JP2014017212A - Composite particle and anisotropic conductive adhesive - Google Patents

Composite particle and anisotropic conductive adhesive Download PDF

Info

Publication number
JP2014017212A
JP2014017212A JP2012155877A JP2012155877A JP2014017212A JP 2014017212 A JP2014017212 A JP 2014017212A JP 2012155877 A JP2012155877 A JP 2012155877A JP 2012155877 A JP2012155877 A JP 2012155877A JP 2014017212 A JP2014017212 A JP 2014017212A
Authority
JP
Japan
Prior art keywords
particles
particle
child
mother
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012155877A
Other languages
Japanese (ja)
Other versions
JP6119130B2 (en
Inventor
Kenji Takai
健次 高井
Yuko Nagahara
憂子 永原
Masaru Watanabe
優 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012155877A priority Critical patent/JP6119130B2/en
Publication of JP2014017212A publication Critical patent/JP2014017212A/en
Application granted granted Critical
Publication of JP6119130B2 publication Critical patent/JP6119130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite particle in which a satisfactory amount of a sub-particle is adhered to an outside of a mother particle, and that keeps high coverage even after ultrasonic dispersion; and further an anisotropic conductive adhesive that includes the composite particle, that can maintain a satisfactory insulation characteristic and a conduction characteristic even in connection of a fine circuit, and that is excellent in hygroscopic resistance.SOLUTION: A composite particle includes: a mother particle; and two or more sub-particles adhered to an outside of the mother particle, wherein the mother particle is a spherical particle in which an average particle diameter is 1-10 μm, the sub-particle has an average maximum grain size of at least 140 nm and at most 500 nm, and the composite particle is a semicircle type particle that has an average maximum thickness of 20-80% of an average maximum grain size.

Description

本発明は、複合粒子、及びそれを用いた異方導電性接着剤に関するものである。   The present invention relates to composite particles and an anisotropic conductive adhesive using the same.

母粒子の外側に複数の球状の子粒子が付着された複合粒子は、様々な技術分野で知られている。このような複合粒子としては、例えば、導電粒子である母粒子及び絶縁粒子である子粒子からなる、絶縁被覆導電粒子等が挙げられる。   Composite particles in which a plurality of spherical child particles are attached to the outside of a mother particle are known in various technical fields. Examples of such composite particles include insulating coated conductive particles composed of mother particles that are conductive particles and child particles that are insulating particles.

従来、回路基板同士、又はICチップ若しくは電子部品と回路基板とを電気的に接続する際には、絶縁性接着剤、又は導電粒子を分散させた異方導電性接着剤等が用いられる。このような接続形態は液晶分野において発展が顕著である。液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装及びCOF(Chip−on−Flex)実装の2種類に大別することができる。COG実装では、導電粒子を含む異方導電性接着剤を用いて液晶用ICを直接ガラスパネル上に接合する。一方COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。導電粒子には、プラスチック粒子の外側にニッケルめっきを施した粒子、又はニッケルと金若しくはパラジウムとをこの順でめっきした粒子等を用いる。   Conventionally, when electrically connecting circuit boards or IC chips or electronic components and a circuit board, an insulating adhesive, an anisotropic conductive adhesive in which conductive particles are dispersed, or the like is used. Such a connection form is remarkable in the liquid crystal field. The method of mounting the liquid crystal driving IC on the glass panel for liquid crystal display can be broadly classified into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In COG mounting, an IC for liquid crystal is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The anisotropy referred to here means conduction in the pressing direction and insulation in the non-pressing direction. As the conductive particles, particles obtained by performing nickel plating on the outside of plastic particles, particles obtained by plating nickel and gold or palladium in this order, or the like is used.

ところで、近年の液晶表示の高精細化に伴い、液晶駆動用ICの回路電極である金属バンプは狭ピッチ化、狭面積化しており、そのため、異方導電性接着剤の導電粒子が隣接する回路電極間に流出してショートを発生させるおそれがある。特にCOG実装ではその傾向が顕著である。隣接する回路電極間に導電粒子が流出すると、金属バンプとガラスパネルとの間に補足される異方導電性接着剤中の導電粒子数が減少し、対抗する回路電極間の接続抵抗が上昇し、接続不良を起こすおそれがある。このような傾向は、単位面積あたり2万個/mm以上の導電粒子を投入すると、より顕著である。 By the way, with recent high definition of liquid crystal display, metal bumps, which are circuit electrodes of liquid crystal driving ICs, are narrowed in pitch and area, so that the circuit where adjacent conductive particles of anisotropic conductive adhesive are adjacent. There is a risk of causing a short circuit by flowing out between the electrodes. This tendency is particularly remarkable in COG mounting. When conductive particles flow out between adjacent circuit electrodes, the number of conductive particles in the anisotropic conductive adhesive captured between the metal bumps and the glass panel decreases, and the connection resistance between the opposing circuit electrodes increases. There is a risk of poor connection. Such a tendency becomes more remarkable when 20,000 particles / mm 2 or more of conductive particles are introduced per unit area.

そこで、これらの問題を解決する方法として、導電粒子(母粒子)の表面に複数の絶縁粒子(子粒子)を付着させ、複合粒子を形成させる方法が提案されている。例えば、特許文献1及び特許文献2では導電粒子の表面に球状の樹脂粒子を付着させる方法が提案されている。特許文献3及び特許文献4では、導電粒子の表面にコアシェル型の樹脂粒子が付着された複合粒子が、特許文献5には、導電粒子の表面に中空の樹脂微粒子が付着された複合粒子が、それぞれ提案されている。また、特許文献6には、導電粒子と絶縁粒子の剥離を防ぐため、導電粒子と絶縁粒子を高分子電解質でつなぐ方法が提案されている。   Therefore, as a method for solving these problems, a method has been proposed in which a plurality of insulating particles (child particles) are attached to the surface of conductive particles (mother particles) to form composite particles. For example, Patent Document 1 and Patent Document 2 propose a method of attaching spherical resin particles to the surface of conductive particles. In Patent Document 3 and Patent Document 4, composite particles in which core-shell type resin particles are attached to the surface of the conductive particles, and in Patent Document 5, composite particles in which hollow resin fine particles are attached to the surface of the conductive particles, Each has been proposed. Patent Document 6 proposes a method of connecting conductive particles and insulating particles with a polymer electrolyte in order to prevent peeling of the conductive particles and insulating particles.

特許第4773685号公報Japanese Patent No. 4777385 特許第3869785号公報Japanese Patent No. 3869785 特許第4686120号公報Japanese Patent No. 4686120 特許第4904353号公報Japanese Patent No. 4904353 特許第4391836号公報Japanese Patent No. 4391836 特開2008−120990号公報JP 2008-120990 A

特許文献1〜6に記載された従来の複合粒子については、絶縁被覆導電粒子同士の凝集を防ぐために超音波分散等の手法を適用したときに、導電粒子と絶縁粒子とが剥離される点について未だ改善の余地がある。   Regarding the conventional composite particles described in Patent Documents 1 to 6, when applying a technique such as ultrasonic dispersion in order to prevent aggregation of the insulating coated conductive particles, the conductive particles and the insulating particles are peeled off. There is still room for improvement.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、母粒子の外側に充分な量の子粒子が付着され、超音波分散後でも高い被覆率を保つ複合粒子を提供することを目的とする。さらに、上記複合粒子を含有する、微小な回路の接続においても充分な絶縁特性及び導通特性を維持することができ、しかも耐吸湿性にも優れる異方導電性接着剤を提供することも目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and provides composite particles in which a sufficient amount of child particles are attached to the outside of the mother particles and maintain a high coverage even after ultrasonic dispersion. With the goal. Furthermore, an object of the present invention is to provide an anisotropic conductive adhesive containing the composite particles, capable of maintaining sufficient insulation and conduction characteristics even in connection of a minute circuit, and having excellent moisture absorption resistance. To do.

本発明は、母粒子と、該母粒子の外側に付着された複数の子粒子と、を備える複合粒子であって、上記母粒子は平均粒径が1〜10μmの球状粒子であり、上記子粒子は140nm以上500nm以下の平均最大粒径を有し、かつ平均最大粒径の20〜80%の平均最大厚みを有する半円型粒子である、複合粒子に関する。   The present invention is a composite particle comprising a mother particle and a plurality of child particles attached to the outside of the mother particle, wherein the mother particle is a spherical particle having an average particle diameter of 1 to 10 μm, The particles relate to composite particles which are semicircular particles having an average maximum particle size of 140 nm to 500 nm and an average maximum thickness of 20 to 80% of the average maximum particle size.

本発明の複合粒子は、上記構成を有することにより、子粒子と母粒子との接続面積が大きくなり、子粒子と母粒子との付着強度が優れる複合粒子を得ることができる。   When the composite particle of the present invention has the above-described configuration, a connection area between the child particle and the mother particle is increased, and a composite particle having excellent adhesion strength between the child particle and the mother particle can be obtained.

本発明の子粒子は、子粒子と母粒子との接続面積をより大きくし、付着強度をより向上する観点から、扁平形状又は赤血球形状であることが更に好ましい。   The child particles of the present invention preferably have a flat shape or a red blood cell shape from the viewpoint of increasing the connection area between the child particles and the mother particles and further improving the adhesion strength.

本発明の母粒子は、プラスチック核体と、該プラスチック核体を被覆する導電性被膜とを有することが可能である。このような母粒子を有することにより、本発明の複合粒子は異方導電性接着剤に用いることができる。   The mother particle of the present invention can have a plastic core and a conductive film covering the plastic core. By having such mother particles, the composite particles of the present invention can be used for anisotropic conductive adhesives.

さらに、柔軟性と耐溶剤性を両立する観点から、上記子粒子は有機無機ハイブリッド型粒子であることが好ましい。   Furthermore, from the viewpoint of achieving both flexibility and solvent resistance, the child particles are preferably organic-inorganic hybrid particles.

上記子粒子は、高分子電解質を介して上記導電粒子の外側に付着されることが好ましい。高分子電解質を用いることにより、充分な絶縁特性と良好な電気接続を得ることができる。また、高分子電解質との付着強度の観点から、母粒子及び子粒子はそれぞれ、高分子電解質と反応する官能基を表面に有することが好ましい。   The child particles are preferably attached to the outside of the conductive particles via a polymer electrolyte. By using the polymer electrolyte, sufficient insulating properties and good electrical connection can be obtained. Further, from the viewpoint of adhesion strength with the polymer electrolyte, the mother particles and the child particles preferably each have a functional group that reacts with the polymer electrolyte on the surface.

上記子粒子の形状を制御する観点から、子粒子は炭素間の二重結合を有する有機モノマー、及び炭素間の二重結合を有するアルコキシシランを少なくとも含む単量体組成物を重合した共重合体を含むことが好ましい。   From the viewpoint of controlling the shape of the child particle, the child particle is a copolymer obtained by polymerizing a monomer composition containing at least an organic monomer having a carbon-carbon double bond and an alkoxysilane having a carbon-carbon double bond. It is preferable to contain.

本発明は更に、上記複合粒子を含む異方導電性接着剤に関する。本発明の複合粒子を用いることにより、絶縁特性、導通特性及び耐吸湿性が共に優れる異方導電性接着剤を提供することができる。   The present invention further relates to an anisotropic conductive adhesive containing the composite particle. By using the composite particles of the present invention, it is possible to provide an anisotropic conductive adhesive that is excellent in both insulating properties, conduction properties and moisture absorption resistance.

本発明によれば、母粒子の外側に充分な量の子粒子が付着され、超音波分散後でも高い被覆率を保つ複合粒子を提供することができる。さらに、上記複合粒子を用いることにより、微小な回路の接続においても充分な絶縁特性及び導通特性を維持することができ、しかも耐吸湿性にも優れる異方導電性接着剤を提供することもできる。   According to the present invention, it is possible to provide a composite particle in which a sufficient amount of child particles are attached to the outside of the mother particle and maintain a high coverage even after ultrasonic dispersion. Furthermore, by using the composite particles, it is possible to provide an anisotropic conductive adhesive that can maintain sufficient insulation characteristics and conduction characteristics even in connection of a minute circuit and is excellent in moisture absorption resistance. .

複合粒子の一実施形態を示す模式断面図である。母粒子の外側に半円型の子粒子が複数付着されている。It is a schematic cross section which shows one Embodiment of composite particle. A plurality of semicircular child particles are attached to the outside of the mother particle. 異方導電性接着剤による回路接続方法の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the circuit connection method by anisotropically conductive adhesive. 回路接続構造体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a circuit connection structure. 実施例1で得られた子粒子のSEM写真であり、倍率は1.5万倍である。It is a SEM photograph of the child particle obtained in Example 1, and magnification is 15,000 times. 子粒子の一実施形態の模式図(a)及び断面図(b)である。It is the schematic diagram (a) and sectional drawing (b) of one Embodiment of a child particle. 実施例1で得られた絶縁被覆導電粒子のSEM写真であり、倍率は2.5万倍(a)及び7千倍(b)である。It is a SEM photograph of the insulation coating electroconductive particle obtained in Example 1, and magnification is 25,000 times (a) and 7,000 times (b).

以下、必要に応じて図面を参照しつつ、本発明の好適な実施の形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図1は、複合粒子の一実施形態を示す模式断面図である。本実施形態に係る複合粒子14は、母粒子12と、該母粒子の外側に付着された複数の子粒子13とを備える。母粒子12は、プラスチック核体10及び該プラスチック核体を被覆する金属被膜11を有する。また、子粒子13は、母粒子12の表面の一部を被覆する。   FIG. 1 is a schematic cross-sectional view showing one embodiment of a composite particle. The composite particle 14 according to the present embodiment includes a mother particle 12 and a plurality of child particles 13 attached to the outside of the mother particle. The mother particle 12 has a plastic core 10 and a metal coating 11 that covers the plastic core. Further, the child particle 13 covers a part of the surface of the mother particle 12.

本実施形態で用いる母粒子12の平均粒径は1〜10μmであり、好ましくは2〜5μmであり、より好ましくは2〜3μmである。母粒子12を絶縁被覆導電粒子における導電粒子(以下、「導電粒子」ともいう。)として用いる際、母粒子12の平均粒径が1μm以上であると、電極の高さばらつきを吸収することができ、導通特性を向上することができる。また、平均粒径が10μm以下であると、絶縁特性に優れる。   The average particle diameter of the mother particles 12 used in the present embodiment is 1 to 10 μm, preferably 2 to 5 μm, and more preferably 2 to 3 μm. When the mother particles 12 are used as conductive particles in the insulating coated conductive particles (hereinafter also referred to as “conductive particles”), if the average particle diameter of the mother particles 12 is 1 μm or more, variations in electrode height can be absorbed. It is possible to improve the conduction characteristics. Moreover, it is excellent in an insulation characteristic as an average particle diameter is 10 micrometers or less.

ここで述べる母粒子12の平均粒径は、電子顕微鏡(SEM)により数千〜数万倍の倍率で100個程度の導電粒子を撮影した後、画像解析により粒子直径を測定し、その平均を求めたものとする。本実施例における粒子直径はHITACHI S−4800(日立ハイテク株式会社製、商品名)により測定した。また、母粒子12の平均粒径は、プラスチック核体10の平均粒径を上記と同様な方法で測定した後、金属被膜11の厚さを測定してそれらを合計して求めることもできる。なお、金属被膜11の厚さは、原子吸光光度計、SEMの断面観察等の一般的な手法で測定することができる。   The average particle diameter of the mother particles 12 described here is obtained by photographing about 100 conductive particles at a magnification of several thousand to several tens of thousands of times with an electron microscope (SEM), and then measuring the particle diameter by image analysis. Assume that you have asked. The particle diameter in this example was measured by HITACHI S-4800 (manufactured by Hitachi High-Tech Co., Ltd., trade name). The average particle diameter of the mother particles 12 can also be obtained by measuring the average particle diameter of the plastic core 10 by the same method as described above, then measuring the thickness of the metal coating 11 and adding them up. The thickness of the metal coating 11 can be measured by a general method such as an atomic absorption photometer or SEM cross-sectional observation.

プラスチック核体10に金属被膜11を被覆する方法は特に限定されないが、例えばスパッタリング法及びめっき法が挙げられる。これらの中で、簡便性の点からめっき法が好ましい。   The method for coating the plastic core 10 with the metal coating 11 is not particularly limited, and examples thereof include a sputtering method and a plating method. Among these, the plating method is preferable from the viewpoint of simplicity.

めっき等で被覆する金属としては特に限定されないが、例えば、金、銀、銅、白金、亜鉛、鉄、パラジウム、ニッケル、錫、クロム、チタン、アルミニウム、コバルト、ゲルマニウム、カドミウム等の金属、ITO、はんだ等の金属化合物などが挙げられる。耐腐食性の観点から、被覆する金属は、ニッケル、パラジウム及び金からなる群より選ばれる1つ以上の金属が好ましい。また、導通特性及び硬さを向上するため、カーボンナノチューブ、カーボンブラック等のカーボン化合物を上記金属と混合することもできる。   Although it does not specifically limit as a metal coat | covered by plating etc., For example, metals, such as gold | metal | money, silver, copper, platinum, zinc, iron, palladium, nickel, tin, chromium, titanium, aluminum, cobalt, germanium, cadmium, ITO, Examples thereof include metal compounds such as solder. From the viewpoint of corrosion resistance, the metal to be coated is preferably one or more metals selected from the group consisting of nickel, palladium and gold. In addition, carbon compounds such as carbon nanotubes and carbon black can be mixed with the above metal in order to improve conduction characteristics and hardness.

上記金属被膜11は、単層構造であってもよく、複数の層からなる積層構造であってもよい。単層構造である場合、めっき層としては、コスト、導通特性及び耐腐食性の観点からニッケルが好ましい。さらに、近年のガラス電極の平坦化を考えると、導通特性を向上するため、表面に突起を有するニッケルめっきが好ましい。また、複層構造である場合、導電特性等の観点から、ニッケルの外側に金又はパラジウムのような貴金属を有するものが好ましい。   The metal coating 11 may have a single layer structure or a laminated structure composed of a plurality of layers. In the case of a single layer structure, the plating layer is preferably nickel from the viewpoints of cost, conduction characteristics, and corrosion resistance. Furthermore, considering the recent flattening of the glass electrode, nickel plating having protrusions on the surface is preferable in order to improve conduction characteristics. Moreover, when it is a multilayer structure, what has a noble metal like gold | metal | money or palladium on the outer side of nickel from viewpoints, such as an electroconductive property, is preferable.

上記金属被膜11に突起を形成させる方法としては、めっきの異常析出による方法と芯材を用いる方法が挙げられるが、突起形状の均一化を考慮した場合、芯材を用いる方法が好ましい。芯材としては、ニッケル、炭素、パラジウム、金等の導電性材料及びプラスチック、シリカ、酸化チタン等の非導電性材料が挙げられる。芯材に強磁性材料を用いると、絶縁粒子を被覆する段階で磁性凝集が大きくなり、子粒子13を付着させることが困難になるため、例えば強磁性材料であるニッケルを芯材にする場合、芯材は更にリン等非磁性材料をも含むのが好ましい。   Examples of the method for forming protrusions on the metal coating 11 include a method using abnormal deposition of plating and a method using a core material. However, in consideration of making the protrusion shape uniform, a method using a core material is preferable. Examples of the core material include conductive materials such as nickel, carbon, palladium, and gold, and non-conductive materials such as plastic, silica, and titanium oxide. When a ferromagnetic material is used for the core material, magnetic aggregation increases at the stage of covering the insulating particles, and it becomes difficult to attach the child particles 13. For example, when nickel, which is a ferromagnetic material, is used as the core material, The core material preferably further contains a nonmagnetic material such as phosphorus.

突起の大きさは、30〜300nmであることが好ましく、50〜200nmであることがより好ましい。突起の大きさが300nm以下であるとショート確率が低減し、大きさが30nm以上あるとより優れる導通特性が得られる。突起の被覆率は、母粒子12の総表面積に対して5〜60%であることが望ましい。また、突起の大きさは、母粒子12の平均粒径に含まれていないものとする。なお、突起の被覆率は、SEM写真の画像解析により求めることができる。   The size of the protrusion is preferably 30 to 300 nm, and more preferably 50 to 200 nm. If the size of the protrusion is 300 nm or less, the short-circuit probability is reduced, and if the size is 30 nm or more, more excellent conduction characteristics can be obtained. The coverage of the protrusions is preferably 5 to 60% with respect to the total surface area of the base particles 12. Further, it is assumed that the size of the protrusion is not included in the average particle diameter of the mother particle 12. In addition, the coverage of protrusions can be obtained by image analysis of SEM photographs.

金属被膜11の厚みは特に限定されないが、0.001〜1μmであることが好ましく、0.005〜0.3μmであることがより好ましい。   Although the thickness of the metal film 11 is not specifically limited, It is preferable that it is 0.001-1 micrometer, and it is more preferable that it is 0.005-0.3 micrometer.

金属被膜11の厚みが0.001μm以上であると導通不良をより高度に防止でき、1μm以下であると導通特性により優れる。   If the thickness of the metal coating 11 is 0.001 μm or more, conduction failure can be prevented to a higher degree, and if it is 1 μm or less, the conduction characteristics are more excellent.

プラスチック核体10の材料は特に限定されないが、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂、オレフィンとアクリル酸との共重合体などが挙げられる。ガラス転移温度(Tg)の調整し易さ及びプラスチック核体10の硬さの観点から、プラスチック核体10は、オレフィンとアクリル酸との共重合体であることが好ましく、ジビニルベンゼンとアクリル酸との共重合体であることがより好ましい。   The material of the plastic core 10 is not particularly limited, and examples thereof include acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutadiene, and copolymers of olefin and acrylic acid. . From the viewpoint of easy adjustment of the glass transition temperature (Tg) and the hardness of the plastic core 10, the plastic core 10 is preferably a copolymer of olefin and acrylic acid, and divinylbenzene, acrylic acid, More preferably, it is a copolymer of

本発明で用いる子粒子13は、半円型の粒子である。半円型の粒子を用いることにより、子粒子13と母粒子12との接触面積が球状子粒子の場合より広くなり、付着強度に優れる。   The child particles 13 used in the present invention are semicircular particles. By using semicircular particles, the contact area between the child particles 13 and the mother particles 12 is wider than that of spherical particles, and the adhesion strength is excellent.

本明細書において、「半円型の粒子」とは、二次元的には円の部分を有しており、球状ではない粒子と定義する。半円型の粒子は、扁平形状及び赤血球形状であることが好ましい。本明細書において、赤血球形状粒子は、両面に窪みを有するものであってもよく、片面のみに窪みを有するもの(以下、おわん型粒子ともいう。)であってもよい。   In this specification, “semicircular particles” are defined as particles that have a circular portion in two dimensions and are not spherical. The semicircular particles are preferably flat and red blood cells. In the present specification, the erythrocyte-shaped particles may have dents on both sides, or may have dents only on one side (hereinafter also referred to as bowl-shaped particles).

子粒子13の平均最大粒径は140〜500nmであればよいが、200〜450nmであることが好ましく、250〜400nmであることがより好ましい。平均最大粒径が500nm以下であると、子粒子13と母粒子12との付着強度を向上することができる。平均最大粒径が140nm以上であると、複合粒子14を絶縁被覆導電粒子における絶縁粒子として用いる際、絶縁特性に優れる。   The average maximum particle size of the child particles 13 may be 140 to 500 nm, but is preferably 200 to 450 nm, and more preferably 250 to 400 nm. When the average maximum particle size is 500 nm or less, the adhesion strength between the child particles 13 and the mother particles 12 can be improved. When the average maximum particle size is 140 nm or more, the insulating properties are excellent when the composite particles 14 are used as insulating particles in the insulating coated conductive particles.

子粒子13の平均最大厚みは平均最大粒径の20〜80%である。好ましくは、平均最大厚みは、平均最大粒径の20〜70%であり、より好ましくは30〜60%である。平均最大厚みが平均最大粒径の80%以下であると、子粒子13と母粒子12の付着強度に優れる。また、平均最大厚みが平均最大粒径の20%以上であると、母粒子同士の凝集を防ぐことができ、本発明の複合粒子14を絶縁被覆導電粒子として用いる際、絶縁抵抗を向上することができる。   The average maximum thickness of the child particles 13 is 20 to 80% of the average maximum particle size. Preferably, the average maximum thickness is 20 to 70% of the average maximum particle size, more preferably 30 to 60%. When the average maximum thickness is 80% or less of the average maximum particle diameter, the adhesion strength between the child particles 13 and the mother particles 12 is excellent. Further, when the average maximum thickness is 20% or more of the average maximum particle diameter, aggregation of the mother particles can be prevented, and the insulation resistance can be improved when the composite particles 14 of the present invention are used as the insulating coated conductive particles. Can do.

子粒子13の平均最大厚みは更に、100nm以上であることが好ましく、120nm以上であることがより好ましく、150nm以上であることが更に好ましい。平均最大厚みが100nm以上であると、母粒子同士の凝集をより防ぐことができる。   The average maximum thickness of the child particles 13 is further preferably 100 nm or more, more preferably 120 nm or more, and further preferably 150 nm or more. When the average maximum thickness is 100 nm or more, aggregation of the mother particles can be further prevented.

子粒子13の平均最大粒径と平均最大厚みとの比は、1.25〜5であることが好ましく、1.3〜5であることが更に好ましい。平均最大粒径と平均最大厚みとの比が1.25以上であると、母粒子との接着強度に優れ、5以下であると、複合粒子14を導電粒子として用いる際、導電粒子同士の凝集が起こりにくくなり、絶縁抵抗の低下を防ぐことができる。   The ratio between the average maximum particle size and the average maximum thickness of the child particles 13 is preferably 1.25 to 5, and more preferably 1.3 to 5. When the ratio of the average maximum particle size to the average maximum thickness is 1.25 or more, the adhesive strength with the mother particles is excellent, and when it is 5 or less, the conductive particles 14 are aggregated when the composite particles 14 are used as the conductive particles. Can be prevented, and a decrease in insulation resistance can be prevented.

なお、本明細書において、「平均最大粒径」は、二次元的な円の部分の直径の平均値、「平均最大厚み」は、円を平面に置いたときの最大の高さの平均値を意味する。   In this specification, “average maximum particle size” is the average value of the diameter of the two-dimensional circle portion, and “average maximum thickness” is the average value of the maximum height when the circle is placed on a plane. Means.

「二次元的な円の部分の直径」及び「円を平面に置いたときの最大の高さ」について、図5に基づいて説明する。図5(a)は赤血球形状の粒子(おわん型粒子)の斜視図であり、図5(b)は、図5(a)の粒子におけるA−A断面図である。図5に示す粒子においては、Xが「二次元的な円の部分の直径」、Yが「円を平面に置いたときの最大の高さ」に相当する。   The “diameter of the two-dimensional circle portion” and “the maximum height when the circle is placed on a plane” will be described with reference to FIG. FIG. 5A is a perspective view of a red blood cell-shaped particle (a bowl-shaped particle), and FIG. 5B is a cross-sectional view taken along the line AA in the particle of FIG. In the particles shown in FIG. 5, X corresponds to “the diameter of a two-dimensional circle portion”, and Y corresponds to “the maximum height when the circle is placed on a plane”.

なお、母粒子12が突起を有する場合、子粒子13を母粒子12に付着し易くする観点から、子粒子13の平均最大粒径は上記の突起よりも大きいことが望ましい。   When the mother particles 12 have protrusions, the average maximum particle size of the child particles 13 is desirably larger than the protrusions from the viewpoint of easily attaching the child particles 13 to the mother particles 12.

子粒子13の平均最大粒径のばらつき(以下、CVともいう。)は、10%以下であることが好ましく、3%以下であることがより好ましい。CVが10%以下であると、絶縁特性と導通特性を向上することができる。   The variation (hereinafter also referred to as CV) of the average maximum particle size of the child particles 13 is preferably 10% or less, and more preferably 3% or less. When the CV is 10% or less, the insulation characteristics and the conduction characteristics can be improved.

母粒子12に被覆する子粒子13としては、有機微粒子、無機酸化物微粒子、又は有機無機ハイブリッド型粒子が挙げられる。   Examples of the child particle 13 that covers the mother particle 12 include organic fine particles, inorganic oxide fine particles, and organic-inorganic hybrid particles.

有機微粒子としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン等のポリオレフィン樹脂、ポリメチルメタクリレート等のアクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリイミド樹脂などを含む粒子が挙げられる。   Examples of the organic fine particles include particles containing a polyolefin resin such as polyethylene, polypropylene, and polybutadiene, an acrylic resin such as polymethyl methacrylate, an epoxy resin, a polystyrene resin, and a polyimide resin.

中でも、耐溶剤性、耐熱性及びTgを向上する点から、メタクリル酸メチル及びスチレンを架橋成分と共重合する架橋したプラスチック微粒子が好ましい。   Among these, from the viewpoint of improving solvent resistance, heat resistance and Tg, crosslinked plastic fine particles obtained by copolymerizing methyl methacrylate and styrene with a crosslinking component are preferable.

無機酸化物微粒子は、好ましくは、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム及びマグネシウムの酸化物を含む。また、子粒子13を絶縁被覆導電粒子における絶縁粒子(以下、絶縁粒子ともいう。)として用いる場合、絶縁特性の観点から、粒子径を制御した水分散コロイダルシリカ(SiO)粒子がより好ましい。 The inorganic oxide fine particles preferably contain oxides of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium and magnesium. Further, when the child particles 13 are used as insulating particles (hereinafter also referred to as insulating particles) in the insulating coated conductive particles, water-dispersed colloidal silica (SiO 2 ) particles having a controlled particle diameter are more preferable from the viewpoint of insulating characteristics.

また、柔軟性と耐溶剤性を両立する観点から、有機物と無機物が混在する、有機無機ハイブリッド型粒子が好ましい。有機無機ハイブリッド型粒子としては、例えばシリコンを含むモノマーと炭化水素との共重合粒子等が挙げられる。中でも、合成の容易さの観点から、二重結合を有するシリコン化合物を含むことが好ましい。   Further, from the viewpoint of achieving both flexibility and solvent resistance, organic-inorganic hybrid particles in which an organic substance and an inorganic substance are mixed are preferable. Examples of the organic / inorganic hybrid type particles include copolymer particles of a monomer containing silicon and a hydrocarbon. Among these, from the viewpoint of ease of synthesis, it is preferable to include a silicon compound having a double bond.

子粒子13の製造方法としてはソープフリー乳化重合が好ましい。半円型の粒子を得るには、炭素間の二重結合を有する有機モノマー、及び炭素間の二重結合を有するアルコキシシランを少なくとも含む単量体組成物を用いて形状をコントロールすることが好ましい。   As a manufacturing method of the child particles 13, soap-free emulsion polymerization is preferable. In order to obtain semicircular particles, it is preferable to control the shape using a monomer composition containing at least an organic monomer having a carbon-carbon double bond and an alkoxysilane having a carbon-carbon double bond. .

炭素間の二重結合を有する有機モノマーとしては、スチレン、アクリル酸メチル等のアクリル系樹脂、メタクリル酸メチル等のメタクリル系樹脂、ビニル系樹脂などが挙げられる。   Examples of the organic monomer having a carbon-carbon double bond include acrylic resins such as styrene and methyl acrylate, methacrylic resins such as methyl methacrylate, and vinyl resins.

炭素間の二重結合を有するモノマーの含有量は、単量体組成物全量に対して、50モル%以上であることが好ましい。   The content of the monomer having a carbon-carbon double bond is preferably 50 mol% or more based on the total amount of the monomer composition.

炭素間の二重結合を有するアルコキシシランとしては、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン等が挙げられる。   Examples of the alkoxysilane having a carbon-carbon double bond include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, Examples include 3-acryloxypropyltrimethoxysilane.

炭素間の二重結合を有するアルコキシシランの含有量は、単量体組成物全量に対して、1〜5モル%であることが好ましい。   The content of the alkoxysilane having a carbon-carbon double bond is preferably 1 to 5 mol% with respect to the total amount of the monomer composition.

ラジカル重合開始剤としては、ベンゾイルパーオキサイド、t−ブチルベンゾエート、ペルオキソ二硫酸カリウム、1,1−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2−アゾビスイソブチロ二トリル等が挙げられるが、これらに限定されるものではない。   Examples of the radical polymerization initiator include benzoyl peroxide, t-butylbenzoate, potassium peroxodisulfate, 1,1-azobis (cyclohexane-1-carbonitrile), 2,2-azobisisobutyronitrile and the like. However, it is not limited to these.

ソープフリー乳化重合を行う際には親水性のモノマーを入れることで、より安定的に粒子を合成することができて、粒径の制御もより容易になる。親水性モノマーの具体的な例としては、スチレンスルホン酸、スチレンスルホン酸ナトリウム、メタクリル酸及びメタクリル酸ナトリウムが挙げられる。   When soap-free emulsion polymerization is performed, by adding a hydrophilic monomer, the particles can be synthesized more stably and the control of the particle size becomes easier. Specific examples of the hydrophilic monomer include styrene sulfonic acid, sodium styrene sulfonate, methacrylic acid, and sodium methacrylate.

親水性モノマーの含有量は、単量体組成物全量に対して、0.1〜10モル%であることが好ましい。   It is preferable that content of a hydrophilic monomer is 0.1-10 mol% with respect to the monomer composition whole quantity.

子粒子13の耐溶剤性、耐熱性及びガラス転移温度を向上させるために、架橋剤を入れることが望ましい。架橋剤として具体的には、ジビニルベンゼン、ジアクリレート等が好ましい。また、架橋剤の含有量は合成のし易さの観点から、子粒子13の全モノマーに対して0〜10モル%であることが好ましく、更に、特性を鑑みると、架橋剤の含有量は1〜5モル%であることがより好ましい。   In order to improve the solvent resistance, heat resistance and glass transition temperature of the child particles 13, it is desirable to add a crosslinking agent. Specifically, divinylbenzene, diacrylate and the like are preferable as the crosslinking agent. In addition, the content of the crosslinking agent is preferably 0 to 10 mol% with respect to the total monomers of the child particles 13 from the viewpoint of ease of synthesis. Further, in view of characteristics, the content of the crosslinking agent is More preferably, it is 1-5 mol%.

ソープフリー乳化重合の方法は、当業者にとって周知である。好ましくは、例えば、合成用のモノマー、水及び重合開始剤をフラスコに入れて、窒素雰囲気下において100〜500min−1(rpm)攪拌速度で撹拌しながら行う。全モノマーの含有量は溶媒の水に対して1〜20質量%であることが望ましい。 Soap-free emulsion polymerization methods are well known to those skilled in the art. Preferably, for example, a monomer for synthesis, water, and a polymerization initiator are placed in a flask, and stirring is performed at a stirring speed of 100 to 500 min −1 (rpm) in a nitrogen atmosphere. The total monomer content is desirably 1 to 20% by mass with respect to the solvent water.

また、ソープフリー乳化重合の重合温度は40〜90℃であることが好ましく、重合時間は2時間から15時間の範囲が好ましい。適切な重合温度及び時間は、当業者が適宜に選択することができる。   The polymerization temperature of soap-free emulsion polymerization is preferably 40 to 90 ° C., and the polymerization time is preferably in the range of 2 hours to 15 hours. Appropriate polymerization temperature and time can be appropriately selected by those skilled in the art.

子粒子13を母粒子12に付着させる方法としては、特に限定されていないが、例えば官能基付きの母粒子12に官能基付きの子粒子13を付着させる方法が挙げられる。そのため、子粒子は、外側に水酸基、シラノール基又はカルボキシル基等の反応性が良好な官能基を有していることが望ましい。   The method of attaching the child particles 13 to the mother particles 12 is not particularly limited, and examples thereof include a method of attaching the child particles 13 having functional groups to the mother particles 12 having functional groups. Therefore, it is desirable that the child particles have a functional group with good reactivity such as a hydroxyl group, a silanol group, or a carboxyl group on the outside.

母粒子12の表面には、水酸基、カルボキシル基、アルコキシ基、アルコキシカルボニル基等の官能基が形成されていることが好ましい。母粒子13がこれらの官能基を表面に有することにより、子粒子12の表面の官能基と、脱水縮合による共有結合、水素結合等強固な結合を形成することができる。   It is preferable that a functional group such as a hydroxyl group, a carboxyl group, an alkoxy group, or an alkoxycarbonyl group is formed on the surface of the mother particle 12. When the mother particle 13 has these functional groups on the surface, a strong bond such as a covalent bond or a hydrogen bond by dehydration condensation can be formed with the functional group on the surface of the child particle 12.

母粒子12が金又はパラジウム表面を有する場合、金又はパラジウムに対して配位結合を形成するメルカプト基、スルフィド基、ジスルフィド基のいずれかを有する化合物を用いて金属層表面に水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基からなる群より選ばれる1つ以上の官能基を導入するとよい。具体的には、メルカプト酢酸、2−メルカプトエタノール、メルカプト酢酸メチル、メルカプトコハク酸、チオグリセリン、システイン等が用いられる。   When the mother particle 12 has a gold or palladium surface, a hydroxyl group, a carboxyl group on the surface of the metal layer using a compound having any of a mercapto group, a sulfide group, and a disulfide group that forms a coordinate bond with gold or palladium, One or more functional groups selected from the group consisting of an alkoxyl group and an alkoxycarbonyl group may be introduced. Specifically, mercaptoacetic acid, 2-mercaptoethanol, methyl mercaptoacetate, mercaptosuccinic acid, thioglycerin, cysteine and the like are used.

母粒子12がニッケル表面を有する場合、ニッケルに対して強固な結合を形成するシラノール基若しくは水酸基を有する化合物、又は窒素化合物でニッケル表面に水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基からなる群より選ばれる1つ以上の官能基を導入するとよい。具体的には、カルボキシベンゾトリアゾール等が用いられる。   When the mother particle 12 has a nickel surface, a compound having a silanol group or a hydroxyl group that forms a strong bond with nickel, or a nitrogen compound is selected from the group consisting of a hydroxyl group, a carboxyl group, an alkoxyl group, and an alkoxycarbonyl group on the nickel surface. One or more functional groups selected may be introduced. Specifically, carboxybenzotriazole or the like is used.

金属層表面を上記化合物で処理する方法としては特に限定されないが、メタノール又はエタノール等の有機溶媒中に、メルカプト酢酸又はカルボキシベンゾトリアゾール等の化合物を10〜100mmol/Lの濃度で分散し、その中に金属表面を有する導電粒子を分散させる方法がある。   The method for treating the surface of the metal layer with the above compound is not particularly limited, but a compound such as mercaptoacetic acid or carboxybenzotriazole is dispersed at a concentration of 10 to 100 mmol / L in an organic solvent such as methanol or ethanol, There is a method of dispersing conductive particles having a metal surface.

しかし、水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基等の官能基を有する母粒子12の表面電位(ゼータ電位)は、pHが中性領域であるとき、通常マイナスである。一方、水酸基を有する子粒子13の表面電位も通常マイナスである。表面電位がマイナスの粒子の表面を、表面電位がマイナスの粒子で充分に被覆するのは難しい場合が多いが、これらの間に高分子電解質層を設けることにより、効率的に子粒子13を母粒子12に付着させることができる。   However, the surface potential (zeta potential) of the mother particle 12 having a functional group such as a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group is usually negative when the pH is in a neutral region. On the other hand, the surface potential of the child particle 13 having a hydroxyl group is usually negative. In many cases, it is difficult to sufficiently cover the surface of particles having a negative surface potential with particles having a negative surface potential. However, by providing a polymer electrolyte layer between them, the child particles 13 can be efficiently attached to the mother particles 13. It can be attached to the particles 12.

さらに、高分子電解質層を設けることにより、母粒子12の表面に子粒子13を欠陥なく均一に被覆することができる。これにより、複合粒子を絶縁被覆導電粒子として用いる際、回路電極間隔が狭ピッチでも絶縁特性が確保される一方、電気的に接続する電極間では接続抵抗が低く、導通特性が良好である。   Furthermore, by providing the polymer electrolyte layer, the child particles 13 can be uniformly coated on the surface of the mother particles 12 without any defects. Thereby, when the composite particles are used as the insulating coated conductive particles, the insulation characteristics are ensured even when the circuit electrode interval is narrow, while the connection resistance is low between the electrically connected electrodes and the conduction characteristics are good.

官能基を有する子粒子13を、高分子電解質を介して官能基を有する母粒子12の外側に付着させる方法としては特に限定されないが、高分子電解質と子粒子13を交互に積層する方法が好ましい。より具体的な製造方法としては、
(1)官能基を有する母粒子12を、高分子電解質を含む溶液に分散させ、官能基を有する母粒子12の表面の少なくとも一部に高分子電解質を吸着させてリンスする工程と、
(2)高分子電解物質を吸着させた母粒子12を、子粒子13を含む分散液に分散させ、高分子電解物質を吸着させた、官能基を有する母粒子12の表面の少なくとも一部に子粒子13を吸着させて、リンスする工程と、
を含む。上記の方法により、表面に高分子電解質と子粒子13とが積層された複合粒子14を製造できる。
The method of attaching the child particles 13 having a functional group to the outside of the mother particles 12 having a functional group via a polymer electrolyte is not particularly limited, but a method of alternately laminating the polymer electrolyte and the child particles 13 is preferable. . As a more specific manufacturing method,
(1) dispersing the mother particles 12 having a functional group in a solution containing a polymer electrolyte, adsorbing the polymer electrolyte on at least a part of the surface of the mother particles 12 having a functional group, and rinsing;
(2) The mother particles 12 on which the polymer electrolyte is adsorbed are dispersed in a dispersion containing the child particles 13, and the polymer electrolyte is adsorbed on at least part of the surface of the mother particles 12 having functional groups. Adsorbing and rinsing the child particles 13;
including. By the above method, composite particles 14 having a polymer electrolyte and child particles 13 laminated on the surface can be produced.

このような方法は、交互積層法(Layer−by−Layer assembly)と呼ばれる。交互積層法は、G.Decherらによって1992年に発表された有機薄膜を形成する方法である(Thin Solid Films、210/211、p831(1992))。この方法では、正電荷を有するポリマー電解質(ポリカチオン)と負電荷を有するポリマー電解質(ポリアニオン)とを含む水溶液に、基材を交互に浸漬させる。これにより、基板上に静電的引力によって吸着したポリカチオンとポリアニオンの組が積層して複合膜(交互積層膜)が得られる。   Such a method is called an alternating lamination method (Layer-by-Layer assembly). The alternate lamination method is described in G.H. This is a method for forming an organic thin film published in 1992 by Decher et al. (Thin Solid Films, 210/211, p831 (1992)). In this method, the substrate is alternately immersed in an aqueous solution containing a polymer electrolyte having a positive charge (polycation) and a polymer electrolyte having a negative charge (polyanion). As a result, a combination of polycation and polyanion adsorbed by electrostatic attraction on the substrate is laminated to obtain a composite film (alternate laminated film).

交互積層法では、静電的な引力によって、基材上に形成された材料の電荷と、溶液中の反対電荷を有する材料とが引き合うことにより膜成長する。吸着が進行して電荷が中和されると、それ以上の吸着が起こらなくなる。したがって、ある飽和点までに至れば、それ以上膜厚が増加することは実質的にない。Lvovらは交互積層法を、微粒子に応用し、シリカ、チタニア及びセリアの各微粒子分散液を用いて、微粒子の表面電荷と反対電荷を有する高分子電解質を交互積層法で積層する方法を報告している(Langmuir、Vol.13、p6195−6203(1997))。この方法を用いると、負の表面電荷を有する絶縁粒子とその反対電荷を持つポリカチオンであるポリジアリルジメチルアンモニウムクロライド(PDDA)又はポリエチレンイミン(PEI)等とを交互に積層することで、絶縁粒子と高分子電解質が交互に積層された微粒子積層薄膜を形成することが可能である。   In the alternate lamination method, a film grows by attracting a charge of a material formed on a substrate and a material having an opposite charge in a solution by electrostatic attraction. When the adsorption proceeds and the charge is neutralized, no further adsorption occurs. Accordingly, when reaching a certain saturation point, the film thickness does not increase any more. Lvov et al. Applied an alternate lamination method to fine particles, and reported a method of laminating a polymer electrolyte having a charge opposite to the surface charge of the fine particles by using the fine particle dispersions of silica, titania and ceria. (Langmuir, Vol. 13, p6195-6203 (1997)). When this method is used, insulating particles having negative surface charges and polydiallyldimethylammonium chloride (PDDA) or polyethyleneimine (PEI), which are polycations having opposite charges, are alternately laminated to form insulating particles. It is possible to form a fine-particle laminated thin film in which and a polymer electrolyte are alternately laminated.

官能基を有する母粒子12を、高分子電解質を含む溶液に浸漬した後、子粒子13を含む分散液に浸漬する前に、溶媒のみのリンスによって余剰の高分子電解質を含む溶液を洗い流すことが好ましい。また、高分子電解質を吸着させた官能基を有する母粒子12を、子粒子13を含む分散液に浸漬した後も、溶媒のみのリンスによって余剰の子粒子13を含む分散液を洗い流すことが好ましい。同様に、官能基を有する母粒子12を、無機酸化物微粒子の分散液に浸漬後、高分子電解質溶液に浸漬する前に、溶媒のみのリンスによって余剰の無機酸化物微粒子を含む分散液を洗い流すことが好ましい。   After immersing the mother particle 12 having a functional group in a solution containing the polymer electrolyte and before immersing in the dispersion containing the child particles 13, the solution containing the excess polymer electrolyte may be washed away by rinsing with only the solvent. preferable. Moreover, it is preferable to wash away the dispersion liquid containing the surplus child particles 13 by rinsing with only the solvent even after the mother particles 12 having a functional group adsorbing the polymer electrolyte are immersed in the dispersion liquid containing the child particles 13. . Similarly, after the mother particle 12 having a functional group is immersed in the dispersion of inorganic oxide fine particles and before being immersed in the polymer electrolyte solution, the dispersion containing excess inorganic oxide fine particles is washed away by rinsing with only the solvent. It is preferable.

このようなリンスに用いる溶媒としては、水、アルコール、アセトン及びそれらの混合溶媒が挙げられるが、これらに限定されるものではない。   Examples of the solvent used for such rinsing include, but are not limited to, water, alcohol, acetone, and a mixed solvent thereof.

高分子電解質は、母粒子12の表面に導入された上記官能基と吸着可能なものである。この高分子電解質は、上記官能基に例えば静電的に吸着されている。かかる高分子電解質としては、水溶液中で電離し、荷電を有する官能基を主鎖又は側鎖に持つ高分子(ポリアニオン又はポリカチオン)を用いることができる。ポリアニオンとしては、一般的に、スルホン酸、硫酸、カルボン酸等負電荷を帯びることのできる官能基を有するものが挙げられるが、母粒子12及び/又は子粒子13の表面電位がマイナスの場合、ポリカチオンを用いるのがよい。ポリカチオンとしては、一般に、ポリアミン類等のように正荷電を帯びることのできる官能基を有するもの、例えば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミド及びそれらを少なくとも1種以上を含む共重合体を用いることができる。中でも、PEIは電化密度が高く、結合力が強いため、PEIを用いることが好ましい。   The polymer electrolyte is capable of adsorbing with the functional group introduced on the surface of the mother particle 12. This polymer electrolyte is, for example, electrostatically adsorbed to the functional group. As such a polymer electrolyte, a polymer (polyanion or polycation) ionized in an aqueous solution and having a charged functional group in the main chain or side chain can be used. Examples of polyanions generally include those having a negatively charged functional group such as sulfonic acid, sulfuric acid, and carboxylic acid. When the surface potential of the mother particle 12 and / or the child particle 13 is negative, A polycation may be used. The polycation generally has a positively charged functional group such as polyamines such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride (PDDA). , Polyvinyl pyridine (PVP), polylysine, polyacrylamide, and a copolymer containing at least one of them can be used. Among these, PEI is preferably used because of its high electrification density and strong bonding strength.

これらの高分子電解質の中でも、エレクトロマイグレーション及び腐食を避けるために、アルカリ金属(Li、Na、K、Rb、Cs)イオン、アルカリ土類金属(Ca、Sr、Ba、Ra)イオン及びハロゲン化物イオン(フッ素イオン、クロライドイオン、臭素イオン、ヨウ素イオン)を実質的に含まないものが好ましい。   Among these polymer electrolytes, alkali metal (Li, Na, K, Rb, Cs) ions, alkaline earth metal (Ca, Sr, Ba, Ra) ions and halide ions are used to avoid electromigration and corrosion. What does not substantially contain (fluorine ion, chloride ion, bromine ion, iodine ion) is preferable.

これらの高分子電解質は、いずれも水溶性又はアルコール等の有機溶媒に可溶なものである。高分子電解質の重量平均分子量としては、用いる高分子電解質の種類により一概には定めることができないが、一般に、1,000〜200,000のものが好ましく、2,000〜150,000のものがより好ましく、5,000〜100,000のものが更に好ましい。高分子電解質の重量平均分子量が1,000〜200,000であると、充分な母粒子の分散性が得られ、母粒子12の平均粒径が3μm以下であっても、母粒子12同士の凝集を防ぐことができる。   Any of these polymer electrolytes is water-soluble or soluble in an organic solvent such as alcohol. The weight average molecular weight of the polymer electrolyte cannot be generally determined depending on the type of the polymer electrolyte to be used, but generally 1,000 to 200,000 is preferable, and 2,000 to 150,000 is preferable. More preferred is 5,000 to 100,000. When the weight average molecular weight of the polymer electrolyte is 1,000 to 200,000, sufficient dispersibility of the mother particles can be obtained, and even if the average particle diameter of the mother particles 12 is 3 μm or less, the mother particles 12 Aggregation can be prevented.

上記高分子電解質溶液は、水又は有機溶媒の混合溶媒に溶解したものである。使用できる水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリル等が挙げられる。   The polymer electrolyte solution is dissolved in water or a mixed solvent of an organic solvent. Examples of water-soluble organic solvents that can be used include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile, and the like.

なお、溶液中の高分子電解質の濃度は、一般に、0.01〜10質量%であることが好ましく、0.05〜2質量%であることがより好ましく、0.1〜1質量%であることが更に好ましい。高分子電解質の濃度が0.01〜10質量%以上であると、接着性と分散性を向上することができる。また、高分子電解質溶液のpHは、特に限定されない。   In general, the concentration of the polymer electrolyte in the solution is preferably 0.01 to 10% by mass, more preferably 0.05 to 2% by mass, and 0.1 to 1% by mass. More preferably. Adhesiveness and dispersibility can be improved as the concentration of the polymer electrolyte is 0.01 to 10% by mass or more. Further, the pH of the polymer electrolyte solution is not particularly limited.

また、高分子電解質の種類、分子量又は濃度を調整することにより、子粒子13による母粒子12の被覆率をコントロールすることができる。   Further, the coverage of the mother particles 12 by the child particles 13 can be controlled by adjusting the type, molecular weight or concentration of the polymer electrolyte.

具体的には、PEI等電荷密度の高い高分子電解質を用いた場合、子粒子13による被覆率が高くなる傾向があり、PDDA等電荷密度の低い高分子電解質を用いた場合、子粒子13による被覆率が低くなる傾向がある。また、高分子電解質の重量平均分子量が大きい場合、子粒子による被覆率が高くなる傾向があり、高分子電解質の重量平均分子量が小さい場合、子粒子13による被覆率が低くなる傾向がある。さらに、高分子電解質を高濃度で用いた場合、子粒子13による被覆率が高くなる傾向があり、高分子電解質を低濃度で用いた場合、子粒子13による被覆率が低くなる傾向がある。かかる高分子電解質の種類、分子量及び濃度は、当業者が適宜に選択することができる。   Specifically, when a polymer electrolyte with a high charge density such as PEI is used, the coverage by the child particles 13 tends to be high, and when a polymer electrolyte with a low charge density such as PDDA is used, it depends on the child particles 13. The coverage tends to be low. Further, when the weight average molecular weight of the polymer electrolyte is large, the coverage by the child particles tends to be high, and when the weight average molecular weight of the polymer electrolyte is small, the coverage by the child particles 13 tends to be low. Furthermore, when the polymer electrolyte is used at a high concentration, the coverage by the child particles 13 tends to be high, and when the polymer electrolyte is used at a low concentration, the coverage by the child particles 13 tends to be low. The type, molecular weight and concentration of such a polymer electrolyte can be appropriately selected by those skilled in the art.

母粒子12がプラスチック核10と該プラスチック核体を被覆する金属被膜11とを有する粒子である場合、粒径が小さくなるにつれて磁性凝集が大きくなり、子粒子13を付着させるのが困難になる。その場合、母粒子12の表面に好ましくは重量平均分子量が1,000以上のポリマーを有すると、母粒子12の分散が促進され、付着が容易になる。   When the base particle 12 is a particle having the plastic core 10 and the metal coating 11 covering the plastic core, the magnetic aggregation increases as the particle size decreases, making it difficult to attach the child particles 13. In that case, when the surface of the mother particle 12 preferably has a polymer having a weight average molecular weight of 1,000 or more, dispersion of the mother particle 12 is promoted and adhesion becomes easy.

また、子粒子13も表面に重量平均分子量が500〜10,000、より好ましくは重量平均分子量が1,000〜4,000のポリマーもしくはオリゴマーが存在することが望ましい。かかるポリマーもしくはオリゴマーは、重量平均分子量が1,000〜4,000の官能基を有するシリコーンオリゴマーであるのが望ましい。官能基としては、上記の高分子電解質と反応するものであるのが好ましく、グリシジル基、カルボキシル基又はイソシアネート基がより好ましく、中でもグリシジル基が特に好ましい。これにより、子粒子13の分散性を良好にすると同時に、ポリマーもしくはオリゴマー上の官能基と、母粒子12上の官能基とを反応させることでより強固な結合が期待できる。   Further, it is desirable that the child particles 13 have a polymer or oligomer having a weight average molecular weight of 500 to 10,000, more preferably 1,000 to 4,000, on the surface. Such a polymer or oligomer is preferably a silicone oligomer having a functional group having a weight average molecular weight of 1,000 to 4,000. The functional group is preferably one that reacts with the polymer electrolyte, more preferably a glycidyl group, a carboxyl group or an isocyanate group, and particularly preferably a glycidyl group. Thereby, while making the dispersibility of the child particle 13 favorable, stronger bond can be expected by reacting the functional group on the polymer or oligomer with the functional group on the mother particle 12.

このように、化学反応性のポリマーを有する粒子同士を結合させることにより、従来にはない強固な結合が得られる。特に、上記複合粒子14を絶縁被覆導電粒子として用いる際、導電粒子の小径化及び絶縁粒子の大径化に対応できる。   Thus, by combining particles having a chemically reactive polymer, a strong bond that has never been obtained can be obtained. In particular, when the composite particles 14 are used as the insulating coated conductive particles, it is possible to cope with the reduction in the diameter of the conductive particles and the increase in the diameter of the insulating particles.

子粒子13の被覆率は10〜70%であることが好ましく、20〜60%であることがより好ましい。被覆率が10%以上であると、複合粒子14を絶縁被覆導電粒子として用いる際、より良好な絶縁特性を得ることができ、70%以下であると、優れる導通特性が保たれる。また、被覆ばらつき(CV)が0.3以下の範囲であることが好ましく、0.25以下であることがより好ましく、0.2以下であることが更に好ましい。CVが0.3以下であると、より絶縁特性と導通特性が得られる。被覆率とは、複合粒子のSEM写真における母粒子12の中心部(母粒子12の外周円の直径の半分の長さを直径とし、当該外周円と同心円状の円)を解析することにより算出することができるものをいう。具体的には、上記SEM写真における母粒子12の中心部の総表面積をW(母粒子の粒子径から算出した面積)、上記SEM写真における母粒子12の中心部のうち、子粒子13で被覆されていると分析された部分の表面積をPとしたときに、被覆率はP/W×100(%)と表される。また、CVは、標準偏差/平均被覆率×100(%)で表す。なお、本実施形態における上記被覆されていると分析された部分の表面積Pは、複合粒子のSEM写真200枚から求めた表面積の平均値である。   The coverage of the child particles 13 is preferably 10 to 70%, and more preferably 20 to 60%. When the coverage is 10% or more, better insulating characteristics can be obtained when the composite particles 14 are used as the insulating coated conductive particles, and excellent conduction characteristics are maintained when the coverage is 70% or less. Further, the coating variation (CV) is preferably in the range of 0.3 or less, more preferably 0.25 or less, and further preferably 0.2 or less. When CV is 0.3 or less, more insulating characteristics and conductive characteristics can be obtained. The coverage is calculated by analyzing the center part of the mother particle 12 in the SEM photograph of the composite particle (a circle having a length half the diameter of the outer circle of the mother particle 12 and concentric with the outer circle). What you can do. Specifically, the total surface area of the center part of the mother particle 12 in the SEM photograph is W (area calculated from the particle diameter of the mother particle), and the child particle 13 covers the center part of the mother particle 12 in the SEM photograph. The coverage is expressed as P / W × 100 (%), where P is the surface area of the portion analyzed as being. CV is expressed as standard deviation / average coverage x 100 (%). In addition, the surface area P of the portion analyzed to be covered in the present embodiment is an average value of the surface areas obtained from 200 SEM photographs of the composite particles.

絶縁被覆導電粒子において、一般的には、絶縁粒子の被覆率が高い場合、絶縁特性が高く導通特性が悪くなる傾向があり、絶縁粒子の被覆率が低い場合、導通特性が高く絶縁特性が悪くなる傾向がある。しかし、本実施形態の扁平形状又は赤血球形状の半円型の子粒子を用いた場合、70%である高被覆率においても良好な導通特性が保たれ、絶縁特性と導通特性が共に優れる絶縁被覆導電粒子を得ることができる。   In general, the insulating coated conductive particles tend to have high insulation characteristics and poor conduction characteristics when the insulation particle coverage is high, and the conduction characteristics and insulation characteristics are poor when the insulation particle coverage is low. Tend to be. However, when the flat or erythrocyte-shaped semicircular child particles of the present embodiment are used, good conduction characteristics are maintained even at a high coverage of 70%, and both the insulation characteristics and the conduction characteristics are excellent. Conductive particles can be obtained.

また、積層量を容易にコントロールする観点から、子粒子13は一層のみ被覆されているのが好ましい。   Further, from the viewpoint of easily controlling the amount of lamination, it is preferable that only one layer of the child particles 13 is coated.

上記の複合粒子14は、加熱乾燥することにより子粒子13と母粒子12との結合を更に強化することができる。結合力が増す理由としては、例えば母粒子12の表面に導入されたカルボキシル基等の官能基と、子粒子13の表面に導入された水酸基等の官能基との化学結合の強化が挙げられる。加熱乾燥の温度としては60〜100℃、時間は10〜180分がよい。温度が60℃以上であると子粒子13が母粒子12から剥離し難くなり、100℃以下であると母粒子12が変形し難くなる。同様に、加熱乾燥の時間が10分以上であると子粒子13が剥離し難く、180分以下であると母粒子12が変形し難くなる。   The composite particles 14 can further strengthen the bond between the child particles 13 and the mother particles 12 by heating and drying. The reason why the binding force increases is, for example, the strengthening of chemical bonds between a functional group such as a carboxyl group introduced on the surface of the mother particle 12 and a functional group such as a hydroxyl group introduced on the surface of the child particle 13. The heat drying temperature is preferably 60 to 100 ° C., and the time is preferably 10 to 180 minutes. If the temperature is 60 ° C. or higher, the child particles 13 are difficult to peel off from the mother particles 12, and if the temperature is 100 ° C. or lower, the mother particles 12 are difficult to deform. Similarly, if the heat drying time is 10 minutes or more, the child particles 13 are difficult to peel off, and if it is 180 minutes or less, the mother particles 12 are difficult to deform.

また、表面に官能基を有する複合粒子14は更に、シリコーンオリゴマー、オクタデシルアミン等で表面処理することができる。それにより、複合粒子14を絶縁被覆導電粒子として用いる際、絶縁特性を向上させ、絶縁特性に優れる絶縁被覆導電粒子を得ることができる。さらに、必要に応じて縮合剤を用いることで絶縁特性をより向上することもできる。   The composite particles 14 having functional groups on the surface can be further surface treated with a silicone oligomer, octadecylamine or the like. Thereby, when the composite particles 14 are used as the insulating coated conductive particles, the insulating characteristics can be improved, and the insulating coated conductive particles having excellent insulating characteristics can be obtained. Furthermore, if necessary, the insulating properties can be further improved by using a condensing agent.

上記の複合粒子14は、導電粒子である母粒子12と、絶縁粒子である子粒子13と、を備える絶縁被覆導電粒子として用いることができる。また、絶縁被覆導電粒子を接着剤5中に分散することで異方導電性接着剤として用いることができる。   Said composite particle 14 can be used as an insulation coating electroconductive particle provided with the mother particle 12 which is an electroconductive particle, and the child particle 13 which is an insulating particle. Further, the insulating coated conductive particles can be dispersed in the adhesive 5 to be used as an anisotropic conductive adhesive.

本実施形態の異方導電性接着剤の接着剤としては、熱硬化性樹脂と硬化剤との混合物が用いられる。熱硬化性樹脂としてラジカル反応性樹脂、硬化剤として有機過酸化物等が挙げられる。また、紫外線等のエネルギー線硬化性樹脂も用いられる。かかる樹脂、硬化剤、有機過酸化物及びエネルギー線は、当業者が必要に応じて選択できる。   As the adhesive of the anisotropic conductive adhesive of the present embodiment, a mixture of a thermosetting resin and a curing agent is used. Examples of the thermosetting resin include radical reactive resins, and examples of the curing agent include organic peroxides. Further, energy ray curable resins such as ultraviolet rays are also used. Such a resin, curing agent, organic peroxide, and energy beam can be selected by those skilled in the art as needed.

本実施形態において、接着性の観点から、接着剤を構成する熱硬化性樹脂は好ましくはエポキシ樹脂である。用いられるエポキシ樹脂としては、エピクロルヒドリンとビスフェノールA、ビスフェノールF、ビスフェノールAD等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリン、フェノールノボラック、クレゾールノボラック等から誘導されるエポキシノボラック樹脂、ナフタレン環を含む骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1つの分子内に2個以上のグリシジル基を有する化合物などが挙げられる。これらのエポキシ樹脂は単独で用いてもよく、2種以上を混合して用いてもよい。   In the present embodiment, from the viewpoint of adhesiveness, the thermosetting resin constituting the adhesive is preferably an epoxy resin. Epoxy resins used include bisphenol-type epoxy resins derived from epichlorohydrin and bisphenol A, bisphenol F, bisphenol AD, etc., epoxy novolac resins derived from epichlorohydrin, phenol novolac, cresol novolac, etc., and a skeleton containing a naphthalene ring. Examples thereof include a compound having two or more glycidyl groups in one molecule such as naphthalene-based epoxy resin, glycidylamine, glycidyl ether, biphenyl, and alicyclic. These epoxy resins may be used alone or in combination of two or more.

これらのエポキシ樹脂は、不純物イオン(Na、Cl等)、加水分解性塩素などを300ppm以下に低減した高純度品を用いることがエレクトロマイグレーション防止のために好ましい。 For these epoxy resins, it is preferable to use a high-purity product in which impurity ions (Na + , Cl − and the like), hydrolyzable chlorine and the like are reduced to 300 ppm or less, in order to prevent electromigration.

また、硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド系、ポリアミンの塩、ジシアンジアミド系等潜在性硬化剤が挙げられる。   Examples of the curing agent include latent curing agents such as imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, and dicyandiamide.

接着後の応力を低減するため、あるいは接着性を向上するために、接着剤は更にブタジエンゴム、アクリルゴム、スチレン−ブタジエンゴム、シリコーンゴム等のゴムを含有することができる。   In order to reduce the stress after adhesion or to improve the adhesion, the adhesive may further contain a rubber such as butadiene rubber, acrylic rubber, styrene-butadiene rubber, silicone rubber or the like.

異方導電性接着剤はフィルム状としてもペースト状としても用いることができる。異方導電性接着剤をフィルム状にするためには、接着剤にフェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂をフィルム形成高分子として配合することが効果的である。これらの熱可塑性樹脂は、熱硬化性樹脂の硬化時の応力緩和の効果も有する。また、フィルム形成性高分子が水酸基等の官能基を有する場合、接着性が向上するためより好ましい。   The anisotropic conductive adhesive can be used as a film or a paste. In order to make the anisotropic conductive adhesive into a film, it is effective to blend a thermoplastic resin such as phenoxy resin, polyester resin, polyamide resin or the like into the adhesive as a film-forming polymer. These thermoplastic resins also have a stress relieving effect when the thermosetting resin is cured. In addition, it is more preferable that the film-forming polymer has a functional group such as a hydroxyl group because the adhesiveness is improved.

異方導電性接着剤フィルムは、例えば、エポキシ樹脂、アクリルゴム、潜在性硬化剤からなる接着剤と、複合粒子4とを有機溶剤に溶解又は分散させて液状化にする工程と、上記有機溶剤を含有する液状組成物を剥離性基材上に塗布する工程と、塗布された液状組成物から硬化剤の活性温度以下で有機溶剤を除去する工程とを含む方法により得ることができる。このときに用いる有機溶剤は、材料の溶解性を向上する観点から芳香族炭化水素系と含酸素系との混合溶剤が好ましい。   The anisotropic conductive adhesive film includes, for example, a step of dissolving or dispersing an adhesive composed of an epoxy resin, acrylic rubber, a latent curing agent, and composite particles 4 in an organic solvent to make it liquefied; Can be obtained by a method comprising a step of applying a liquid composition containing selenium onto a peelable substrate and a step of removing the organic solvent from the applied liquid composition at a temperature lower than the activation temperature of the curing agent. The organic solvent used at this time is preferably a mixed solvent of an aromatic hydrocarbon type and an oxygen-containing type from the viewpoint of improving the solubility of the material.

異方導電性接着剤フィルムにおいて、接着剤層を多層化することが好ましい。例えば、異方導電性を付与するための導電性接着層と、絶縁性接着層とをラミネートしてなる二層構成の異方導電性接着剤フィルム及び、導電性接着層と、両側に絶縁性接着層とをラミネートした三層構成の異方導電性接着剤フィルム等が挙げられる。なお、導電性接着層は、上述の絶縁被覆導電粒子を含む。絶縁性接着層を金属バンプ側に配置し、導電性接着層をガラス側に配置することにより、絶縁被覆導電粒子が効率よく金属バンプ側に補足されることができ、狭ピッチ接続に有利である。   In the anisotropic conductive adhesive film, the adhesive layer is preferably multilayered. For example, a two-layer anisotropic conductive adhesive film formed by laminating a conductive adhesive layer for imparting anisotropic conductivity and an insulating adhesive layer, and a conductive adhesive layer, and insulating on both sides Examples thereof include an anisotropic conductive adhesive film having a three-layer structure in which an adhesive layer is laminated. In addition, a conductive contact bonding layer contains the above-mentioned insulation coating electroconductive particle. By disposing the insulating adhesive layer on the metal bump side and the conductive adhesive layer on the glass side, the insulating coated conductive particles can be efficiently captured on the metal bump side, which is advantageous for narrow pitch connection. .

上記導電性接着層は、接続性の観点からなるべく薄い方が好ましい。一方、絶縁性接着層は導電性接着層よりも厚くて流動性が高い方が好ましい。具体的には導電性接着層の厚みは3〜15μmであり、絶縁性接着層の厚みは7〜20μmである。導電性接着層の厚みが3μm以上15μm以下とすることで、より良好な接続性が得られる。絶縁性接着層の厚みが7μm以上20μm以下であると、流動性に優れる。   The conductive adhesive layer is preferably as thin as possible from the viewpoint of connectivity. On the other hand, the insulating adhesive layer is preferably thicker and more fluid than the conductive adhesive layer. Specifically, the thickness of the conductive adhesive layer is 3 to 15 μm, and the thickness of the insulating adhesive layer is 7 to 20 μm. When the thickness of the conductive adhesive layer is 3 μm or more and 15 μm or less, better connectivity can be obtained. When the thickness of the insulating adhesive layer is 7 μm or more and 20 μm or less, the fluidity is excellent.

また、導電性接着層の含有量は、異方導電性接着剤フィルムの全質量の50質量%以下であることが好ましい。   Moreover, it is preferable that content of an electroconductive contact bonding layer is 50 mass% or less of the total mass of an anisotropic conductive adhesive film.

さらに、異方導電性接着剤フィルムは、ガラス基板又はITOとの接着性を強化するために、絶縁性接着層を導電性接着層の両面に配置した3層構成であることが好ましい。かかる3層構成の異方導電性接着剤フィルムにおける2層の絶縁性接着層の厚みは、同一でも異なっていてもよいが、例えば一方を2〜15μm、他方を7〜20μmとすることが好ましい。   Furthermore, the anisotropic conductive adhesive film preferably has a three-layer structure in which an insulating adhesive layer is disposed on both surfaces of the conductive adhesive layer in order to enhance the adhesiveness with the glass substrate or ITO. The thickness of the two insulating adhesive layers in the anisotropic conductive adhesive film having such a three-layer structure may be the same or different. For example, one is preferably 2 to 15 μm and the other is preferably 7 to 20 μm. .

以上、母粒子が、プラスチック核体及び該プラスチック核体を被覆する金属被膜を有する場合について説明したが、母粒子はこれ以外の導電粒子であってもよく、また非導電粒子であってもよい。導電粒子としては、例えば、金属のみからなる粒子、及び有機核体又は無機核体に金属の導電性被膜を被覆したものが挙げられる。これらの中で、プラスチック核体を金属被膜で被覆したものが、粒径の分布を狭くできる点から好ましい。また、非導電粒子としては、例えば樹脂粒子及びシリカ粒子が挙げられる。   As described above, the case where the mother particle has the plastic core and the metal film covering the plastic core has been described. However, the mother particle may be other conductive particles or non-conductive particles. . Examples of the conductive particles include particles made of only metal, and those obtained by coating an organic core or an inorganic core with a metal conductive film. Among these, those in which a plastic core is coated with a metal film are preferable because the distribution of particle diameters can be narrowed. Moreover, as a nonelectroconductive particle, a resin particle and a silica particle are mentioned, for example.

上記の異方導電性接着剤を用いた接続構造体の作製方法の一実施形態を、図2を用いて説明する。   One embodiment of a method for producing a connection structure using the anisotropic conductive adhesive will be described with reference to FIG.

図2は、本発明の複合粒子を絶縁被覆導電粒子として用いた異方導電性接着剤による回路接続方法の一実施形態を示す断面図である。ICチップ1及び該ICチップ上に設けられた金属バンプ2を有する第一の回路部材20と、ガラス基板8及び該ガラス基板上に設けられた電極7を有する第二の回路部材30とを、金属バンプ2及び電極7が向き合うように対向配置する。第一の回路部材20と、第二の回路部材30との間に異方導電性接着剤9を配置する。なお、電極7は、ITO(Indium Tin Oxide)又はIZO(Indium Zinc Oxide)電極である。異方導電性接着剤9は、第一の回路部材20側に配置される絶縁性接着層3、第二の回路部材30側に配置される絶縁性接着層6及び絶縁性接着層3と絶縁性接着層6との間に配置された導電性接着層40の3層構成である。導電性接着層40は、接着剤5及び該接着剤中に分散されている絶縁被覆導電粒子4から構成される。   FIG. 2 is a cross-sectional view showing an embodiment of a circuit connection method using an anisotropic conductive adhesive using the composite particles of the present invention as insulating coated conductive particles. A first circuit member 20 having an IC chip 1 and metal bumps 2 provided on the IC chip, and a second circuit member 30 having a glass substrate 8 and an electrode 7 provided on the glass substrate, The metal bumps 2 and the electrodes 7 are arranged so as to face each other. An anisotropic conductive adhesive 9 is disposed between the first circuit member 20 and the second circuit member 30. The electrode 7 is an ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) electrode. The anisotropic conductive adhesive 9 is insulated from the insulating adhesive layer 3 disposed on the first circuit member 20 side, the insulating adhesive layer 6 disposed on the second circuit member 30 side, and the insulating adhesive layer 3. This is a three-layer configuration of a conductive adhesive layer 40 disposed between the conductive adhesive layer 6 and the conductive adhesive layer 6. The conductive adhesive layer 40 is composed of the adhesive 5 and the insulating coated conductive particles 4 dispersed in the adhesive.

このような状態で全体を加熱及び加圧することにより、図3の断面図に示されるように、第一の回路部材20と第二の回路部材30とが回路接続された接続構造体100が得られる。かかる加熱及び加圧の条件は、異方導電性接着剤9中の接着剤5の硬化性等に応じて、異方導電性フィルムが硬化して充分な接着強度が得られるように、適宜調整することができる。このようにして作製された接続構造体は、導電粒子が金属バンプ2上に補足され易くなるため、金属バンプ2とガラス基板との間により高い導通特性が得られる。さらに、補足率向上により、隣接する回路電極間に流れる導電粒子の割合が低減し、絶縁特性が向上する。   By heating and pressurizing the whole in such a state, a connection structure 100 in which the first circuit member 20 and the second circuit member 30 are connected as shown in the cross-sectional view of FIG. 3 is obtained. It is done. The heating and pressurizing conditions are appropriately adjusted according to the curability of the adhesive 5 in the anisotropic conductive adhesive 9 so that the anisotropic conductive film is cured and sufficient adhesive strength is obtained. can do. In the connection structure manufactured in this way, the conductive particles are easily captured on the metal bumps 2, so that higher conduction characteristics can be obtained between the metal bumps 2 and the glass substrate. In addition, the improvement in the supplement rate reduces the proportion of conductive particles flowing between adjacent circuit electrodes, thereby improving the insulation characteristics.

[導電粒子1の作製]
架橋度を調整したジビニルベンゼンとアクリル酸との共重合体からなり、表面にカルボキシル基を有するプラスチック核体を10g準備した。プラスチック核体の平均粒径は2.6μmであった。
[Preparation of Conductive Particle 1]
10 g of a plastic core composed of a copolymer of divinylbenzene and acrylic acid having an adjusted degree of crosslinking and having a carboxyl group on the surface was prepared. The average particle size of the plastic core was 2.6 μm.

プラスチック核体の硬さは、2746MPa(280kgf/mm)であった。なお、硬さは、200℃において粒子直径が20%変位したときの圧縮弾性率、20%K値として測定された。 The hardness of the plastic core was 2746 MPa (280 kgf / mm 2 ). The hardness was measured as a compression elastic modulus and 20% K value when the particle diameter was displaced by 20% at 200 ° C.

次に、プラスチック核体上に無電解ニッケルめっき及び無電解パラジウムめっきをこの順で行い、導電粒子を作製した。得られたニッケル層の厚みは100nmであり、パラジウム層の厚みは16nmであった。   Next, electroless nickel plating and electroless palladium plating were performed in this order on the plastic core to produce conductive particles. The thickness of the obtained nickel layer was 100 nm, and the thickness of the palladium layer was 16 nm.

(絶縁粒子1の作製)
500mlフラスコに入った純水400g中にスチレン600mmol、開始剤としてペルオキソ二硫酸カリウム6mmol及び3−メタクリロキシプロピルトリメトキシシラン30mmolを加え、更に粒子径制御剤としてスチレンスルホン酸を微量添加し、80℃で撹拌しながら6時間加熱を行った。攪拌速度は200min−1(rpm)であった。
(Preparation of insulating particles 1)
In 400 g of pure water contained in a 500 ml flask, 600 mmol of styrene, 6 mmol of potassium peroxodisulfate and 30 mmol of 3-methacryloxypropyltrimethoxysilane were added as initiators, and a small amount of styrene sulfonic acid was added as a particle size control agent. The mixture was heated for 6 hours with stirring. The stirring speed was 200 min −1 (rpm).

合成した微粒子の粒子径をHITACHI S−4800(日立ハイテク株式社製、商品名)の画像解析により測定した結果、得られた粒子は平均最大粒径が480nmであり、平均最大厚みが180nmであった。得られた粒子は、図4のSEM写真(倍率1.5万倍)で示されているように、図5の模式図で示されているおわん型粒子であった。   As a result of measuring the particle size of the synthesized fine particles by image analysis of HITACHI S-4800 (trade name, manufactured by Hitachi High-Tech Co., Ltd.), the obtained particles had an average maximum particle size of 480 nm and an average maximum thickness of 180 nm. It was. As shown in the SEM photograph (magnification 15,000 times) in FIG. 4, the obtained particles were the bowl-shaped particles shown in the schematic diagram in FIG.

(絶縁粒子2の作製)
3−メタクリロキシプロピルトリメトキシシランの量を20mmolにした以外は絶縁粒子1と同様の方法で絶縁粒子2を作製した。
(Preparation of insulating particles 2)
Insulating particles 2 were produced in the same manner as insulating particles 1 except that the amount of 3-methacryloxypropyltrimethoxysilane was 20 mmol.

(絶縁粒子3の作製)
3−メタクリロキシプロピルトリメトキシシランの量を10mmolにした以外は絶縁粒子1と同様の方法で絶縁粒子3を作製した。
(Preparation of insulating particles 3)
Insulating particles 3 were produced in the same manner as the insulating particles 1 except that the amount of 3-methacryloxypropyltrimethoxysilane was changed to 10 mmol.

(絶縁粒子4の作製)
3−メタクリロキシプロピルトリメトキシシランの量を5mmolにした以外は絶縁粒子1と同様の方法で絶縁粒子4を作製した。
(Preparation of insulating particles 4)
Insulating particles 4 were produced in the same manner as insulating particles 1 except that the amount of 3-methacryloxypropyltrimethoxysilane was changed to 5 mmol.

(絶縁粒子5の作製)
3−メタクリロキシプロピルトリメトキシシランの量を0mmolにした以外は絶縁粒子1と同様の方法で絶縁粒子5を作製した。
(Preparation of insulating particles 5)
The insulating particles 5 were produced in the same manner as the insulating particles 1 except that the amount of 3-methacryloxypropyltrimethoxysilane was changed to 0 mmol.

(絶縁粒子6の作製)
3−メタクリロキシプロピルトリメトキシシランの量を40mmolにした以外は絶縁粒子1と同様の方法で絶縁粒子6を作製した。
(Preparation of insulating particles 6)
Insulating particles 6 were produced in the same manner as insulating particles 1 except that the amount of 3-methacryloxypropyltrimethoxysilane was 40 mmol.

(絶縁粒子7の作製)
3−メタクリロキシプロピルトリメトキシシランの量を50mmolにした以外は絶縁粒子1と同様の方法で絶縁粒子7を作製した。
(Preparation of insulating particles 7)
Insulating particles 7 were produced in the same manner as the insulating particles 1 except that the amount of 3-methacryloxypropyltrimethoxysilane was 50 mmol.

(シリコーンオリゴマー1の作製)
攪拌装置、コンデンサー及び温度計を備えたガラスフラスコに、3−グリシドキシプロピルトリメトキシシラン118gとメタノール5.9gを配合した溶液を加えた。さらに活性白土5g及び蒸留水4.8gを添加し、75℃で一定時間攪拌した後、重量平均分子量1,300のシリコーンオリゴマーを得た。得られたシリコーンオリゴマーは、水酸基と反応する末端官能基としてメトキシ基又はシラノール基を有するものである。得られたシリコーンオリゴマー溶液にメタノールを加えて、固形分20重量%の処理液を調製した。
(Preparation of silicone oligomer 1)
A solution containing 118 g of 3-glycidoxypropyltrimethoxysilane and 5.9 g of methanol was added to a glass flask equipped with a stirrer, a condenser and a thermometer. Further, 5 g of activated clay and 4.8 g of distilled water were added, and the mixture was stirred at 75 ° C. for a certain time, and then a silicone oligomer having a weight average molecular weight of 1,300 was obtained. The obtained silicone oligomer has a methoxy group or a silanol group as a terminal functional group that reacts with a hydroxyl group. Methanol was added to the obtained silicone oligomer solution to prepare a treatment liquid having a solid content of 20% by weight.

なお、シリコーンオリゴマーの重量平均分子量はゲルパーミエーションクロマトグラフィー法(GPC)法によって測定し、標準ポリスチレンの検量線を用いて換算することにより算出した。GPCの条件を以下に示す。
GPC条件
ポンプ:日立 L−6000型((株)日立製作所社製、商品名)
カラム:Gelpack GL−R420、Gelpack GL−R430、Gelpack GL−R440(以上、(株)日立化成工業社製、商品名)
溶離液:テトラヒドロフラン(THF)
測定温度:40℃
流量:2.05mL/分
検出器:日立 L−3300型RI((株)日立製作所社製、商品名)
In addition, the weight average molecular weight of the silicone oligomer was measured by a gel permeation chromatography method (GPC) method, and was calculated by conversion using a standard polystyrene calibration curve. The GPC conditions are shown below.
GPC conditions Pump: Hitachi L-6000 type (trade name, manufactured by Hitachi, Ltd.)
Column: Gelpack GL-R420, Gelpack GL-R430, Gelpack GL-R440 (above, Hitachi Chemical Co., Ltd., trade name)
Eluent: Tetrahydrofuran (THF)
Measurement temperature: 40 ° C
Flow rate: 2.05 mL / min Detector: Hitachi L-3300 type RI (trade name, manufactured by Hitachi, Ltd.)

[絶縁被覆導電粒子の作製]
(絶縁被覆導電粒子1)
メルカプト酢酸8mmolをメタノール200mlに溶解させて反応液を調製した。次に導電粒子1を10g上記反応液に加え、室温で2時間スリーワンモーターと直径45mmの攪拌羽で攪拌した。メタノールで洗浄後、孔径3μmのメンブレンフィルタ(ミリポア社製)を用いて濾過することで、表面にカルボキシル基を有する導電粒子1を10g得た。
[Preparation of insulating coated conductive particles]
(Insulation coated conductive particles 1)
A reaction solution was prepared by dissolving 8 mmol of mercaptoacetic acid in 200 ml of methanol. Next, 10 g of the conductive particles 1 was added to the reaction solution, and the mixture was stirred at room temperature for 2 hours with a three-one motor and a stirring blade having a diameter of 45 mm. After washing with methanol, the mixture was filtered using a membrane filter (manufactured by Millipore) having a pore size of 3 μm to obtain 10 g of conductive particles 1 having a carboxyl group on the surface.

次に、重量平均分子量70,000の30%ポリエチレンイミン水溶液(和光純薬社製)を超純水で希釈し、0.3重量%ポリエチレンイミン水溶液を得た。上記カルボキシル基を有する導電粒子10gを0.3重量%ポリエチレンイミン水溶液に加え、室温で15分間攪拌した。その後、孔径3μmのメンブレンフィルタ(ミリポア社製)を用いて導電粒子をろ過し、ろ過された導電粒子を超純水200gに入れて室温で5分間攪拌した。更に孔径3μmのメンブレンフィルタ(ミリポア社製)を用いて導電粒子をろ過し、上記メンブレンフィルタ上にて200gの超純水で2回洗浄を行った。これらの作業を行うことにより、吸着していないポリエチレンイミンが除去され、表面にアミノ基含有ポリマーで被覆された導電粒子が得られた。   Next, a 30% polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a weight average molecular weight of 70,000 was diluted with ultrapure water to obtain a 0.3 wt% polyethyleneimine aqueous solution. 10 g of the conductive particles having a carboxyl group were added to a 0.3% by weight polyethyleneimine aqueous solution and stirred at room temperature for 15 minutes. Thereafter, the conductive particles were filtered using a membrane filter (manufactured by Millipore) having a pore size of 3 μm, and the filtered conductive particles were put into 200 g of ultrapure water and stirred at room temperature for 5 minutes. Furthermore, the conductive particles were filtered using a membrane filter (manufactured by Millipore) having a pore diameter of 3 μm, and washed twice with 200 g of ultrapure water on the membrane filter. By performing these operations, unimsorbed polyethyleneimine was removed, and conductive particles coated on the surface with an amino group-containing polymer were obtained.

次に、絶縁粒子1をシリコーンオリゴマー1で処理し、表面にグリシジル基含有オリゴマーを有する絶縁粒子1のメタノール分散媒を調製した。   Next, the insulating particles 1 were treated with the silicone oligomer 1 to prepare a methanol dispersion medium for the insulating particles 1 having a glycidyl group-containing oligomer on the surface.

上記表面がアミノ基含有ポリマーで被覆された導電粒子をイソプロピルアルコールに浸漬し、表面にグリシジル基含有オリゴマーを有する絶縁粒子1のメタノール分散媒を滴下することで、絶縁粒子被覆率が40%となるように絶縁被覆導電粒子を作製した。被覆率は滴下量で調整した。   By immersing the conductive particles whose surfaces are coated with amino group-containing polymer in isopropyl alcohol and dropping the methanol dispersion medium of insulating particles 1 having glycidyl group-containing oligomers on the surface, the insulating particle coverage becomes 40%. Insulating coated conductive particles were prepared as described above. The coverage was adjusted by the dropping amount.

得られた絶縁被覆導電粒子を縮合剤(4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロライド(DMTMM))とオクタデシルアミンで処理し、洗浄して表面の疎水化を行った。その後80℃で30分間の条件で加熱乾燥させ、更に80℃で1時間加熱乾燥行うことで絶縁被覆導電粒子1を作製した。なお、得られた絶縁被覆導電粒子のSEM写真は、図6(a)(倍率:2.5万倍)及び図6(b)(倍率:7千倍)で示されている。   The obtained insulating coated conductive particles were treated with a condensing agent (4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMTMM)) and octadecylamine. The surface was hydrophobized by washing. Then, the insulating coated conductive particles 1 were produced by heating and drying at 80 ° C. for 30 minutes and further heating and drying at 80 ° C. for 1 hour. In addition, the SEM photograph of the obtained insulating coating conductive particles is shown in FIG. 6A (magnification: 25,000 times) and FIG. 6B (magnification: 7,000 times).

(絶縁被覆導電粒子2)
絶縁粒子1の代わりに絶縁粒子2を用いたこと以外は絶縁被覆導電粒子1と同様の方法で絶縁被覆導電粒子2を作製した。
(Insulation coated conductive particles 2)
The insulating coated conductive particles 2 were produced in the same manner as the insulating coated conductive particles 1 except that the insulating particles 2 were used instead of the insulating particles 1.

(絶縁被覆導電粒子3)
絶縁粒子1の代わりに絶縁粒子3を用いたこと以外は絶縁被覆導電粒子1と同様の方法で絶縁被覆導電粒子3を作製した。
(Insulation coated conductive particles 3)
The insulating coated conductive particles 3 were produced in the same manner as the insulating coated conductive particles 1 except that the insulating particles 3 were used instead of the insulating particles 1.

(絶縁被覆導電粒子4)
絶縁粒子1の代わりに絶縁粒子4を用いたこと以外は絶縁被覆導電粒子1と同様の方法で絶縁被覆導電粒子4を作製した。
(Insulation coated conductive particles 4)
The insulating coated conductive particles 4 were produced in the same manner as the insulating coated conductive particles 1 except that the insulating particles 4 were used instead of the insulating particles 1.

(絶縁被覆導電粒子5)
絶縁粒子1の代わりに絶縁粒子5を用いたこと以外は絶縁被覆導電粒子1と同様の方法で絶縁被覆導電粒子5を作製した。
(Insulation coating conductive particles 5)
The insulating coated conductive particles 5 were produced in the same manner as the insulating coated conductive particles 1 except that the insulating particles 5 were used instead of the insulating particles 1.

(絶縁被覆導電粒子6)
絶縁粒子1の代わりに絶縁粒子6を用いたこと以外は絶縁被覆導電粒子1と同様の方法で絶縁被覆導電粒子6を作製した。
(Insulation coated conductive particles 6)
The insulating coated conductive particles 6 were produced in the same manner as the insulating coated conductive particles 1 except that the insulating particles 6 were used instead of the insulating particles 1.

(絶縁被覆導電粒子7)
絶縁粒子1の代わりに絶縁粒子7を用いたこと以外は絶縁被覆導電粒子1と同様の方法で絶縁被覆導電粒子7を作製した。
(Insulation coating conductive particles 7)
The insulating coated conductive particles 7 were produced in the same manner as the insulating coated conductive particles 1 except that the insulating particles 7 were used instead of the insulating particles 1.

(実施例1)
酢酸エチルとトルエンを重量比1:1で混合した溶媒300gに、フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)100gと、アクリルゴム(ブチルアクリレート40重量部、エチルアクリレート30重量部、アクリロニトリル30重量部、グリシジルメタクリレート3重量部の共重合体、重量平均分子量:85万)75gとを溶解し、溶液を得た。この溶液にマイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エボキシ当量185、旭化成エポキシ株式会社製、商品名:ノバキュアHX−3941)300gと、液状エポキシ樹脂(油化シェルエポキシ株式会社製、商品名:YL980)400gとを加えて撹拌した。得られた混合液に平均粒径が14nmのシリカを溶剤分散したシリカスラリー(日本アエロジル社製、商品名:R202)を加えて接着剤溶液1を調製した。シリカスラリーは、上記混合液の固形分全量に対してシリカ固形分の含有量が5重量%となるように加えた。
Example 1
300 g of a solvent in which ethyl acetate and toluene are mixed at a weight ratio of 1: 1, 100 g of phenoxy resin (trade name: PKHC, manufactured by Union Carbide), acrylic rubber (40 parts by weight of butyl acrylate, 30 parts by weight of ethyl acrylate, 30 parts of acrylonitrile) By weight, a copolymer of 3 parts by weight of glycidyl methacrylate and 75 g of a weight average molecular weight: 850,000) were dissolved to obtain a solution. Liquid epoxy (Eboxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., trade name: NovaCure HX-3941) containing a microcapsule type latent curing agent in this solution, and liquid epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., commercial product) Name: YL980) 400 g was added and stirred. A silica slurry (manufactured by Nippon Aerosil Co., Ltd., trade name: R202) in which silica having an average particle diameter of 14 nm was dispersed in a solvent was added to the obtained mixed solution to prepare an adhesive solution 1. The silica slurry was added so that the content of the silica solid content was 5% by weight with respect to the total solid content of the mixed solution.

ビーカーに、酢酸エチルとトルエンとを重量比1:1で混合した分散媒10gと、絶縁被覆導電粒子1を入れて超音波分散した。超音波分散の条件は、周波数が38kHZ、エネルギーが400W、体積が20Lの超音波槽(藤本科学、商品名:US107)に上記ビーカーを浸漬して1分間攪拌した。酢酸エチルとトルエンの分散媒から絶縁被覆導電粒子を一部取り出し、SEMで観察した。   In a beaker, 10 g of a dispersion medium in which ethyl acetate and toluene were mixed at a weight ratio of 1: 1 and the insulating coated conductive particles 1 were placed and ultrasonically dispersed. The ultrasonic dispersion was performed by immersing the above beaker in an ultrasonic bath (Fujimoto Kagaku, trade name: US107) having a frequency of 38 kHz, energy of 400 W, and volume of 20 L, and stirring for 1 minute. A part of the insulating coated conductive particles was taken out from the dispersion medium of ethyl acetate and toluene, and observed by SEM.

得られた絶縁被覆導電粒1の分散液を接着剤溶液1中に分散した。得られた分散液をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚み40μm)にロールコータで塗布し、90℃で10分間乾燥し、厚み10μmの接着剤フィルムAを作製した。この接着剤フィルムは単位面積当たり10万個/mmの絶縁被覆導電粒子を有する。 The obtained dispersion liquid of insulating coated conductive particles 1 was dispersed in the adhesive solution 1. The obtained dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to prepare an adhesive film A having a thickness of 10 μm. This adhesive film has 100,000 insulating particles / mm 2 of insulating coated conductive particles per unit area.

また、接着剤溶液1をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚み40μm)にロールコータで塗布し、90℃で10分間乾燥し、厚み3μmの接着剤フィルムBを作製した。   Further, the adhesive solution 1 was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater, and dried at 90 ° C. for 10 minutes to prepare an adhesive film B having a thickness of 3 μm.

さらに、接着剤溶液1をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚み40μm)にロールコータで塗布し、90℃で10分間乾燥し厚み10μmの接着剤フィルムCを作製した。   Further, the adhesive solution 1 was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 90 ° C. for 10 minutes to prepare an adhesive film C having a thickness of 10 μm.

次に、接着剤フィルムB、接着剤フィルムA、接着剤フィルムCの順番で各接着剤フィルムをラミネートし、3層からなる異方導電性接着剤フィルムDを作製した。   Next, each adhesive film was laminated in the order of adhesive film B, adhesive film A, and adhesive film C, and anisotropic conductive adhesive film D consisting of three layers was produced.

(実施例2)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子2を用いた以外は実施例1と同様の方法で異方導電性接着剤フィルムDを作製した。
(Example 2)
An anisotropic conductive adhesive film D was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 2 were used instead of the insulating coated conductive particles 1.

(実施例3)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子3を用いた以外は実施例1と同様の方法で異方導電性接着剤フィルムDを作製した。
(Example 3)
An anisotropic conductive adhesive film D was produced in the same manner as in Example 1 except that the insulating coated conductive particles 3 were used instead of the insulating coated conductive particles 1.

(実施例4)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子4を用いた以外は実施例1と同様の方法で異方導電性接着剤フィルムDを作製した。
Example 4
An anisotropic conductive adhesive film D was produced in the same manner as in Example 1 except that the insulating coated conductive particles 4 were used instead of the insulating coated conductive particles 1.

(実施例5)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子6を用いた以外は実施例1と同様の方法で異方導電性接着剤フィルムDを作製した。
(Example 5)
An anisotropic conductive adhesive film D was produced in the same manner as in Example 1 except that the insulating coated conductive particles 6 were used instead of the insulating coated conductive particles 1.

(比較例1)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子5を用いた以外は実施例1と同様の方法で異方導電性接着剤フィルムDを作製した。
(Comparative Example 1)
An anisotropic conductive adhesive film D was produced in the same manner as in Example 1 except that the insulating coated conductive particles 5 were used instead of the insulating coated conductive particles 1.

(比較例2)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子7を用いた以外は実施例1と同様の方法で異方導電性接着剤フィルムDを作製した。
(Comparative Example 2)
An anisotropic conductive adhesive film D was produced in the same manner as in Example 1 except that the insulating coated conductive particles 7 were used instead of the insulating coated conductive particles 1.

作製した異方導電性接着剤フィルムDを用いて、金属バンプ(面積30×90μm、スペース8μm、高さ15μm、バンブ数362個)を備えているチップ(面積1.7×1.7mm、厚み0.5μm)と電極を備えているガラス基板(厚み0.7mm)との接続を、以下に示すように行った。 Using the produced anisotropic conductive adhesive film D, a chip (area 1.7 × 1.7 mm 2 ) provided with metal bumps (area 30 × 90 μm 2 , space 8 μm, height 15 μm, number of bumps 362). , A thickness of 0.5 μm) and a glass substrate (thickness 0.7 mm) provided with electrodes were connected as shown below.

異方導電性接着剤フィルムDを、電極を備えているガラス基板に温度が80℃、圧力が0.98MPa(10kgf/cm)の条件で貼り付けた後、セパレータを剥離し、チップに備えているバンプと電極を備えているガラス基板の位置合わせを行った。次いで、温度が190℃、圧力が0.39N/バンプ(40gf/バンプ)の条件でチップ上方から10秒間加熱及び加圧を行い、本接続を行った。なお、異方導電性接着剤フィルムDは、接着剤フィルムBがガラス基板側に、接着剤フィルムCが金属バンプ側になるように配置された。 After the anisotropic conductive adhesive film D was attached to a glass substrate equipped with electrodes under conditions of a temperature of 80 ° C. and a pressure of 0.98 MPa (10 kgf / cm 2 ), the separator was peeled off to prepare for the chip. The glass substrate provided with the bumps and the electrodes are aligned. Next, heating and pressurization were performed for 10 seconds from above the chip under the conditions of a temperature of 190 ° C. and a pressure of 0.39 N / bump (40 gf / bump) to perform the main connection. The anisotropic conductive adhesive film D was disposed such that the adhesive film B was on the glass substrate side and the adhesive film C was on the metal bump side.

[絶縁抵抗試験及び導通抵抗試験]
実施例及び比較例で作製した異方導電性接着剤フィルムの絶縁抵抗試験及び導通抵抗試験を行った。異方導電性接着剤フィルムは金属バンプ間の絶縁抵抗が高く、金属バンプ/ガラス側電極間の導通抵抗が低いことが重要である。金属バンプ間の絶縁抵抗に関しては初期値の測定を行い、絶縁抵抗の値は20サンプルの平均値より算出した。また、絶縁抵抗>10(Ω)を良品とした場合の歩留まりを算出した。なお、バンプ間の距離は10μmであった。また、金属バンプ/ガラス側電極間の導通抵抗に関しては初期値及び吸湿耐熱試験後の値を測定し、導通抵抗の値は14サンプルの平均値をより算出した。なお、吸湿耐熱試験は、気温85℃、湿度85%の条件で500時間放置することにより行った。
[Insulation resistance test and conduction resistance test]
An insulation resistance test and a conduction resistance test were performed on the anisotropic conductive adhesive films prepared in Examples and Comparative Examples. It is important that the anisotropic conductive adhesive film has high insulation resistance between metal bumps and low conduction resistance between metal bumps / glass side electrodes. Regarding the insulation resistance between the metal bumps, an initial value was measured, and the value of the insulation resistance was calculated from an average value of 20 samples. Further, the yield was calculated when the insulation resistance> 10 9 (Ω) was regarded as a good product. The distance between the bumps was 10 μm. Moreover, regarding the conduction resistance between the metal bump / glass side electrode, the initial value and the value after the moisture absorption heat test were measured, and the value of the conduction resistance was calculated from the average value of 14 samples. In addition, the moisture absorption heat test was performed by leaving it to stand for 500 hours under conditions of an air temperature of 85 ° C. and a humidity of 85%.

[絶縁子粒子の被覆率]
絶縁粒子の被覆率及び被覆ばらつきは、絶縁被覆導電粒子の作製直後及び溶剤分散後のSEM写真を撮影し画像解析し、上述の方法により算出した。
[Insulator particle coverage]
The coverage of the insulating particles and the coating variation were calculated by the method described above by taking SEM photographs immediately after the production of the insulating coated conductive particles and after dispersing the solvent, analyzing the images, and analyzing the images.

測定結果を表2及び3に示す。各実施例のサンプルによれば、超音波分散後の被覆率がよく、また、絶縁抵抗、導通抵抗及び耐吸湿性に優れる絶縁被覆導電粒子を提供できる。   The measurement results are shown in Tables 2 and 3. According to the sample of each Example, it is possible to provide insulating coated conductive particles having a good coverage after ultrasonic dispersion and excellent in insulation resistance, conduction resistance and moisture absorption resistance.

以上のように本発明によれば、従来からの課題であった子粒子の脱落を抑制し、絶縁性と導通特性に優れた導電粒子を提供できる。   As described above, according to the present invention, it is possible to provide conductive particles excellent in insulation and conduction characteristics by suppressing the drop-off of child particles, which has been a conventional problem.

1…ICチップ、2…金属バンプ、3…絶縁性接着層、4…絶縁被覆導電粒子、5…接着剤、5a…硬化後の異方導電性接着剤層、6…絶縁性接着層、7…ガラス側電極、8…ガラス基板、9…異方導電性接着剤、10…プラスチック核体、11…金属被膜、12…母粒子、13…子粒子、14…複合粒子、20…第一の回路部材、30…第二の回路部材、40…導電性接着層、100…接続構造体。   DESCRIPTION OF SYMBOLS 1 ... IC chip, 2 ... Metal bump, 3 ... Insulating adhesive layer, 4 ... Insulation coating conductive particle, 5 ... Adhesive, 5a ... An anisotropic conductive adhesive layer after hardening, 6 ... Insulating adhesive layer, 7 DESCRIPTION OF SYMBOLS ... Glass side electrode, 8 ... Glass substrate, 9 ... Anisotropic conductive adhesive, 10 ... Plastic core, 11 ... Metal coating, 12 ... Mother particle, 13 ... Child particle, 14 ... Composite particle, 20 ... First Circuit member, 30 ... second circuit member, 40 ... conductive adhesive layer, 100 ... connection structure.

Claims (8)

母粒子と、該母粒子の外側に付着された複数の子粒子と、を備える複合粒子であって、
前記母粒子は平均粒径が1〜10μmの球状粒子であり、
前記子粒子は140nm以上500nm以下の平均最大粒径を有し、かつ平均最大粒径の20〜80%の範囲の平均最大厚みを有する半円型粒子である、複合粒子。
A composite particle comprising a mother particle and a plurality of child particles attached to the outside of the mother particle,
The mother particles are spherical particles having an average particle diameter of 1 to 10 μm,
The child particle is a composite particle having an average maximum particle diameter of 140 nm or more and 500 nm or less and a semicircular particle having an average maximum thickness in a range of 20 to 80% of the average maximum particle diameter.
前記子粒子が扁平形状又は赤血球形状である、請求項1に記載の複合粒子。   The composite particle according to claim 1, wherein the child particle has a flat shape or a red blood cell shape. 前記母粒子が、プラスチック核体と、該プラスチック核体を被覆する導電性被膜とを有する、請求項1又は2に記載の複合粒子。   The composite particle according to claim 1, wherein the base particle has a plastic core and a conductive coating that covers the plastic core. 前記子粒子が、有機無機ハイブリッド型粒子である、請求項1〜3のいずれか一項に記載の複合粒子。   The composite particle according to any one of claims 1 to 3, wherein the child particle is an organic-inorganic hybrid type particle. 前記子粒子が、高分子電解質を介して前記母粒子の外側に付着される、請求項1〜4のいずれか一項に記載の複合粒子。   The composite particle according to any one of claims 1 to 4, wherein the child particle is attached to the outside of the base particle via a polymer electrolyte. 前記子粒子及び前記母粒子が、それぞれ前記高分子電解質と反応する官能基を表面に有する、請求項5に記載の複合粒子。   The composite particle according to claim 5, wherein the child particle and the mother particle each have a functional group that reacts with the polymer electrolyte on the surface. 前記子粒子が、炭素間の二重結合を有する有機モノマー、及び炭素間の二重結合を有するアルコキシシランを少なくとも含む単量体組成物を重合した共重合体を含む、請求項1〜6のいずれか一項に記載の複合粒子。   The said child particle contains the copolymer which polymerized the monomer composition containing the organic monomer which has a double bond between carbons, and the alkoxysilane which has a double bond between carbons at least. The composite particle according to any one of the above. 請求項3〜7のいずれか一項に記載の複合粒子を含む、異方導電性接着剤。
An anisotropic conductive adhesive comprising the composite particles according to any one of claims 3 to 7.
JP2012155877A 2012-07-11 2012-07-11 Composite particles and anisotropic conductive adhesive Active JP6119130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155877A JP6119130B2 (en) 2012-07-11 2012-07-11 Composite particles and anisotropic conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155877A JP6119130B2 (en) 2012-07-11 2012-07-11 Composite particles and anisotropic conductive adhesive

Publications (2)

Publication Number Publication Date
JP2014017212A true JP2014017212A (en) 2014-01-30
JP6119130B2 JP6119130B2 (en) 2017-04-26

Family

ID=50111716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155877A Active JP6119130B2 (en) 2012-07-11 2012-07-11 Composite particles and anisotropic conductive adhesive

Country Status (1)

Country Link
JP (1) JP6119130B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077793A1 (en) * 2017-10-18 2019-04-25 三菱電機株式会社 Insulating cover material for stator coils and rotary machine using same
WO2019078251A1 (en) * 2017-10-19 2019-04-25 国立大学法人東京大学 Adhesive and use for same
KR20190081985A (en) * 2017-12-29 2019-07-09 삼성에스디아이 주식회사 Anisotropic conductive film, display device comprising the same and/or semiconductor device comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537572A (en) * 2004-05-12 2007-12-20 マイクログローブ コープ カンパニー リミテッド Insulating conductive particles for anisotropic conductive connection, method for producing the same, and anisotropic conductive connection material using the same
JP2010034045A (en) * 2008-07-01 2010-02-12 Hitachi Chem Co Ltd Circuit connection material, and circuit connection structure
JP2011105861A (en) * 2009-11-18 2011-06-02 Hitachi Chem Co Ltd Circuit-connecting material and connected structure
JP2012094529A (en) * 2009-09-08 2012-05-17 Sekisui Chem Co Ltd Conductive particle with insulating particles, method of producing conductive particle with insulating particles, anisotropic conductive material and connection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537572A (en) * 2004-05-12 2007-12-20 マイクログローブ コープ カンパニー リミテッド Insulating conductive particles for anisotropic conductive connection, method for producing the same, and anisotropic conductive connection material using the same
JP2010034045A (en) * 2008-07-01 2010-02-12 Hitachi Chem Co Ltd Circuit connection material, and circuit connection structure
JP2012094529A (en) * 2009-09-08 2012-05-17 Sekisui Chem Co Ltd Conductive particle with insulating particles, method of producing conductive particle with insulating particles, anisotropic conductive material and connection structure
JP2011105861A (en) * 2009-11-18 2011-06-02 Hitachi Chem Co Ltd Circuit-connecting material and connected structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077793A1 (en) * 2017-10-18 2019-04-25 三菱電機株式会社 Insulating cover material for stator coils and rotary machine using same
JPWO2019077793A1 (en) * 2017-10-18 2019-11-14 三菱電機株式会社 Insulating coating material for stator coil and rotating machine using the same
WO2019078251A1 (en) * 2017-10-19 2019-04-25 国立大学法人東京大学 Adhesive and use for same
JP2019073665A (en) * 2017-10-19 2019-05-16 国立大学法人 東京大学 Adhesive and use thereof
KR20190081985A (en) * 2017-12-29 2019-07-09 삼성에스디아이 주식회사 Anisotropic conductive film, display device comprising the same and/or semiconductor device comprising the same
KR102180143B1 (en) 2017-12-29 2020-11-17 국도화학 주식회사 Anisotropic conductive film, display device comprising the same and/or semiconductor device comprising the same

Also Published As

Publication number Publication date
JP6119130B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5939063B2 (en) Insulating coated conductive particles and anisotropic conductive adhesive using the same
JP6079425B2 (en) Conductive particles, anisotropic conductive adhesive film, and connection structure
JP4784713B1 (en) Method for producing coated particles
JP4877407B2 (en) Coated conductive particles and method for producing the same
JP4640531B2 (en) Conductive particles
JP6149683B2 (en) Film-like circuit connection material and connection structure using the same
JP5549069B2 (en) Particulate conductive material for anisotropic conductive adhesive, method for producing the same, and anisotropic conductive adhesive
JP5644067B2 (en) Insulation coated conductive particles
JP5472332B2 (en) Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
JP2011029180A (en) Coated conductive particle
WO2011002084A1 (en) Conductive particle
JP5471504B2 (en) Anisotropic conductive film
JP6119130B2 (en) Composite particles and anisotropic conductive adhesive
JP5589361B2 (en) Conductive particles and method for producing the same
JP5272368B2 (en) Coated conductive particles, method for producing coated conductive particles, anisotropic conductive adhesive, and conductive adhesive
JP2013251099A (en) Conductive particle and process of manufacturing the same
JP5434626B2 (en) Adhesive for circuit connection and anisotropic conductive film
JP2012036313A (en) Method for producing inorganic oxide particle and anisotropic electrically conductive adhesive using inorganic oxide particle obtained by the production method
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP2016076338A (en) Conductive particle
WO2023171630A1 (en) Conductive particles, adhesive film for circuit connection and method for producing same, and connection structure and method for producing same
WO2023171631A1 (en) Conductive particles, adhesive film for circuit connection, production method therefor, connection structure, and production method therefor
JP7077963B2 (en) Insulation coated conductive particles, anisotropic conductive film, method for manufacturing anisotropic conductive film, connection structure and method for manufacturing connection structure
JP2016076339A (en) Conductive particle
JP2013016495A (en) Conductive particle, anisotropic conductive adhesive, connection structure, and method for manufacturing connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350