JP2014032113A - 材料試験機 - Google Patents

材料試験機 Download PDF

Info

Publication number
JP2014032113A
JP2014032113A JP2012172747A JP2012172747A JP2014032113A JP 2014032113 A JP2014032113 A JP 2014032113A JP 2012172747 A JP2012172747 A JP 2012172747A JP 2012172747 A JP2012172747 A JP 2012172747A JP 2014032113 A JP2014032113 A JP 2014032113A
Authority
JP
Japan
Prior art keywords
peak point
waveform
testing machine
material testing
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012172747A
Other languages
English (en)
Other versions
JP5987536B2 (ja
Inventor
Toru Matsuura
融 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2012172747A priority Critical patent/JP5987536B2/ja
Publication of JP2014032113A publication Critical patent/JP2014032113A/ja
Application granted granted Critical
Publication of JP5987536B2 publication Critical patent/JP5987536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】 応答信号の波形を目標波形に近づけるとともに、材料試験機の動作限界速度を超える目標波形の振幅についても再現することが可能な材料試験機を提供する。
【解決手段】 制御装置50は、機能的構成として、伝達関数演算部51と、駆動信号生成部52と、駆動信号出力部54と、検出信号受信部55と、制御目標波形生成部61とを備える。制御目標波形生成部61は、実働波形に対応した目標波形の時系列データから振幅のピーク点を抽出するピーク点抽出部62と、ピーク点抽出部62により抽出されたピーク点の隣接する2点間における速度が材料試験機の動作限界速度を超えるときに、当該ピーク点の時間軸における位置を変更する時間変更部63と、ピーク点抽出部52により抽出された各ピーク点を滑らかに接続するピーク点接続部54とを備える。
【選択図】 図2

Description

この発明は、供試体に対して試験力を繰り返し負荷する材料試験機に関する。
このような材料試験機においては、自動車や航空機などが実際に稼働しているときの実働荷重下における応力あるいはひずみの時系列データを再現する試験を行うことにより、各部品の疲労寿命を推定している。そして、疲労寿命の推定には、ひずみまたは応力の振幅とその頻度情報を使用した、ピークカウント法、レインフロー法などの手法が用いられている。このため、このような材料試験機で実働荷重下における応力あるいはひずみの時系列データを再現するときには、各応力またはひずみの振幅(ピーク)が再現できることが重要となる。
ところで、材料試験機の駆動制御信号として実働波形の時系列データを直接的に用いても、入力信号に対して、材料試験機の荷重検出器、変位検出器などの応答信号が1対1に対応せず、応答側の波形がなまり、振幅のピークが小さくなってしまう。このため、実働波形と等価な目標波形に逆伝達関数を乗じて生成した駆動信号で負荷アクチュエータを駆動して供試体に試験力を付与する材料試験機において、伝達関数補正機能を用いて、周波数ごとの制御信号を繰り返し補正するとともに、応答波形のピーク値が目標波形のピーク値に一致するようにピーク補正を行うことが提案されている(特許文献1参照)。
特開2010−266398号公報
図6は、従来の目標波形とその応答信号の波形とを示す波形図である。ここで、図6の縦軸は試験力を示し、横軸は時間を示している。また、図6においては、目標波形を実線で、応答信号の波形を破線で示している。なお、従来の、実働波形を目標波形として供試体に与える試験では、応答波形を目標波形に近づける補正方法として、時系列でみて応答波形が目標波形に近づけるように負荷アクチュエータに与える設定信号(駆動信号)を補正する方法や、応答信号と目標信号をフーリエ変換し、周波数域で設定信号を補正する方法がある。そして、応答信号は、荷重検出器により検出された試験力信号である。
図6に示すように、補正された駆動信号に対する応答信号の波形(破線)には、目標とする実働波形(実線)のピーク値に到達していない部分Aが生じている。また、駆動信号を周波数域補正する場合、応答の低い周波数成分ほど駆動信号の振幅が大きくなるように補正しているため、不要な高調波が発生し、応答信号の波形に実働波形にはない波が出現している部分Bも存在している。さらに、実働波形の振幅のうち、この材料試験機の動作限界速度を超える周波数成分については、補正することができないため、ピークがなまってしまう。なお、この材料試験機の動作限界速度は、例えば、試験力を負荷アクチュエータとしての油圧シリンダのシリンダロッドの移動量(最大移動量)に換算して算出される最大速度である。
このように、実働波形に材料試験機の動作限界速度を超える振幅がある場合には、特許文献1に示されたように、ピーク補正を行ったとしても、応答波形においては、材料試験機の動作限界速度を超えてピークを再現することができない。
この発明は上記課題を解決するためになされたものであり、応答信号の波形を目標波形に近づけるとともに、材料試験機の動作限界速度を超える目標波形の振幅についても再現することが可能な材料試験機を提供することを目的とする。
請求項1に記載の発明は、負荷アクチュエータを駆動して、供試体に繰り返し試験力を与える材料試験機であって、実働波形に対応した目標波形の時系列データから振幅のピーク点を抽出するピーク点抽出部と、前記ピーク点抽出部により抽出されたピーク点の隣接する2点間における速度が材料試験機の動作限界速度を超えるときに、該当するピーク点の時間軸における位置を変更する時間変更部と、前記ピーク点抽出部により抽出された各ピーク点を滑らかに接続するピーク点接続部と、を備えた制御目標波形生成手段と、前記供試体に前記負荷アクチュータを駆動することにより試験力を付与したときの応答信号を検出する応答信号検出手段と、前記応答信号の波形を目標波形に近づけるため、前記負荷アクチュエータを駆動する設定信号を補正する手段と、を備えたことを特徴とする。
請求項2に記載の発明は、請求項1に記載の発明において、前記制御目標波形生成手段は、多軸試験を行うときに、前記ピーク点抽出部において抽出された任意の1の軸のピーク点と同時刻の他の軸の時系列データ上の値を、当該他の軸でのピーク点の値とする時刻合わせ部を備える。
請求項3に記載の発明は、請求項1または請求項2に記載の発明において、前記時間変更部は、前記ピーク点抽出部において抽出されたピーク点の隣接する2点間における速度を、材料試験機の動作限界速度または供試体の許容限界速度となるように、各ピーク点の時間軸における位置を変更する。
請求項4に記載の発明は、請求項1から請求項3のいずれかに記載の発明において、前記ピーク点接続部は、前記ピーク点抽出部により抽出されたピーク点の隣接する2点間を周波数2分の1の余弦波で接続する。
請求項1に記載の発明によれば、制御目標波形生成手段を備えることから、実働波形の時系列データ上の振幅のピーク値を維持しつつ、材料試験機の動作限界速度の範囲内で、供試体に与える負荷を再現する疲労・耐久試験を行うことが可能となる。
請求項2に記載の発明によれば、制御目標波形生成手段において時刻合わせ部を備えることから、多軸試験を行うときに、各軸の負荷のかかり方を再現することが可能となる。
請求項3に記載の発明によれば、時間変更部は、ピーク点抽出部において抽出されたピーク点の隣接する2点間における速度を、材料試験機の動作限界速度または供試体の許容限界速度となるように、時系列データにおける各ピーク点の時間軸における位置を変更することから、供試体を過酷な条件下に置き、意図的に劣化を進めて寿命を検証する加速試験を行うことが可能となる。
請求項4に記載の発明によれば、ピーク点接続部は、ピーク点抽出部により抽出されたピーク点の隣接する2点間を周波数2分の1の余弦波で接続することから、材料試験機の動作をスムースに行える制御目標波形を生成することが可能となる。
この発明に係る材料試験機の概要図である。 制御装置50内部の主要な機能構成を示すブロック図である。 実働波形から制御目標波形を生成する概要を説明する波形図である。 制御目標波形とその応答信号の波形とを示す波形図である。 この発明に係る材料試験機の変形例の概要図である。 従来の目標波形とその応答信号の波形とを示す波形図である。
以下、この発明の実施の形態を図面に基づいて説明する。図1は、この発明に係る材料試験機の概要図である。
この材料試験機は、アクチュエータ31により供試体である試験片TPに連続して負荷を付与することより疲労・耐久試験を行うものである。試験片TPは、一対の支柱23に架設されたクロスヘッド25側に配設された上つかみ具21と、テーブル24側に配設された下つかみ具22とにより、その両端を把持されている。なお、上つかみ具21は、アクチュエータ31のピストンロッドと連結されており、ピストンロッドに連動して上つかみ具21を上下動させることにより、試験片TPに繰り返し試験力が付与される。
制御装置50からは、アクチュエータ31の駆動信号が送信される。制御装置50で生成されたデジタル信号は、D/A変換器41でアナログ信号に変換された後、増幅器35で増幅されて、アクチュエータ31に入力される。なお、この実施形態では、アクチュエータ31として電磁アクチュエータを用いているが、電磁アクチュエータの替りに油圧アクチュエータを用いる場合には、サーボ弁に駆動信号が入力される。
試験片TPの変位量は、アクチュエータ31を介してクロスヘッド25側に配設された変位計32で検出され、変位信号は、増幅器37で増幅されてA/D変換器43でアナログ信号からデジタル信号に変換された後、制御装置50に入力される。
試験片TPに負荷される試験力は、テーブル24と下つかみ具22との間に配設された荷重計33により検出される。荷重信号は、増幅器36で増幅され、A/D変換器42でアナログ信号からデジタル信号に変換された後、制御装置50に入力される。
制御装置50は、ROM、RAM等の記憶装置および演算装置を備えるコンピュータやシーケンサーによって構成され、この材料試験機全体の動作を制御する。制御装置50には、目標波形発生器46と、ランダム波形発生器45とが接続されている。
目標波形発生器46は、試験片TPに与える実働波形に対応した目標波形を発生させるものであり、例えば供試体が車両用部品の場合には、実車走行により採取した測定信号から目標波形を生成し、その信号を出力する。この目標波形は、後述する制御目標波形生成部61において、制御目標波形を生成するときに使用される。
ランダム波形発生器45は、PSD(Power Spectrum Density:パワースペクトル密度)ランダム波形を発生させるものである。このPSDランダム波形は、周波数ごとのパワースペクトル値を示すPSDが一定の値となるランダム波形であって、予めランダム波形発生器45に保持させておいた様々な周波数成分を含む合成された任意波形や、モデル波形として選択した目標波形にも使用される実働波形に基づいて作成される。そして、このPSDランダム波形は、後述するアクチュエータ31と試験片TPとを含む制御系の伝達関数を同定するために使用される。
図2は、制御装置50内部の主要な機能構成を示すブロック図である。
この制御装置50は、機能的構成として、伝達関数演算部51と、駆動信号生成部52と、駆動信号出力部54と、検出信号受信部55と、制御目標波形生成部61とを備える。
伝達関数演算部51は、アクチュエータ31と試験片TPを含む制御系全体に入力されるPSDランダム波形等の波形と、その波形に基づいて試験片TPに繰り返し荷重を与えたときに得られる応答信号の波形(変位検出波形や荷重検出波形)との比に基づいて、この制御系の伝達関数を同定する。
駆動信号生成部52は、初期駆動信号生成部56とイタレーション処理部57とを備える。初期駆動信号生成部56は、後述する制御目標波形生成部61から入力され、各周波数成分に分解された制御目標波形に対して、伝達関数演算部51において同定された伝達関数の逆数である逆伝達関数を乗算することにより、初期の駆動信号を生成する。初期駆動信号生成部56において生成された初期駆動信号は、駆動信号出力部54を介してアクチュエータ31に与えられる。
イタレーション処理部57は、初期駆動信号生成部56において生成された初期駆動信号によりアクチュエータ31を駆動したときの応答信号の波形と、制御目標波形との比または差に基づいて、駆動信号を繰り返し補正し、駆動信号出力部54に出力される駆動信号を更新する。このイタレーション処理部57では、応答信号の波形を周波数成分に分解し、応答信号の波形の各周波数成分が目標波形の周波数成分に一致するように、駆動信号の波形の振幅を増減する、いわゆる伝達関数補正が実行される。そして、このイタレーション処理部57における伝達関数補正は、更新された駆動信号に応答した応答信号のフィードバックを受け、試験実行中においても、繰り返し行われる。
次に、この発明の特徴部分である制御目標波形生成部61について説明する。制御目標波形生成部61は、実働波形に対応した目標波形の時系列データから振幅のピーク点を抽出するピーク点抽出部62と、ピーク点抽出部62により抽出されたピーク点の隣接する2点間における速度が材料試験機の動作限界速度を超えるときに、該当するピーク点の時間軸における位置を変更する時間変更部63と、ピーク点抽出部62により抽出された各ピーク点を滑らかに接続するピーク点接続部64とを備える。
図3は、実働波形から制御目標波形を生成する概要を説明する波形図である。なお、この図においては、縦軸は試験力を示し、横軸は時間を示している。また、上段は実働波形、下段は制御目標波形であり、両者の時間軸は同一である。
制御目標波形生成部61に、図3の上段に示す実働波形が、目標波形発生器46から目標波形として入力されると、この波形の時系列データにおけるピーク点が、ピーク点抽出部62において抽出される。このピーク点は、図3にP1〜P10で示すように、振幅の折り返し点である。
ピーク点抽出部62において抽出された各ピーク点のうち、隣接するピーク点間の傾きである速度(試験力速度:N/s)が、この材料試験機で実現可能な最大試験力速度である動作限界速度を超える場合は、該当するピーク点の時間軸での位置をシフトさせる。この動作限界速度を超えるピーク点の時間軸での位置変更は、時間変更部63において実行される。
図3の上段の実働波形においては、ピーク点P3−P4間の速度、ピーク点P4−P5間の速度、ピーク点P8−P9間の速度、および、ピーク点P9−P10間の速度が、この材料試験機の動作限界速度を超える速度である。このため、ピーク点P4およびP9の試験力ピーク値を維持しつつ、速度をこの材料試験機での動作限界速度より小さいものとするため、ピーク点P4、P5、P9、P10の時間軸での位置をそれぞれ、紙面右方向の時間を遅れさせる方へシフトさせる。すなわち、ピーク点P4、P5、P9、P10の時間軸での位置を、図3下段に示すピーク点P4´、P5´、P9´、P10´の位置にシフトさせる。
そして、ピーク点P1、P2、P3、P4´、P5´、P6、P7、P8、P9´、P10´を滑らかに接続し、図3の下段に示す制御目標波形を生成する。このピーク点の接続は、ピーク点接続部64において実行される。この実施形態では、材料試験機の動きやすさの観点から、各ピーク点間を、ピーク点での瞬間速度が0(ゼロ)となる1/2コサイン波(周波数2分の1の余弦波)で滑らかに接続している。こうして生成された制御目標波形は、駆動信号生成部52に入力される。
なお、上述した図3に示す実働波形と制御目標波形の例では、材料試験機の動作限界速度を超えるピーク点の時間軸での位置を後ろにシフトさせているが、前にシフトさせるようにしてもよい。すなわち、全体の波形における各振幅のピーク値(試験力値)を維持した状態で、時系列データの時間軸上のピーク点の位置を適宜前後させることで、全ピーク値を材料試験機の動作限界速度である最大速度内で再現するとともに、試験時間を実働波形の時間により近いものとすることができる。
また、上述した実施形態の時間変更部63では、目標波形として入力された実働波形の時系列データにおいて抽出されたピーク点のうち、この材料試験機の動作限界速度を超えるピーク点について時間軸での位置を変更しているが、材料試験機の動作限界速度または供試体である試験片TPの許容限界速度となるように、各ピーク点の時間軸における位置を変更するようにしてもよい。例えば、図3の実働波形のピーク点P1を後ろ(紙面右方向)に、ピーク点P3を前(紙面左方向)にそれぞれシフトさせて、ピーク点P1−P2間、ピーク点P2−P3間の速度が、材料試験機の動作限界速度または試験片TPの許容限界速度となるようにする。このように、ピーク点間を全て、材料試験機の動作限界速度または試験片TPの許容限界速度となるように、各ピーク点の時間軸での位置を変更することで、実働波形に即した加速試験を行うことが可能となる。なお、供試体の許容限界速度とは、供試体に負荷してもよい限界速度であって、供試体の材質等に依存するものである。
次に、以上のような構成を有する材料試験機において疲労・耐久試験を実行する場合の動作について説明する。なお、以下の実施形態においては、変位計32からの変位信号を応答信号として選択した場合について説明する。
疲労・耐久試験を実行するときには、最初に、駆動信号の波形を生成する。この場合には、試験片TPに対してランダム波形を付与し、ランダム波形による試験片TPの変形量を変位計32で検出する。変位計32の検出値は、検出信号受信部55を介して伝達関数演算部51に、応答信号の波形として入力される。そして、図2に示す伝達関数演算部51において、アクチュエータ31を駆動したランダム波形とその応答信号の波形とを用いて、アクチュエータ31と試験片TPを含む制御系の伝達関数が同定される。
同定された伝達関数は駆動信号生成部52に入力され、この伝達関数の逆数である逆伝達関関数と、制御目標波形生成部61から入力された制御目標波形とから、駆動信号が演算される。これにより、初期の駆動信号を得ることができる。なお、これらの駆動信号の演算は、初期駆動信号生成部56において実行される。
次に、この状態において、この駆動信号に基づいてアクチュエータ31を駆動したときの応答信号の波形と制御目標波形との比から、駆動信号の波形を補正するイタレーション(繰り返し補正)を実行する。この繰り返し補正は、イタレーション処理部57において実行され、補正された駆動信号によりアクチュエータ31が駆動されて試験片TPに負荷が付与される。
このときの試験片TPの変位は変位計32で検出され、増幅器37で増幅される。この変位についての応答信号はA/D変換器43でデジタル信号に変換されて制御装置50にフィードバックされる。イタレーション処理部57においては、フィードバックされた応答信号を用いて、試験実行中にもその時に設定されている駆動信号(設定信号)の補正が繰り返し行われる。なお、この実施形態では、応答信号の波形を目標波形に近づけるため、アクチュエータ31を駆動する設定信号を補正する手段として、伝達関数演算部51で同定された伝達関数を利用して、イタレーション処理部57における伝達関数補正を繰り返し行う方法を採用しているが、補正方法はこれに限定されるものではない。例えば、応答信号と目標信号をフーリエ変換し、周波数域で設定信号を補正する方法などの、他の補正方法を採用することも可能である。
図4は、制御目標波形とその応答信号の波形とを示す波形図である。なお、図4においては、縦軸は試験力を示し、横軸は時間を示している。また、図4においては、制御目標波形を実線で示し、その応答信号の波形を破線で示している。
この図4に示すように、この発明の特徴である制御目標波形生成部61において生成された制御目標波形に基づいて、駆動信号を生成し、アクチュエータ31に与えたときの応答信号の波形は、目標とする試験力のピーク値に到達している。さらに、イタレーション処理部57で繰り返し伝達関数補正を行っても、従来のような不要な高調波も発生していない。このように、この発明においては、応答信号の波形において試験力が実働波形のピーク値に到達しない、あるいは、不要な高調波も発生するなどの従来の問題点が解決されている。
次に、この発明の変形例について説明する。図5は、この発明に係る材料試験機の変形例の概要図である。なお、上述した実施形態と同様の構成については、同一の符号を付し、詳細な説明は省略する。
この変形例は、図1に示すアクチュエータ31を複数配設して行われる、いわゆる多軸試験を行う場合の装置構成の概要を示すものである。図5に示すように、この変形例では、供試体Wに対して垂直方向(Z軸方向)の負荷を与えるアクチュエータ31a、直角に交わる水平方向(X軸―Y軸方向)の負荷を与えるアクチュエータ31b、31cが配設されている。また、アクチュエータ31a、31b、31cのピストンロッドの各々には、圧盤34a、34b、34cが連結されており、ピストンロッドに連動して圧盤34a、34b、34cを動かすことにより、X−Y−Z3軸方向から繰り返し試験力が供試体Wに付与される。
アクチュエータ31a、31b、31cに対して、制御装置50a、50b、50cが配置され、制御装置50a、50b、50cからは、アクチュエータ31の駆動信号が送信される。制御装置50a、50b、50cで生成されたデジタル信号は、D/A変換器41a、41b、41cでアナログ信号に変換された後、増幅器35a、35b、35cで増幅されて、アクチュエータ31a、31b、31cに入力される。
供試体Wの変形量は、アクチュエータ31a、31b、31cの各々に接続された変位計32a、32b、32cにより検出される。変位計32a、32b、32cにより検出された変位信号は、増幅器37a、37b、37cで増幅されてA/D変換器43a、43b、43cでアナログ信号からデジタル信号に変換された後、制御装置50a、50b、50cにそれぞれ入力される。
供試体Wに負荷される試験力は、供試体Wの設置台に接続された荷重計により検出される。なお、この図5においては、供試体Wの設置台、荷重計等の図示を省略しているが、この多軸試験を行うよう構成された材料試験機においても、図1に示す荷重計33、増幅器36、A/D変換器42と同様のものが配設されている。そして、荷重信号は、増幅器36で増幅され、A/D変換器42でアナログ信号からデジタル信号に変換された後、制御装置50a、50b、50cのいずれか1つに入力される。
制御装置50a、50b、50cは、図1および図2に示す制御装置50と同様の機能的構成を有するものである。また、この変形例では制御装置50a、50b、50cを制御するパーソナルコンピュータ70が接続されている。さらに、このパーソナルコンピュータ70は、ソフトウェアにより、図1に示す目標波形発生器46、および、ランダム波形発生器45の機能を実現する。
制御装置50a、50b、50cには、互いに同期してアクチュエータ31a、31b、31cの動作を制御可能とするための同期ボード71a、71b、71cがそれぞれ配設され、これらの同期ボード71a、71b、71cは同期ケーブル72により相互に通信可能に接続されている。そして、同期ボード71a、71b、71cの各々は、制御装置50a、50b、50cの一部として、この発明の機能的構成としての制御目標波形生成部61における時刻合わせ部として機能する。
この変形例のように多軸試験においては、各軸から供試体Wへの負荷のかかり方が重要となるが、入力された目標波形に対し、ある軸で抽出されたピーク点の時刻と同じ時刻を、他の軸でもピーク点とみなして制御目標波形を生成するためのピーク点の値として抽出することで、各軸の負荷のかかり方を再現することが可能となる。例えば、制御装置50b、50cの制御目標波形生成部61におけるピーク点抽出部62においてピーク点を抽出するときに、制御装置50aの制御目標波形生成部61におけるピーク点抽出部62において抽出されたピーク点の時刻に合わせてピーク点を抽出する。しかる後、このピーク点を制御装置50b、50cの各ピーク点接続部64により接続し、各軸の制御目標波形を生成する。このように、各軸のピーク点の時刻合わせを行った制御目標波形に基づいて各軸を駆動するアクチュエータ31a、31b、31cの駆動信号を生成することで、各軸での負荷の再現性を向上させることが可能となる。
また、この発明においては、制御目標波形生成部61において抽出され、かつ、時間が変更されたピーク点間を、余弦波を利用して接続しているため、多軸耐久試験の場合に、各軸の波形を正弦波でまとめると各軸の負荷のかかり方に関する情報が失われるという問題を解消し、多軸での実働波形の再現性を向上させることができる。
21 上つかみ具
22 下つかみ具
23 支柱
24 テーブル
25 クロスヘッド
31 アクチュエータ
33 変位計
34 荷重計
35 増幅器
36 増幅器
37 増幅器
41 D/A変換器
42 A/D変換器
43 A/D変換器
45 ランダム波形発生器
46 目標波形発生器
50 制御装置
51 伝達関数演算部
52 逆伝達関数記憶部
54 駆動信号出力部
55 検出信号受信部
56 初期駆動信号生成部
57 イタレーション処理部
61 制御目標波形生成部
62 ピーク点抽出部
63 時間変更部
64 ピーク点接続部
70 パーソナルコンピュータ
71 同期ボード
72 同期ケーブル
TP 試験片
W 供試体

Claims (4)

  1. 負荷アクチュエータを駆動して、供試体に繰り返し試験力を与える材料試験機であって、
    実働波形に対応した目標波形の時系列データから振幅のピーク点を抽出するピーク点抽出部と、前記ピーク点抽出部により抽出されたピーク点の隣接する2点間における速度が材料試験機の動作限界速度を超えるときに、該当するピーク点の時間軸における位置を変更する時間変更部と、前記ピーク点抽出部により抽出された各ピーク点を滑らかに接続するピーク点接続部と、を備えた制御目標波形生成手段と、
    前記供試体に前記負荷アクチュエータを駆動することにより試験力を付与したときの応答信号を検出する応答信号検出手段と、
    前記応答信号の波形を目標波形に近づけるため、前記負荷アクチュエータを駆動する設定信号を補正する手段と、
    を備えたことを特徴とする材料試験機。
  2. 請求項1に記載の材料試験機において、
    前記制御目標波形生成手段は、多軸試験を行うときに、前記ピーク点抽出部において抽出された任意の1の軸のピーク点と同時刻の他の軸の時系列データ上の値を、当該他の軸でのピーク点の値とする時刻合わせ部を備える材料試験機。
  3. 請求項1または請求項2に記載の材料試験機において、
    前記時間変更部は、前記ピーク点抽出部において抽出されたピーク点の隣接する2点間における速度を、材料試験機の動作限界速度または供試体の許容限界速度となるように、時系列データにおける各ピーク点の時間軸における位置を変更する材料試験機。
  4. 請求項1から請求項3のいずれかに記載の材料試験機において、
    前記ピーク点接続部は、前記ピーク点抽出部により抽出されたピーク点の隣接する2点間を周波数2分の1の余弦波で接続する材料試験機。
JP2012172747A 2012-08-03 2012-08-03 材料試験機 Active JP5987536B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012172747A JP5987536B2 (ja) 2012-08-03 2012-08-03 材料試験機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012172747A JP5987536B2 (ja) 2012-08-03 2012-08-03 材料試験機

Publications (2)

Publication Number Publication Date
JP2014032113A true JP2014032113A (ja) 2014-02-20
JP5987536B2 JP5987536B2 (ja) 2016-09-07

Family

ID=50282039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012172747A Active JP5987536B2 (ja) 2012-08-03 2012-08-03 材料試験機

Country Status (1)

Country Link
JP (1) JP5987536B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248336A (zh) * 2016-07-31 2016-12-21 成都凯天电子股份有限公司 黑匣子强冲击试验靶标的制备方法
JP2017058273A (ja) * 2015-09-17 2017-03-23 株式会社島津製作所 疲労試験機
KR20180058567A (ko) * 2016-11-24 2018-06-01 (재)한국건설생활환경시험연구원 전자 유압 제어를 이용한 2축 역학 시험 시스템
JP2021096199A (ja) * 2019-12-19 2021-06-24 日立Geニュークリア・エナジー株式会社 振動試験装置および振動試験装置の制御方法
CN113155486A (zh) * 2021-05-31 2021-07-23 奇瑞汽车股份有限公司 动力总成悬置系统的耐久度模拟试验方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144344A (ja) * 1989-10-31 1991-06-19 Saginomiya Seisakusho Inc 材料疲労試験装置
JPH07128207A (ja) * 1993-10-29 1995-05-19 Shimadzu Corp 材料試験機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144344A (ja) * 1989-10-31 1991-06-19 Saginomiya Seisakusho Inc 材料疲労試験装置
JPH07128207A (ja) * 1993-10-29 1995-05-19 Shimadzu Corp 材料試験機

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058273A (ja) * 2015-09-17 2017-03-23 株式会社島津製作所 疲労試験機
CN106248336A (zh) * 2016-07-31 2016-12-21 成都凯天电子股份有限公司 黑匣子强冲击试验靶标的制备方法
CN106248336B (zh) * 2016-07-31 2019-09-20 成都凯天电子股份有限公司 黑匣子强冲击试验靶标的制备方法
KR20180058567A (ko) * 2016-11-24 2018-06-01 (재)한국건설생활환경시험연구원 전자 유압 제어를 이용한 2축 역학 시험 시스템
KR101866275B1 (ko) * 2016-11-24 2018-06-11 (재)한국건설생활환경시험연구원 전자 유압 제어를 이용한 2축 역학 시험 시스템
JP2021096199A (ja) * 2019-12-19 2021-06-24 日立Geニュークリア・エナジー株式会社 振動試験装置および振動試験装置の制御方法
JP7307671B2 (ja) 2019-12-19 2023-07-12 日立Geニュークリア・エナジー株式会社 振動試験装置および振動試験装置の制御方法
CN113155486A (zh) * 2021-05-31 2021-07-23 奇瑞汽车股份有限公司 动力总成悬置系统的耐久度模拟试验方法和系统

Also Published As

Publication number Publication date
JP5987536B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5987536B2 (ja) 材料試験機
JP6015192B2 (ja) 疲労試験機
JP6420149B2 (ja) 動的本体力を測定および評価するためのテストシステム
CN105252539A (zh) 一种基于加速度传感器抑制并联平台振动控制系统及方法
JP6468144B2 (ja) 疲労試験機
CN113967816B (zh) 一种用于焊接夹具的自适应热变形补偿系统
CN102128303A (zh) 电液线速度伺服系统中执行机构参数识别装置及识别方法
JP5397262B2 (ja) 振動試験装置
CN107084896B (zh) 电液伺服双轴疲劳试验装置的正弦波幅值和相位控制方法
CN102141172B (zh) 电液线位移伺服系统中执行机构参数识别装置及识别方法
JPH11258135A (ja) 金属材料の加工特性評価試験方法および装置
JP2006189388A (ja) 振動試験装置、及び振動試験方法
JP5146401B2 (ja) 材料試験機
JP4765759B2 (ja) 疲労試験機
CN109062036B (zh) 基于传递函数的振动谐波迭代控制系统
EP2989512B1 (en) Apparatus and method for applying a load to a material
JP6313920B2 (ja) 試験装置の制御装置、および、試験装置の制御方法
CN113804437B (zh) 一种连杆耐久疲劳试验装置及方法
JP3119610U (ja) 疲労試験機および逆伝達関数演算装置
JP6011076B2 (ja) 疲労試験機および駆動波形の補正方法
JP2012093231A (ja) 疲労試験装置
JPS61139744A (ja) 疲労試験方法
JP2012242342A (ja) 材料試験方法及び材料試験装置
JP2019109189A (ja) 信号処理方法および材料試験機
CN102174967B (zh) 电液角位移伺服系统中执行机构参数识别装置及识别方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151