JP2014009852A - フィンチューブ熱交換器 - Google Patents

フィンチューブ熱交換器 Download PDF

Info

Publication number
JP2014009852A
JP2014009852A JP2012145574A JP2012145574A JP2014009852A JP 2014009852 A JP2014009852 A JP 2014009852A JP 2012145574 A JP2012145574 A JP 2012145574A JP 2012145574 A JP2012145574 A JP 2012145574A JP 2014009852 A JP2014009852 A JP 2014009852A
Authority
JP
Japan
Prior art keywords
tube
hairpin
flow path
refrigerant
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012145574A
Other languages
English (en)
Inventor
Takuya Okumura
拓也 奥村
Atsuo Okaichi
敦雄 岡市
Fumiyori Sakima
文順 咲間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012145574A priority Critical patent/JP2014009852A/ja
Publication of JP2014009852A publication Critical patent/JP2014009852A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】高い能力を有するフィンチューブ熱交換器を提供する。
【解決手段】フィンチューブ熱交換器10は、フィン群12及び伝熱管群5を備えている。冷媒の流路は、複数の分岐流路11と、複数の分岐流路11から選ばれる少なくとも2つが1つに合流することによって形成された共通流路13とを含む。伝熱管群5は、内面に複数の螺旋状の溝が形成された複数のヘアピン管5a,5bと、複数のヘアピン管5a,5bを互いに接続している複数のリターンベンド管5cとで構成されている。共通流路13におけるヘアピン管5aの溝の数N1は、複数の分岐流路11におけるヘアピン管5bの溝の数N2よりも多い。共通流路13におけるヘアピン管5aの溝のリード角α1は、複数の分岐流路11におけるヘアピン管5bの溝のリード角α2よりも小さい。
【選択図】図2

Description

本発明は、フィンチューブ熱交換器に関する。
フィンチューブ熱交換器の能力を高めるために、伝熱管の内面における熱伝達率を向上させる試みがなされている。例えば、伝熱管の内面に溝を設けると、気液二相冷媒が旋回流を形成するので、伝熱管の内面で液膜が薄くなる。これにより、伝熱管の内面における熱伝達率が向上する。
図9は、特許文献1に記載された空気調和装置の構成図である。空気調和装置100は、圧縮機101、凝縮器102、膨張弁103及び蒸発器104を備えている。凝縮器102は、凝縮部102aと過冷却部102bとを含む。凝縮部102aと過冷却部102bとの間の流路に液溜め108が設けられている。凝縮部102aに内面溝付き管が使用され、過冷却部102bに平滑管が使用されている。内面溝付き管は、熱伝達率の向上に有利である。平滑管は、圧力損失の低減に有利である。
実開昭63−104955号公報
しかし、図9に示す空気調和装置の凝縮器(フィンチューブ熱交換器)の構造は、凝縮器における冷媒の状態及び冷媒の挙動を考慮すると、必ずしも最適なものではない。すなわち、従来のフィンチューブ熱交換器には、依然として改良の余地が残されている。
すなわち、本開示は、
気体の流路を形成しているフィン群と、
前記フィン群を貫通し、冷媒の流路を形成している伝熱管群と、を備え、
前記冷媒の流路は、複数の分岐流路と、前記複数の分岐流路から選ばれる少なくとも2つが1つに合流することによって形成された共通流路とを含み、
前記伝熱管群は、内面に複数の螺旋状の溝が形成された複数のヘアピン管と、前記複数のヘアピン管を互いに接続している複数のリターンベンド管とで構成されており、
前記共通流路における前記ヘアピン管の前記溝の数N1は、前記複数の分岐流路における前記ヘアピン管の前記溝の数N2よりも多く、
前記共通流路における前記ヘアピン管の前記溝のリード角α1は、前記複数の分岐流路における前記ヘアピン管の前記溝のリード角α2よりも小さい、フィンチューブ熱交換器を提供する。
本開示によれば、気液二相冷媒の挙動(流動態様)を考慮して、適切な位置に適切な構造のヘアピン管が配置されている。これにより、フィンチューブ熱交換器の能力が向上する。また、圧力損失も低減しうる。
本実施形態に係る冷凍サイクル装置の構成図 図1に示す冷凍サイクル装置の室内機の構成図 図2に示すフィンチューブ熱交換器における冷媒の流路の構成図 内面溝付き管(ヘアピン管)の横断面図 内面溝付き管(ヘアピン管)の部分拡大図 内面溝付き管(ヘアピン管)の展開図 ヘアピン管の内部における冷媒の挙動を示す概略図 ヘアピン管の内部における冷媒の別の挙動を示す概略図 リード角が小さいときの液冷媒の流れを説明する図 リード角が大きいときの液冷媒の流れを説明する図 従来の空気調和装置の構成図
図9に示す従来の空気調和装置100では、圧力損失を低減するために過冷却部102bに平滑管が使用されている。しかし、空気調和装置100の過冷却部102bにおいて、冷媒は液相状態であり、過冷却部102での圧力損失は十分に小さい。逆に、過冷却部102bに平滑管が使用されていると、過冷却部102bにおける伝熱管の内面の表面積が減少するため、過冷却部102で熱交換が起こりにくくなる。その結果、過冷却度が不十分となり、膨張弁103でフラッシュガスが発生し、冷凍サイクルが不安定になる可能性がある。フラッシュガスの発生を防ぐために液溜め108が設けられているものの、液溜め108に溜められた冷媒は熱交換に寄与しないため、熱交換能力の低下を免れることはできない。
従って、フィンチューブ熱交換器の熱交換能力を高めるためには、冷媒の流量の変化、冷媒の乾き度の変化などに着目し、冷媒の状態及び冷媒の挙動に適合するように、内面溝付き管の配置、内面溝付き管の溝の構成などを工夫することが重要である。
すなわち、本開示の第1態様は、
気体の流路を形成しているフィン群と、
前記フィン群を貫通し、冷媒の流路を形成している伝熱管群と、を備え、
前記冷媒の流路は、複数の分岐流路と、前記複数の分岐流路から選ばれる少なくとも2つが1つに合流することによって形成された共通流路とを含み、
前記伝熱管群は、内面に複数の螺旋状の溝が形成された複数のヘアピン管と、前記複数のヘアピン管を互いに接続している複数のリターンベンド管とで構成されており、
前記共通流路における前記ヘアピン管の前記溝の数N1は、前記複数の分岐流路における前記ヘアピン管の前記溝の数N2よりも多く、
前記共通流路における前記ヘアピン管の前記溝のリード角α1は、前記複数の分岐流路における前記ヘアピン管の前記溝のリード角α2よりも小さい、フィンチューブ熱交換器を提供する。
本開示の第2態様は、
気体の流路を形成しているフィン群と、
前記フィン群を貫通し、冷媒の流路を形成している伝熱管群と、を備え、
前記冷媒の流路は、複数の分岐流路と、前記複数の分岐流路から選ばれる少なくとも2つが1つに合流することによって形成された共通流路とを含み、
前記伝熱管群は、内面に複数の螺旋状の溝が形成された複数のヘアピン管と、前記複数のヘアピン管を互いに接続している複数のリターンベンド管とで構成されており、
前記共通流路における前記ヘアピン管の前記溝の深さH1は、前記複数の分岐流路における前記ヘアピン管の前記溝の深さH2よりも大きく、
前記共通流路における前記ヘアピン管の前記溝のリード角α1は、前記複数の分岐流路における前記ヘアピン管の前記溝のリード角α2よりも小さい、フィンチューブ熱交換器を提供する。
第2態様によれば、気液二相冷媒の挙動(流動態様)を考慮して、適切な位置に適切な構造のヘアピン管が配置されている。これにより、フィンチューブ熱交換器の能力が向上する。また、圧力損失も低減しうる。
第3態様は、第1態様に加え、前記共通流路における前記ヘアピン管の前記溝の深さH1が、前記複数の分岐流路における前記ヘアピン管の前記溝の深さH2に等しくてもよい、フィンチューブ熱交換器を提供する。溝の深さが等しい場合、ヘアピン管をフィンに密着させるための拡管作業を容易に行うことができる。具体的には、二種類のヘアピン管を使用したとしても、複数の拡管装置を使い分ける必要が無い。
第4態様は、第2態様に加え、前記共通流路における前記ヘアピン管の前記溝の数N1が、前記複数の分岐流路における前記ヘアピン管の前記溝の数N2に等しくてもよい、フィンチューブ熱交換器を提供する。
以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本発明が限定されるものではない。
(第1実施形態)
図1に示すように、本実施形態の空気調和装置200は、圧縮機20、室内機30、膨張弁40、室外機50及び四方弁60を備えている。圧縮機20、室内機30、膨張弁40及び室外機50がこの順番で環状に接続されることによって冷媒回路70が形成されている。四方弁60は、冷媒回路70における冷媒の流れの方向を切り替えるために冷媒回路70に設けられた弁である。四方弁60が実線で示された状態にあるとき、圧縮機20で圧縮された冷媒は、室内機30に供給され、冷却される。四方弁60が破線で示された状態にあるとき、圧縮機20で圧縮された冷媒は、室外機50に供給され、冷却される。冷媒として、ハイドロフルオロカーボンなどの公知の冷媒を使用できる。
図2に示すように、室内機30は、送風機8及びフィンチューブ熱交換器10を備えている。フィンチューブ熱交換器10に空気が供給されるように、送風機8の周囲にフィンチューブ熱交換器10が配置されている。本実施形態において、フィンチューブ熱交換器10は、前面上部ユニット1、前面中央ユニット2、前面下部ユニット3及び背面ユニット4で構成されている。
暖房運転時において、冷媒は実線矢印の方向に流れる。具体的には、圧縮された冷媒が第1端部6を通じてフィンチューブ熱交換器10に流入し、冷却された冷媒が第2端部7を通じてフィンチューブ熱交換器10から流出する。暖房運転時において、フィンチューブ熱交換器10は、凝縮器として機能する。冷房運転時において、冷媒は破線矢印の方向に流れる。具体的には、気液二相冷媒が第2端部7を通じてフィンチューブ熱交換器10に流入し、加熱された冷媒が第1端部6を通じてフィンチューブ熱交換器10から流出する。冷房運転時において、フィンチューブ熱交換器10は、蒸発器として機能する。
ユニット1〜4は、それぞれ、フィン群12及び伝熱管群5を備えている。フィン群12は、互いに平行に並べられた複数の板状のフィンで構成されている。フィン群12は、気体(空気)の流路を形成している。伝熱管群5は、フィン群12を貫通するように配置されている。伝熱管群5は、冷媒の流路を形成している。
伝熱管群5は、複数の第1ヘアピン管5a、複数の第2ヘアピン管5b及び複数のリターンベンド管5cで構成されている。ヘアピン管5a及び5bは、内面に複数の螺旋状の溝が形成された伝熱管である。内面に溝が形成された伝熱管は、一般に、内面溝付き管と呼ばれている。ヘアピン管5a及び5bは、フィンの厚さ方向に真っ直ぐ延びている。言い換えれば、室内機30において、ヘアピン管5a及び5bは、水平方向に真っ直ぐ延びている。リターンベンド管5cは、フィン群12の両端において、複数のヘアピン管5a及び5bを互いに接続している伝熱管である。リターンベンド管5cは、典型的には、内面に溝を有さない平滑管である。ただし、リターンベンド管5cに内面溝付き管が使用されていてもよい。
なお、フィンチューブ熱交換器10が複数のユニットに分かれていることは必須ではない。各ユニット1〜4におけるヘアピン管5a又は5bの数も特に限定されない。ユニットの数及び各ユニットにおけるヘアピン管の数は、必要な熱交換能力、風速分布などに応じて適切に決定される。
図3に示すように、フィンチューブ熱交換器10における冷媒の流路は、複数の分岐流路11及び少なくとも1つの共通流路13を含む。共通流路13は、複数の分岐流路11が1つに合流することによって形成された流路である。本実施形態では、2つの分岐流路11と、1つの共通流路13とが存在している。つまり、フィンチューブ熱交換器10は、いわゆる2パスの構造を有している。
図2に示すように、共通流路13は、前面上部ユニット1に含まれている。共通流路13以外に2つの流路があり、それらは分岐流路11である。フィンチューブ熱交換器10が凝縮器として機能するとき、分岐流路11には気液二相冷媒が流れ、共通流路13には過冷却状態の液冷媒が流れる。つまり、分岐流路11は冷媒を凝縮させるための凝縮部であり、共通流路13は過冷却状態の液冷媒を作るための過冷却部である。
分岐流路11の数及び共通流路13の数は、必要な熱交換能力、風速分布などに応じて適切に決定されるので特に限定されない。例えば、フィンチューブ熱交換器10における冷媒の流路は、4つの分岐流路11と、1つの共通流路13とを含んでいてもよい。また、複数の分岐流路11から選ばれる少なくとも2つが1つに合流することによって共通流路13が形成されていてもよい。例えば、4つの分岐流路11から選ばれる2つが1つに合流して第1の共通流路13が形成され、他の2つが1つに合流して第2の共通流路13が形成されていてもよい。
分岐流路11及び共通流路13は、伝熱管群5によって形成されている。分岐流路11は、第2ヘアピン管5b及びリターンベンド管5cによって形成されている。共通流路13は、第1ヘアピン管5a及びリターンベンド管5cによって形成されている。第1ヘアピン管5aは、共通流路13に適した構造を有している。第2ヘアピン管5bは、分岐流路11に適した構造を有している。
詳細には、共通流路13における第1ヘアピン管5aの溝の数N1は、分岐流路11における第2ヘアピン管5bの溝の数N2よりも多い。また、共通流路13における第1ヘアピン管5aの溝のリード角α1は、分岐流路11における第2ヘアピン管5bの溝のリード角α2よりも小さい。第1ヘアピン管5aの外径は、第2ヘアピン管5bの外径に等しくてもよい。第1ヘアピン管5aの内径は、第2ヘアピン管5bの内径に等しくてもよい。
図4に示すように、内面溝付き管の溝の数は、管の長手方向に垂直な断面(横断面)における溝の数で特定される。図5に示すように、内面溝付き管の溝の深さは、管の長手方向に垂直な断面(横断面)における溝の深さで特定される。詳細には、溝の深さは、管の横断面において、溝の底部から溝の開口端までの距離で特定される。図6に示すように、内面溝付き管の溝のリード角は、管の展開図において、管の長手方向に平行な直線Pと溝の延びる方向とのなす角度によって特定される。詳細には、溝のリード角は、直線Pと溝の延びる方向とのなす角度のうち、鋭角側の角度によって特定される。
第1ヘアピン管5aの溝の数N1が第2ヘアピン管5bの溝の数N2よりも多く、第1ヘアピン管5aの溝のリード角α1が第2ヘアピン管5bの溝のリード角α2よりも小さいとき、下記の作用及び効果が得られる。
<暖房運転時>
先に説明したように、空気調和装置200が暖房運転を行うとき、室内機30のフィンチューブ熱交換器10は凝縮器として機能する。フィンチューブ熱交換器10の第1端部6において、冷媒は過熱ガスの状態にある。冷媒が分岐経路11(凝縮部)を通過するとき、主に冷媒の気相成分が空気(室内の空気)と熱交換する。これにより、冷媒は冷却され、液化する。つまり、気相成分とヘアピン管5bの内面との接触面積をできる限り増やすことによって凝縮熱伝達率が向上する。
しかし、ヘアピン管の内面には溝が設けられているので、図7Aに示すように、環状流が生じ、ヘアピン管の内面が液相成分で全体的に覆われる可能性がある。ヘアピン管の内面が液相成分で覆われると、気相成分が内面に接触しにくいので、凝縮熱伝達率が低下する。凝縮熱伝達率を向上させるためには、図7Bに示すように、分岐流路11において層状流が形成されることが望ましい。つまり、分岐流路11のヘアピン管5bには、液相成分がヘアピン管5bの下部に落ちやすい溝の形状が求められる。
図8Aに示すように、溝のリード角が小さいとき、冷媒の液相成分は、ヘアピン管の下部に向かって流れにくい。図8Bに示すように、溝のリード角が大きいとき、冷媒の液相成分は、ヘアピン管の下部に向かって流れやすい。
つまり、分岐流路11(凝縮部)のヘアピン管5bのリード角α2が、共通流路13(過冷却部)のヘアピン管5aのリード角α1よりも大きいとき、分岐流路11において冷媒の層状流が比較的形成されやすい。その結果、分岐流路11及び共通流路13が同じ構造のヘアピン管で形成されている場合と比較して、フィンチューブ熱交換器10は、優れた熱交換能力を発揮しうる。
また、共通流路13(過冷却部)において、冷媒は液相の状態にある。共通流路13の第1ヘアピン管5aは液相の冷媒で満たされるので、共通流路13において、冷媒と空気(室内の空気)との間の熱交換は比較的起こりにくい。共通流路13の内面での熱伝達率を向上させるためには、第1ヘアピン管5aの内面の表面積を増加させるか、第1ヘアピン管5aにおける冷媒の流速を増加させる必要がある。
本実施形態では、第1ヘアピン管5aの溝の深さH1が第2ヘアピン管5bの溝の深さH2に等しく、第1ヘアピン管5aの溝の数N1が第2ヘアピン管5bの溝の数N2よりも多い。つまり、第1ヘアピン管5aの内面の表面積(単位長さあたりの表面積)は、第2ヘアピン管5bの内面の表面積(単位長さあたりの表面積)よりも大きい。さらに、溝の数を増やすと流路面積が減少するため、第1ヘアピン管5aにおける冷媒の流速は比較的速い。流路面積が減少したとしても、共通流路13において冷媒は液相の状態にあるので、共通流路13における冷媒の圧力損失は十分に小さい。これらの理由により、共通流路13の第1ヘアピン管5aの溝の数N1が分岐流路11の第2ヘアピン管5bの溝の数N2よりも多いとき、1種類のヘアピン管が分岐流路11及び共通流路13に使用されている場合に比べて、フィンチューブ熱交換器10は、優れた熱交換能力を発揮しうる。
特に、本実施形態によれば、ヘアピン管5a及び5bの溝の数及びリード角の両方が適切に定められているので、ヘアピン管5a及び5bの溝の数の関係を適切に定めることによって得られる効果と、ヘアピン管5a及び5bのリード角の関係を適切に定めることによって得られる効果とが、重畳的に得られる。このことは、後述する実施形態にもあてはまる。
<冷房運転時>
空気調和装置200が冷房運転を行うとき、室内機30のフィンチューブ熱交換器10は蒸発器として機能する。フィンチューブ熱交換器10の第2端部7において、冷媒は乾き度の低い気液二相の状態にある。冷媒が共通流路13及び分岐流路11を通過するとき、主に冷媒の液相成分が空気(室内の空気)と熱交換する。これにより、冷媒は加熱され、気化する。そのため、フィンチューブ熱交換器10が蒸発器として機能するとき、気液二相冷媒が環状流を形成してヘアピン管5a及び5bの内面が液相成分で覆われることは、熱伝達率の向上にとって望ましい。ただし、冷媒の圧力損失が増加すると、圧縮機20の吸入圧力が低下して消費電力が増加する。つまり、フィンチューブ熱交換器10を凝縮器だけでなく、蒸発器として使用する場合には、冷媒の挙動だけでなく、冷媒の圧力損失も考慮する必要がある。
空気調和装置200が冷房運転を行うとき、共通流路13における気液二相冷媒の乾き度は小さい。共通流路13において、冷媒の大部分は液相成分で占められている。従って、共通流路13での冷媒の圧力損失は比較的小さい。ただし、共通流路13の第1ヘアピン管5aの溝の数N1は、分岐流路11の第2ヘアピン管5bの溝の数N2よりも多い。これにより、共通流路13の第1ヘアピン管5aの内面の表面積が十分に確保されるので、共通流路13においても十分な熱交換が行われる。また、共通流路13の第1ヘアピン管5aの溝の数N1が相対的に多いので、共通流路13において環状流が形成されやすい。このことは、蒸発熱伝達率の向上に貢献する。一方、分岐流路11の冷媒は気相成分を比較的多く含む。従って、分岐流路11では環状流が形成されやすく、分岐流路11の第2ヘアピン管5bの溝の数N2をあえて増やす必要はない。分岐流路11の第2ヘアピン管5bの溝の数N2が相対的に少ないことは、分岐流路11における圧力損失を低減する観点で有利である。
以上の理由により、互いに異なる構造を有するヘアピン管5a及び5bを使い分けることによって、暖房運転時及び冷房運転時の両方で冷凍サイクルの効率を向上させることができる。さらに、第1ヘアピン管5aの溝の深さH1が第2ヘアピン管5bの溝の深さH2に等しいことが望ましい。この場合、ヘアピン管5a及び5bをフィンに密着させるための拡管作業を容易に行うことができる。具体的には、二種類のヘアピン管5a及び5bを使用したとしても、複数の拡管装置を使い分ける必要が無い。
ヘアピン管5a及び5bの溝の数N1及びN2は、冷媒の種類、フィンチューブ熱交換器10の能力などに応じて適切に決定される。従って、溝の数N1及びN2の絶対数は特に限定されない。このことは、リード角α1及びα2にもあてはまる。ただし、一般的なリード角の値は、20〜50度の範囲にある。
また、溝の数N1とN2との差(N1−N2)も特に限定されない。溝の数の差が僅かであったとしても、先に説明した理由により、溝の数が一定の場合(従来技術)と比較して、フィンチューブ熱交換器の能力を向上させる効果が得られる。同様に、リード角α1とα2との差(α2−α1)も特に限定されない。リード角の差が僅かであったとしても、先に説明した理由により、リード角が一定の場合(従来技術)と比較して、フィンチューブ熱交換器の能力を向上させる効果が得られる。ただし、上記した効果をより十分に得るために、溝の数の差(N1−N2)及びリード角の差(α2−α1)は適切に定められるべきである。例えば、溝の数N2に対する溝の数N1の比(N1/N2)は、1.1〜1.4の範囲にある。リード角α1とα2との差(α2−α1)は、例えば、5〜30度の範囲にある。
(第2実施形態)
本実施形態によれば、共通流路13における第1ヘアピン管5aの溝の深さH1は、分岐流路11における第2ヘアピン管5bの溝の深さH2よりも大きい。また、共通流路13における第1ヘアピン管5aの溝のリード角α1は、分岐流路11における第2ヘアピン管5bの溝のリード角α2よりも小さい。第1ヘアピン管5aの外径は、第2ヘアピン管5bの外径に等しくてもよい。第1ヘアピン管5aの内径は、第2ヘアピン管5bの内径に等しくてもよい。
<暖房運転時>
図8A及び図8Bを参照して説明したように、リード角が大きい場合、リード角が小さい場合に比べて冷媒の液相成分が管の下部に流れやすい。本実施形態では、第1ヘアピン管5aの溝のリード角α1が第2ヘアピン管5bの溝のリード角α2よりも小さい。従って、暖房運転を行うときに、分岐流路11で環状流が形成されることを抑制できる。また、本実施形態では、第1ヘアピン管5aの溝の深さH1が第2ヘアピン管5bの溝の深さH2よりも大きい。溝が浅いとき、液相成分が管の上部に伝わりにくいので、分岐流路11で環状流が形成されることを抑制できる。これらの理由により、分岐流路11における第2ヘアピン管5bの内面に気相成分が接触しやすく、分岐流路11で高い凝縮熱伝達率が発揮される。
また、共通流路13(過冷却部)において、冷媒は液相の状態にある。共通流路13の第1ヘアピン管5aは液相の冷媒で満たされるので、共通流路13において、冷媒と空気(室内の空気)との間の熱交換は比較的起こりにくい。共通流路13の内面での熱伝達率を向上させるためには、第1ヘアピン管5aの内面の表面積を増加させるか、第1ヘアピン管5aにおける冷媒の流速を増加させる必要がある。
本実施形態では、第1ヘアピン管5aの溝の数N1が第2ヘアピン管5bの溝の数N2に等しい。第1ヘアピン管5aの溝の深さH1が第2ヘアピン管5bの溝の深さH2よりも大きい。つまり、第1ヘアピン管5aの内面の表面積(単位長さあたりの表面積)は、第2ヘアピン管5bの内面の表面積(単位長さあたりの表面積)よりも大きい。さらに、溝の深さが増加すると流路面積が減少するため、第1ヘアピン管5aにおける冷媒の流速は比較的速い。流路面積が減少したとしても、共通流路13において冷媒は液相の状態にあるので、共通流路13における冷媒の圧力損失は十分に小さい。これらの理由により、共通流路13の第1ヘアピン管5aの溝の深さH1が分岐流路11の第2ヘアピン管5bの溝の深さH2よりも大きいとき、1種類のヘアピン管が分岐流路11及び共通流路13に使用されている場合に比べて、フィンチューブ熱交換器10は、優れた熱交換能力を発揮しうる。
<冷房運転時>
空気調和装置200が冷房運転を行うとき、室内機30のフィンチューブ熱交換器10は蒸発器として機能する。フィンチューブ熱交換器10が蒸発器として機能するとき、気液二相冷媒が環状流を形成してヘアピン管5a及び5bの内面が液相成分で覆われることは、熱伝達率の向上にとって望ましい。ただし、冷媒の圧力損失が増加すると、圧縮機20の吸入圧力が低下して消費電力が増加する。つまり、フィンチューブ熱交換器10を凝縮器だけでなく、蒸発器として使用する場合には、冷媒の挙動だけでなく、冷媒の圧力損失も考慮する必要がある。
本実施形態では、共通流路13における第1ヘアピン管5aの溝の深さH1は、分岐流路11における第2ヘアピン管5bの溝の深さH2よりも大きい。これにより、共通流路13の第1ヘアピン管5aの内面の表面積が十分に確保されるので、共通流路13においても十分な熱交換が行われる。また、共通流路13の第1ヘアピン管5aの溝の数N1が相対的に多いので、共通流路13で環状流が形成されやすい。このことは、蒸発熱伝達率の向上に貢献する。また、共通流路13における気液二相冷媒の乾き度は小さい。共通流路13において、冷媒の大部分は液相成分で占められている。従って、溝の深さが増加して流路面積が減少したとしても、共通流路13での冷媒の圧力損失は比較的小さい。また、分岐流路11の第2ヘアピン管5bの溝の深さH2は、共通流路13の第1ヘアピン管5aの溝の深さH1よりも小さいので、分岐流路11における冷媒の圧力損失も抑制される。
以上の理由により、互いに異なる構造を有するヘアピン管5a及び5bを使い分けることによって、暖房運転時及び冷房運転時の両方で冷凍サイクルの効率を向上させることができる。さらに、共通流路13における第1ヘアピン管5aの溝の数N1が、分岐流路11における第2ヘアピン管5bの溝の数N2に等しいことが望ましい。
(変形例)
第1実施形態及び第2実施形態で説明したフィンチューブ熱交換器10を室外機の熱交換器として使用することも可能である。近年、室外機の熱交換器としては、細い径のヘアピン管を使用したもの、分岐流路の数を増やしたものなど、様々な構成を持った熱交換器が存在する。フィンチューブ熱交換器10が凝縮器に使用されるとき、冷媒の出口付近で1つに集められた部分が共通流路、それ以外の部分が分岐流路と特定されうる。フィンチューブ熱交換器10を室外機に使用したとき、複数の種類のヘアピン管を分岐流路(凝縮部)と共通流路(過冷却部)とで使い分けることによって得られる効果は、フィンチューブ熱交換器10を室内機に使用したときに得られる効果と同じである。
本発明のフィンチューブ熱交換器は、空気調和装置などに用いられる冷凍サイクル装置に有用である。特に、冷媒を凝縮させるための凝縮器に有用である。
1 前面上部ユニット
2 前面中央ユニット
3 前面下部ユニット
4 背面ユニット
5 伝熱管群
5a 第1ヘアピン管
5b 第2ヘアピン管
5c リターンベンド管
6 第1端部
7 第2端部
8 送風機
10 フィンチューブ熱交換器
11 分岐流路
12 フィン群
13 共通流路
20 圧縮機
30 室内機
40 膨張弁
50 室外機
60 四方弁
70 冷媒回路
200 冷凍サイクル装置

Claims (4)

  1. 気体の流路を形成しているフィン群と、
    前記フィン群を貫通し、冷媒の流路を形成している伝熱管群と、を備え、
    前記冷媒の流路は、複数の分岐流路と、前記複数の分岐流路から選ばれる少なくとも2つが1つに合流することによって形成された共通流路とを含み、
    前記伝熱管群は、内面に複数の螺旋状の溝が形成された複数のヘアピン管と、前記複数のヘアピン管を互いに接続している複数のリターンベンド管とで構成されており、
    前記共通流路における前記ヘアピン管の前記溝の数N1は、前記複数の分岐流路における前記ヘアピン管の前記溝の数N2よりも多く、
    前記共通流路における前記ヘアピン管の前記溝のリード角α1は、前記複数の分岐流路における前記ヘアピン管の前記溝のリード角α2よりも小さい、フィンチューブ熱交換器。
  2. 気体の流路を形成しているフィン群と、
    前記フィン群を貫通し、冷媒の流路を形成している伝熱管群と、を備え、
    前記冷媒の流路は、複数の分岐流路と、前記複数の分岐流路から選ばれる少なくとも2つが1つに合流することによって形成された共通流路とを含み、
    前記伝熱管群は、内面に複数の螺旋状の溝が形成された複数のヘアピン管と、前記複数のヘアピン管を互いに接続している複数のリターンベンド管とで構成されており、
    前記共通流路における前記ヘアピン管の前記溝の深さH1は、前記複数の分岐流路における前記ヘアピン管の前記溝の深さH2よりも大きく、
    前記共通流路における前記ヘアピン管の前記溝のリード角α1は、前記複数の分岐流路における前記ヘアピン管の前記溝のリード角α2よりも小さい、フィンチューブ熱交換器。
  3. 前記共通流路における前記ヘアピン管の前記溝の深さH1が、前記複数の分岐流路における前記ヘアピン管の前記溝の深さH2に等しい、請求項1に記載のフィンチューブ熱交換器。
  4. 前記共通流路における前記ヘアピン管の前記溝の数N1が、前記複数の分岐流路における前記ヘアピン管の前記溝の数N2に等しい、請求項2に記載のフィンチューブ熱交換器。
JP2012145574A 2012-06-28 2012-06-28 フィンチューブ熱交換器 Pending JP2014009852A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012145574A JP2014009852A (ja) 2012-06-28 2012-06-28 フィンチューブ熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012145574A JP2014009852A (ja) 2012-06-28 2012-06-28 フィンチューブ熱交換器

Publications (1)

Publication Number Publication Date
JP2014009852A true JP2014009852A (ja) 2014-01-20

Family

ID=50106716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012145574A Pending JP2014009852A (ja) 2012-06-28 2012-06-28 フィンチューブ熱交換器

Country Status (1)

Country Link
JP (1) JP2014009852A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10449805B2 (en) 2015-01-15 2019-10-22 Bridgestone Corporation Non-pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10449805B2 (en) 2015-01-15 2019-10-22 Bridgestone Corporation Non-pneumatic tire

Similar Documents

Publication Publication Date Title
JP6180338B2 (ja) 空気調和機
JP5071597B2 (ja) 熱交換器および空気調和機
JP2012163328A5 (ja)
JP2009287837A (ja) 冷凍サイクル装置
WO2015133626A1 (ja) 熱交換器及び空気調和機
WO2015005352A1 (ja) 熱交換器、及びヒートポンプ装置
JPWO2016121115A1 (ja) 冷凍サイクル装置
JP6214670B2 (ja) 熱交換器及びその熱交換器を用いた冷凍サイクル装置
JPWO2015111220A1 (ja) 熱交換器、及び、空気調和装置
JP6383942B2 (ja) 熱交換器
JP2014137177A (ja) 熱交換器および冷凍装置
JP5627635B2 (ja) 空気調和機
JP6053693B2 (ja) 空気調和機
JP2007147221A (ja) フィン付き熱交換器
JP2013155961A (ja) 熱交換器及びそれを備えた空気調和機
JP5591285B2 (ja) 熱交換器および空気調和機
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
JP5295207B2 (ja) フィンチューブ型熱交換器、およびこれを用いた空気調和機
JP2009145010A (ja) 空気調和機用フィンレス熱交換器
JP6104357B2 (ja) 熱交換装置およびこれを備えた冷凍サイクル装置
JP6533257B2 (ja) 空気調和機
JP2014009852A (ja) フィンチューブ熱交換器
JP2018194294A (ja) 冷凍サイクル装置
JP6141514B2 (ja) 冷凍サイクル装置
JP2014137172A (ja) 熱交換器及び冷凍装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312