JP2013541836A - 疑似容量性エネルギ貯蔵のためのナノ構造体電極 - Google Patents

疑似容量性エネルギ貯蔵のためのナノ構造体電極 Download PDF

Info

Publication number
JP2013541836A
JP2013541836A JP2013527076A JP2013527076A JP2013541836A JP 2013541836 A JP2013541836 A JP 2013541836A JP 2013527076 A JP2013527076 A JP 2013527076A JP 2013527076 A JP2013527076 A JP 2013527076A JP 2013541836 A JP2013541836 A JP 2013541836A
Authority
JP
Japan
Prior art keywords
pseudocapacitive
substrate
nanocylinders
energy storage
nanocylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013527076A
Other languages
English (en)
Other versions
JP2013541836A5 (ja
JP5629381B2 (ja
Inventor
ヘイト、リチャード、エー.
ロスナゲル、スティーヴン、エム.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2013541836A publication Critical patent/JP2013541836A/ja
Publication of JP2013541836A5 publication Critical patent/JP2013541836A5/ja
Application granted granted Critical
Publication of JP5629381B2 publication Critical patent/JP5629381B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】疑似容量性材料の大きな表面を有する少なくとも一つのナノ構造体電極を含む、エネルギ貯蔵デバイスを提供する。
【解決手段】陽極酸化処理されたアルミナ(AAO)基板であるナノ多孔性テンプレート基板を用いて、高い格納エネルギ密度を有する疑似コンデンサが形成される。核形成層を用いる、原子層堆積、化学気相堆積、もしくは電気化学堆積またはこれらの組み合わせによって、疑似容量性材料がAAO基板の側壁沿いに共形的に堆積される。壁上の疑似容量性材料の厚さは、堆積処理において正確に制御が可能である。AAOはエッチングされて、PC材料のナノチューブのアレイが形成され、該ナノチューブは円筒形状でキャビティをその中に有し構造的にロバストである。足場としての機能を果たしたAAO基板が除去されるので、活性なPC材料だけが残され、これにより質量当たりのエネルギが最大化される。さらに、ナノチューブを基板から切り離し、ランダムな方向を有する個別のナノチューブを導電性基板上に堆積して、疑似コンデンサの電極を形成することができる。
【選択図】図3

Description

本開示は、エネルギ貯蔵デバイスに関し、具体的には、疑似容量性エネルギ貯蔵のための疑似容量性材料の大きな表面を有する少なくとも一つのナノ構造体電極を含む、エネルギ貯蔵デバイスに関する。
ウルトラコンデンサまたは電気化学二重層コンデンサ(EDLC:electrochemical double layer capacitor)は、容量性エネルギ貯蔵を用いる市販のデバイスの中では最高のエネルギ密度を備えている。かかるEDLCは、バッテリよりもかなり高いパワーで動作可能であるが、高パフォーマンスのEDLCであってもそのエネルギ密度は、高パフォーマンス・バッテリのエネルギ密度より低くその10〜20分の一である。従来式のウルトラコンデンサは、非常に大きな表面積を備えた高度に多孔質の活性化カーボン・シートから作製された2つの電極から成り、該表面積は、通常、材料のグラム当たり1000平方メータのオーダーである。これらの多孔質活性化カーボン・ベースの電極は、電解液に浸されている。多孔質活性化カーボン・ベースの電極と電解液とにまたがって電圧が印加されると、カーボン表面と電解液との間に形成された二重層中に誘発された電界中にエネルギが格納される。多孔質活性化カーボン・ベースの電極と電解液との間のインターフェースを横切って電荷が移動することはない。
しかして、EDLCの容量は、活性化カーボン・シートの表面の面積によって制限される。この面積の増大は、困難なばかりでなく、格納エネルギのわずかな増加をもたらすだけである。今までのところ、この制限によって、ウルトラコンデンサのエネルギ密度は、10Wh/kgを下回っている。この値は、この10年以上に亘って目に付くほど変化していない。
エネルギ密度を増大するための別の手段は、ある種の金属および金属酸化物の表面におけるレドックス(還元/酸化)化学作用を介して電荷を格納することである。このファラデー・プロセスは、金属酸化物の表面と電解液との間での実際の電荷の移動を伴う。格納された電荷の移行は、従来のコンデンサと似た形で、外部から印加された電圧の関数として連続的に変化する。しかして、この現象は疑似容量と呼ばれる。疑似容量性エネルギ貯蔵とは、この疑似容量の現象を用いたエネルギ貯蔵の方法をいう。
米国特許第7,084,002号 米国特許第7,713,660号
理論上、疑似容量(PC:pseudocapacitance)は、標準的なEDLCの約10倍より多い電荷を格納可能であるが、現時点では、このエネルギ密度レベルに多少なりとも近づいていることを実証した市販の疑似コンデンサはない。電極の微視的性質に問題があり、高エネルギ密度に対する潜在力を生かすことを可能にするには、その電極は極めて大きな表面積を持たねばならない。さらに、適切なPC材料、および電解液またはイオン液も必要となる。加えて、商業的に実用化するためには、高エネルギ密度の疑似コンデンサを、軽量低コストで毒性のない材料によって製作しなければならない。現在のところ、PC電極を生成するための知られた全ての方法は、PC材料を不活性の基板の上に被覆するステップを含み、これら基板はエネルギ貯蔵に寄与することなく質量だけを増加させ、格納エネルギ密度を低下させている。
キムらの特許文献1は、陽極酸化アルミナ・テンプレート上への金属のスパッタリングを用いた類似のテンプレート方式を記載しており、これは、この堆積プロセスの指向性質および下部の何らかの構造体上に堆積される材料のシャドウイング効果に起因して、電極が適切にその最高度のエネルギ貯蔵潜在力で動作するために必要なナノスケール・ポアの、超高アスペクト比に対しては機能しないであろう方法である。加えて、特許文献1は、適切な金属酸化物の電気化学堆積を必要とするが、これは絶縁酸化アルミニウムのテンプレートには行えない。同様に、キムらの特許文献2は、湿式化学処理について記載しているが、これは壁厚制御も導電性基板への配列された付着も達成できない。さらに、この方法では、毛管張力および表面張力効果によって、チューブ直径が数百ナノメータより大きなものに限定される。
陽極酸化処理されたアルミナ(AAO:anodically oxidized alumina)基板であるナノ多孔性テンプレート基板を用いて、高い格納エネルギ密度を有する疑似コンデンサが形成される。核形成層を用いる、原子層堆積、化学気相堆積、もしくは電気化学堆積またはこれらの組み合わせによって、疑似容量性材料がAAO基板の側壁沿いに共形的に堆積される。壁上の疑似容量性材料の厚さは、堆積プロセスにおいて正確に制御すること可能である。AAOはエッチングされて、PC材料のナノチューブのアレイが形成され、該ナノチューブは円筒形状でキャビティをその中に有し構造的にロバストである。足場としての機能を果たしたAAO基板が除去されるので、活性なPC材料だけが残され、これにより質量当たりのエネルギが最大化される。さらに、ナノチューブを基板から切り離し、ランダムな方向を有する個別のナノチューブを導電性基板上に堆積して、疑似コンデンサの電極を形成することができる。
本開示のある態様によれば、エネルギ貯蔵デバイスは、電極を含み、該電極は、導電性基板の上に配置された複数の疑似容量性ナノシリンダを有する。各疑似容量性ナノシリンダは疑似容量性材料を包含し、キャビティを中に有する。
本開示の別の態様によれば、複数の疑似容量性ナノシリンダを製造する方法は、複数の穴部をその中に有する陽極酸化アルミナ基板上に、疑似容量性材料層を堆積するステップと、陽極酸化アルミナ基板の表面を露出するステップと、陽極酸化アルミナ基板を除去するステップと、を含む。疑似容量性材料層の残存部分から複数の疑似容量性ナノシリンダが形成される。
30nm以下の直径のポアの規則的な六角形アレイを有する、原子層堆積を介しTaNを被覆された陽極酸化アルミナ(AAO)基板の表面のトップダウン方向走査電子顕微鏡(SEM:scanning electron micrograph)写真である。 ALD(atomic layer deposition(原子層堆積))を介して成長されたTaNの被膜を有するAAO基板の破片の断面図を示す走査電子顕微鏡(SEM)写真である。 本開示の第一実施形態による、AAO基板と導電性基板とのスタックの鳥瞰図であり、図中のAAO基板は円筒形状穴部のアレイを含む。 図3のZ面に沿った、AAO基板と導電性基板とのスタックの垂直断面図である。 本開示の第一実施形態による、疑似容量性材料層の堆積後の、AAO基板と導電性基板とのスタックの垂直断面図である。 本開示の第一実施形態による、疑似容量性材料層の最上部分の除去後の、AAO基板と導電性基板とのスタックの垂直断面図である。 本開示の第一実施形態による、AAO基板の除去後の、導電性基板と疑似容量性ナノシリンダのアレイとの垂直断面図である。 図7の、導電性基板と疑似容量性ナノシリンダのアレイとの鳥瞰図である。 本開示の第二実施形態による、AAO基板と使い捨て基板とのスタックであり、図中のAAO基板は円筒形状穴部のアレイを含む。 本開示の第二実施形態による、疑似容量性材料層の堆積後の、AAO基板と使い捨て基板とのスタックの垂直断面図である。 本開示の第二実施形態による、使い捨て基板除去後の、AAO基板および疑似容量性材料層の垂直断面図である。 図11の、AAO基板および疑似容量性材料層の鳥瞰図である。 本開示の第二実施形態による、反転して導電性基板上に配置された後の、AAO基板および疑似容量性材料層の垂直断面図である。このステップでは、疑似容量性材料層は導電性基板に付着されていてもいなくてもよい。 図13の、AAO基板ならびに疑似容量性材料層および導電性基板の鳥瞰図である。 本開示の第二実施形態による、AAO基板の除去後の、導電性基板と疑似容量性ナノシリンダのアレイとの垂直断面図である。 図15の、導電性基板と疑似容量性ナノシリンダのアレイとの鳥瞰図である。全ての疑似容量性ナノシリンダが、平面の疑似容量性材料層のシートを介して相互に接続されている。 本開示の第三実施形態による、図11の疑似容量性材料層の最上部分の除去後の、疑似容量性ナノシリンダおよびAAO基板の垂直断面図である。 図17の、導電性基板と疑似容量性ナノシリンダのアレイとの鳥瞰図である。 図18のAAO基板を除去し、疑似容量性ナノシリンダを導電性基板の上に転倒させることによって得られた、導電性基板上の疑似容量性ナノシリンダのランダムなスタックの鳥瞰図である。 疑似容量性ナノシリンダを用いたエネルギ貯蔵デバイスの概略図である。
前述したように、本開示は、疑似容量性エネルギ貯蔵のための疑似容量性材料の大きな表面を有する少なくとも一つのナノ構造体電極を含む、エネルギ貯蔵デバイス、および同デバイスを製造する方法に関し、以降に、添付の図面を用いてこれらを詳細に説明する。なお、各種の実施形態に亘って、同じ参照番号は同じエレメントを表す。
図1を参照すると、陽極酸化アルミナ(AAO)基板の表面のトップダウン方向走査電子顕微鏡(SEM)写真は、60nm以下の直径のポアの規則的な六角形アレイを示している。当該技術分野では、酸性陽極酸化溶液は、アルミニウムの陽極酸化被膜中にポアを生成することが知られている。アルミニウムを陽極酸化させるため用いることが可能な酸の例には、以下に限らないが、リン酸および硫酸が含まれる。ポアのサイズおよびピッチは、実行される陽極酸化の種類、陽極酸化温度、および形成電圧の如何による。ポアの直径は、約10nm〜200nmとすることができ、壁の厚さ(隣接のポアまでの距離)は10nm〜200nmの間とすることができるが、妥当な陽極酸化条件の下で上記より小さいまたは大きい直径および壁厚さを得ることも可能である。ポアの長さは、ポアの直径より数桁大きくすることができ、直径の約25,000倍にもすることができる。
図2を参照すると、走査電子顕微鏡(SEM)写真が、原子層堆積(ALD)を介して成長されたTaNの被膜を有するAAO基板の破片の断面図を示している。TaN層は、AAO基板の絶縁材料上の電荷蓄積もしくはアークまたはその両方を防止する。垂直の円筒形状ポアは、AAO基板の断面全体を貫通して延びており、前述したように、そのアスペクト比、すなわち、ポアの長さとポアの直径との比は、25,000以上に至るまで大きくすることができる。
図3および4を参照すると、本開示の第一実施形態による第一例示的構造体が、図3では鳥瞰図で、図4では垂直断面図で示されている。図3のZ面が、図4の垂直断面図である。
この第一例示的構造体は、導電性基板10と陽極酸化アルミナ(AAO)基板20とのスタックを含む。AAO基板20は、陽極酸化され、垂直ポアの自己組織化されたアレイをその中に含む酸化アルミニウム層に変換された、アルミニウム・ホイルのシートである。AAO基板20は、当該技術分野で周知の方法を用いて形成することができる。AAO基板20は「ナノポア」21のアレイを含み、「ナノポア」とは1ミクロンより小さい直径を有するポアをいう。個別のナノポア21の直径、およびナノポア21のアレイのピッチは、陽極酸化のパラメータを変えることによって制御することが可能である。
通常、各ナノポア21の直径は、10nm〜200nmであるが、これより小さいまたは大きい直径も、今後の処理条件の最適化次第によっては実現可能であろう。AAO基板20の厚さは、ナノポア21の少なくとも50倍であり、ナノポア21の直径の25,000倍まで、またはこれを超えて厚くすることができる。通常、AAO基板20の厚さは、10ミクロン〜5mmであるが、これより小さいまたは大きい厚さを使うことも可能である。各ナノポア21は、AAO基板20の最上部表面からAAO基板20の最底部表面に延び、導電性基板10の平面状の最上部表面に接触している、円筒形状の穴部である。しかして、AAO基板20は、その中に複数の穴部を含み、これらが基板中の複数のナノポア21である。複数の穴部は、六角形アレイなど、二次元の周期的なアレイを形成し得る。
AAO基板20は、導電性基板10の上に配置され、該導電性基板は、元素金属、少なくとも2つの元素金属の金属間化合物合金、金属の導電性化合物、金属の導電性窒化物、高濃度にドープされた半導体材料、または合金あるいはこれらのスタックなどの導電性材料を含む。導電性基板の材料は、後にAAO基板20を除去するために用いられるエッチング処理に対し、構造的完全性を失うことなく耐えるものが選択される。AAO基板20の厚さは、50ミクロン〜1mmとすることができるが、これより小さいまたは大きい厚さを使うことも可能である。AAO基板20の最底部表面は、導電性基板10の平面状の最上部表面に接触する。AAO基板20と導電性基板10とは、微視的スケールで平面の接触面を保持するが、AAO基板20と導電性基板10とのアセンブリは、必要に応じ微視的スケールで曲げることが可能である。好ましくは、エネルギ貯蔵デバイスの合計質量当たりの格納エネルギ密度を最大化するために、導電性基板10は薄い軽量の基板である。
図5を参照すると、本開示の第一実施形態によって、疑似容量性材料層30Lが、その堆積後に、AAO基板と導電性基板とのスタックの上に共形的に堆積されている。本明細書で使う「疑似容量性材料」とは、その表面における可逆的な還元/酸化反応を介して、エネルギを格納できる材料をいう。疑似容量性材料は、いくつかの金属およびいくつかの金属酸化物を含む。疑似容量性材料が、可逆的な還元/酸化反応を介してエネルギを格納および放出する現象は「疑似容量」といわれる。疑似容量性材料は、以下に限らないが、酸化マンガン(MnO)、酸化ルテニウム(RuO)、酸化ニッケル(NiO)、およびこれらの組み合わせを含む。
通常、ナノポア21の極めて高いアスペクト比(少なくとも50)は、AAO基板20中のナノポア21の側壁上に疑似容量性材料の共形被膜を生成するために、原子層堆積(ALD)の使用を必要とする。AAO基板20は、疑似容量性材料層30Lの堆積のためのテンプレートとしての役割を果たす。
原子層堆積では、第一材料の単原子層が、堆積チャンバ中に第一反応材料を流入させることによって、第一材料の単原子層が形成されると飽和する自己制限的反応で堆積される。第一反応材料を除去した後、第二材料の単原子層が、堆積チャンバ中に第二反応材料を流入させることによって、第二材料の単原子層が形成されると飽和する別の自己制限的反応で堆積される。第一反応材料と第二反応材料とは、単原子層の堆積の各時間間隔の送り込み周期で、交互に同じ堆積チャンバ中に流入される。金属酸化物の形態の疑似容量性材料の場合は、金属前駆体が、堆積チャンバ中に金属含有反応材料を流入させることによって、金属原子の単原子層が形成されると飽和する自己制限的反応で堆積される。金属含有反応材料を除去した後、酸素の単原子層が、堆積チャンバ中に酸素ガスを流入させることによって、酸素原子の単原子層が形成されると飽和する自己制限的反応で堆積される。次いで、酸素が堆積チャンバから排出される。金属含有反応材料の流入、金属含有反応材料の排出、酸素ガスの流入、および酸素ガスの排出のステップは繰り返してサイクルされ、疑似容量の特性を示す金属酸化物層、すなわち「疑似容量性」金属酸化物層が堆積される。疑似容量性材料層30Lは、各ナノポア21の底部に位置する導電性基板10の露出面上にも堆積される。
疑似容量性材料層30Lの厚さは、原子レベルの精度で正確に制御することが可能である。さらに、疑似容量性材料層30Lの厚さは、ALD処理における反応の自己制限的性質によって、疑似容量性材料層30Lの全体を通して原子的精度で均一である。疑似容量性材料層30Lの厚さは、疑似容量性材料層30Lの各陥凹部分内に、ナノポア21の直径より小さな直径を有するキャビティ21’が存在するように、ナノポア21の直径の半分より小さくなるよう選択される。このステップでは、疑似容量性材料層30Lの全体は切れ目なく連続している。しかして、このナノチューブの内径は、容量の大幅な増加が報告されている、1ナノメータ以下にまで精巧に制御することができる。例えば、J.Chmiola、G.Yushin、Y.Gogotsi、C.Portet、P.Simon、およびP.l.Tabernaの「Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer」、サイエンス誌313、1760(2006年)を参照されたい。
一般に、ナノポア21の底部まで延びる連続した疑似容量性材料層30Lを形成するため要求される、高いレベルの共形性および全体的な幾何学的制御を達成するには、原子層堆積が必要である。電気めっきを用いる試みは2つの問題にぶつかっている。第一の問題は、AAO基板20が絶縁体であるため、AAO基板20を電気めっきの電極として使用できないことである。電気めっきを用いるには、まず、AAO基板20の露出面を、導電性材料の均一な被膜を形成することによって、導体の面に変換しなければならない。しかして、電気めっきを用いるための導電性シード層を形成するためにも、いずれにせよ原子層堆積が必要となる。第二の問題は、仮に導電性シード層がうまく設けられたとしても、電気めっきを用いるには、ナノポア21の直径が小さすぎ、ナノポア21のアスペクト比が高すぎることである。ナノポア21の小さな直径、およびナノポア21の高いアスペクト比(少なくとも10、および典型的には50より大きい)の故に、めっき液および電界はナノポア21の下部にまで浸透できず、これにより電気めっきを実行不可能にしている。
化学気相堆積(CVD:chemical vapor deposition)は、加熱表面上で前駆体のクラッキングを行う、一般的気相プロセスである。化学気相堆積の方法は、原則的には機能できるであろうが、化学気相堆積は、原子層堆積が提供するような精巧な厚さ制御は持たない。現在のところ、ナノポア21の小さな直径および各ナノポア21の高いアスペクト比を所与とすれば、ナノポア21の底部に確実に到達可能な化学気相堆積は得られていない。実際、原子層堆積は、現在、ナノポア21の最底部に接する疑似容量性材料の共形層を形成するための唯一の実行可能な方法である。原子層堆積の使用は、ナノポア21の上記長さ、直径、およびアレイのピッチを所与として、ナノポア21の側壁を被覆し、一つながりになった疑似容量性材料層30Lを形成する能力を提供する。疑似容量性材料層30Lの厚さは、1nm〜75nm、典型的には3nm〜30nmとすることができるが、これより小さなまたは大きな厚さを使うことも可能である。
図6を参照すると、AAO基板20の上部表面が、疑似容量性材料層30Lの端面平面部分を除去することによって、露出されている。この疑似容量性材料層30Lの端面部分とは、AAO基板20の最上面の上側に所在する疑似容量性材料層30Lの連続した平面部分をいう。疑似容量性材料層30Lの該端面部分は、例えば、化学機械平坦化によって、あるいは反応性イオン・エッチングなどの異方性エッチングによって除去することができる。化学機械平坦化が用いられる場合、疑似容量性材料層30Lの端面部分は、必要により化学スラリを用いて、研磨によって除去することができる。異方性エッチングが用いられる場合、気相中のエッチャントが、方向性をもってすなわち垂直方向沿いに、疑似容量性材料層30Lの端面部分に衝突する。通常、エッチャントは、未充填のナノポア21のアスペクト比よりもさらに大きなキャビティ21’の高アスペクトに起因して、キャビティ21’の内部で導電性基板10に接している、疑似容量性材料層30Lの最底部部分はエッチングしない。(図4参照)。
図7および8を参照すると、AAO基板20を除去することによって、複数の疑似容量性「ナノシリンダ」40が形成されている。本明細書での使用において、「ナノシリンダ」とは、1ミクロン以下の外径を有する円筒形状のチューブを含む構造体をいう。通常、ナノシリンダの外径は10nm〜200nmであるが、これより小さいまたは大きい(だが1ミクロンより小さい)外径を使うことも可能である。AAO基板中のアルミナ、すなわち酸化アルミニウムは、例えば、クロム酸水溶液中に浸すなど標準的な湿式エッチング法を利用してエッチング除去することができる。この結果、疑似容量性ナノシリンダ40のアレイとして、複数の疑似容量性ナノシリンダ40が形成され、これらは、構造的にロバストな、疑似容量性材料のナノチューブである。言い換えれば、複数の疑似容量性ナノシリンダ40は、AAO基板20の除去後の疑似容量性材料層30Lの残存部分から形成される。除去される前は、AAO基板20は、疑似容量性ナノシリンダ40の二次元の周期的なアレイに対する足場として機能する。AAO基板20が除去されると、導電性基板10と、疑似容量性ナノシリンダ40のアレイと、周辺の疑似容量性壁42とのアセンブリだけが残される。
AAO基板20の除去の利点は多種多様である。第一に、AAO基板20の除去によって、非常に高い比表面積を有する電極の部分として用いることが可能な疑似容量性ナノシリンダ40の二次元の規則的アレイが形成される。「比表面積」とは、単位質量当たりの表面積をいう。例えば、疑似容量性ナノシリンダ40の二次元の規則的アレイには、1016/mにのぼる面密度と約500m/gの比表面積を持たせることができる。この非表面積は、疑似容量性ナノシリンダ40の側壁の特定の形態如何によって、例えば、疑似容量性ナノシリンダ40の表面を粗面化またはテクスチャ処理すれば、2〜3倍に高くすることができよう。
第二に、AAO基板20の除去によって、寄生質量すなわち電荷の貯蔵に寄与しない材料の合計質量を減らすことにより、第一例示的構造体の合計質量が低減される。言い換えれば、第一例示的構造体のエネルギ対質量比率は、エネルギの貯蔵に寄与しない全ての材料、すなわち、AAO基板20中のアルミナを完全に除去することによって向上する。このステップにおける第一例示的構造体の全ての残存部分を含む、アセンブリ(10、40、42)の低減された質量は、後に導電性基板10と疑似容量性ナノシリンダ40のアレイとのアセンブリを含む軽量の電極を設けるため有利に利用することができる。
第三に、AAO基板20の除去によって、疑似容量性材料の合計表面積が倍以上になり、これにより、比静電容量、すなわち単位質量当たりの静電容量が倍加される。疑似容量性ナノシリンダ40のシリンダ部分の露出された外部側壁表面が合計表面積に加わるので、これに応じ、アセンブリ(10、40、42)の合計容量も増加する。アセンブリ(10、40、42)が電極として機能するとき、電極の上側部分(40、42)は、ファラデー・プロセス、すなわち酸化および還元を用いた電荷移動プロセスを介して、電荷を格納するように十分に最適化されている。この場合、導電性基板10は、その上に疑似容量性ナノシリンダ40のアレイが構造的に取り付けられる電極部分として機能する。
しかして、この電極は、導電性基板10の上に配置された複数の疑似容量性ナノシリンダ40を用いることができる。各疑似容量性ナノシリンダ40は疑似容量性材料を包含し、キャビティ21’を中に有する。各疑似容量性ナノシリンダ40中のキャビティ21’は、その疑似容量性ナノシリンダ40に密閉されているのではなく、各疑似容量性ナノシリンダ40は、その一端に開口を有する。この一端の開口は、各疑似容量性ナノシリンダ40中のキャビティ21’に切れ目なくつながれている。
各疑似容量性ナノシリンダ40は、キャビティ21’に切れ目なくつながれている上記開口の反対側端に、穴部を中に含まない端末キャップ部分40Eを含む。各疑似容量性ナノシリンダ40は、外部末端表面を包含する端末キャップ部分40Eを含め、その全体を通して均一な(同一の)厚さを有する。各疑似容量性ナノシリンダ40の外部末端表面は、その疑似容量性ナノシリンダ40の側壁全体の内外周に切れ目なくつながれている。さらに、各疑似容量性ナノシリンダ40の末端表面の全体が、導電性基板10に接して結合されている。
これら複数の疑似容量性ナノシリンダ40は、導電性基板10の上面に対し垂直な側壁を有する疑似容量性ナノシリンダ40のアレイとして形成される。各疑似容量性ナノシリンダ40は、他のどの疑似容量性ナノシリンダ40にも接触していない、すなわち、他の疑似容量性ナノシリンダ40から引き離されている。しかして、各疑似容量性ナノシリンダ40は、複数の容量性ナノシリンダ40の他のどれからも横方向に間を置かれている。
随意的に、官能基分子を、複数の疑似容量性ナノシリンダ40の外部側壁もしくは内部側壁またはその両方に被覆することができる。これら官能基は、複数の疑似容量性ナノシリンダ40の電荷貯蔵を増加できるさらなる疑似容量性材料を含む。例示的な官能基には、以下に限らないが、導電性ポリマーであるポリアニリンが含まれる。官能基の被覆は、少なくとももう一回の原子層堆積プロセス、あるいは蒸着または湿式化学堆積を使ったプロセスで達成することができる。内部側壁と外部側壁とへの被覆は、同一の処理ステップまたは異なる処理ステップで実施することが可能である。例えば、内部側壁および外部側壁への被覆は、AAO基板20の除去の後で行うことができる。これに換えて、複数の疑似容量性ナノシリンダ40の内部側壁は、AAO基板20の除去の前に被覆することができ、ナノシリンダ40の外部側壁の被膜は、AAO基板20の除去の後で被覆することも可能である。当該技術分野で周知の被覆材料および被覆プロセスを用いて、複数の疑似容量性ナノシリンダ40の外部側壁もしくは内部側壁またはその両方を被覆することができる。例えば、Stewart,M.P.;Maya,F.;Kosynkin,D.V.;Dirk,S.M.;Stapleton,J.J.;McGuiness,C.L.;Allara,D.L.;Tour,J.M.の、「Direct Covalent Grafting of Conjugated Molecules onto Si, GaAs,and Pd Surfaces from Aryldiazonium Salts」、J.Am.Chem.Soc.2004年、126、370−378頁、を参照されたい。
図9を参照すると、本開示の第二実施形態による第二例示的構造体は、AAO基板20と使い捨て基板99とのスタックを含む。AAO基板20は第一実施形態と同様とすることができる。使い捨て基板99には、導電性材料、半導電材料、絶縁材料、またはこれらの組み合わせを含めることができる。使い捨て基板99の材料は、AAO基板20の材料に対し選択的に、すなわち、後で使用される方法によって、AAO基板20の材料が除去されることなく、使い捨て基板99の容易な除去が可能なように選定される。使い捨て基板99の除去の方法は、機械的除去法、化学機械的除去法、または化学的除去法とすることができる。使い捨て基板99の厚さは、10ミクロン〜500ミクロンとすることができるが、これより小さいまたは大きい厚さを使うことも可能である。
図10を参照すると、疑似容量性材料層30Lが、AAO基板20と使い捨て基板99とのスタック上に堆積されている。疑似容量性材料層30Lの堆積は、第一実施形態と同じ方法、すなわち、原子層堆積を用いることによって達成可能である。疑似容量性材料層30Lの各キャビティ21’の底部に位置する部分は、使い捨て基板99の上部表面に接している。
図11および12を参照すると、使い捨て基板99が除去され、疑似容量性材料層30Lの底部部分が除去されて、AAO基板20と疑似容量性材料層30Lの残存部分とのアセンブリが形成されている。AAO基板20と疑似容量性材料層30Lとのアセンブリに対し選択的な使い捨て基板99の除去は、例えば、研磨などの機械的除去法、化学機械的平坦化などの化学機械的除去法、湿式エッチングまたはドライ・エッチングなどの化学的除去法、あるいはこれらの組み合わせによって達成される。使い捨て基板99が除去されると、図7の端末キャップ部分40Eの外部末端表面と同様な、疑似容量性材料層30Lの最底部表面、およびAAO基板の最底部表面が露出される。
引き続いて、AAO基板20の最底部部分と、図7の端末キャップ部分40Eに対応する、疑似容量性材料層30Lの最底部水平部分とが、研磨、または化学機械的平坦化、または非選択的エッチング処理などの非選択的除去法を用いて除去される。疑似容量性材料層30Lの最底部水平部分が除去されると、各キャビティ21’は、AAO基板20と疑似容量性材料層30Lとのアセンブリ(20、30L)の最上部表面から、該アセンブリ(20、30L)の最底部表面に延び、上部の開口および底部の別の開口を有する。疑似容量性材料層30Lの各キャビティ21’の周りの部分は、原型的な疑似容量性ナノシリンダ40Pを構成する。各原型的な疑似容量性ナノシリンダ40Pは、原型的な疑似容量性ナノシリンダ40Pの各隣接ペアの間に所在する疑似容量性材料層30Lの上部の水平部分を介して、他のすべての原型的な疑似容量性ナノシリンダ40Pと切れ目なくつながれているので、疑似容量性材料層30L全体が一続きになっている。
図13および14を参照すると、AAO基板20と疑似容量性材料層30Lとのアセンブリ(20、30L)が反転されている。随意的に、アセンブリ(20、30L)を導電性基板10の上に配置することができ、該基板は、第一実施形態の導電性基板10と同様の組成および厚さを有することができる。導電性基板10が用いられる場合、このステップでは、疑似容量性材料層30Lが導電性基板10に付着されていてもいなくてもよい。一つの実施形態において、疑似容量性材料層30Lの底部表面は、例えば導電接着材(図示せず)を使って、恒久的に付着される。別の実施形態において、AAO基板20と疑似容量性材料層30Lとのアセンブリ(20、30L)は、疑似容量性材料層30Lを後に分離できるようにするために、付着せずに、または一時的な取り付けで導電性基板10の上にセットされる。
図15および16を参照すると、AAO基板20が、第一実施形態の図7および8に対応するのと同様な除去処理を用いて除去されている。導電性基板10が使われる場合、平面の疑似容量性材料層30Pが、導電性基板10の上部表面と接する。AAO基板20が除去されると、原型的疑似容量性ナノシリンダ40Pの外部側壁が露出され、複数の原型的疑似容量性ナノシリンダ40Pは複数の疑似容量性ナノシリンダ40’になる。全ての疑似容量性ナノシリンダ40’は、平面の疑似容量性材料層30Pを介して相互につながれている。
疑似容量性材料層30Pの残存部分は、複数の疑似容量性ナノシリンダ40’および平面の疑似容量性材料層30Pを含み、これらは一体構造であり、全体を通して同一の厚さおよび組成を有する。しかして、複数の容量性ナノシリンダ40’の各々は、各容量性ナノシリンダ40’の底端部に位置する平面の疑似容量性材料層30Pを介して相互に切れ目なくつながれている。平面の疑似容量性材料層30Pは、少なくとも、複数の疑似容量性ナノシリンダ40’のうちの疑似容量性ナノシリンダ40’の合計数だけの数の穴部を有する。複数の疑似容量性ナノシリンダ40’は、AAO基板20(これはこのステップではもはや存在しない。図9参照)中のナノポアと同じ二次元の周期性を有する、疑似容量性ナノシリンダのアレイとして形成される。導電性基板10が存在する場合、疑似容量性ナノシリンダ40’のアレイは、導電性基板10の上面と直角な垂直側壁を有する。
各疑似容量性ナノシリンダ40’は疑似容量性材料を包含し、キャビティ21’を中に有する。各疑似容量性ナノシリンダ40’中のキャビティ21’は、その疑似容量性ナノシリンダ40’に密閉はされていない。各疑似容量性ナノシリンダ40’は、各々が穴部を中に含む2つの末端表面を有する。各疑似容量性ナノシリンダ40’は、その疑似容量性ナノシリンダ40’の両端部分に所在する2つの開口を有する。具体的には、各疑似容量性ナノシリンダ40’は、上部端にある開口、すなわち上部開口、および底部端にある開口、すなわち底部開口を有する。上部開口および底部開口の各々は、切れ目なくキャビティ21’につながれている。上部開口は周囲環境に接して開口している。また、導電性プレート10が使われない場合は、底部開口も周囲環境に接して開口し、あるいは、導電性プレート10が使われる場合は、導電性プレートの10上部表面によって底部開口をブロックすることができる。導電性プレート10が存在する場合、複数の疑似容量性ナノシリンダ40’の側壁は導電性基板10の上部表面に対して垂直である。
第二例示的構造体は、エネルギ貯蔵デバイスの電極として用いることができる。一つの実施形態において、この電極は、複数の疑似容量性ナノシリンダ40’、平面の疑似容量性材料層30P、および導電性基板10を含む。別の実施形態では、この電極は、複数の疑似容量性ンシリンダ40’、および平面の疑似容量性材料層30Pを含むが、導電性基板10は含まない。随意的に、適切な官能基を、第一実施形態におけるのと同じ方法を用いて被覆することができる。
図17を参照すると、本開示の第三実施形態による第三例示的構造体が、図11および12の第二例示的構造体から、疑似容量性材料層30Lの最上部平面部分を除去してAAO基板20の表面を露出することによって得られる。あるいは、第三例示的構造体は、図10の第二例示的構造体から、疑似容量性材料層30Lの最上部平面部分を最初に除去してAAO基板20の表面を露出し、次いで、使い捨て基板99および疑似容量性材料層30Lの底部部分を除去することによっても得ることができる。AAO基板20と複数の疑似容量性ナノシリンダ40”とのアセンブリ(20、40”)が形成される。各疑似容量性ナノシリンダ40”は、トポロジ的にトーラスと同位相の円筒形状チューブであり、露出された内部垂直側壁、穴部が中にある、露出された上部端表面、および穴部が中にある、露出された底部端表面を有する。各疑似容量性ナノシリンダ40”の外部垂直側壁はAAO基板20に接しており、このステップでは、該基板が複数の疑似容量性ナノシリンダ40”を所定の位置に保持している。AAO基板20の表面は、その上部および底部が露出されている。
図19を参照すると、AAO基板20と複数の疑似容量性ナノシリンダ40”とのアセンブリ(20、40”)が、導電性基板10または一時的な基板(図示せず)の上に置かれ、次いでAAO基板20は第一実施形態の図7および8に対応するのと同様な除去処理を用いて除去されている。AAO基板20がエッチング除去されたので、全ての疑似容量性ナノシリンダ40”が相互に分離され、導電性基板10または一時的な基板上に転倒している。
疑似容量性ナノシリンダ40”が転倒しているので、疑似容量性ナノシリンダ40”の方向性は「ランダム化」される、すなわち、これらの方向は「ランダム」になる。本明細書で使用する「ランダム」な方向または「ランダム化された」方向性とは、エレメントの間の配置構造の欠如をいい、短距離秩序または偶発的長距離傾向を含む形を包含する。例として、例えば、エッチング処理の過程での導電性基板10または一時的な基板の傾きに起因して好ましい方向性が生じ、特定の転倒方向の発生確率がより高くなるとしても、転倒のプロセスは、本質的に各疑似容量性ナノシリンダ40”の最終的方向に不確定性をもたらすので、疑似容量性ナノシリンダ40”の方向性は「ランダム」であると見なされる。
複数の疑似容量性ナノシリンダ40”は、例えば導電接着剤の薄膜を使って、導電性基板10に取り付けることができる。一時的な基板が使われる場合、複数の疑似容量性ナノシリンダ40”を、導電接着剤の薄膜を塗付した導電性基板10上に散積して、該複数の疑似容量性ナノシリンダ40”を導電性基板10上に取り付けることができる。複数の疑似容量性ナノシリンダ40”の方向性は、導電性基板10の上に直接落下させるか、もしくは一時的な基板上に落下させてその後導電性基板10の上に散積することによって導電性基板10上に置かれて、ランダム化される。
各疑似容量性ナノシリンダ40”は疑似容量性材料を包含し、キャビティ21’を中に有する。各疑似容量性ナノシリンダ40”は、その疑似容量性ナノシリンダ40”の両端部分に所在する2つの開口を有する。各開口は、疑似容量性ナノシリンダ40”の端部表面内にある。各開口は、切れ目なくキャビティ21’とつながれている。しかして、各疑似容量性ナノシリンダ40”中のキャビティ21’は、その疑似容量性ナノシリンダ40”によって密閉はされていない。
第三例示的構造体は、エネルギ貯蔵デバイスの電極として用いることができる。この場合、電極は「ランダム化ナノシリンダ電極」であり、この電極では、疑似容量性ナノシリンダ40”の方向性は、導電性基板10の局所部分に平行な二次元平面においてランダム化される。この電極は、必要に応じ、その中の疑似容量性ナノシリンダ40”とともに曲げることができる。随意的に、適切な官能基を、第一および第二実施形態におけるのと同じ方法を用いて被覆することができる。
図20を参照すると、疑似容量性ナノシリンダを用いた、例示的なエネルギ貯蔵デバイスが概略的に示されている。この例示的エネルギ貯蔵デバイスは、前述の第一、第二、および第三の例示的構造体の一つを用いた第一電極を含む。該例示的エネルギ貯蔵デバイスは、第一電極と接触していない第二電極を含む。第二電極は、多孔性活性化カーボンまたは疑似容量性材料でないナノ構造材料などの導電性材料を含む。該例示的エネルギ貯蔵デバイスは、セパレータをさらに含み、これはイオン導電性だが電子に対し障壁となる膜である。再言すれば、イオンは、第一電極と第二電極とにまたがる印加電気バイアスの下で、このセパレータを通過して移動する。しかしながら、該セパレータは、これを通る電子の移動を阻む。一つの実施形態において、このセパレータとしてロバストな紙を使うことができる。このロバストな紙は、電子絶縁体であるが、電解液に浸されるとイオン電導性となる。セパレータが電解溶液中に組み込まれるようにして、第一電極と第二電極との間に電解溶液が供される。
前述した固有の構造体およびプロセスを用いて、現在達成可能なエネルギ密度を2倍加または3倍加し、車載バッテリおよび電気通信におけるバックアップ・バッテリなど、多くのアプリケーションにおける鉛酸バッテリを代替することができる可能性のあるウルトラコンデンサの電極を提供することができる。開示された、疑似容量性ナノシリンダを用いる電極は、典型的なバッテリ並みのエネルギ密度を達成するのみならず、その100〜1000倍の充電/放電サイクル寿命を可能にする。
本開示を特定の実施形態に関連させて説明してきたが、前述の説明を考慮することによって、数多くの代替案、修改、およびバリエーションが当業者に自明なことは明らかである。従って、本開示は、本開示および添付の特許請求の範囲および精神に含まれるかかる全ての代替案、修改、およびバリエーションを包含することを意図されている。

Claims (25)

  1. 電極を含むエネルギ貯蔵デバイスであって、前記電極は、導電性基板上に配置された複数の疑似容量性ナノシリンダを含み、各疑似容量性ナノシリンダは、疑似容量性材料を含み、キャビティを中に有する、前記エネルギ貯蔵デバイス。
  2. 各疑似容量性ナノシリンダ中の前記キャビティは、その疑似容量性ナノシリンダに密閉されていない、請求項1に記載のエネルギ貯蔵デバイス。
  3. 前記各疑似容量性ナノシリンダは、その一端に開口を有し、前記開口は前記キャビティに切れ目なくつながれている、請求項1に記載のエネルギ貯蔵デバイス。
  4. 前記複数の疑似容量性ナノシリンダの側壁は、前記導電性基板の表面に対し垂直である、請求項1に記載のエネルギ貯蔵デバイス。
  5. 前記各疑似容量性ナノシリンダは、穴部を中に含まない端末キャップ部分を有し、その疑似容量性ナノシリンダの側壁の全体内外周に切れ目なくつながれている外部末端表面を有する、請求項4に記載のエネルギ貯蔵デバイス。
  6. 前記外部末端表面の全体が前記導電性基板に接している、請求項5に記載のエネルギ貯蔵デバイス。
  7. 前記各疑似容量性ナノシリンダは、前記複数の容量性ナノシリンダの他のどれとも横方向に間を置かれて接触していない、請求項4に記載のエネルギ貯蔵デバイス。
  8. 前記各疑似容量性ナノシリンダは、その疑似容量性ナノシリンダの両端部分に所在する2つの開口を有する、請求項4に記載のエネルギ貯蔵デバイス。
  9. 前記複数の容量性ナノシリンダの各々は、各容量性ナノシリンダの末端にある平面の疑似容量性材料層を介して切れ目なく相互につながれている、請求項4に記載のエネルギ貯蔵デバイス。
  10. 前記平面の疑似容量性材料層は、少なくとも、前記複数の疑似容量性ナノシリンダ間での疑似容量性ナノシリンダの合計数だけの数の穴部を中に有する、請求項9に記載のエネルギ貯蔵デバイス。
  11. 前記複数の疑似容量性ナノシリンダの方向性がランダム化されている、請求項1に記載のエネルギ貯蔵デバイス。
  12. 前記各疑似容量性ナノシリンダは、その疑似容量性ナノシリンダの両端部分に所在する2つの開口を有する、請求項11に記載のエネルギ貯蔵デバイス。
  13. 前記疑似容量性材料は、酸化マンガン、酸化ルテニウム、酸化ニッケル、およびこれらの組み合わせから選択される、請求項1に記載のエネルギ貯蔵デバイス。
  14. 前記電極に接触していない別の電極をさらに含み、導電性の材料を包含する、請求項1に記載のエネルギ貯蔵デバイス。
  15. 前記電極と前記別の電極との間に所在する電解溶液と、
    前記電解溶液中に組み込まれたセパレータと、
    をさらに含み、
    イオンが、前記電極と前記別の電極とにまたがる印加電気バイアスの下で、前記セパレータを通過して移動し、前記セパレータはこれを通る電子の移動を阻む、
    請求項14に記載のエネルギ貯蔵デバイス。
  16. 前記複数の疑似容量性ナノシリンダは、疑似容量性材料である官能基によって被覆される、請求項1に記載のエネルギ貯蔵デバイス。
  17. 複数の疑似容量性ナノシリンダを製造する方法であって、
    複数の穴部を中に有する陽極酸化アルミナ基板上に疑似容量性材料層を堆積するステップと、
    前記陽極酸化アルミナ基板の表面を露出するステップと、
    前記陽極酸化アルミナ基板を除去するステップであって、前記疑似容量性材料層の残存部分から複数の疑似容量性ナノシリンダが形成される、前記除去するステップと、
    を含む前記方法。
  18. 前記疑似容量性材料層は、原子層堆積(ALD)によって形成される、請求項17に記載の方法。
  19. 前記疑似容量性材料層を堆積するに先立って、前記陽極酸化アルミナ基板を導電性基板の上に配置するステップをさらに含み、前記疑似容量性材料層は前記導電性基板の表面上に堆積される、請求項17に記載の方法。
  20. 前記陽極酸化アルミナ基板の前記表面は、前記導電性基板に接していない方の、前記疑似容量性材料層の端面平面部分を除去することによって露出される、請求項19に記載の方法。
  21. 前記複数の疑似容量性ナノシリンダは、前記導電性基板の表面に対し垂直な側壁を有する疑似容量性ナノシリンダのアレイとして形成される、請求項19に記載の方法。
  22. 前記疑似容量性材料層を堆積するに先立って、前記陽極酸化アルミナ基板を使い捨て基板の上に配置するステップをさらに含み、前記疑似容量性材料層が前記使い捨て基板の表面上に堆積される、請求項17に記載の方法。
  23. 前記疑似容量性材料層と前記陽極酸化アルミナ基板とのアセンブリから前記使い捨て基板を除去するステップと、
    前記アセンブリを導電性基板に取り付けるステップであって、前記陽極酸化アルミナ基板の表面が前記取り付けステップの後で露出される、前記取り付けるステップと、
    をさらに含む、請求項22に記載の方法。
  24. 前記疑似容量性材料層と前記陽極酸化アルミナ基板とのアセンブリから前記使い捨て基板を除去するステップと、
    前記複数の疑似容量性ナノシリンダを導電性基板の上に配置するステップであって、前記複数の疑似容量性ナノシリンダの方向性は配置時にランダム化される、前記配置するステップと、
    をさらに含む、請求項22に記載の方法。
  25. 前記複数の疑似容量性ナノシリンダを、疑似容量性材料である官能基によって被覆するステップをさらに含む、請求項17に記載の方法。
JP2013527076A 2010-09-07 2011-07-20 疑似容量性エネルギ貯蔵のためのナノ構造体電極 Expired - Fee Related JP5629381B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/876,441 2010-09-07
US12/876,441 US8599533B2 (en) 2010-09-07 2010-09-07 Nanostructure electrode for pseudocapacitive energy storage
PCT/US2011/044643 WO2012033570A1 (en) 2010-09-07 2011-07-20 Nanostructure electrode for pseudocapacitive energy storage

Publications (3)

Publication Number Publication Date
JP2013541836A true JP2013541836A (ja) 2013-11-14
JP2013541836A5 JP2013541836A5 (ja) 2014-08-21
JP5629381B2 JP5629381B2 (ja) 2014-11-19

Family

ID=45770566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013527076A Expired - Fee Related JP5629381B2 (ja) 2010-09-07 2011-07-20 疑似容量性エネルギ貯蔵のためのナノ構造体電極

Country Status (8)

Country Link
US (1) US8599533B2 (ja)
JP (1) JP5629381B2 (ja)
CN (1) CN103098160B (ja)
DE (1) DE112011102970T5 (ja)
GB (1) GB2497040B (ja)
RU (1) RU2521083C2 (ja)
TW (1) TWI497547B (ja)
WO (1) WO2012033570A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797715B2 (en) * 2011-03-23 2014-08-05 Empire Technology Development Llc Capacitor with parallel nanotubes
RU2578676C2 (ru) 2011-09-30 2016-03-27 Интел Корпорейшн Способ повышения удельной энергии и достижимой выходной мощности устройства накопления энергии
US9396883B2 (en) * 2013-04-26 2016-07-19 Intel Corporation Faradaic energy storage device structures and associated techniques and configurations
US9478365B2 (en) 2013-05-03 2016-10-25 The Governors Of The University Of Alberta Carbon nanosheets
US10090376B2 (en) 2013-10-29 2018-10-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and methods of forming capacitor structures
WO2015112628A1 (en) * 2014-01-23 2015-07-30 Masdar Institute Of Science And Technology Fabrication of enhanced supercapacitors using atomic layer deposition of metal oxide on nanostructures
CN106252071B (zh) * 2016-08-05 2018-04-03 南京理工大学 一种高比容量纳米电介质电容器及其制备方法
CN106449158B (zh) * 2016-09-12 2018-07-17 武汉理工大学 钛基底上镍锰复合氧化物纳米菱柱阵列电极及其制备方法
JP2017130669A (ja) * 2017-02-27 2017-07-27 インテル コーポレイション エネルギー貯蔵デバイスのエネルギー密度及び達成可能な電力出力を増やす方法
RU2678055C2 (ru) * 2017-07-14 2019-01-22 ООО "Нелан-оксид плюс" Способ получения эластичной алюмооксидной наномембраны
CN108133838B (zh) * 2017-12-21 2019-09-17 北京理工大学 一种基于飞秒激光复合阳极氧化制备赝电容电极的方法
EP3570307A1 (en) * 2018-05-18 2019-11-20 Murata Manufacturing Co., Ltd. Integrated energy storage component
RU2716700C1 (ru) * 2019-08-28 2020-03-16 Акционерное общество "Концерн "Созвездие" Способ модификации поверхности фольги для электролитических конденсаторов
CN114744211B (zh) * 2022-05-13 2024-03-29 南京邮电大学 一种超分支氧化的多孔金属负极集流体及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040262636A1 (en) * 2002-12-09 2004-12-30 The Regents Of The University Of California Fluidic nanotubes and devices
JP2005500229A (ja) * 2001-04-06 2005-01-06 カーネギー−メロン ユニバーシティ ナノ構造材料の製造方法
US7018933B2 (en) * 2000-06-07 2006-03-28 Samsung Electronics, Co., Ltd. Method of forming a metal-insulator-metal capacitor
US7084002B2 (en) * 2003-12-30 2006-08-01 Hyundai Motor Company Method for manufacturing a nano-structured electrode of metal oxide
JP2008192695A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd 電極体、その製造方法及び電気二重層キャパシタ
JP2009010371A (ja) * 2007-06-26 2009-01-15 Headway Technologies Inc キャパシタおよびその製造方法並びにキャパシタユニット
US20090214942A1 (en) * 2008-02-22 2009-08-27 Alliance For Sustainable Energy, Llc. Oriented nanotube electrodes for lithium ion batteries and supercapacitors
US20090224679A1 (en) * 2008-03-05 2009-09-10 Xerox Corporation Novel high performance materials and processes for manufacture of nanostructures for use in electron emitter ion and direct charging devices

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800616A (en) 1954-04-14 1957-07-23 Gen Electric Low voltage electrolytic capacitor
US3652902A (en) * 1969-06-30 1972-03-28 Ibm Electrochemical double layer capacitor
RU2123738C1 (ru) * 1997-03-21 1998-12-20 Воронежский государственный технический университет Пористое покрытие для модификации поверхности фольги электролитического конденсатора
WO1998048456A1 (en) 1997-04-24 1998-10-29 Massachusetts Institute Of Technology Nanowire arrays
US6205016B1 (en) 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
US6129901A (en) 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
AU2001284445A1 (en) 2000-09-06 2002-03-22 Hitachi Maxell, Ltd. Electrode material for electrochemical element and method for production thereof, and electrochemical element
US7116547B2 (en) * 2003-08-18 2006-10-03 Wilson Greatbatch Technologies, Inc. Use of pad printing in the manufacture of capacitors
US7400490B2 (en) * 2005-01-25 2008-07-15 Naturalnano Research, Inc. Ultracapacitors comprised of mineral microtubules
KR100647333B1 (ko) 2005-08-31 2006-11-23 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
JP4594987B2 (ja) * 2005-09-22 2010-12-08 本田技研工業株式会社 分極性電極および電気二重層キャパシタ
KR100760530B1 (ko) 2005-10-27 2007-10-04 한국기초과학지원연구원 음극산화알루미늄 템플릿을 이용한 산화망간 나노튜브 또는나노막대의 제조방법
RU2308112C1 (ru) * 2005-12-26 2007-10-10 Общество с ограниченной ответственностью "Восток" Анодная многослойная пленка
GB0607957D0 (en) 2006-04-21 2006-05-31 Imp Innovations Ltd Energy storage device
US7623340B1 (en) 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
US8535830B2 (en) * 2007-12-19 2013-09-17 The University Of Maryland, College Park High-powered electrochemical energy storage devices and methods for their fabrication
CN101625930B (zh) * 2009-06-19 2012-04-11 东南大学 有序纳米管阵列结构电极材料及其制备方法和储能应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018933B2 (en) * 2000-06-07 2006-03-28 Samsung Electronics, Co., Ltd. Method of forming a metal-insulator-metal capacitor
JP2005500229A (ja) * 2001-04-06 2005-01-06 カーネギー−メロン ユニバーシティ ナノ構造材料の製造方法
US20040262636A1 (en) * 2002-12-09 2004-12-30 The Regents Of The University Of California Fluidic nanotubes and devices
US7084002B2 (en) * 2003-12-30 2006-08-01 Hyundai Motor Company Method for manufacturing a nano-structured electrode of metal oxide
JP2008192695A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd 電極体、その製造方法及び電気二重層キャパシタ
JP2009010371A (ja) * 2007-06-26 2009-01-15 Headway Technologies Inc キャパシタおよびその製造方法並びにキャパシタユニット
US20090214942A1 (en) * 2008-02-22 2009-08-27 Alliance For Sustainable Energy, Llc. Oriented nanotube electrodes for lithium ion batteries and supercapacitors
US20090224679A1 (en) * 2008-03-05 2009-09-10 Xerox Corporation Novel high performance materials and processes for manufacture of nanostructures for use in electron emitter ion and direct charging devices

Also Published As

Publication number Publication date
TWI497547B (zh) 2015-08-21
CN103098160B (zh) 2016-12-07
JP5629381B2 (ja) 2014-11-19
GB201304363D0 (en) 2013-04-24
RU2521083C2 (ru) 2014-06-27
CN103098160A (zh) 2013-05-08
US8599533B2 (en) 2013-12-03
WO2012033570A1 (en) 2012-03-15
GB2497040A (en) 2013-05-29
TW201243888A (en) 2012-11-01
GB2497040B (en) 2014-06-18
US20120057273A1 (en) 2012-03-08
RU2012106418A (ru) 2013-10-27
DE112011102970T5 (de) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5629381B2 (ja) 疑似容量性エネルギ貯蔵のためのナノ構造体電極
Zhao et al. Recent advances in designing and fabricating self‐supported nanoelectrodes for supercapacitors
CN107710473B (zh) 制造高纵横比结构的装置和方法
JP7281445B2 (ja) 導電性基板における機能材料層の形成
KR101031019B1 (ko) 전이금속산화물 코팅층을 가지는 금속 전극의 제조 방법 및그에 의해 제조된 금속 전극
US9437369B2 (en) Conductive material with charge-storage material in voids
Kim et al. Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode
US20120236467A1 (en) Ultracapacitor, methods of manufacturing and applications of the same
Klankowski et al. Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers
CN110574132B (zh) 用于片上超级电容器的蚀刻的硅上的沉积的碳膜
US20090108252A1 (en) Lateral two-terminal nanotube devices and method for their formation
US9685278B2 (en) Energy storage devices having enhanced specific energy and associated methods
US20230274891A1 (en) Direct growth cross-linked carbon nanotubes on microstructured metal substrate for supercapacitor application
Huang et al. Nano-porous Al/Au skeleton to support MnO 2 with enhanced performance and electrodeposition adhesion for flexible supercapacitors
Dousti High Perfomance Ulta-Thin Microsupercapacitors Based on Carbon Nanotube Sheets
NO20221045A1 (en) Fabricating an electrode for a lithium-ion capacitor
TW201414879A (zh) 核-殼結構的製備方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20140616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140616

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141003

R150 Certificate of patent or registration of utility model

Ref document number: 5629381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees