inventor
Chuya Aoki
宙也 青木
Toshihiro Uehara
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012081525A priority Critical patent/JP2013209721A/en
Publication of JP2013209721A publication Critical patent/JP2013209721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Ni-based alloy having improved creep rupture strength, and a method for producing the same.SOLUTION: An Ni-based alloy includes, by mass, 0.007 to <0.20% C, ≤0.3% Si, ≤0.3% Mn and 19.0 to 22.0% Cr, satisfies Mo+(1/2)×W: 9.0 to 12.0% with Mo as a single element or Mo as an essential element, includes 0.5 to 1.8% Al, 1.0 to 2.0% Ti, ≤2.0% Fe, ≤0.02% Mg and either or both of ≤0.02% B and ≤0.02% Zr, and in which a value represented by Al/(Al+0.56Ti) is 0.45 to 0.70, and the balance Ni with impurities, and has the average crystal grain size of 50 to 200 μm and hardness of ≥250 HV.

Description

本発明は、特に超々臨界圧蒸気条件の火力発電プラントの高温部に曝される部材への適用に好適なNi基合金及びその製造方法に関するものである。   The present invention relates to a Ni-based alloy suitable for application to a member exposed to a high-temperature part of a thermal power plant particularly under super-supercritical steam conditions, and a method for producing the same.

近年、地球温暖化防止の観点からCO排出量を削減するため火力発電プラントの高効率化が求められている。現在、火力発電プラントの蒸気温度は600〜630℃に達しており、本願出願人は、650℃級超々臨界圧火力発電プラントでの使用に最適なNi基合金として、例えば、特開平9−157779公報(特許文献1)において、重量%で、C:0.2%以下、Si:1%以下、Mn:1%以下、Cr:10〜24%、および、Mo,Wの1種または2種をMo+(1/2)×W:5〜17%、Al:0.5〜2%、Ti:1〜3%、Fe:10%以下、およびB:0.02%以下、Zr:0.2%以下の1種または2種を含有し、残部Niと不可避的不純物からなる低熱膨張Ni基超耐熱合金を提案した。
また、前述の特許文献1のミクロ偏析を軽減した提案として、再公表特許WO10/038680号公報(特許文献2)では、質量%でC:0.15%以下、Si:1%以下、Mn:1%以下、Cr:10〜24%、Mo単独或いはMoは必須としてMo+(1/2)×W:5〜17%、Al:0.5〜1.8%、Ti:1〜2.5%、Mg:0.02%以下、及び、(B:0.02%以下、Zr:0.2%以下)の何れかまたは両方を含有し、更にAl/(Al+0.56Ti)で表される値が0.45〜0.70であり、残部Niと不純物からなるNi基合金の製造方法において、真空溶解で得た前記組成を有するNi基合金素材を、1160〜1220℃にて1〜100時間の均質化熱処理を少なくとも1回以上行うNi基合金の製造方法であり、前記の均質化熱処理により、Moの偏析比を1〜1.17とするNi基合金を提案した。
In recent years, in order to reduce CO 2 emissions from the viewpoint of preventing global warming, higher efficiency of thermal power plants has been demanded. Currently, the steam temperature of a thermal power plant has reached 600 to 630 ° C., and the applicant of the present application has disclosed, for example, Japanese Patent Application Laid-Open No. 9-157779 as a Ni-based alloy suitable for use in a 650 ° C. class super supercritical pressure thermal power plant. In Gazette (Patent Document 1), by weight, C: 0.2% or less, Si: 1% or less, Mn: 1% or less, Cr: 10 to 24%, and one or two of Mo and W Mo + (1/2) × W: 5 to 17%, Al: 0.5 to 2%, Ti: 1 to 3%, Fe: 10% or less, and B: 0.02% or less, Zr: 0. A low thermal expansion Ni-based superalloy containing 2% or less of one or two of the balance Ni and inevitable impurities was proposed.
Further, as a proposal for reducing the microsegregation of Patent Document 1 described above, in the republished patent WO 10/038680 (Patent Document 2), C: 0.15% or less, Si: 1% or less, and Mn: 1% or less, Cr: 10 to 24%, Mo alone or Mo as essential Mo + (1/2) × W: 5 to 17%, Al: 0.5 to 1.8%, Ti: 1 to 2.5 %, Mg: 0.02% or less, and (B: 0.02% or less, Zr: 0.2% or less) or both, and further represented by Al / (Al + 0.56Ti) In the method for producing a Ni-base alloy having a value of 0.45 to 0.70 and the balance Ni and impurities, a Ni-base alloy material having the above composition obtained by vacuum melting is 1-100 at 1160-1220 ° C. Manufacture of Ni-based alloys that undergo at least one time of homogenization heat treatment A method, by homogenization heat treatment of the proposed a Ni-base superalloy according to 1 to 1.17 to segregation ratio of Mo.

特開平9−157779公報JP-A-9-157779 再公表特許WO10/038680号公報Republished patent WO10 / 038680

上記の特許文献1や特許文献2の合金は、優れた高温強度と良好な耐酸化性、及び、切り欠き感受性を兼備し、コスト的に安価で、かつ製造の容易なガンマプライム析出強化型超耐熱合金として注目されている。
ところで、上述した700℃級の超々臨界圧火力発電プラントに用いられる蒸気タービン等の部材では、その使用環境は極めて苛酷であるため、より高い信頼性が求められる。
そのためには、特許文献1或いは特許文献2で提案したNi基合金をさらに改良して、より確実に700℃級の超々臨界圧火力発電プラントに用いられる蒸気タービン等に適用できるように機械的特性を最大限発揮するようにする必要がある。より具体的には、前記の特許文献1或いは特許文献2の合金に比べて、クリープ破断強度を更に向上させることが求められている。
本発明の目的は、クリープ破断強度を向上させたNi基合金及びその製造方法を提供することである。
The alloys of Patent Document 1 and Patent Document 2 described above have excellent high-temperature strength, good oxidation resistance, and notch sensitivity, are inexpensive and easy to manufacture, and are easy to manufacture. It is attracting attention as a heat-resistant alloy.
By the way, in a member such as a steam turbine used in the above-described 700 ° C. class super-supercritical thermal power plant, the usage environment is extremely severe, and thus higher reliability is required.
For this purpose, the Ni-based alloy proposed in Patent Document 1 or Patent Document 2 is further improved so that it can be applied to a steam turbine or the like used in a 700 ° C-class ultra supercritical thermal power plant more reliably. It is necessary to make the best use of it. More specifically, it is required to further improve the creep rupture strength as compared with the alloy of Patent Document 1 or Patent Document 2 described above.
An object of the present invention is to provide a Ni-based alloy having improved creep rupture strength and a method for producing the same.

本発明者等は、特許文献1や特許文献2に記載の合金をベースとして、より高いクリープ破断強度を発揮することができる方法を鋭意検討した。良好な機械的性質を得るためには、その金属組織をコントロールすることが重要であり、その一つに結晶粒径のコントロールが挙げられる。結晶粒径のコントロールは、C含有量や熱処理条件に依存することに着目し、C含有量の適正化を図ると共に、特定の大きさの結晶粒径とすることでクリープ破断強度を飛躍的に向上できることを知見し、本発明に到達した。
即ち、本発明は、質量%でC:0.007%以上0.020%未満、Si:0.3%以下、Mn:0.3%以下、Cr:19.0〜22.0%、Mo単独或いはMoを必須としてMo+(1/2)×W:9.0〜12.0%、Al:0.5〜1.8%、Ti:1.0〜2.0%、Fe:2.0%以下、Mg:0.02%以下、及び、B:0.02%以下とZr:0.2%以下の何れかまたは両方を含有し、更に、Al/(Al+0.56Ti)で表される値が0.45〜0.70であり、残部Niと不純物からなり、平均結晶粒径が50〜200μm、硬さが250HV以上のNi基合金である。
また、本発明は、前述の組成を有する熱間加工材に、980〜1150℃で固溶化処理を行った後、820〜880℃で1段目の時効処理と700〜800℃で2段目の時効処理を行って、平均結晶粒径を50〜200μm、硬さを250HV以上とするNi基合金の製造方法である。
The present inventors diligently studied a method capable of exhibiting higher creep rupture strength based on the alloys described in Patent Document 1 and Patent Document 2. In order to obtain good mechanical properties, it is important to control the metal structure, one of which is control of the crystal grain size. Focusing on the control of the crystal grain size, which depends on the C content and heat treatment conditions, the C content is optimized and the crystal grain size of a specific size is used to dramatically increase the creep rupture strength. We have found that it can be improved, and have reached the present invention.
That is, the present invention, in mass%, C: 0.007% or more and less than 0.020%, Si: 0.3% or less, Mn: 0.3% or less, Cr: 19.0-22.0%, Mo Mo or (1/2) × W: 9.0 to 12.0%, Al: 0.5 to 1.8%, Ti: 1.0 to 2.0%, Fe: 2. 0% or less, Mg: 0.02% or less, B: 0.02% or less and Zr: 0.2% or less, or both, and further expressed by Al / (Al + 0.56Ti) The value is 0.45 to 0.70, and is a Ni-based alloy composed of the balance Ni and impurities, an average crystal grain size of 50 to 200 μm, and a hardness of 250 HV or more.
In the present invention, the hot-worked material having the above composition is subjected to a solution treatment at 980 to 1150 ° C., and then the first aging treatment at 820 to 880 ° C. and the second aging treatment at 700 to 800 ° C. Is an Ni-based alloy manufacturing method in which the average grain size is 50 to 200 μm and the hardness is 250 HV or more.

本発明のNi基合金は、C含有量及び結晶粒径の適正化を図ることで良好なクリープ破断延性を維持しながらクリープ破断強度が改善されているため、これを用いてなる蒸気タービン、ボイラ管材等はより高い信頼性を発揮することができる。   Since the Ni-based alloy of the present invention has improved creep rupture strength while maintaining good creep rupture ductility by optimizing the C content and crystal grain size, a steam turbine and a boiler using the same Pipe materials and the like can exhibit higher reliability.

本発明のNi基合金において、各元素を規定した理由は以下の通りである。なお、各元素の含有量は質量%である。
C:0.007%以上0.020%未満
Cは、優れたクリープ破断強度を得るための最も重要な元素である。クリープ破断強度を向上させるためには固溶化熱処理によって結晶粒を大きくすることが有効である。しかし、Cが0.020%以上となると結晶粒成長の抑制効果が大きくなるため、本発明ではCの上限を0.020%未満とした。また、Cは、時効処理を行うことで粒界に炭化物を析出させて粒界を強化し、クリープ変形を抑制する効果がある。しかし、Cが0.007%未満では粒界に十分な炭化物を析出させることができない。その結果、粒界が強化できずクリープ破断強度は低下する。そのため、Cの下限を0.007%と規定した。
Si:0.3%以下
Siは、合金溶製時に脱酸剤として用いられる。また、Siは酸化被膜の剥離を抑制する効果がある。しかし、過度に含有すると延性、加工性が低下するため、0.3%以下に限定する。特に好ましいSiの上限は、0.1%未満である。
Mn:0.3%以下
Mnは合金溶製時に脱酸剤や脱硫剤として用いられる。不可避的不純物としてOやSが粒界に偏析し熱間脆性を引き起こすため、Mnを用いて脱酸、脱硫を行う。しかし過度に添加すると延性が低下するため、0.3%以下に限定する。好ましい上限は0.1%未満である。
The reason why each element is specified in the Ni-based alloy of the present invention is as follows. In addition, content of each element is the mass%.
C: 0.007% or more and less than 0.020% C is the most important element for obtaining excellent creep rupture strength. In order to improve the creep rupture strength, it is effective to enlarge the crystal grains by a solution heat treatment. However, when C is 0.020% or more, the effect of suppressing the growth of crystal grains is increased. Therefore, in the present invention, the upper limit of C is set to less than 0.020%. Moreover, C has an effect of strengthening the grain boundary by precipitating carbides at the grain boundary by performing an aging treatment, and suppressing creep deformation. However, if C is less than 0.007%, sufficient carbide cannot be precipitated at the grain boundaries. As a result, the grain boundary cannot be strengthened and the creep rupture strength is lowered. Therefore, the lower limit of C is defined as 0.007%.
Si: 0.3% or less Si is used as a deoxidizer during alloy melting. Moreover, Si has an effect of suppressing peeling of the oxide film. However, when it contains excessively, ductility and workability will fall, It limits to 0.3% or less. A particularly preferable upper limit of Si is less than 0.1%.
Mn: 0.3% or less Mn is used as a deoxidizing agent or a desulfurizing agent during alloy melting. Deoxidation and desulfurization are performed using Mn because O and S as inevitable impurities segregate at the grain boundaries and cause hot brittleness. However, since ductility will fall when it adds excessively, it limits to 0.3% or less. A preferable upper limit is less than 0.1%.

Cr:19.0〜22.0%
CrはCと結合して結晶粒界に炭化物を生成することで粒界を強化し高温での強度、延性を向上させる効果がある。また、基地に固溶して合金の耐酸化性、耐食性を向上させるとともに、切り欠き感受性を大幅に緩和させる効果を有する。この効果を確実に得るには19.0〜22.0%が必要となる。Crが19.0%未満では上記効果を確実に得られず、また、22.0%を超える過度の添加は、熱膨張係数の上昇に伴う高温使用時の割れの問題や合金の製造性や加工性が低下する問題が生じる。これらの理由によりCrは19.0〜22.0%に限定する。
Mo単独或いはMoを必須としてMo+(1/2)×W:9.0〜12.0%
Mo及びWは、基地に固溶して基地を強化するとともに合金の熱膨張係数を下げる効果がある。Ni基合金は熱膨張係数が大きいため、高温で安定して使用するには熱疲労を起こしやすく信頼性が欠ける難点がある。Moは熱膨張係数を下げるのに最も有効な元素であるため、Moを必須としてMo単独あるいはMoとWの2種を添加する。この効果を確実に得るにはMo+(1/2)×Wで9.0〜12.0%が必要となる。Mo+1/2W量で9.0%未満では上記効果を確実に得ることができず、また、12.0%を超えると合金の製造性や加工性が困難となり易くなるため、Moを必須としてMo+1/2W量を9.0〜12.0%である。
Cr: 19.0 to 22.0%
Cr has the effect of strengthening the grain boundary by combining with C and generating carbide at the grain boundary to improve the strength and ductility at high temperatures. In addition, it has the effect of improving the oxidation resistance and corrosion resistance of the alloy by solid solution in the base and greatly reducing notch sensitivity. To obtain this effect with certainty, 19.0 to 22.0% is required. If the Cr content is less than 19.0%, the above effect cannot be obtained with certainty. Excessive addition exceeding 22.0% can cause cracking problems during high temperature use due to an increase in the thermal expansion coefficient, and the manufacturability of the alloy. The problem that workability falls arises. For these reasons, Cr is limited to 19.0 to 22.0%.
Mo alone or Mo as an essential component Mo + (1/2) × W: 9.0 to 12.0%
Mo and W have the effect of solid-dissolving in the base to strengthen the base and lowering the thermal expansion coefficient of the alloy. Since the Ni-based alloy has a large coefficient of thermal expansion, there is a difficulty in that it is liable to cause thermal fatigue when used stably at high temperatures and lacks reliability. Since Mo is the most effective element for lowering the thermal expansion coefficient, Mo is essential, and Mo alone or Mo and W are added. In order to obtain this effect reliably, 9.0 to 12.0% of Mo + (1/2) × W is required. If the Mo + 1 / 2W amount is less than 9.0%, the above effect cannot be obtained with certainty, and if it exceeds 12.0%, the manufacturability and workability of the alloy tends to be difficult. / 2W amount is 9.0 to 12.0%.

Al:0.5〜1.8%
Alは、Ni、Tiとともにガンマプライム相と呼ばれる金属間化合物(Ni(Al、Ti))を形成し、合金の高温強度を高めるために添加する。0.5%未満では上記効果が得られず、また過度の添加は合金の製造性や加工性が劣化するため、Alは0.5〜1.8%に限定する。また、好ましいAlの範囲は1.0〜1.7%である。
Ti:1.0〜2.0%
Tiは、Ni、Alと同様ガンマプライム相(Ni(Ti、Al))を形成し合金の高温強度を高める効果がある。Tiの原子径はNiのそれよりも大きく基地に弾性歪を与えるため、NiAlよりも強化に寄与する。1.0%未満では上記効果が得られず、過度に添加すると合金の製造性や加工性が劣化するためTiは1〜2.0%に限定する。好ましいTiの範囲は1.4〜1.8%である。
Al/(Al+0.56Ti):0.45〜0.70
本発明では、質量%の比でAl/(Al+0.56Ti)が0.45〜0.70の範囲とする。この式は、AlとTiのAiとTiの原子数(at%)の比を表すものである。
本発明ではAlとTiのバランスは重要である。NiTiはNiAlよりも高温高強度の効果が大きいが、高温での相安定性がNiAlよりも悪く高温で脆弱なイータ相となりやすい。そのため、AlとともにTiを添加することでガンマプライム相はAlとTiが一部置換した(Ni(Al,Ti))の形で析出させる。(Ni(Al,Ti))はNiAlよりも高い高温強度が得られるが延性は劣り、Alの割合が多くなるほど、延性は向上するが逆に強度は低下するため、AlとTiのバランスは重要である。本発明合金においは、十分な延性を確保することは重要であり、ガンマプライム相中のAlの割合を原子量の比として表すため、Al/(Al+0.56Ti)なる数値を設定した。この値が0.45より低いと十分な延性が得られない。逆に0.70を超えると強度が不足するため、Al/(Al+0.56Ti)値は0.45〜0.70に限定する。
Al: 0.5 to 1.8%
Al forms an intermetallic compound (Ni 3 (Al, Ti)) called a gamma prime phase together with Ni and Ti, and is added to increase the high temperature strength of the alloy. If the content is less than 0.5%, the above effects cannot be obtained, and excessive addition deteriorates the manufacturability and workability of the alloy, so Al is limited to 0.5 to 1.8%. Moreover, the range of preferable Al is 1.0 to 1.7%.
Ti: 1.0-2.0%
Ti, like Ni and Al, has the effect of forming a gamma prime phase (Ni 3 (Ti, Al)) and increasing the high temperature strength of the alloy. Since the atomic diameter of Ti is larger than that of Ni and gives elastic strain to the base, it contributes to strengthening more than Ni 3 Al. If less than 1.0%, the above effect cannot be obtained, and if added excessively, the productivity and workability of the alloy deteriorate, so Ti is limited to 1 to 2.0%. A preferable range of Ti is 1.4 to 1.8%.
Al / (Al + 0.56Ti): 0.45-0.70
In the present invention, Al / (Al + 0.56Ti) is in the range of 0.45 to 0.70 by mass ratio. This equation represents the ratio of the number of atoms (at%) between Ai and Ti in Al and Ti.
In the present invention, the balance between Al and Ti is important. Ni 3 Ti is large, the effect of high temperature and high strength than Ni 3 Al, high temperature tends to brittle eta phase worse than the phase stability Ni 3 Al at a high temperature. Therefore, by adding Ti together with Al, the gamma prime phase is precipitated in the form of (Ni 3 (Al, Ti)) in which Al and Ti are partially substituted. (Ni 3 (Al, Ti)) provides higher high-temperature strength than Ni 3 Al, but the ductility is inferior. As the proportion of Al increases, the ductility improves, but conversely the strength decreases. Balance is important. In the alloy of the present invention, it is important to ensure sufficient ductility, and in order to express the ratio of Al in the gamma prime phase as a ratio of atomic weight, a numerical value of Al / (Al + 0.56Ti) was set. If this value is lower than 0.45, sufficient ductility cannot be obtained. On the other hand, since the strength is insufficient when it exceeds 0.70, the Al / (Al + 0.56Ti) value is limited to 0.45 to 0.70.

Fe:2.0%以下
Feは、必ずしも添加する必要はないが、合金の熱間加工性を改善する効果があるため、必要に応じて添加することができる。Feを過剰に添加すると合金の熱膨張係数が大きくなり高温使用時に割れが発生する問題が生じる。また耐酸化性が劣化するため2.0%以下に限定する。
Mg:0.02%以下
Mgは、合金溶製時に脱硫材として用いられる他、Sと化合物を形成することによりSの粒界偏析を抑制して熱間加工性を改善する効果がある。しかし、過度に添加すると延性、加工性が劣化するためMgは0.02%以下に限定する。好ましい範囲は0.0005〜0.01%以下である。
B:0.02%以下、Zr:0.2%以下
B、Zrは結晶粒界強化のために用いられ、BとZrの何れかまたは両方を添加する必要がある。B、Zrは基地を構成する原子であるNiより原子の大きさが著しく小さいため、結晶粒界に偏析し高温での粒界すべりを抑制する効果がある。特に切り欠き感受性を大幅に緩和させる効果を有する。そのため、クリープ破断強度やクリープ破断延性が向上する効果が得られるが、過度に添加すると耐酸化性が劣化するためB、Zrはそれぞれ0.02%以下、0.2%以下に限定する。好ましい範囲はそれぞれ0.0005〜0.01%、0.005〜0.007%以下である。
Fe: 2.0% or less Fe is not necessarily added, but it has an effect of improving the hot workability of the alloy and can be added as necessary. When Fe is added excessively, the thermal expansion coefficient of the alloy increases, and there is a problem that cracks occur when used at high temperatures. Moreover, since oxidation resistance deteriorates, it limits to 2.0% or less.
Mg: 0.02% or less Mg is used as a desulfurization material during alloy melting, and has the effect of improving the hot workability by suppressing the grain boundary segregation of S by forming a compound with S. However, if added excessively, ductility and workability deteriorate, so Mg is limited to 0.02% or less. A preferable range is 0.0005 to 0.01% or less.
B: 0.02% or less, Zr: 0.2% or less B and Zr are used for strengthening grain boundaries, and it is necessary to add either or both of B and Zr. Since B and Zr are significantly smaller in size than Ni which is an atom constituting the base, they are segregated at the crystal grain boundary and have an effect of suppressing the grain boundary sliding at a high temperature. In particular, it has the effect of greatly reducing notch sensitivity. Therefore, the effect of improving the creep rupture strength and creep rupture ductility can be obtained, but if added excessively, the oxidation resistance deteriorates, so B and Zr are limited to 0.02% or less and 0.2% or less, respectively. Preferable ranges are 0.0005 to 0.01% and 0.005 to 0.007%, respectively.

残部のNiはオーステナイト生成元素である。オーステナイト相は原子が稠密に充填されているため、高温でも原子の拡散が遅くフェライト相と比較して高温強度が高い。また、オーステナイト基地は合金元素の固溶限が大きく、析出強化の要であるガンマプライム相の析出や、固溶強化によるオーステナイト基地自身の強化に有利である。オーステナイト基地を構成する最も有効な元素はNiであるため、本発明では残部をNiとする。勿論、不純物は含まれる。   The remaining Ni is an austenite generating element. Since the austenite phase is densely packed with atoms, the diffusion of atoms is slow even at high temperatures, and the high-temperature strength is higher than that of the ferrite phase. In addition, the austenite base has a large solid solubility limit of the alloy element, which is advantageous for precipitation of the gamma prime phase, which is the key to precipitation strengthening, and for strengthening the austenite base itself by solid solution strengthening. Since the most effective element constituting the austenite base is Ni, in the present invention, the balance is Ni. Of course, impurities are included.

平均結晶粒径:50〜200μm
上述したように、本発明ではCを低い含有量とし、且つ、特定の範囲として、結晶粒径を大きく保ってクリープ破断強度を向上させるものである。クリープでは粒界のすべりや移動によって発生したボイドが連結し破断に至るため、結晶粒径が大きいほど粒界の比表面積が小さくなり、クリープ破断強度が向上する。そのため、十分なクリープ破断強度を得るために平均結晶粒径50μm以上と規定した。また、結晶粒径が大きくなり過ぎると耐力や引張強さは低下するおそれがあるため、平均結晶粒径の上限は200μmとする。
Average crystal grain size: 50-200 μm
As described above, in the present invention, the C content is made low, and the crystal grain size is kept large to improve the creep rupture strength within a specific range. In creep, voids generated by sliding or movement of grain boundaries are connected and lead to fracture. Therefore, the larger the crystal grain size, the smaller the specific surface area of the grain boundary and the higher the creep rupture strength. Therefore, in order to obtain sufficient creep rupture strength, the average crystal grain size is defined as 50 μm or more. Further, if the crystal grain size becomes too large, the proof stress and tensile strength may decrease, so the upper limit of the average crystal grain size is 200 μm.

上述した結晶粒径とするには、熱間鍛造等の熱間加工材に固溶化処理を行う。
例えば、熱間鍛造を行う場合は、900〜1200℃の高温でより大きな歪を加えて熱間鍛造材とすることが好ましい。
前述の熱間加工材に固溶化処理を行う。熱間鍛造材ままの金属組織は、混粒組織となっている場合が多く、これを平均結晶粒径で50〜200μmの均一な金属組織とすると共に、固溶化処理は、時効処理でガンマプライム相や炭化物を析出させるために、これらの化合物の構成元素を一旦マトリクス(基地)に固溶させる目的で行う。固溶化温度が低いと前述の固溶化処理の効果が望めないため980℃以上に限定する。一方、固溶化処理温度が高すぎると結晶粒が必要以上に粗大になりやすく、その制御が困難であるため1150℃を上限とする。
In order to obtain the crystal grain size described above, a solution treatment is performed on a hot-worked material such as hot forging.
For example, when performing hot forging, it is preferable to apply a larger strain at a high temperature of 900 to 1200 ° C. to obtain a hot forged material.
A solution treatment is performed on the aforementioned hot-worked material. The metal structure of the hot forged material is often a mixed grain structure, and this is a uniform metal structure with an average crystal grain size of 50 to 200 μm. In order to precipitate the phase and carbide, the constituent elements of these compounds are once dissolved in a matrix (base). If the solution temperature is low, the effect of the solution treatment described above cannot be expected, so the temperature is limited to 980 ° C. or higher. On the other hand, if the solution treatment temperature is too high, the crystal grains are likely to become coarser than necessary, and the control thereof is difficult.

本発明では、上述した固溶化処理後のNi基合金に時効処理を行う。
時効処理は前述の固溶化処理の後、820〜880℃で1段目の時効処理と700〜800℃で2段目の時効処理を行う。
1段目の時効処理では結晶粒界に炭化物を析出させ、結晶粒界を強化することができる。1段目の時効処理温度が820℃未満では炭化物の析出量が少なく結晶粒界の強化が不十分となる。また、880℃を超えると結晶粒が成長するため、固溶化処理で調整した結晶粒径が粗大化するおそれがある。そのため、本発明では1段目の時効処理を820〜880℃と規定した。1段目の時効処理の時間は1〜5時間が好ましい。
2段目の時効処理では粒内にガンマプライム相を析出させ、合金の高温強度を高めることができる。2段目の時効処理温度が700℃未満ではガンマプライム相の析出量が少なく十分な高温強度が得られにくくなり、800℃を超えるとガンマプラム相が粗大化し高温強度は低下しやすくなる。そのため、本発明では2段目の時効処理を700〜800℃と規定した。2段目の時効処理の時間は1〜50時間が好ましい。
In the present invention, an aging treatment is performed on the Ni-base alloy after the solution treatment described above.
In the aging treatment, the first aging treatment is performed at 820 to 880 ° C. and the second aging treatment is performed at 700 to 800 ° C. after the above-described solution treatment.
In the first-stage aging treatment, carbides can be precipitated at the crystal grain boundaries to strengthen the crystal grain boundaries. If the aging treatment temperature at the first stage is less than 820 ° C., the precipitation amount of carbide is small and the strengthening of the grain boundaries becomes insufficient. Moreover, since crystal grains grow when the temperature exceeds 880 ° C., the crystal grain size adjusted by the solution treatment may be coarsened. Therefore, in the present invention, the first stage aging treatment is defined as 820 to 880 ° C. The time for the first aging treatment is preferably 1 to 5 hours.
In the second aging treatment, a gamma prime phase is precipitated in the grains, and the high temperature strength of the alloy can be increased. If the second stage aging treatment temperature is less than 700 ° C., the amount of gamma prime phase deposited is small and it becomes difficult to obtain sufficient high-temperature strength. If it exceeds 800 ° C., the gamma plum phase becomes coarse and the high-temperature strength tends to decrease. Therefore, in the present invention, the second stage aging treatment is defined as 700 to 800 ° C. The time for the second stage aging treatment is preferably 1 to 50 hours.

本発明では熱間加工材に固溶化処理を行った後、時効処理を行って強度を付与する。そのために最低限必要な硬さは250HVである。好ましくは270HV以上である。
上述したように、本発明では、Cを低減し、且つ、平均結晶粒径を50〜200μmに調整したことで優れたクリープ破断強度を実現し、更に、時効処理により強度も兼備したNi合金とすることができる。
In the present invention, the hot-worked material is subjected to a solution treatment and then subjected to an aging treatment to impart strength. Therefore, the minimum necessary hardness is 250 HV. Preferably it is 270HV or more.
As described above, in the present invention, an excellent creep rupture strength is realized by reducing C and adjusting the average crystal grain size to 50 to 200 μm, and further, Ni alloy having strength by aging treatment can do.

真空誘導溶解により10kgインゴットを作製し、表1に示す化学成分のNi基合金を得た。なお、残部はNiと不純物である。   A 10 kg ingot was prepared by vacuum induction melting, and Ni-based alloys having chemical components shown in Table 1 were obtained. The balance is Ni and impurities.

Figure 2013209721
Figure 2013209721

表1に示すNi基合金に対して、均質化熱処理と熱間鍛造を行って熱間加工材とした。熱間鍛造の温度は1150℃であった。その後、固溶化処理と時効処理を施し、機械的性質を調査した。試料は鍛造材の長手方向に沿って採取した。固溶化処理は1066℃で4時間加熱後空冷した。時効処理は、第1段時効処理として、850℃で4時間加熱後空冷し、第2段時効として、760℃で16時間加熱後空冷した。
これらの熱処理材の機械的性質を評価するために、常温、700℃、750℃の各温度で引張試験および常温でビッカース硬度測定を行った。これらの結果を表2に示す。
更に、700℃と750℃でのクリープ破断試験を行った。試験温度700℃、荷重応力385N/mm、及び、試験温度750℃、荷重応力242N/mmの条件で行ったクリープ破断試験結果を表3に示す。なお、表3に示す平均結晶粒径は固溶化処理を行い、時効処理を行った後のものである。
The Ni-based alloy shown in Table 1 was subjected to homogenization heat treatment and hot forging to obtain a hot work material. The temperature for hot forging was 1150 ° C. Thereafter, solution treatment and aging treatment were performed, and the mechanical properties were investigated. Samples were taken along the longitudinal direction of the forging. The solution treatment was performed by heating at 1066 ° C. for 4 hours and then air cooling. As the first stage aging treatment, heating was performed at 850 ° C. for 4 hours and then air cooling was performed, and as second stage aging, heating was performed at 760 ° C. for 16 hours and then air cooling was performed.
In order to evaluate the mechanical properties of these heat-treated materials, tensile tests were performed at normal temperatures, 700 ° C., and 750 ° C., and Vickers hardness measurements were performed at normal temperatures. These results are shown in Table 2.
Furthermore, a creep rupture test was performed at 700 ° C. and 750 ° C. Table 3 shows the results of a creep rupture test conducted under the conditions of a test temperature of 700 ° C., a load stress of 385 N / mm 2 , a test temperature of 750 ° C., and a load stress of 242 N / mm 2 . In addition, the average crystal grain size shown in Table 3 is the value after the solution treatment and the aging treatment.

Figure 2013209721
Figure 2013209721

Figure 2013209721
Figure 2013209721

表2より、常温、700℃、750℃での0.2%耐力、引張強さ、伸び、絞りについて、本発明のNo.1合金、No.2合金、No.3合金及びNo.4合金は、何れも比較例のNo.11合金と同等以上である。また、比較例のNo.12合金と比較してやや劣るものの大きく損なう程度ではなく、良好な特性を維持している。
一方で、表3より、700℃、750℃でのクリープ破断寿命について、本発明のNo.1合金、No.2合金、No.3合金及びNo.4合金は、比較例のNo.11合金及No.12合金と比較して向上している。クリープ破断絞りについては、本発明合金は、比較例のNo.12と比べてやや劣るが、破断絞り30%以上で十分な延性を満足している。良好なクリープ破断延性を満足できる範囲で、最も重要視されるクリープ破断強度が改善できている。
From Table 2, the 0.2% proof stress, tensile strength, elongation and drawing at room temperature, 700 ° C. and 750 ° C. No. 1 alloy, no. No. 2 alloy, No. No. 3 alloy and no. All four alloys are No. in the comparative example. It is equal to or better than 11 alloys. In addition, No. Although it is slightly inferior to 12 alloy, it does not greatly deteriorate but maintains good characteristics.
On the other hand, from Table 3, the creep rupture life at 700 ° C. and 750 ° C. No. 1 alloy, no. No. 2 alloy, No. No. 3 alloy and no. No. 4 alloy is No. of the comparative example. No. 11 alloy and No. Compared to 12 alloys. Regarding the creep rupture drawing, the alloy of the present invention is No. of the comparative example. Although slightly inferior to 12, satisfactory ductility is satisfied with a fracture drawing of 30% or more. As far as satisfactory creep rupture ductility is satisfied, the most important creep rupture strength can be improved.

本発明のNi基合金は、C含有量及び結晶粒径の適正化を図ることで良好なクリープ破断延性を維持しながらクリープ破断強度が改善されていることが分かる。そのため、これを用いてなる蒸気タービン材はより高い信頼性を発揮することが可能である。

It can be seen that the Ni-based alloy of the present invention has improved creep rupture strength while maintaining good creep rupture ductility by optimizing the C content and crystal grain size. Therefore, the steam turbine material using this can exhibit higher reliability.

Al:0.5〜1.8%
Alは、Ni、Tiとともにガンマプライム相と呼ばれる金属間化合物(Ni(Al、Ti))を形成し、合金の高温強度を高めるために添加する。0.5%未満では上記効果が得られず、また過度の添加は合金の製造性や加工性が劣化するため、Alは0.5〜1.8%に限定する。また、好ましいAlの範囲は1.0〜1.7%である。
Ti:1.0〜2.0%
Tiは、Ni、Alと同様ガンマプライム相(Ni(Ti、Al))を形成し合金の高温強度を高める効果がある。Tiの原子径はNiのそれよりも大きく基地に弾性歪を与えるため、NiAlよりも強化に寄与する。1.0%未満では上記効果が得られず、過度に添加すると合金の製造性や加工性が劣化するためTiは1〜2.0%に限定する。好ましいTiの範囲は1.4〜1.8%である。
Al/(Al+0.56Ti):0.45〜0.70
本発明では、原子%の比でAl/(Al+0.56Ti)が0.45〜0.70の範囲とする。この式は、AlとTiのAiとTiの原子数(at%)の比を表すものである。
本発明ではAlとTiのバランスは重要である。NiTiはNiAlよりも高温高強度の効果が大きいが、高温での相安定性がNiAlよりも悪く高温で脆弱なイータ相となりやすい。そのため、AlとともにTiを添加することでガンマプライム相はAlとTiが一部置換した(Ni(Al,Ti))の形で析出させる。(Ni(Al,Ti))はNiAlよりも高い高温強度が得られるが延性は劣り、Alの割合が多くなるほど、延性は向上するが逆に強度は低下するため、AlとTiのバランスは重要である。本発明合金においは、十分な延性を確保することは重要であり、ガンマプライム相中のAlの割合を原子量の比として表すため、Al/(Al+0.56Ti)なる数値を設定した。この値が0.45より低いと十分な延性が得られない。逆に0.70を超えると強度が不足するため、Al/(Al+0.56Ti)値は0.45〜0.70に限定する。
Al: 0.5 to 1.8%
Al forms an intermetallic compound (Ni 3 (Al, Ti)) called a gamma prime phase together with Ni and Ti, and is added to increase the high temperature strength of the alloy. If the content is less than 0.5%, the above effects cannot be obtained, and excessive addition deteriorates the manufacturability and workability of the alloy, so Al is limited to 0.5 to 1.8%. Moreover, the range of preferable Al is 1.0 to 1.7%.
Ti: 1.0-2.0%
Ti, like Ni and Al, has the effect of forming a gamma prime phase (Ni 3 (Ti, Al)) and increasing the high temperature strength of the alloy. Since the atomic diameter of Ti is larger than that of Ni and gives elastic strain to the base, it contributes to strengthening more than Ni 3 Al. If less than 1.0%, the above effect cannot be obtained, and if added excessively, the productivity and workability of the alloy deteriorate, so Ti is limited to 1 to 2.0%. A preferable range of Ti is 1.4 to 1.8%.
Al / (Al + 0.56Ti): 0.45-0.70
In the present invention, Al / (Al + 0.56Ti) is in a range of 0.45 to 0.70 in terms of atomic %. This equation represents the ratio of the number of atoms (at%) between Ai and Ti in Al and Ti.
In the present invention, the balance between Al and Ti is important. Ni 3 Ti is large, the effect of high temperature and high strength than Ni 3 Al, high temperature tends to brittle eta phase worse than the phase stability Ni 3 Al at a high temperature. Therefore, by adding Ti together with Al, the gamma prime phase is precipitated in the form of (Ni 3 (Al, Ti)) in which Al and Ti are partially substituted. (Ni 3 (Al, Ti)) provides higher high-temperature strength than Ni 3 Al, but the ductility is inferior. As the proportion of Al increases, the ductility improves, but conversely the strength decreases. Balance is important. In the alloy of the present invention, it is important to ensure sufficient ductility, and in order to express the ratio of Al in the gamma prime phase as a ratio of atomic weight, a numerical value of Al / (Al + 0.56Ti) was set. If this value is lower than 0.45, sufficient ductility cannot be obtained. On the other hand, since the strength is insufficient when it exceeds 0.70, the Al / (Al + 0.56Ti) value is limited to 0.45 to 0.70.

Claims (2)

質量%でC:0.007%以上0.020%未満、Si:0.3%以下、Mn:0.3%以下、Cr:19.0〜22.0%、Mo単独或いはMoを必須としてMo+(1/2)×W:9.0〜12.0%、Al:0.5〜1.8%、Ti:1.0〜2.0%、Fe:2.0%以下、Mg:0.02%以下、及び、B:0.02%以下とZr:0.2%以下の何れかまたは両方を含有し、更に、Al/(Al+0.56Ti)で表される値が0.45〜0.70であり、残部Niと不純物からなり、平均結晶粒径が50〜200μm、硬さが250HV以上であることを特徴とするNi基合金。   C: 0.007% or more and less than 0.020% by mass%, Si: 0.3% or less, Mn: 0.3% or less, Cr: 19.0 to 22.0%, Mo alone or Mo as essential Mo + (1/2) × W: 9.0 to 12.0%, Al: 0.5 to 1.8%, Ti: 1.0 to 2.0%, Fe: 2.0% or less, Mg: 0.02% or less, and B: 0.02% or less and Zr: 0.2% or less, or both, and the value represented by Al / (Al + 0.56Ti) is 0.45. A Ni-based alloy characterized by being -0.70, comprising the balance Ni and impurities, having an average crystal grain size of 50-200 μm and a hardness of 250 HV or more. 質量%でC:0.007%以上0.020%未満、Si:0.3%以下、Mn:0.3%以下、Cr:19.0〜22.0%、Mo単独或いはMoを必須としてMo+(1/2)×W:9.0〜12.0%、Al:0.5〜1.8%、Ti:1.0〜2.0%、Fe:2.0%以下、Mg:0.02%以下、及び、B:0.02%以下とZr:0.2%以下の何れかまたは両方を含有し、更に、Al/(Al+0.56Ti)で表される値が0.45〜0.70であり、残部Niと不純物からなる熱間加工材に、980〜1150℃で固溶化処理を行った後、820〜880℃で1段目の時効処理と700〜800℃で2段目の時効処理を行って、平均結晶粒径を50〜200μm、硬さを250HV以上とすることを特徴とするNi基合金の製造方法。


C: 0.007% or more and less than 0.020% by mass%, Si: 0.3% or less, Mn: 0.3% or less, Cr: 19.0 to 22.0%, Mo alone or Mo as essential Mo + (1/2) × W: 9.0 to 12.0%, Al: 0.5 to 1.8%, Ti: 1.0 to 2.0%, Fe: 2.0% or less, Mg: 0.02% or less, and B: 0.02% or less and Zr: 0.2% or less, or both, and the value represented by Al / (Al + 0.56Ti) is 0.45. The hot-worked material composed of the remaining Ni and impurities is subjected to a solution treatment at 980 to 1150 ° C., then the first aging treatment at 820 to 880 ° C. and 2 at 700 to 800 ° C. A Ni-based alloy characterized by performing an aging treatment at the stage to have an average crystal grain size of 50 to 200 μm and a hardness of 250 HV or more. Production method.


JP2012081525A 2012-03-30 2012-03-30 Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME Pending JP2013209721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081525A JP2013209721A (en) 2012-03-30 2012-03-30 Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081525A JP2013209721A (en) 2012-03-30 2012-03-30 Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2013209721A true JP2013209721A (en) 2013-10-10

Family

ID=49527813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081525A Pending JP2013209721A (en) 2012-03-30 2012-03-30 Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2013209721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680634A (en) * 2020-12-11 2021-04-20 泰尔(安徽)工业科技服务有限公司 Nickel-based alloy powder material for repairing foot roller of crystallizer and repairing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680634A (en) * 2020-12-11 2021-04-20 泰尔(安徽)工业科技服务有限公司 Nickel-based alloy powder material for repairing foot roller of crystallizer and repairing method

Similar Documents

Publication Publication Date Title
EP2826877B1 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
JP5792500B2 (en) Ni-base superalloy material and turbine rotor
US20130206287A1 (en) Co-based alloy
JP2007332412A (en) Ni-BASED SUPERALLOY WITH LOW THERMAL EXPANSION
JP5323162B2 (en) Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures
JP6733210B2 (en) Ni-based superalloy for hot forging
JPWO2016052423A1 (en) Ni-base superalloys
JP4768672B2 (en) Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material
JP2018131667A (en) Ni-BASED ALLOY, GAS TURBINE MATERIAL, AND METHOD FOR PRODUCING Ni-BASED ALLOY HAVING EXCELLENT CREEP PROPERTY
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP5769204B2 (en) Fe-Ni base alloy having excellent high temperature characteristics and hydrogen embrittlement resistance and method for producing the same
JP6733211B2 (en) Ni-based superalloy for hot forging
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP2012046787A (en) Forged alloy for steam turbine and steam turbine rotor using the same
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP5283139B2 (en) Low thermal expansion Ni-base superalloy
US10240223B2 (en) Ni-based alloy having excellent high-temperature creep characteristics, and gas turbine member using the same
JP2013209721A (en) Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP6176665B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP5599850B2 (en) Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance
JP2015042770A (en) HIGH-STRENGTH Ni-BASED ALLOY
JP2015108177A (en) Nickel-based alloy
JP6025216B2 (en) Fe-Ni base alloy and method for producing Fe-Ni base alloy