JP2014020320A - 軸流タービン及び発電プラント - Google Patents

軸流タービン及び発電プラント Download PDF

Info

Publication number
JP2014020320A
JP2014020320A JP2012161734A JP2012161734A JP2014020320A JP 2014020320 A JP2014020320 A JP 2014020320A JP 2012161734 A JP2012161734 A JP 2012161734A JP 2012161734 A JP2012161734 A JP 2012161734A JP 2014020320 A JP2014020320 A JP 2014020320A
Authority
JP
Japan
Prior art keywords
turbine
rotor
communication hole
heat shield
shield plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012161734A
Other languages
English (en)
Other versions
JP5865204B2 (ja
Inventor
Akihiro Onoda
昭 博 小野田
Yuki Mimura
村 勇 樹 見
Tomohiko Tsukuda
知 彦 佃
Iwataro Sato
藤 岩太郎 佐
Kazutaka Tsuruta
田 和 孝 鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012161734A priority Critical patent/JP5865204B2/ja
Priority to US13/783,669 priority patent/US8806874B2/en
Priority to EP13157785.0A priority patent/EP2687680A3/en
Priority to CN201310072587.2A priority patent/CN103573297B/zh
Publication of JP2014020320A publication Critical patent/JP2014020320A/ja
Application granted granted Critical
Publication of JP5865204B2 publication Critical patent/JP5865204B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】タービンロータを十分に冷却し、プラントの効率低下を抑制する軸流タービン及び発電プラントを提供する。
【解決手段】ダイアフラム外輪、内輪の間に周方向、回転中心軸方向に配設したタービンノズル1、内輪の筒状流路の回転中心軸方向に設けたタービンロータ13のロータディスク21に周方向に植設したタービン動翼5、隣接する二つのロータディスク間のタービンロータの外表面との間に空間部9を経て設けた遮熱板3、タービンロータ内に形成し冷却媒体が流入し空間部と接続した連通孔2、空間部と接続し二つのロータディスクの少なくともいずれか一方に形成した開口部6、空間部と開口部6を経て接続し植え込み部を連通する第2の連通孔と接続しタービン動翼5の有効長部に沿って連通する連通孔5、連通孔に接続しタービン動翼の側面に開口した開口部7a、または、連通孔に接続しタービン動翼の外周端面に開口した開口部7bを備える。
【選択図】図2

Description

本発明の実施の形態は、軸流タービン及び発電プラントに関する。
近年、地球温暖化の抑制が強く望まれる中、発電プラントにおいても発電効率の改善により発電用の燃料消費を減らし、CO、SO、NO等の発生量を抑制することが望まれている。
蒸気タービンやガスタービン等を用いる火力発電プラントでは、高効率化の有効な手法として、タービン入口温度を上昇させることが行われている。
一方で、タービンは静止部品と、ロータや動翼等の回転部品とを備えており、静止部品と回転部品との間で接触を避けるために隙間を設けることは、必要不可欠である。
そのため、タービン翼列以外の隙間に作動流体が必ず漏れることになり、作動流体の温度で金属表面が曝されることになる。従って、高温作動流体の場合では、耐熱合金においても要求される強度特性を満足出来ない場合が起こり得る。
そこで、必要に応じて部分的に冷却する構造が提案されている。例えば、以下に記載する特許文献1では、タービン段落の途中の下流で仕事を終えて、温度が低下した作動流体の一部を上流段落のタービンロータの外表面または動翼先端の外周壁に導いて冷却を行い、冷却した作動流体をグランドから排出する構造が提案されている。この構成では、主流の温度が600℃程度となる蒸気タービンでは支障はないと考えられるが、ガスタービン等主流のガス温度が1000℃を越える場合は、タービン段落下流においても高温となるため十分な冷却を得ることができない。また、途中段落から作動流体を抜き取って冷却に適用してグランドに排出するため、動力として回収することができないまま排出することになり効率低下を余儀なくされる。
また、例えば特許文献2では、通路部の主流が接する外面と、翼が保持された外面に作られる空間を有し、かつ動翼の植込み部で導通部を備えている。この構成によれば、動翼の上流と下流の空間が連通しており、冷却媒体が通過して冷却することとなる。このように連通した構成では、冷却空間の下流になればなるほど冷却媒体の温度が上昇し、冷却効率が低下することは明らかである。主流の作動流体の温度が高くない場合は、冷却媒体の温度上昇が少ないため特に支障はないと考えられる。しかし、高温の作動流体においては十分な冷却を行うことは困難である。
このように、主流の作動流体の温度が高温となる場合は、従来の技術では十分な冷却効果を得ることが困難であった。このため、冷却媒体の量を多くすることで冷却を行っていた。しかし、冷却媒体を多く使用することは、プラント全体の効率低下を招くこととなり、高温化によって発電効率を向上させることの妨げとなっていた。
特許第4525976号 特許第4540357号
上述したように、従来は主流の作動流体が高温となる場合、タービンロータを十分に冷却するためには多量の冷却媒体を必要し、プラント全体の効率低下を招いていた。
本発明は上記事情に鑑み、作動流体が高温であっても、多量の冷却媒体を用いることなくタービンロータを十分に冷却することで、冷却媒体による効率低下を抑制することが可能な軸流タービン及び発電プラントを提供することを目的とする。
本発明の実施の形態による軸流タービンは、
ダイアフラム外輪とダイアフラム内輪との間に形成される環状流路の周方向に沿って列状に配置され、回転中心軸方向に沿ってタービン段落毎に配置されたタービンノズルと、
前記ダイアフラム内輪により形成される筒状流路の前記回転中心軸方向に沿って設けられたタービンロータのロータディスクに、前記周方向に沿って列状に植設され、前記回転中心軸方向に沿って各々の前記タービンノズルの下流側に前記タービン段落毎に配置されたタービン動翼と、
前記回転中心軸方向に沿って隣接する二つの前記ロータディスク間の前記タービンロータの外表面との間に空間部を有するように設けられた遮熱板と、
前記タービンロータ内に形成されて冷却媒体が流入し、前記空間部と接続された第1の連通孔と、
前記空間部と接続するように、隣接する二つの前記ロータディスクの少なくともいずれか一方に形成された第1の開口部と、
前記空間部と前記第1の開口部を介して接続され、前記ロータディスクにおける前記タービン動翼の植え込み部を連通する第2の連通孔と、
前記第2の連通孔と接続され、前記タービン動翼の有効長部に沿って連通する第3の連通孔と、
前記第3の連通孔に接続され、前記タービン動翼の側面に開口された第2の開口部と、
前記第3の連通孔に接続、または、前記タービン動翼の外周端面に開口された第3の開口部と、
を備えることを特徴する。
また本発明の実施の形態による発電プラントは、
空気に含まれる窒素を除去して、酸素のみを抽出する酸素製造装置と、
燃料と、COと、前記酸素製造装置により抽出された酸素とを与えられ、高温の燃焼ガスを生成する燃焼器と、
前記燃焼ガスを与えられ、回転駆動する上記軸流タービンと、
前記軸流タービンから回転駆動力を与えられ、発電を行う発電機と、
COと前記軸流タービンから排出された排気とを与えられ、この排気と熱交換を行ったCOを前記燃焼器に与える再生熱交換器と、
前記再生熱交換器により熱交換が行われた前記排気を冷却する冷却器と、
前記冷却器により冷却された前記排気から水分を分離除去してCOを排出する湿分分離器と、
前記湿分分離器から排出されたCOを昇圧し、前記再生熱交換器に供給する圧縮ポンプと、
を備えることを特徴とする。
本発明の実施の形態1による軸流タービンのタービン段落の概略構成を示す縦断面図である。 同実施の形態1による軸流タービンのタービン段落の構成を部分的に拡大して示す縦断面図である。 本発明の実施の形態2による軸流タービンのタービン段落の構成を部分的に拡大して示す縦断面図である。 本発明の実施の形態3による軸流タービンのタービン段落の構成を部分的に拡大して示す縦断面図である。 本発明の実施の形態4による軸流タービンのタービン段落の構成を部分的に拡大して示す縦断面図である。 本発明の実施の形態5による軸流タービンのタービン段落の構成を部分的に拡大して示す縦断面図である。 本発明の実施の形態6による軸流タービンのタービン段落の構成を部分的に拡大して示す縦断面図である。 本発明の実施の形態7による軸流タービンのタービン段落の構成を部分的に拡大して示す縦断面図である。 COを作動流体とするCOタービンの主要な構成を示す縦断面図である。 上記実施の形態1〜7による軸流タービンの適用が可能なCOを作動流体とする火力発電プラントの構成を示す系統図である。 上記実施の形態1及び2の変形例による軸流タービンのタービン段落の構成を部分的に拡大して示す縦断面図である。
以下、本発明の実施の形態による軸流タービンについて、図面を参照して説明する。
(1)実施の形態1
本発明の実施の形態1による軸流タービンにおけるタービン段落の概略構成を図1に示す。
ダイアフラム外輪17とダイアフラム内輪16との間に形成された環状流路の周方向に複数枚のタービンノズル1が列状に配置され、かつ回転中心軸に沿って複数段落で配設されている。ダイアフラム内輪16とロータ13との間には、作動流体の漏洩を減らすためにラビリンスパッキン18が周方向に取り付けられている。
このように形成された各タービンノズル1のそれぞれの下流側には、各タービンノズル1に対向してタービン動翼5が段落毎に配設されている。このタービン動翼5は、タービン動翼5の植え込み部23が設けられたロータディスク21の外周の周方向に所定間隔で列状に植設されており、作動流体から回転エネルギを得ることで出力を取り出している。タービン動翼5の先端には振動抑制用にスナッバ20が設けられ、スナッバ20とダイアフラム外輪17との間には作動流体の漏洩を減らすためシールフィン4が周方向に取り付けられている。回転中心軸に沿って、図中左から右へ向って、第1段落のタービンノズル、第1段落のタービン動翼、第2段落のタービンノズル、第2段落のタービン動翼の順にそれぞれ配設されている。
図1において、第1段落のタービン動翼5の半径方向に沿う断面構造、並びに第2段落のタービンノズル1のダイアフラム内輪16と対向する第1段落のタービン動翼5と第2段落のタービン動翼5との間の部分の点線で囲まれた部分201を拡大して図2に示す。
本実施の形態1では、第1段落のタービン動翼5と第2段落のタービン動翼5との間において、タービンロータ13の外表面との間に空間部9を形成するように遮熱板3が全周に渡って設けられている。この遮熱板3が、主流から漏れる高温の漏洩流体22をタービンロータ13から隔離し、タービンロータ13の外表面が加熱されないようにしている。
この遮熱板3は、回転中心軸方向に沿って隣接する二つのロータディスク21に、回転中心軸方向に沿う両端部が接続されて設けられている。
タービンロータ13の内部には、外部から冷却媒体が供給される連通孔2が形成されている。連通孔2は、遮熱板3とタービンロータ13の外表面との間に形成された空間部9と接続されている。
また空間部9は、ロータディスク21の開口部6と接続されており、さらにタービン動翼5の植え込み部23を通過してタービン動翼5内の有効長部に渡って形成された連通孔7に接続されている。連通孔7は、タービン動翼5の側面に開口された開口部7aに接続、または、連通孔7は、タービン動翼5の外周端面のスナッバ20に開口された開口部7bに接続されている。
冷却媒体がタービンロータ13の連通孔2を通過し、空間部9、ロータディスク21の開口部6、タービン動翼5内の連通孔7を順次通過していく。最終的に連通孔7から開口部7aまたは、開口部7bを通過して主流へ流出する。そのため、冷却媒体の流体圧力を、主流の流体圧力より高くする必要がある。
外部から供給された冷却媒体が、遮熱板3とタービンロータ13の外表面の空間部9を通ることでタービンロータ13の外表面が冷却保護される。さらに、タービン動翼5の植え込み部23、タービン動翼5内部の連通孔7を有効長に渡って冷却媒体が通過することで、この部分も冷却保護される。
そして最終的には、温度が上昇した冷却媒体を主流へ流入させることで、作動流体として活用することができる。ここで、連通孔2の出口は空間部9における作動流体の下流側に接続され、作動流体の流れと逆方向に沿って冷却媒体が流れ、開口部6を通過して第2段落のタービンノズル1の前段に位置する第1段落のタービン動翼5の連通孔7に流れた後、主流へ流入する。これにより、温度が上昇した冷却媒体を冷却した箇所よりさらに上流側から作動流体として主流へ流入することで、より効率よく仕事をさせることができる。
本実施の形態1によれば、外部からの冷却媒体の流入により各段落の冷却が可能であり、そのため作動流体が高温の場合であってもタービンロータ13の外表面、特にタービン動翼5の有効長部、タービン動翼5の植え込み部23を十分に冷却保護することが可能である。
同時に冷却媒体は、タービン動翼5と植え込み部23を冷却して温度上昇した冷却媒体を主流に流入させることでタービン出力を増加させることができる。この結果、冷却媒体を冷却のみでなく出力に再利用することで効率低下を抑制することが可能である。
ここで、図2に示されていない第1段落のタービンノズル1と対向するタービンロータ13には、連通孔2が設けられておらず、またこの第1段落のタービンノズル1に対向する位置には遮熱板3による空間部9も形成されていない。この領域のタービンロータ13は、図9を用いて後述する前方のグランド111から、主流より高圧で供給されて主流と混合する冷却媒体により冷却する。
なお、例えば5段落構成の場合は、上流から下流に向って交互に、第1段落のタービンノズル1、第1段落のタービン動翼5、第2段落のタービンノズル1、第2段落のタービン動翼5、…、第5段落のタービンノズル1、第5段落のタービン動翼5が配設されている。
本実施の形態1では、第1段落のタービンノズル1と第5段落のタービン動翼5を除いて、第1段落のタービン動翼5及び第2段落のタービンノズル1、第2段落のタービン動翼5及び第3段落のタービンノズル1、…、第4段落のタービン動翼5及び第5段落のタービンノズル1のそれぞれの組み合わせに対して、図2に示された構成が設けられている。しかし、少なくとも第1段落のタービン動翼5及び第2段落のタービンノズル1に図2に示された構成が設けられていればよい。
(2)実施の形態2
本発明の実施の形態2による軸流タービンについて、その構成を示した図3を用いて説明する。なお、上記実施の形態1と同一の構成要素には同一の符号を付して説明を省略する。
上記実施の形態1では、上述したようにタービンロータ13内部の連通孔2の出口の回転中心軸方向の位置が、ロータディスク21間におけるタービンノズル1の下流側に設置されている。これにより、遮熱板3を冷却した冷却媒体がタービン上流側のタービン動翼5の植え込み部23とタービン動翼5とを冷却した後、上流側の主流に流入することでタービン回転駆動においてより多くの仕事に寄与することになる。
これに対し本実施の形態2では、タービンロータ13内部の連通孔2が分岐している。分岐した一方の連通孔2aは、第1段落のタービン動翼5の植え込み部23を通過してタービン動翼5の内部の連通孔7に直接接続される。分岐した他方の連通孔2bは、ロータディスク21間に設けられた空間部9に接続されている。
この構成によれば、タービン動翼5の植え込み部23とタービン動翼5の冷却に必要な冷却媒体と、遮熱板3の冷却に必要な冷却媒体とを連通孔2から供給することができる。
また本実施の形態2では、連通孔2から分岐した他方の連通孔2bの出口が空間部9に接続された回転中心軸方向の位置が、ロータディスク21間における上流側にある。この空間部9に流れ込んだ冷却媒体は、空間部9を主流と同一方向に流れた後、下流側に設けられた開口部6を経由して第2段落のタービン動翼5が植え込まれたロータディスク21の内部に設けられた貫通孔2aに接続されている。
第2段落のタービン動翼5が植え込まれたロータディスク21においても、図3に示された第1段落のタービン動翼5が植え込まれたロータディスク21と同様に、タービンロータ13内部の他の連通孔2から分岐した一方の連通孔2aが設けられており、他の連通孔2から供給された冷却媒体と、空間部9を通過して開口部6を経由してきた冷却媒体とが合流する。そしてこの連通孔2aは植え込み部23を通過して、第2段落のタービン動翼5の有効長に渡る連通孔7に接続されている。
以降の段落においても同様に、タービンロータ13内部の連通孔2から分岐した一方の連通孔2aが第3段落のタービン動翼5内部の連通孔7に接続され、分岐した他方の連通孔2bが、第3段落のタービン動翼5のロータディスク21と第4段落のタービン動翼5のロータディスク21との間に設けられた空間部9に接続される。
また上記実施の形態1と同様に、本実施の形態2においても第1段落のタービンノズル1と対向するタービンロータ13の冷却は、前方のグランド111からの冷却媒体で行われる。
本実施の形態2によれば、上記実施の形態1と同様に、遮熱板3とタービンロータ13の外表面の空間部9を冷却媒体が通過することでタービンロータ13の外表面が冷却保護され、さらにはタービン動翼5の植え込み部23、タービン動翼5内部の連通孔7を有効長に渡って冷却媒体が通過することでタービン動翼5が冷却保護される。また温度が上昇した冷却媒体を主流へ流入させて作動流体としても活用することにより、冷却媒体を冷却のみに使用するだけでなく再利用することで効率低下を抑制することが可能である。
さらに本実施の形態2では、タービンロータ13内部の貫通孔2に供給された冷却媒体を、分岐した二つの貫通孔2a、2bにそれぞれ流すことにより、連続する二つのタービン動翼5の植え込み部23、タービン動翼5内部の連通孔7を有効長に渡って冷却媒体が通過することで効率良くタービン動翼5が冷却保護される。
(3)実施の形態3
本発明の実施の形態3による軸流タービンについて、その構成を示した図4を用いて説明する。なお、上記実施の形態1、2と同一の構成要素には同一の符号を付して説明を省略する。
本実施の形態3では、隣接する二つのタービン動翼5が植え込まれたロータディスク23間のタービンロータ13の外表面に設けられた遮熱板3の外周側の表面に、遮蔽板3より低い熱伝導率を有する熱絶縁層8を備える。
この熱絶縁層8には、サーマルバリアコーティング(断熱被膜、高温耐蝕被膜)に使用される各種材料、例えばM(ニッケル、コバルト、鉄又はこれらの組み合わせ)Cr(クロム)Al(アルミニウム)Y(イットリウム)材料、あるいはMCrAlY材料にセラミックス系材料を組み合わせたもの等を用いることができる。
これにより、高温の漏洩流体22と遮熱板3とが熱的に絶縁されるため、外部から流入する冷却媒体の使用量をより少なくすることが可能となる。この結果、より少ない冷却媒体でタービンロータ13の外表面を冷却保護することができタービン効率が向上する。
(4)実施の形態4
本発明の実施の形態4による軸流タービンについて、その構成を示した図5を用いて説明する。なお、上記実施の形態1〜3と同一の構成要素には同一の符号を付して説明を省略する。
本実施の形態4では、隣接する第1段落、第2段落のタービン動翼5が植え込まれたロータディスク21間におけるタービンロータ13の外表面を覆う遮熱板3の内周側に、遮熱板3を支持する脚構造体14を備え、かつ脚構造体14の内周部分がタービンロータ13に取り付け可能なように植え込み部23と同様な形状を有する点に特徴がある。なお、本実施の形態4では、タービンロータ13に取り付け可能な形状の一例として、植え込み部23と同様な形状としているが、この形状には限定されず他の形状であっても取り付けが可能であればよい。
冷却媒体がタービンロータ13の連通孔2を通過し、空間部9、ロータディスク21の開口部6、タービン動翼5内の連通孔7を順次通過していく。最終的に連通孔7から、タービン動翼5の側面に開口された開口部7aを通過して主流へ流出、または、タービン動翼5の外周端面のスナッバ20に開口された開口部7bを通過して主流へ流出する。
遮熱板3には、漏洩流体22と冷却媒体との圧力差により外周方向に応力が印加される。さらに、遮蔽板3はロータディスク21間に接続されているため、タービンロータ13と一体に回転する。これにより、遮熱板3に遠心力が加わり外周方向に変形する可能性がある。遮熱板3とラビリンスパッキン18との接触を防ぐためには、間隙を確保する必要がある。しかし、間隙が大きいと漏洩流体22の漏洩量が増加しタービン効率が低下する。
そこで、遮熱板3の内周側に脚構造体14を設けることで、漏洩流体22と冷却媒体との圧力差と、遠心力による遮熱板3の変形を防止することが可能となる。さらに、遮熱板3の変形を防止することで、遮熱板3とラビリンスパッキン18との間隙を適正な値に確保することができので、タービン効率の低下を抑制することができる。
(5)実施の形態5
本発明の実施の形態5による軸流タービンについて、その構成を示した図6を用いて説明する。なお、上記実施の形態1〜4と同一の構成要素には同一の符号を付して説明を省略する。
本実施の形態5では、遮熱板3が、半径方向に空間を空けて対向するように配設された、内周側の遮熱板11と外周側の遮熱板10とから成る二重構造を有する。この遮熱板11、10の少なくともいずれか一方の両端面は、ロータディスク13に接続されている。そして、内周側の遮熱板11に開口部12が形成され、遮熱板11と10との間の空間とロータディスク21の開口部6とが接続されて通路が形成されている。
タービンロータ13の連通孔2を通過した冷却媒体は、内周側の遮熱板11の開口部12を通り、内周側の遮熱板11と外周側の遮熱板10との間に形成された空間に流入する。この空間に流入した冷却媒体は所定の流速で通過し、ロータディスク21の開口部6を経てタービン動翼5の連通孔7を通過し、最終的に主流へ流入する。遮熱板11と10との間の幅の狭い空間内を通過するときの流速は、遮熱板11の外表面の温度及び空間の幅に基づいて設計者が任意に設定することが可能である。この流速を高速化することで、対流冷却による効率的な冷却が可能となる。即ち、少ない冷却媒体を用いて効率的に冷却することができる。
なお、本実施の形態5では遮熱板11、10が二重構造を有するが、遮熱板11、10の枚数には限定されず三重構造等、任意に設定することができる。
また、二枚の遮熱板11、10のうち、例えば内周側の遮熱板11は一方の端面がロータディスク21に片持ち梁の状態で接続され、外周側の遮熱板10は両方の端面がロータディスク21に接続されていてもよい。この場合は、ロータディスク21に接続されていない遮熱板11の他方の端面とロータディスク21との隙間を冷却媒体が通過して、遮熱板11と10との間の空間に流入する。この場合は、遮熱板11に開口部12が形成されていなくともよい。
(6)実施の形態6
本発明の実施の形態6による軸流タービンについて、その構成を示した図7を用いて説明する。なお、上記実施の形態1〜5と同一の構成要素には同一の符号を付して説明を省略する。
本実施の形態6では、遮熱板が内周側の遮熱板11と外周側の遮熱板10とから成る二重構造を有し、さらに遮熱板11と10との間に少なくとも一つの構造体19が設けられている。また、遮熱板11と10との間の空間を通過する冷却媒体は、内周側の遮熱板11の開口部12から矢印22cのように通過する。
上記実施の形態5において述べたように、遮熱板11、10が二重構造を有するため、漏洩流体22と冷却媒体との圧力差による外周方向の応力と遠心力とが加わり外周方向に変形する可能性がある。このような遮蔽板11、10の形状変形を抑制するために、両者の間を接続する構造体19が設置されている。
さらに、遮蔽板11、10の間の空間に構造体19が複数個設置されていることにより、空間内部を冷却媒体が通過する際に構造体19により流れに乱れが生じる。このため、空間内部の対流熱伝達が促進され、特に外周側の遮熱板10の冷却がより促進されることになる。
なお、遮熱板11と10との間に設けられた構造体19の形状は、図7に示された円柱状の形状に限定されるものではなく、角柱状、円錐状等、任意の形状とすることができる。
上記実施の形態5において述べたように、遮熱板11、10は二重構造には限定されず、三重構造等任意の枚数に設定することができる。この場合に、少なくとも対向する二枚の遮熱板11、10の間に構造体が設置されていればよい。あるいは、対向する2枚の遮熱板11、10の間の空間に一体型の構造体19を設け、この構造体19に複数の流路を形成してもよい。
(7)実施の形態7
本発明の実施の形態7による軸流タービンについて、その構成を示した図8(a)及び(b)を用いて説明する。なお、上記実施の形態1〜6と同一の構成要素には同一の符号を付して説明を省略する。
本実施の形態7は、図8(a)に示されたように遮熱板が内周側の遮熱板11と外周側の遮熱板10とから成る二重構造を有し、内周側の遮熱板11に開口部12が形成され、外周側の遮熱板10に開口部15が形成されている。この開口部12、15は、図8(a)においては1箇所形成されている。しかし、開口部12、15が外周方向に沿って複数形成されていてもよく、回転中心軸方向に沿って複数形成されていてもよく、あるいは外周方向及び回転中心軸方向に沿って複数形成されていてもよい。
また開口部12、15の形状は、図8(a)に示されたように半径方向に沿って平行に形成されてもよく、あるいは半径方向に対して斜めに開口された形状を有してもよい。
本実施の形態7によれば、内周側の遮熱板11の開口部12と、遮熱板11と10との間の空間を通過する冷却媒体の一部を、外周側の遮熱板10の開口部15から矢印22aのように通過させて漏洩流体22に対して噴出させる。これにより、図8(b)に示された矢印22bのように、漏洩流体22の流れの妨げとなり、漏洩流量を低減することが可能となる。
また、高温の漏洩流体22と冷却媒体とが混合するため、漏洩流体22の温度が低下し、外周側の遮熱板10の温度が低下することで十分な冷却が可能となる。このような冷却効果は、外周側の遮熱板10の外周側表面において、漏洩流体22の上流側に開口部15を形成するとより有効である。
次に、上記実施の形態1〜7による軸流タービンの適用が可能なCOを作動流体とするCOタービン101の主要部の回転中心軸方向の断面を図9に示す。
タービンロータ103から径方向外側に、環状に一定間隔でタービン動翼105が列状に配設されている。これらのタービン動翼105は、回転中心軸方向にも所定間隔で段落毎に配設され、回転中心軸方向に隣接するタービン動翼105の間には、タービンノズル106が配設されている。タービンノズル106は、環状に一定間隔で段落毎に配設されている。タービン動翼105の植え込み部はタービンロータ103の外周面に植設さる。
図9では、タービン動翼105とタービンノズル106を回転中心軸方向に交互に5個ずつ配設した5段落構成の例を示しているが、タービン動翼105とタービンノズル106の段落の数に制限はない。
図9に示されたCOタービン101は、超臨界状態のCOを流体として用いてタービンロータ103を駆動するとともに、COタービン101から排気されたCOを循環させてCOタービン101内に注入し、各部の冷却に用いている。
COは31℃、7.4MPaに臨界点があり、図9に示されたCOタービン101は、この臨界点よりも高温かつ高圧でCOを使用することを前提としている。
図9に示されたCOタービン101の上流側には、スリーブ管107が設けられており、このスリーブ管107から超臨界状態のCOガスが流体としてタービン内に注入される。注入されたCOガスは、回転中心軸方向に沿って、上流側から下流側に流れ、図示されない排気管から排気される。
タービンロータ103は、タービン動翼105に流体が衝突した力を利用して回転駆動するものであり、タービン動翼105の外周面側の隙間とタービンノズル106の内周面側の隙間を通って漏れてしまう。この漏れを抑制するために、タービン動翼105の外周面、及びタービンノズル106の内周面にはそれぞれシール構造体108が配設されている。
シール構造体108は、タービン動翼105外周面、及びタービンノズル106の内周面に所定間隔でシールフィン109を配設したものであり、これにより、隙間を狭くして流体が漏れにくくしている。
シール構造体108は、タービン動翼105の外周面およびタービンノズル106の内周面だけでなく、最上段のタービンノズル106よりも上段側にあるグランド111にも設けられている。
シール構造体108を設けても、タービン動翼105の外周面とタービンノズル106の内周面を高温の流体が流れるため、タービン動翼105とタービンノズル106は高温に晒されることになる。そこで、図9に示されたCOタービン101では、外部から供給された低温のCOガス(以下、冷却COガス)を用いて、タービン動翼105とタービンノズル106を冷却しても良い。
図9に示されたCOタービン101で用いられるタービンロータ103の一部は中空構造であり、その両端側が中実構造になっている。より具体的には、タービン動翼105とタービンノズル106が交互に配設された領域に対向するタービンロータ103の領域115は中空であり、この中空領域115には、この中空領域115から径方向外側の方向に、所定間隔で複数の流体経路116が配設されている。
このようなCOタービン101は、発電とCOの分離および回収とが同時に可能な火力発電システムに組み込むことができる。
図10に、図9に示されたCOタービン101を利用する火力発電プラントの一例における概略構成を示す。図10に示された火力発電プラント120は、酸素製造装置121と、燃焼器122と、図9に示されたCOタービン101と、発電機123と、再生熱交換器124と、冷却器125と、湿分分離器126と、COポンプ127とを備える。
酸素製造装置121は、空気に含まれる窒素を除去して、酸素のみを抽出する。燃焼器122は、酸素製造装置121で抽出した酸素と、燃料と、COとを用いて高温の燃焼ガスを生成する。この燃焼ガスの成分は、COと水である。燃焼器122が用いる燃料は、メタンガス等の窒素を用いない天然ガスが用いられる。
燃焼器122で生成された高温かつ高圧のCOガスは図9に示されたCOタービン101に注入されて、タービンロータ103の回転駆動に用いられる。タービンロータ103の回転中心軸には発電機123が接続されており、発電機123はタービンロータ103の回転駆動力を利用して発電を行う。
COタービン101から排出されたCOと水蒸気は、再生熱交換器124で冷却された後、さらに冷却器125にて冷却される。その後、湿分分離器126で水が除去されて、COのみが抽出される。このCOはCOポンプ127にて圧縮されて昇圧される。
COポンプ127で昇圧されたCOの一部は、再生熱交換器124で昇温される。再生熱交換器124から排出されたCOは、冷却COとしてCOタービン101の冷却に用いられるとともに、燃焼器122にも供給される。
COポンプ127で昇圧された高圧のCOのうち、再生熱交換器124を介して発電に再利用されるCO以外の余剰のCOは、貯蔵したり、他の用途での利用(例えば、石油掘削量増大のための利用)のために回収される。
このように、図10に示された発電プラントは、燃焼によって生成したCOと水のみを用いて発電を行い、COの大部分は循環させて再利用するため、有害ガスであるNOxを排出するおそれがなく、またCOを分離および回収する設備を別個に設ける必要もない。さらに、余剰のCOは、そのまま高純度の状態で回収でき、発電以外の種々の用途に用いることが容易である。
またCOタービン101は、燃焼器122から発生した高温高圧のCOガスにより動作する。このため、COタービン101の内部ではロータの冷却が必要となる。効率的に冷却が可能な上記実施の形態1〜6による軸流タービンをCOタービン101として用いることで、プラント効率の低下を抑制することが可能となる。
本発明の幾つかの実施の形態について説明したが、これらの実施の形態は、例として提示したものであり、発明の技術的範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の技術的範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、図11に上記実施の形態1及び2の変形例による軸流タービンの構成を示す。
上記実施の形態1では、図2に示されたように、タービンロータ13内部の連通孔2の出口が空間部9に接続された位置は、回転中心軸方向において、ロータディスク21間の下流側にある。これにより、作動流体の流れと逆方向に沿って冷却媒体が流れて、開口部6を通過して第2段落のタービンノズル1の前段に位置する第1段落のタービン動翼5の連通孔7に流れた後、主流へ流入する。
また上記実施の形態2では、図3に示されたように、タービンロータ13内部の連通孔2の出口が空間部9に接続された位置は、回転中心軸方向において、ロータディスク21間の上流側にある。これにより、作動流体の流れと同じ方向に沿って冷却媒体が流れて、下流側の開口部6を通過して第2段落のタービンノズル1の下流に位置する第2段落のタービン動翼5の連通孔7に流れた後、主流へ流入する。
これに対しこの変形例は、上記実施の形態1と2とを組み合わせたものに相当する。即ち、図11に示されたように、タービンロータ13内部の連通孔2の出口が空間部9に接続された位置は、回転中心軸方向において、ロータディスク21間の中間付近にある。これにより、作動流体の流れと同じ方向及び逆方向にそれぞれ沿って冷却媒体が流れる。この後、冷却媒体は、図中左側の開口部6を通過して、第2段落のタービンノズル1より上流に位置する第1段落のタービン動翼5の連通孔7に流れて主流へ流入すると共に、図中右側の開口部6を通過して、第2段落のタービンノズル1より下流に位置する第2段落のタービン動翼5の連通孔7に流れて主流へ流入する。このような構成を備えたことで、この変形例によれば、一本の連通孔2に供給された冷却媒体により二つのタービン動翼5の冷却を行うことができる。
1、106 タービンノズル
2、2a、2b、7 連通孔
3、10、11 遮熱板
4、109 シールフィン
5、105 タービン動翼
6、12、15 開口部
8 熱絶縁層
9 空間部
13、103 タービンロータ
14 脚構造体
16 ダイアフラム内輪
17 ダイアフラム外輪
18 ラビリンスパッキン
19 構造体
20 スナッバ
21 ロータディスク
22 漏洩流体
23 植え込み部
101 COタービン
104 ステータ
107 スリーブ管
108 シール構造体
111 グランド
115 中空領域
116 流体経路
120 火力発電プラント
121 酸素製造装置
122 燃焼器
123 発電機
124 再生熱交換器
125 冷却器
126 湿分分離器
127 COポンプ

Claims (12)

  1. ダイアフラム外輪とダイアフラム内輪との間に形成される環状流路の周方向に沿って列状に配置され、回転中心軸方向に沿ってタービン段落毎に配置されたタービンノズルと、
    前記ダイアフラム内輪により形成される筒状流路の前記回転中心軸方向に沿って設けられたタービンロータのロータディスクに、前記周方向に沿って列状に植設され、前記回転中心軸方向に沿って各々の前記タービンノズルの下流側に前記タービン段落毎に配置されたタービン動翼と、
    前記回転中心軸方向に沿って隣接する二つの前記ロータディスク間の前記タービンロータの外表面との間に空間部を有するように設けられた遮熱板と、
    前記タービンロータ内に形成されて冷却媒体が流入し、前記空間部と接続された第1の連通孔と、
    前記空間部と接続するように、隣接する二つの前記ロータディスクの少なくともいずれか一方に形成された第1の開口部と、
    前記空間部と前記第1の開口部を介して接続され、前記ロータディスクにおける前記タービン動翼の植え込み部を連通する第2の連通孔と、
    前記第2の連通孔と接続され、前記タービン動翼の有効長部に沿って連通する第3の連通孔と、
    前記第3の連通孔に接続され、前記タービン動翼の側面に開口された第2の開口部と、
    前記第3の連通孔に接続、または、前記タービン動翼の外周端面に開口された第3の開口部と、
    を備えることを特徴する軸流タービン。
  2. 前記遮熱板は、前記回転中心軸方向に沿って隣接する二つの前記ロータディスクに、前記回転中心軸方向に沿う両端部が接続されていることを特徴とする請求項1記載の軸流タービン。
  3. 前記第1の連通孔の前記空間部に対する出口が、前記回転中心軸方向に沿って隣接する前記ロータディスク間における中心より下流側に位置し、
    前記第1の開口部は、隣接する二つの前記ロータディスクのうち上流側の前記ロータディスクに形成され、前記第1の開口部は、前記第1の連通孔の出口より上流側に位置することを特徴とする請求項1又は2に記載の軸流タービン。
  4. 前記遮熱板は、少なくとも第2段落の前記タービンノズルを間に隣接する二つの前記ロータディスク間の前記タービンロータの外表面において前記空間部を有するように設けられ、
    前記第3の連通孔は、少なくとも第1段落の前記タービン動翼に形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の軸流タービン。
  5. 前記タービンロータ内に形成され、前記第1の連通孔と前記第2の連通孔とを直接接続する第4の連通孔をさらに備え、
    前記第1の連通孔の前記空間部に対する出口が、前記回転中心軸方向に沿って隣接する前記ロータディスク間における中心より上流側に位置し、
    前記第1の開口部は、隣接する二つの前記ロータディスクのうち下流側の前記ロータディスクに形成され、このロータディスクに形成された前記タービン動翼の前記植え込み部を連通する前記第2の連通孔に接続されていることを特徴とする請求項1に記載の軸流タービン。
  6. 前記第1の連通孔の前記空間部に対する出口が、前記回転中心軸方向に沿って隣接する前記ロータディスク間における中心付近に位置し、
    前記第1の開口部は、隣接する二つの前記ロータディスクにそれぞれ形成され、これらの二つのロータディスクに形成された前記タービン動翼の前記植え込み部を連通するそれぞれの前記第2の連通孔に接続されていることを特徴とする請求項1に記載の軸流タービン。
  7. 前記遮熱板における外周側の表面に設けられ、前記遮蔽板より低い熱伝導率を有する熱絶縁層をさらに備えることを特徴とする請求項1乃至6のいずれか一項に記載の軸流タービン。
  8. 前記遮熱板を前記タービンロータに取り付けるための脚構造体をさらに備えることを特徴とする請求項1乃至7のいずれか一項に記載の軸流タービン。
  9. 前記遮熱板は、半径方向に沿って空間を空けて対向するように、外周側の第1の遮熱板と内周側の第2の遮熱板とが配設された二重構造を有し、
    前記第1の遮熱板は、前記回転中心軸方向に沿う両端部が前記ロータディスクに接続され、前記第2の遮熱板は、前記回転中心軸方向に沿う両端部の少なくともいずれか一方が前記ロータディスクに接続され、前記第1の連通孔と、前記第1の遮熱板と前記第2の遮熱板との間の前記空間とが、前記第2の遮熱板に形成された少なくとも一つの開口部又は前記第2の遮熱板と前記ロータディスクとの間の隙間を介して、あるいはこの開口部及びこの隙間を介して連通していることを特徴とする請求項1乃至8のいずれか一項に記載の軸流タービン。
  10. 前記第1の遮熱板及び前記第2の遮熱板の表面には、それぞれ少なくとも一つの開口部が形成されていることを特徴とする請求項9に記載の軸流タービン。
  11. 前記第1の遮熱板と前記第2の遮熱板との間の前記空間に設置された少なくとも一つの構造体をさらに備えることを特徴とする請求項9又は10に記載の軸流タービン。
  12. 空気に含まれる窒素を除去して、酸素のみを抽出する酸素製造装置と、
    燃料と、COと、前記酸素製造装置により抽出された酸素とを与えられ、燃焼ガスを生成する燃焼器と、
    前記燃焼ガスを与えられ、回転駆動する請求項1乃至11のいずれか一項に記載の前記軸流タービンと、
    前記軸流タービンから回転駆動力を与えられ、発電を行う発電機と、
    COと前記軸流タービンから排出された排気とを与えられ、この排気と熱交換を行ったCOを前記燃焼器に与える再生熱交換器と、
    前記再生熱交換器により熱交換が行われた前記排気を冷却する冷却器と、
    前記冷却器により冷却された前記排気から水分を分離除去してCOを排出する湿分分離器と、
    前記湿分分離器から排出されたCOを昇圧し、前記再生熱交換器に供給する圧縮ポンプと、
    を備えることを特徴とする発電プラント。
JP2012161734A 2012-07-20 2012-07-20 軸流タービン及び発電プラント Active JP5865204B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012161734A JP5865204B2 (ja) 2012-07-20 2012-07-20 軸流タービン及び発電プラント
US13/783,669 US8806874B2 (en) 2012-07-20 2013-03-04 Axial turbine and power plant
EP13157785.0A EP2687680A3 (en) 2012-07-20 2013-03-05 Axial turbine and power plant
CN201310072587.2A CN103573297B (zh) 2012-07-20 2013-03-07 轴流式涡轮和发电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161734A JP5865204B2 (ja) 2012-07-20 2012-07-20 軸流タービン及び発電プラント

Publications (2)

Publication Number Publication Date
JP2014020320A true JP2014020320A (ja) 2014-02-03
JP5865204B2 JP5865204B2 (ja) 2016-02-17

Family

ID=47844120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161734A Active JP5865204B2 (ja) 2012-07-20 2012-07-20 軸流タービン及び発電プラント

Country Status (4)

Country Link
US (1) US8806874B2 (ja)
EP (1) EP2687680A3 (ja)
JP (1) JP5865204B2 (ja)
CN (1) CN103573297B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200242A (ja) * 2014-04-09 2015-11-12 株式会社東芝 軸流タービン
WO2016142982A1 (ja) * 2015-03-06 2016-09-15 株式会社 東芝 軸流タービンおよび発電プラント
KR101831837B1 (ko) * 2016-12-15 2018-02-23 한국에너지기술연구원 상시 부분분사운전 효율 향상을 위한 부분분사운전 터빈장치 및 이를 이용한 터빈장치 작동방법
KR101831838B1 (ko) * 2016-12-15 2018-02-23 한국에너지기술연구원 로터부의 충격하중 저하를 위한 부분분사운전 터빈장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376933B2 (en) * 2011-04-29 2016-06-28 Leonard M. Andersen Apparatus for distributing fluid into a gas turbine
US20150192172A1 (en) * 2011-05-17 2015-07-09 Dresser-Rand Company Coast down bushing for magnetic bearing systems
JP6010488B2 (ja) * 2013-03-11 2016-10-19 株式会社東芝 軸流タービンおよびこれを備えた発電プラント
JP6284447B2 (ja) * 2014-06-27 2018-02-28 三菱日立パワーシステムズ株式会社 静翼ユニット及び蒸気タービン
GB201616239D0 (en) * 2016-09-23 2016-11-09 Intelligent Power Generation Limited Axial Turbine
JP7271408B2 (ja) * 2019-12-10 2023-05-11 東芝エネルギーシステムズ株式会社 タービンロータ
JP2022003244A (ja) * 2020-06-23 2022-01-11 東芝エネルギーシステムズ株式会社 超臨界co2タービン

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1476800A1 (de) * 1966-10-06 1970-02-12 Gen Electric Waermeabschirmung fuer den Laeufer von Axial-Gasturbinen
DE1601574A1 (de) * 1967-12-09 1970-11-26 Gen Electric Turbinenrotoraufbau
JPS55156216A (en) * 1979-05-21 1980-12-05 Gen Electric Extraneous particle separator
JPH03145523A (ja) * 1989-10-18 1991-06-20 Heishoku Boku 火力発電プラントおよび火力発電方法
JPH09144501A (ja) * 1995-11-24 1997-06-03 Mitsubishi Heavy Ind Ltd 熱回収式ガスタービンロータ
JPH10205302A (ja) * 1997-01-23 1998-08-04 Mitsubishi Heavy Ind Ltd 蒸気冷却用ガスタービンロータ
JP2008115864A (ja) * 2006-11-07 2008-05-22 General Electric Co <Ge> 二酸化炭素単離を有する発電用システム
US20080181778A1 (en) * 2005-08-23 2008-07-31 Alstom Technology Ltd Locking and fixing device for a heat shield element for a rotor unit of a turbomachine
JP2010242710A (ja) * 2009-04-09 2010-10-28 Toyota Motor Corp タービンの冷却構造

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2896906A (en) * 1956-03-26 1959-07-28 William J Durkin Turbine cooling air metering system
US3429557A (en) * 1966-06-30 1969-02-25 Gen Electric Steam turbine rotor cooling arrangement
US3736745A (en) * 1971-06-09 1973-06-05 H Karig Supercritical thermal power system using combustion gases for working fluid
US4571935A (en) * 1978-10-26 1986-02-25 Rice Ivan G Process for steam cooling a power turbine
US5253976A (en) * 1991-11-19 1993-10-19 General Electric Company Integrated steam and air cooling for combined cycle gas turbines
US5397217A (en) * 1992-11-24 1995-03-14 General Electric Company Pulse-cooled gas turbine engine assembly
US5755556A (en) * 1996-05-17 1998-05-26 Westinghouse Electric Corporation Turbomachine rotor with improved cooling
JP3621523B2 (ja) * 1996-09-25 2005-02-16 株式会社東芝 ガスタービンの動翼冷却装置
US6393829B2 (en) * 1996-11-29 2002-05-28 Hitachi, Ltd. Coolant recovery type gas turbine
JP3475838B2 (ja) * 1999-02-23 2003-12-10 株式会社日立製作所 タービンロータ及びタービンロータのタービン動翼冷却方法
JP2002309906A (ja) * 2001-04-11 2002-10-23 Mitsubishi Heavy Ind Ltd 蒸気冷却型ガスタービン
EP1378630A1 (de) 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Dampfturbine
US6945029B2 (en) * 2002-11-15 2005-09-20 Clean Energy Systems, Inc. Low pollution power generation system with ion transfer membrane air separation
EP1445427A1 (de) * 2003-02-05 2004-08-11 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betreiben einer Dampfturbine
EP1452688A1 (de) 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
EP1577493A1 (de) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Strömungsmaschine und Rotor für eine Strömungsmaschine
US8176720B2 (en) * 2009-09-22 2012-05-15 Siemens Energy, Inc. Air cooled turbine component having an internal filtration system
JP5558120B2 (ja) * 2010-01-12 2014-07-23 株式会社東芝 蒸気タービンのロータ冷却装置及びこの冷却装置を備えた蒸気タービン
US8556576B2 (en) * 2010-09-30 2013-10-15 Florida Turbine Technologies, Inc. Cooled IBR for a micro-turbine
JP5868802B2 (ja) * 2012-07-20 2016-02-24 株式会社東芝 タービン

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1476800A1 (de) * 1966-10-06 1970-02-12 Gen Electric Waermeabschirmung fuer den Laeufer von Axial-Gasturbinen
DE1601574A1 (de) * 1967-12-09 1970-11-26 Gen Electric Turbinenrotoraufbau
JPS55156216A (en) * 1979-05-21 1980-12-05 Gen Electric Extraneous particle separator
JPH03145523A (ja) * 1989-10-18 1991-06-20 Heishoku Boku 火力発電プラントおよび火力発電方法
JPH09144501A (ja) * 1995-11-24 1997-06-03 Mitsubishi Heavy Ind Ltd 熱回収式ガスタービンロータ
JPH10205302A (ja) * 1997-01-23 1998-08-04 Mitsubishi Heavy Ind Ltd 蒸気冷却用ガスタービンロータ
US20080181778A1 (en) * 2005-08-23 2008-07-31 Alstom Technology Ltd Locking and fixing device for a heat shield element for a rotor unit of a turbomachine
JP2008115864A (ja) * 2006-11-07 2008-05-22 General Electric Co <Ge> 二酸化炭素単離を有する発電用システム
JP2010242710A (ja) * 2009-04-09 2010-10-28 Toyota Motor Corp タービンの冷却構造

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200242A (ja) * 2014-04-09 2015-11-12 株式会社東芝 軸流タービン
WO2016142982A1 (ja) * 2015-03-06 2016-09-15 株式会社 東芝 軸流タービンおよび発電プラント
JPWO2016142982A1 (ja) * 2015-03-06 2017-09-21 株式会社東芝 軸流タービンおよび発電プラント
KR101831837B1 (ko) * 2016-12-15 2018-02-23 한국에너지기술연구원 상시 부분분사운전 효율 향상을 위한 부분분사운전 터빈장치 및 이를 이용한 터빈장치 작동방법
KR101831838B1 (ko) * 2016-12-15 2018-02-23 한국에너지기술연구원 로터부의 충격하중 저하를 위한 부분분사운전 터빈장치
WO2018110827A1 (ko) * 2016-12-15 2018-06-21 한국에너지기술연구원 상시 부분 분사 운전 효율 향상을 위한 부분 분사 운전 터빈장치 및 이를 이용한 터빈장치 작동방법
US11028724B2 (en) 2016-12-15 2021-06-08 Korea Institute Of Energy Research Partial admission operation turbine apparatus for improving efficiency of continuous partial admission operation and method for operating turbine apparatus using same

Also Published As

Publication number Publication date
EP2687680A3 (en) 2014-08-27
US8806874B2 (en) 2014-08-19
US20140020391A1 (en) 2014-01-23
CN103573297B (zh) 2015-07-29
JP5865204B2 (ja) 2016-02-17
EP2687680A2 (en) 2014-01-22
CN103573297A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5865204B2 (ja) 軸流タービン及び発電プラント
EP2687681B1 (en) Seal apparatus of turbine and thermal power system
JP6161897B2 (ja) タービンノズルコンパートメント式冷却システム
RU2351766C2 (ru) Паровая турбина и способ работы паровой турбины
US9080447B2 (en) Transition duct with divided upstream and downstream portions
JP5631686B2 (ja) 間隙流れ制御のための渦チャンバ
US9382810B2 (en) Closed loop cooling system for a gas turbine
JP4527824B2 (ja) タービンロータの軸受用冷却系
JP5543029B2 (ja) ターボ機械のための内部冷却装置
US20140020403A1 (en) Sealing device, axial turbine and power plant
EP3075986A1 (en) Heat pipe temperature management system for wheels and buckets in a turbomachine
JP2011085135A (ja) 蒸気タービンロータを冷却するためのシステム及び方法
JP2012072708A (ja) ガスタービンおよびガスタービンの冷却方法
US10641174B2 (en) Rotor shaft cooling
US20130323011A1 (en) Nozzle Diaphragm Inducer
JP6637455B2 (ja) 蒸気タービン
JP6088643B2 (ja) 中空の冷却されたタービン翼内に挿入可能とされる、ガスタービンのための冷媒ブリッジ配管
JP2013019284A (ja) 蒸気タービン
JP2014074406A (ja) 冷却通路を備えた固体シール
KR101353840B1 (ko) 단류형 터빈에 있어서의 냉각 방법 및 장치
JPWO2019035178A1 (ja) タービン静翼列及びタービン
JP2013050054A (ja) 蒸気タービン
US10605097B2 (en) Turbine rotor blade and turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151225

R151 Written notification of patent or utility model registration

Ref document number: 5865204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350