JP2013504212A - 電子操向能力を有する垂直に光を放出するフォトニック・デバイス - Google Patents

電子操向能力を有する垂直に光を放出するフォトニック・デバイス Download PDF

Info

Publication number
JP2013504212A
JP2013504212A JP2012528032A JP2012528032A JP2013504212A JP 2013504212 A JP2013504212 A JP 2013504212A JP 2012528032 A JP2012528032 A JP 2012528032A JP 2012528032 A JP2012528032 A JP 2012528032A JP 2013504212 A JP2013504212 A JP 2013504212A
Authority
JP
Japan
Prior art keywords
vertical
guide layer
light guide
primary laser
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012528032A
Other languages
English (en)
Inventor
ベルナスコニ,ピエトロ,エー.ジー.
チェン,ヤン,カイ
ドエール,クリストファー,アール.
ネイルソン,デイヴィッド,ティー.
Original Assignee
アルカテル−ルーセント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルカテル−ルーセント filed Critical アルカテル−ルーセント
Publication of JP2013504212A publication Critical patent/JP2013504212A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0267Integrated focusing lens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

光学フォトニック・デバイスであって、導光層を上に有する平面半導体基板と、前記導光層内の1次レーザ光源と、導光層の導波路部分によって1次レーザ光源に光学的に結合した垂直カプラーとを備える、光学フォトニック・デバイス。垂直カプラーは、1次レーザ光源から光ビームを受信し、平面基板の表面に実質的に垂直な方向に、光ビームを方向転換するように構成される。

Description

関連出願の相互参照
本願は、本願の譲受人に譲渡され、参照により本明細書に組込まれる、「VERTICAL OPTICALLY EMITTING PHOTONIC DEVICES WITH ELECTRONIC STEERING CAPABILITY」という名称の、2009年9月2日に出願された米国仮出願第61/239,301号の利益を主張する。
本開示は、一般に、フォトニック・デバイスを対象とし、より具体的には、垂直に光を放出するフォトニック・デバイス、ならびにフォトニック・デバイスを使用する方法および製造する方法を対象とする。
この節では、本発明のよりよい理解を容易にするのに役立つ可能性がある態様を紹介する。したがって、本節の陳述は、この点を考慮して読まれるべきである。本節の陳述は、従来技術内にあるもの、または従来技術内にないものに関する承認として理解すべきではない。
光学ビーム操向器は、微小電気機械システム(microelectrical mechanical systems)(MEMS)、液晶(LC)システム、音響光学(AO)システム、電気光学(EO)システム、または垂直キャビティ面放出レーザ(vertical cavity surface emitting lasers)(VESEL)などの注入同期型レーザ・システムに基づくことが多い。しかし、光学ビーム操向器に対するこれらの手法はそれぞれ、問題を持ちうる。たとえば、MEMSの速度は、多くのビデオ用途にとって遅過ぎ、精密なアナログ操向を必要とする用途にとってさらに遅い可能性がある。MEMSはまた、複数のビームを容易に生成できない。LCシステムのビーム品質は、高く、複数のビームを生成でき、操向速度は、ビデオにとって十分に速い。しかし、LCシステムは、温度感受性が非常に高く、また、レーザなどの他の光学コンポーネントとの集積化を受け入れられない可能性がある。操向が高速であることができ、ビーム品質が良好であることができるが、LCシステムは、2次元で操向すること、および/または、AOシステムを用いて複数のビームを生成することが難しい可能性がある。速度が高速でありうるが、EOビーム操向は、現在、1次元(1D)操向に限定されているように見える。フォトニック集積回路(photonic integrated circuit)(PIC)を用いたビーム操向のためにVCSELを使用することの欠点は、VCSELが、規定された光学位相オフセットを有する平面導波路を使用して注入同期することが難しい可能性があり、また、個々の電子位相コントロールを導入することが難しい可能性があることである。
一実施形態は、光学フォトニック・デバイスである。光学フォトニック・デバイスは、導光層を上に有する平面半導体基板と、導光層内の1次レーザ光源と、導光層の導波路部分によって1次レーザ光源に光学的に結合した垂直カプラーとを備える。垂直カプラーは、1次レーザ光源から光ビームを受信し、平面基板の表面に実質的に垂直な方向に、光ビームを方向転換するように構成される。デバイスは、前記垂直カプラーに光学的に結合した回折レンズを備え、前記回折レンズは、前記垂直カプラーから放出された前記光ビームを、前記実質的に垂直な方向にコリメートするように構成される。
上記デバイスのいくつかの実施形態では、前記垂直カプラーは、たとえば、前記導光層に隣接して、または、前記導光層内に回折格子(grating)を含んでもよく、前記回折格子は、前記1次レーザ光源からの前記光ビームを、前記実質的に垂直な方向に方向転換するように構成される。
上記デバイスの任意のデバイスのいくつかの実施形態では、前記垂直カプラーは、たとえば、前記導光層に隣接して、または、前記導光層内にミラーを含んでもよく、前記ミラーは、前記1次レーザ光源からの前記光ビームを、前記実質的に垂直な方向に方向転換するように構成される。
上記デバイスの任意のデバイスのいくつかの実施形態では、前記1次レーザ光源および前記垂直カプラーは、たとえば、前記平面半導体基板内にモノリシックに集積化されてもよい。
第2の実施形態は、光学フォトニック・デバイスである。デバイスは、導光層を上に有する平面半導体基板と、導光層内の1次レーザ光源と、導光層の導波路部分によって1次レーザ光源に光学的に結合した垂直カプラーとを備える。垂直カプラーは、1次レーザ光源から光ビームを受信し、平面基板の表面に実質的に垂直な方向に、光ビームを方向転換するように構成される。デバイスは、前記垂直カプラーのアレイをさらに含み、前記垂直カプラーのうちのそれぞれの1つの垂直カプラーは、前記導光層の導波路部分を分岐させることによって、前記1次レーザ光源に光学的に結合される。
第2の実施形態では、デバイスは、たとえば、複数の位相変調器をさらに含んでもよく、前記位相変調器のうちのそれぞれの1つの位相変調器は、前記1次レーザ光源と前記垂直カプラーの少なくとも1つとの間の光路内にある。
第2の実施形態では、デバイスは、たとえば、複数の振幅変調器をさらに含んでもよく、前記複数の振幅変調器のうちのそれぞれの1つの振幅変調器は、前記1次レーザ光源と前記垂直カプラーの少なくとも1つとの間の光路内にある。
第2の実施形態では、前記複数の振幅変調器のうちのそれぞれの1つの振幅変調器は、たとえば、前記垂直カプラーに組込まれてもよく、前記垂直カプラーのうちのそれぞれの1つの垂直カプラーの回折格子パターンは、前記光ビームを前記実質的に垂直な方向に方向付けする(direct)と共に、前記光ビームを振幅変調するように構成される。
別の実施形態は、フォトニック・デバイスを使用する方法である。方法は、平面フォトニック・デバイス基板の表面に実質的に垂直な方向に光ビームを放出することを含む。放出することは、平面基板上に配置された(locate)導光層内の1次レーザ光源内で光ビームを生成することを含む。放出することはまた、光ビームを、横方向に導光層の導波路部分を通して垂直カプラーに送信することを含む。放出することは、光ビームを、垂直カプラーを通して実質的に垂直な方向に方向転換することを含む。前記垂直カプラーは、前記垂直カプラーのアレイの一部であり、前記垂直カプラーのうちのそれぞれの1つの垂直カプラーは、前記導光層の導波路部分を分岐させることによって、前記1次レーザ光源に光学的に結合される。
別の実施形態は、フォトニック・デバイスを製造する方法である。方法は、平面半導体基板上に導光層を形成することを含む。方法はまた、1次レーザ光源用の回折格子構造を少なくとも形成するために、導光層の複数の部分内にドーパントを埋め込むことを含む。方法はまた、導光層上にまたは導光層内に垂直カプラーを形成することを含む。方法はまた、1次レーザ光源ならびに1次レーザ光源および垂直カプラーを光学的に結合する導波路構造を形成するために、導光層をパターニングすることを含む。前記垂直カプラーは、前記垂直カプラーのアレイの一部であり、前記垂直カプラーのうちのそれぞれの1つの垂直カプラーは、前記導光層の導波路部分を分岐させることによって、前記1次レーザ光源に光学的に結合される。
本開示の実施形態は、添付図面と共に読まれるとき、以下の詳細な説明から最もよく理解される。対応するまたは同様な数字または文字は、対応するまたは同様な構造を示す。種々の特徴は、一定比例尺に従って描かれていない可能性があり、議論を明確にするために、サイズが任意に増減される可能性がある。添付図面に関連して考えられる以下の説明が、ここで参照される。
本開示の例示的な光学フォトニック・デバイスの断面図である。 本開示の例示的な光学フォトニック・デバイスの断面図である。 図1Bに示すデバイスなどの、光学フォトニック・デバイスの例示的なマイクロレンズの断面図および平面図である。 図1A〜1Bに示すデバイスなどの、本開示の例示的なフォトニック・デバイスの簡略レイアウトの平面図である。 図1A〜1Bに示すデバイスなどの、本開示の例示的なフォトニック・デバイスの簡略レイアウトの斜視図である。 図1A〜1Bに示すデバイスなどの、本開示の例示的なフォトニック・デバイスの例示的な簡略レイアウトの平面図である。 図1A〜1Bに示すデバイスなどの、本開示の例示的なフォトニック・デバイスの例示的な簡略レイアウトの平面図である。 図1A〜1Bに示すデバイスなどの、本開示の例示的なフォトニック・デバイスの例示的な簡略レイアウトの平面図である。 図1A〜1Bに示すデバイスなどの、本開示の例示的なフォトニック・デバイスの例示的な簡略レイアウトの平面図である。 図1A〜1Bに示すデバイスなどの、本開示の例示的なフォトニック・デバイスの例示的な簡略レイアウトの平面図である。 図1〜8に示すような、本開示のフォトニック・デバイスを使用する例示的な方法のフロー図である。 図1〜8に示すような、本開示のフォトニック・デバイスを製造する例示的な方法のフロー図である。 1D回折格子および集積化された振幅変調器を有する垂直カプラーを含む、本開示の例示的なフォトニック・デバイスの簡略レイアウトである。 1D回折格子および集積化された振幅変調器を有する垂直カプラーを含む、本開示の例示的なフォトニック・デバイスの概念図である。
説明および図面は、本発明の原理を示しているにすぎない。そのため、本明細書で明示的に述べられるかまたは示されないが、本発明の原理を具現化し、また、その範囲内に含まれる種々の配置構成を、当業者が考案することができることが理解されるであろう。さらに、本明細書で詳述される全ての例は、本発明の原理および本発明者によって与えられる概念を読者が理解するのを補助するという教育的目的だけのためであることが、原理上明確に意図され、また、こうした具体的に詳述された例および条件に対する限定がないものとして考えられる。さらに、本発明の原理、態様、および実施形態ならびに本発明の特定の例を詳述する本明細書の全ての陳述は、その等価物を包含することが意図される。さらに、本明細書で使用される用語「または(or)」は、別途指示されない限り非排他的な「または」を意味する。同様に、本明細書で述べる種々の実施形態は、いくつかの実施形態が、新しい実施形態を形成するために、1つまたは複数の他の実施形態と組合されることができるため、必ずしも互いに排他的であるわけではない。
本開示の一実施形態は、光学フォトニック・デバイスである。図1Aおよび1Bは、本開示の例示的な光学フォトニック・デバイス100の断面図を提示する。デバイス100は、導光層110を上に有する平面半導体基板105を備える。デバイス100はまた、導光層内の1次レーザ光源115および垂直カプラー120を備える。垂直カプラー120は、導光層110の導波路部分によって1次レーザ光源115に光学的に結合される。垂直カプラー120は、1次レーザ光源115から光ビーム125を受信し、平面基板105の表面135に実質的に垂直な(たとえば、90±10°の)方向130に光ビームを方向転換するように構成される。たとえば、1次レーザ光源115からの光ビーム125は、導光層110を通って横方向137に進み、その後、垂直方向130に方向転換されることができる。垂直に方向転換された光は、本明細書で垂直放出光と呼ばれることがある。
1次レーザ光源115は、分布帰還型(distributed feedback)(DFB)レーザ、分布ブラッグ反射鏡(distributed Bragg reflector)(DBR)、半導体光学増幅器、または任意の他の周波数調整可能コヒーレント放出源とすることができる。1次レーザは、本明細書で、マスターレーザまたはマスター発振器(MO)と呼ばれることがある。
いくつかの実施形態では、平面半導体基板105の少なくとも一部分は、導光層110用の下側クラッド層として構成され、デバイス100は、さらに、上側クラッド層140(図1A)を含むことができる。基板105(または、基板の下側クラッド層)および上側クラッド層140は、導光層110の屈折率より大きい屈折率を有する。いくつかの場合には、上側クラッド層140は、基板105(または下側クラッド層として構成される基板部分)の屈折率と実質的に等しい屈折率を有する。
図1Aに示すように、いくつかの実施形態では、垂直カプラー120は、前記導光層110に隣接してまたは前記導光層110内に配置された回折格子145を含む。回折格子145は、1次レーザ光源115からの光ビーム125を実質的に垂直な方向130に方向転換するように構成される。回折格子145は、導光層110内にありうる。または、回折格子145は、その層が、導光層110の内部を進む光ビーム125に影響を及ぼすのに十分に近い限り、隣接層(たとえば、基板105または上側クラッド層140)内にありうる。回折格子145の実施形態は、1次元回折格子または2次元回折格子を含みうる。
図1Bに示すように、いくつかの実施形態では、垂直カプラー120は、導光層110に隣接してまたは導光層110内に配置されたミラー150を含む。ミラー150は、1次レーザ光源115からの光ビーム125を実質的に垂直な方向130に方向転換するように構成される。
図1Aおよび1Bに示すように、デバイスのいくつかの実施形態は、さらに、垂直カプラー120に光学的に結合されたマイクロレンズ155を含みうる。マイクロレンズ155は、垂直カプラー120から放出された光ビーム125を、実質的に垂直な方向130にコリメートするように構成される。いくつかの実施形態では、マイクロレンズ155は、導光層110に隣接する層(たとえば、図1Aのクラッド層140または図1Bの基板105)内に配置されうる。他の実施形態では、マイクロレンズは、導光層110内に配置されうる。
いくつかの実施形態では、マイクロレンズ155は、基板105の外部表面(たとえば、図1B)か、上側クラッド層140(たとえば、図1A)か、または導光層110(示さず)内で一連の同心隆起160を含む回折レンズでありうる。いくつかの場合、隆起160は、円形同心隆起である。図1Cの詳細断面図および平面図に示すような、他の場合、レンズ155の隆起160は、基板の平面に対して90°以外の角度(たとえば、約80°〜89°または約91°〜110°)で、垂直カプラー125から放出される光ビーム125を受信するために、非対称(たとえば、楕円または他の非円形パターン)同心隆起でありうる。
図1Aおよび1Bに示すように、いくつかの実施形態では、光ビーム操向を容易にするために、デバイス100は、さらに、1次レーザ光源115と垂直カプラー120との間の光路内に配置された位相変調器165を含む。位相変調器165は、本明細書で、位相シフターと呼ばれることがある、または、ギリシャのシンボル、ファイ(Φ)で示される。
いくつかの実施形態では、位相変調器165は、電気光学変調器(たとえば、ポッケルス変調器)などの線形位相変調器である。他の実施形態では、位相変調器165は、キャリア注入式位相変調器である。低い注入電流では、キャリア注入式位相変調器は、光ビームの位相を、注入電流の線形関数として変調でき、一方、高い注入電流では、位相変調は、注入電流の非線形関数になりうる。いくつかの場合、電気光学変調器と比較してキャリア注入式位相変調器を使用することの利点は、ビーム操向のために十分に大きな位相シフトを誘発するために、かなり短い導波路長および小さな注入電流が使用されうることである。これは、次に、コンパクトなデバイスの設計を容易にする。いくつかの場合、電気光学変調器と比較してキャリア注入式位相変調器を使用することの欠点は、大きな注入電流では、自由キャリアが光125を吸収することである。電気光学変調器163は、光125を吸収する傾向はないが、わずかな程度の位相変調を達成するために、より長い導波路長またはより強い印加電流の使用を必要としうる。
図1Aおよび1Bに示すように、いくつかの実施形態では、光ビーム操向を容易にするために、デバイス100は、さらに、1次レーザ光源115と垂直カプラー120との間の光路内に配置された振幅変調器170を含む。振幅変調器170は、1次レーザ光源115から、いくつかの場合、デバイス100の位相変調器165から直接受信するように構成される。振幅変調器170の実施形態は、DFB、DBR、またはリング・レーザなどの2次レーザ、あるいはSOAの1つまたは複数を含む。1次レーザ光源115および光学的に結合された2次レーザ170は、本明細書でマスターレーザおよびスレーブレーザとそれぞれ呼ばれることがあるが、その理由は1次レーザ115が、1次レーザ115のレージング周波数で2次レーザ170(または複数のレーザ)を注入同期するために使用されうるからである。
いくつかの実施形態では、振幅変調器170が、リング・レーザであるかまたはリング・レーザを含むことが有利である。その理由は、リング・レーザが、反射損失による光ビーム125のより低い電力損失を有することができるからである。比較すると、DFBまたはDBR振幅変調器170は、光125のかなりの量を、1次レーザ115に戻るように反射する可能性がある。光電力の損失に加えて、反射光は、1次レーザ115の加熱をもたらし、それは、次に、レーザを不安定にする可能性がある。
いくつかの場合、図1Aおよび図1Bに示すように、振幅変調器170は、1次レーザ光源115および垂直カプラー120とは別個の構造である点でディスクリートでありうる。たとえば、ディスクリート振幅変調器170は、導光層110の1つまたは複数の導波部分によって他の能動デバイス構造のために分離されうる。
しかし、他の場合、振幅変調器170の実施形態(たとえば、2次DFBレーザ、DRBレーザ、またはリング・レーザ)は、垂直カプラー120に集積化されうる(図1Aおよび図1Bには示されない)。たとえば、垂直カプラー120用の回折格子145パターンは、たとえばビーム操向を容易にするために、光ビーム125を実質的に垂直方向130に方向付けると共に、光ビーム125を振幅変調するように構成されうる。こうした集積化構成を容易にするために、回折格子145のパターンは、非対称に配列されるか、または、非対称形状を有する要素(たとえば、穴、ポスト、隆起、トレンチ)を含みうる。たとえば、回折格子145は、たとえばDFB、DRB、またはリング・レーザに適した回折格子を有することによって、光ビーム125をレージングするように構成されうる。回折格子145に対する注入電流は、光ビーム125の振幅を変調できる。例として、垂直カプラー120は、たとえば、レーザの能動領域内にまたは能動領域上に回折格子145を有するDFBレーザを含むことができ、回折格子145は、レーザ・キャビティにフィーバックを提供し、レーザ・キャビティから外れて垂直結合を提供するために修正されうる。回折格子145の設計は、それにより、導光層110の平面内での光125のレージングをサポートし、導光層110の上または下の自由空間内への垂直出力結合を提供する。これは、レーザ・キャビティ内だけでレージングをサポートするために構築されるDFBレーザの回折格子と対照的である。
図2は、図1A〜1Bに示すデバイス100などの例示的なフォトニック・デバイス100の簡略レイアウトの平面図を提示する。図3は、同様のデバイス100の複数の部分の斜視図を提示する。デバイス100は、垂直カプラー120のアレイ205を含みうる。図2〜3に示すように、垂直カプラー120のうちのそれぞれの1つの垂直カプラーは、導光層110の導波路部分210を分岐させることによって、1次レーザ光源115に光学的に結合される(図1A〜1B)。分岐導波路部分210は、分岐構造210が1次レーザ115を垂直カプラー120に光学的に接続するように、1つまたは複数の受動電力スプリッタ215(たとえば、導波路ビーム・スプリッタ)および受動導波路220を含みうる。
図2および図3に示すように、デバイス100の実施形態は、複数のマイクロレンズ155を含みうる。マイクロレンズ155はそれぞれ、垂直カプラー120の個々の垂直カプラーに光学的に結合されうる。各マイクロレンズ155は、垂直カプラー120から放出される光ビーム125を実質的に垂直な方向130にコリメートするように構成されうる。図3にさらに示すように、複数のマイクロレンズ155は、基板105の平面135に平行である共通平面305内に配列されうる。いくつかの場合、放出される光125のサイドローブを最小にするために、マイクロレンズ155が、六角形対称(図2〜3の破線)で配列されることが望ましいが、他の配置構成が使用されうる。
図2に示すように、デバイスのいくつかの実施形態は、複数のディスクリート位相変調器165および振幅変調器170を含む。位相変調器165のうちのそれぞれの1つの位相変調器は、1次レーザ光源115と垂直カプラー120の少なくとも1つとの間の光路内にありうる。振幅変調器170のうちのそれぞれの1つの振幅変調器は、1次レーザ光源115と垂直カプラー120の少なくとも1つとの間の光路内にありうる。
図3に示すようないくつかの実施形態では、複数の振幅変調器170を、垂直カプラー120に組込むことができる(たとえば、垂直カプラーは振幅変調器を含みうる)。こうした実施形態では、垂直カプラー120のうちのそれぞれの1つの垂直カプラーの回折格子145のパターン(図1A〜1C)は、光ビーム125を実質的に垂直な方向に方向付けすると共に、光ビーム125を振幅変調するように構成されうる。
図4〜8の文脈において以下で論じるデバイス100の種々の実施形態は、よりコンパクトなデバイス構成を提供するかまたは電力要件を低減するために、デバイス100のコンポーネントがどのように配列されうるかの非制限的な例を提示する。明確にするために、いくつかの場合、部分的なレイアウトだけが示される。
図4は、図1A〜1Bに示すデバイス100などの例示的なフォトニック・デバイス100の簡略レイアウトの平面図を提示する。図4に示すように、デバイス100は、先の図1A〜3の文脈において論じた光路と同様な光路内に配列された、複数の位相変調器165および複数の振幅変調器170を含む。図4に示す実施形態の場合、複数の位相変調器165の少なくとも1つまたは複数の振幅変調器170の少なくとも1つは、垂直カプラー120の少なくとも2つに共通である光路内にある。たとえば、図4に示すように、少なくとも1つの振幅変調器170aは、垂直カプラー120aおよび別の垂直カプラー120bに共通である光路内にある。
図5は、図1A〜1Bに示すデバイス100などの例示的なフォトニック・デバイス100の別の簡略レイアウトの平面図を提示する。図4に示すように、デバイス100は、位相変調器165および振幅変調器170を含む。しかし、この実施形態では、振幅変調器170(たとえば、2次DBFまたはDFRレーザ)は、個々の垂直カプラー120と集積される。この実施形態では、位相変調器165および振幅変調器170は共に、垂直カプラー120(たとえば、カプラー120aおよび120b)の2つ以上に共通である光路内にありうる。
図6は、図1A〜1Bに示すデバイス100などの例示的なフォトニック・デバイス100の別の簡略レイアウトの平面図を提示する。図4に示すように、デバイス100は、位相変調器165および振幅変調器170を含む。しかし、この実施形態では、リング・レーザとして構成された振幅変調器170は、1次レーザ115と垂直カプラー120との間の光路内でディスクリートである。図5に示す実施形態と同様に、位相変調器165および振幅変調器170は共に、垂直カプラー120の2つ以上に共通である光路内にありうる。リング・レーザ170の導波部(たとえば、リング・レーザとして構成された図1Aの導光層110の部分)は、光ビーム125(図1A)がリング・レーザ170に結合するように、(たとえば、位相変調器165から出てくる)受動導波路220に十分に近い。いくつかの実施形態では、リング・レーザ170は、実質的に互いから切離され分離される。すなわち、リング・レーザ170はそれぞれ、最も近い近傍リング・レーザ170に実質的な影響を及ぼさないように、互いから十分に分離される。
図7は、図1A〜1Bに示すデバイス100などの例示的なフォトニック・デバイス100の別の簡略レイアウトの平面図を提示する。図6に示す実施形態と同様に、位相変調器165および振幅変調器170は共に、垂直カプラー120の2つ以上に共通である光路内にありうる。この実施形態では、振幅変調器170(たとえば、2次DBFもしくはDFRレーザ、またはリング・レーザ)は、個々の垂直カプラー120と集積される。2つ以上の振幅変調器170が、光学的に結合されうる。たとえば、1次レーザ115は、第1の振幅変調器170aを注入同期できるが、第1の振幅変調器170a内部の一部の光は、第2の振幅変調器170bに向かう光路に、また、共通光路上の他の振幅変調器170c、170dに向かう光路に結合されうる。このカスケード効果を通して、1次レーザ115は、集積された振幅変調器170を有する複数の垂直カプラー120からの垂直光放出を制御できる。この構成は、ディスクリートでかつ光学的に分離された振幅変調器と比較して、導波路分岐についての必要性を低減でき、また、電力要件を低減できる。
図8は、図1A〜1Bに示すデバイス100などの例示的なフォトニック・デバイス100の別の簡略レイアウトの平面図を提示する。図7に示す実施形態と同様に、位相変調器165および振幅変調器170は、垂直カプラー120の2つ以上に共通である光路内にありうる。振幅変調器170は、個々の垂直カプラー120と集積され、振幅変調器170は、光学的に結合されうる。たとえば、任意の1つの振幅変調器170は、その最も近くの近傍振幅変調器170に2次元で直接結合され、他の振幅変調器170の任意の振幅変調器に間接的に光学的に結合されうる。増幅器変調器が全て結合されるいくつかの実施形態では、1次レーザ115自体が、1つまたは複数の振幅変調器170であってよい。
図8に示すように、集積された振幅変調器170を有する垂直カプラー120は、位相変調器165によって互いから分離されうる。いくつかの場合、垂直カプラー120のうちの選択された垂直カプラー間の光漏洩を低減するために、1つまたは複数の吸収体805が、1つの垂直カプラー120と別の隣接する垂直カプラー120との間の光路内に配置されうる。たとえば、吸収体805は、1次レーザ115によって生成される光の周波数で光を吸収するために適切にドープされる導光層110(図1A)の部分とすることができる、または、その部分を含みうる。いくつかの実施形態では、吸収体805は、導光層110内の開口とすることができる、または、その開口を含みうる。
本開示の別の実施形態は、フォトニック・デバイスを使用する方法である。図9は、図1〜8に示すようなフォトニック・デバイスを使用する例示的な方法900のフロー図を提示する。引き続き図1A〜8全体を参照して、デバイス100を使用する方法は、デバイス100の平面基板105の表面135に垂直な方向130に光ビーム125を放出するステップ910を含む。ステップ910にて、光ビーム125を放出することは、平面基板105上に配置された導光層110内の1次レーザ115内で光ビーム125を生成するステップ915を含む。ステップ910にて、光ビーム125を放出することは、光ビーム125を、横方向に前記導光層110の導波路部分210を通して垂直カプラー120に送信するステップ920を含む。ステップ910にて、光ビーム125を放出することは、光ビーム125を、垂直カプラー120を通して実質的に垂直な方向に方向転換するステップ925を含む。
いくつかの実施形態では、ステップ910にて、光ビーム125を放出することはさらに、垂直カプラー120からマイクロレンズ155を通して光ビーム125を渡すことを含む、方向転換された、たとえば、垂直に放出された光ビーム125をコリメートするステップ930を含む。いくつかの実施形態では、ステップ910にて、光ビーム125を放出することはさらに、実質的に垂直に方向付けされた光ビーム125を操向するステップ940を含む。ステップ940にて、光ビームを操向することは、共に1次レーザ115と垂直カプラー120との間の光路に配置される、位相変調器165の1つまたは複数を通してディスクリート電流を注入すること(ステップ950)および振幅変調器170を通してディスクリート電流を注入すること(ステップ955)を含みうる。いくつかの場合、複数の位相変調器165および振幅変調器170のそれぞれに対してステップ950、955にて注入される電流は、チェビシェフ励起関数に従って調整される。こうした励起関数を使用するときの利点は、垂直に放出される光のサイドローブ・レベルを最小にすることである。当業者は、垂直カプラー120に進む光の位相および電力がチェビシェフ分布関数に適合するように、位相変調器および振幅変調器を通る注入電流を調整する方法を理解するであろう。
本開示の別の実施形態は、フォトニック・デバイスを製造する方法である。図10は、図1A〜8に示すようなフォトニック・デバイスを製造する例示的な方法1000のフロー図を提示する。引き続き図1A〜8全体を参照して、製造する方法は、平面半導体基板105上に導光層115を形成するステップ1010を含む。製造する方法はまた、1次レーザ115用の回折格子構造を少なくとも形成するために、導光層の複数の部分内にドーパントを埋め込むステップ1015を含む。製造する方法はまた、導光層115上にまたは導光層115内に垂直カプラー120を形成するステップ1020を含む。製造する方法はまた、1次レーザ光源ならびに1次レーザ光源および垂直カプラー120を光学的に結合する導波路構造210を形成するために、導光層115をパターニングするステップ1025を含む。
いくつかの場合、ステップ1010にて導光層115を形成するために、半導体基板(たとえば、GaAsまたはInP化合物半導体基板)の複数の部分は、ドーパントを埋め込まれ(たとえば、GaAs化合物半導体基板は、InおよびPをドープされることができ、InP化合物半導体基板は、GaおよびAsをドープされることができ)、その後、適切な屈折率を有する導光層115を形成するためにアニーリングされることができる。当業者は、堆積、結晶成長、またはボンディング・プロセスなどの、導光層115を形成するために使用されうる他のプロシージャに精通している。
いくつかの場合、ステップ1015にてドーパントを埋め込むことは、1次レーザ115として役立つように構成されたDBF、DBR、およびリング・レーザ用のレーザ・キャビティの回折格子を形成するための、導光層115の複数の部分内への埋め込みを含む。いくつかの場合、ステップ1015にてドーパントを埋め込むことはまた、ステップ1020の一部として、垂直カプラー120のある実施形態について回折格子145を形成するための、導光層115の異なる部分内への埋め込みを含みうる。あるいは、所望される場合、ステップ1020の一部として垂直カプラー120の回折格子145を形成するために、別個の埋め込みプロセスが実施されうる。
当業者は、パターニング・ステップ1025に従って、DBF、DBR、およびリング・レーザ用のレーザ・キャビティを形成するリソグラフィ・プロセスおよびエッチング・プロセスに精通しているであろう。いくつかの場合、パターニング・ステップ1025はまた、ステップ1020の一部として垂直カプラー120のコンポーネントをパターニングすることを含みうる。あるいは、別個のパターニング・プロセスが、所望される場合、ステップ1020の一部として実施されうる。たとえば、ステップ1020にて垂直カプラー120を形成することは、垂直カプラー120の回折格子145を形成するために、導光層115の異なる部分内にドーパントを埋め込むステップ1030を含みうる。先に述べたように、いくつかの場合、ステップ1035は、ステップ1015の一部として実施されうる。
ステップ1020にて垂直カプラー120を形成することは、ミラー150を形成するステップ1035を含みうる。ステップ1035にてミラー150を形成することは、平面基板105の表面135に対してミラー150の斜め角度185を形成する平坦斜面182を形成するために、導光層115の表面180(図1B)をエッチングすることを含みうる。ステップ1030にてミラー150を形成することはさらに、平坦斜面182上に反射性被膜を堆積することを含みうる。
いくつかの場合、平坦斜面182は、平面基板105に対して約45°の角度を形成する。他の場合、基板180の化学エッチは、導光層115の自然結晶面を露出させ、自然の面は、45°でない。たとえば、いくつかの場合、斜めの角度185は、約53°に等しいとすることができる。これは、次に、垂直カプラー120から、基板表面135に厳密に垂直ではないが、依然として実質的に垂直(たとえば、90±10°)である方向に光ビーム125を放出させうる。いくつかの場合、本明細書の他の所でさらに論じるように、図1Cの文脈で先に論じたような、垂直カプラー120に光学的に結合したマイクロレンズ155を使用して、こうした不完全さを補正することが望ましい。
方法のいくつかの実施形態は、さらに、マイクロレンズ155を形成するステップ1040を含む。ステップ140にて回折マイクロレンズとして構成されるマイクロレンズ155を形成することは、レンズの実質的に同心の隆起160を形成するために、基板105の表面135(図1B)または基板105上に配置されたクラッド層140の表面135(図1A)をパターニングすることを含みうる。いくつかの好ましい実施形態では、マイクロレンズ155は、垂直カプラー120から垂直方向130に放出されるかなりの光を捕捉するのに十分に大きくなるように形成される。たとえば、回折格子145素子の50×50ミクロン正方形アレイを備える垂直カプラーを考える。マイクロレンズ155は、好ましくは、50ミクロンより大きい、また、50〜100ミクロンの範囲の径を有するであろう。
方法のいくつかの実施形態は、さらに、導光層115内に位相変調器構造165を形成するステップ1050および導光層115内に振幅変調器構造170を形成するステップ1055を含む。いくつかの実施形態では、たとえば、ステップ1015にてドーパントを埋め込むことはさらに、ステップ1050、1055の一部として位相変調器構造および振幅変調器構造165、170に対応する導光層115の異なる部分内にドーパントを埋め込むことを含む。いくつかの実施形態では、たとえば、ステップ1015にてパターニングすることはさらに、ステップ1050、1055の一部として位相変調器構造および前記振幅変調器構造165、170の導光部分を形成することを含む。しかし、他の場合、ディスクリートな埋め込みプロセスおよびパターニング・プロセスが、ステップ1050、1055の一部として実施されうる。位相変調器構造および振幅変調器構造165、170を形成することが、これらの構造165、170の導光部分上へのまたは導光部分に隣接した電極構造(図示せず)の堆積、および、電極に結合される導電性ライン(図示せず)の形成などのさらなるステップを含むことを、当業者は理解するであろう。
方法のいくつかの実施形態はさらに、パターニングされた導光層115をクラッド層140で覆うステップ1060を含む。ステップ1010について述べたのと同様なプロシージャは、ステップ1065にて、パターニングされた導光層をクラッド層140で覆うために使用されうる。こうした実施形態では、パターニングされた導光層115は埋め込み層である。たとえば、1次レーザ115、受動分岐構造導波路部分210、位相または振幅変調器構造165、170、および垂直カプラー120が埋め込まれる。こうした埋め込み層の1つの利点は、導光層115のレージング部分から遠くへの熱伝達が、非埋め込み(たとえば、空気クラッド)導光層115と比較して促進されることである。
本開示のある態様を述べてきたが、以下のさらなる例示的な実施形態を参照することによって、さらなる特徴がより一層明らかになると思われる。例は、例示のためだけに提示され、本開示を制限するものとして解釈されるべきでないことが理解されるであろう。
本開示のいくつかの実施形態は、最小ビーム幅、最小レベルのサイドローブ、および最小回折格子ローブを有する単一または複数自由空間光ビームを生成する垂直放出レーザのアレイを有するデバイスを含み、その向きは、アレイ内の個々の放出器の位相および振幅の電子制御によって迅速に再調整されうる。
デバイスのいくつかの実施形態では、高速でかつ精密な操向特性を用いた自由空間ビーム形成は、集積された垂直放出注入同期式DFBの六角形平面アレイによって生成される。結果として得られるビームは、規定された主ビーム幅を有する光学的最小サイドローブ・レベルを特徴とする。ビーム操向は、規定されたチェビシェフ分布関数に従って個々の放出素子の位相および振幅を共に制御することによって達成される。六角形構成は、最も近い近傍放出素子間で同じ距離を提供でき、長方形アレイと比較してスプリアス(spurious)放出回折格子ローブの低減に寄与した。
デバイスのいくつかは、アレイの放出素子として使用されるフォトニック注入同期式垂直結合2次元DFB垂直放出(VE)素子を含む。VE放出素子の実施形態は、単一構造内で2−D能動レージング・キャビティ、垂直結合回折格子、および集積された回折マイクロレンズを組合せうる。アレイのいくつかの実施形態は、カスケード式注入同期機構によって所定周波数で同期される、効率および放射電力の向上のためのフォトニック結晶面放出2−D VE DFB素子を含みうる。複数のビームは、アレイ化素子にわたって、対応するアパーチャ分布関数を重ね合わせることによって合成されうる。
デバイスのいくつかの実施形態は、図2に示すように、アレイ素子の全てを光学的に注入同期させるために、共通オンチップ集積化水平DFBマスター発振器を使用するアレイ・フォトニック集積回路(Photonic Integrated Circuit)(PIC)を含む。このプロシージャは、それぞれの垂直放出アレイ化光源が、正確に同じ周波数で、かつ、集積化位相シフターによって制御された定義できる一定の位相関係を持って発振することを保証するのに役立つ。回折格子を含む垂直カプラーおよびマイクロレンズは、大きな走査角の場合、大きな発散を持って垂直方向に光を投影する。いくつかの場合、集積化受動カプラーを有する線形1−D DFBが使用されうる。他の場合、回折格子を含む垂直カプラーは、よりよいビーム形状およびよりよい電力変換効率(wall−plug efficiency)のために、フォトニック結晶2−D DFB面放出レージング素子と集積化されうる。レーザ、位相シフター、および受動相互接続回路(たとえば、導波路)は、当業者によく知られている受動能動集積化技法(passive−active integration technique)を使用して同じ基板(たとえば、InPまたはGaAs基板)上にモノリシックに集積化されうる。
デバイスのいくつかの実施形態では、アレイ化された注入同期式レージング素子の最適なコヒーレント光ビーム形成および操向を達成するために、放射素子は、最も近い近傍素子間の間隔が等しい状態で、六角形グリッドで配列される。この配置構成は、長方形配置構成などの他の構成と比較して、寄生的で近接の強い回折格子ローブを最小にするのに役立つ。六角形アレイ化放射素子の上に位置決めされた適切なマイクロ光学レンズは、効果的に、放出器アレイのピッチを低減し、望ましくないサイドローブ・レベル(SLL)放出のほとんどを抑制して、瞬時視野(Instantaneous Field of View)(IFOV)および総合FOVを改善する。アレイはまた、一定の立体角アパーチャにわたる走査を可能にするために必要とされる素子数を減少させる。
いくつかの場合、主放出ローブの最小ビーム幅は、指定された最小SLLを達成するために、チェビシェフ励起関数に従って励起された六角形アレイ化放出素子から合成されうる。各素子の放出振幅は、個々のスレーブDFBに注入される電流を調整することによって制御され、一方、相対的位相シフトは、集積化された位相シフターの短い受動光導波路セクションに少量の電流を注入することによって得られる。
デバイスのいくつかの実施形態は、垂直放出カプラーとDFBレージング媒体を集積化することによって、放出アレイのための非常に効率的なフォトニック結晶垂直放出2−D DFBレージング素子を使用する。注入同期式能動2−Dフォトニック結晶レーザ素子は、図3に示すように、2−Dキャビティ面に垂直な一様な放出を生成することになる。この革新的な2−D垂直放出DFB(VE−DFB)は、屈折率の2−D周期的起伏(たとえば、垂直カプラーを備える導波層の屈折率の2−D変調)によって画定される平面(たとえば、正方形)キャビティに依存する。
いくつかの線形DFBレーザにおいて使用される標準的な半波周期の代わりに、デバイスのいくつかの実施形態では、2−D起伏は全波に等しい。レージングが分布帰還型(DFB)機構によって達成されるため、2−D DFBは、格子欠陥を使用する、フォトニック結晶に基づく他の平面構造と異なる。これは、放出器にわたって一様な光放出を達成することを容易にし、また、所与の総合電力について強度を最小にする。レーザは、群速度がゼロである起伏によって決定されるフォトニック・バンドギャップの両側で発振する可能性がある。回折格子周期についてのこの選択は、キャビティ面に本質的に垂直に光を放出させる。レージングは、2−D格子全体にわたって一様であると予想され、十分に大きなキャビティの場合、光は、狭い(たとえば、約1°の)発散角で垂直にアウトカップル(out−couple)されうる。起伏(たとえば、楕円)素子の独特の非対称形状が、放出の偏光を制御するために描かれうる。
いくつかの2−D DFBレーザは、格子内の非常に高い屈折率コントラストを達成するためにウェハ・ボンディングを使用できるが、歩留まりが所望の歩留まり(yield)より低く、室温レージング発振が不安定である。これらの問題を軽減するために、デバイスの実施形態は、フィルファクタを増加させるために、大きな表面積を有する埋め込み構造を使用する。これはまた、屈折率コントラストが低いために、各格子素子による散乱を低減する。VCSELおよび円形回折格子レーザなどの他の面放出レーザに勝る、2−D VE−DFBの利点は、レーザが、任意の大きさに作られることができ、また、2−D格子全体にわたって一様に広がる単一モードだけで依然として放出できることである。同様に、VE−DFBは、一部のVCSELの場合に使用されるような垂直に進む光学信号ではなく、平面内を進む光学信号に注入同期されることができ、それにより、デバイスの全ての素子を注入同期させるためのPICの構築を容易にする。
アレイ内の全ての光源が最終出力ビームにコヒーレントに結合されることを容易にするために、全てのVE−DFBが、注入同期によって、マスター光学発振器(MO)(たとえば、1次レーザ光源)によって同期されうる。いくつかの実施形態では、その波長が、VE−DFBのゼロ群速度点のいずれかに近いMOからの光は、スレーブVE−DFB(たとえば、振幅変調器)に給送され、それにより、マスターと同じ波長でスレーブが強制的に発振させられる。全てのスレーブVE−DFBが、規定された位相オフセットで同期された後、アレイ全体は、単一コヒーレント光学源として振る舞う。
図4に示す実施形態は、別個の位相変調器および振幅変調器(たとえば、半導体光学増幅器(SOA))を備える。垂直カプラーの実施形態は、エッチングされたミラー、テーパ付き受動導光層の上部の2次(2D)回折格子、またはSOAの上部の2次(2D)回折格子を含む。こうした実施形態のいくつかの利点は、1)単一レーザ源の使用、したがって、注入同期が必要とされないこと、2)SOAが小面の近くに維持されることができ、それにより、損失が最小にされること、3)デバイスの電力消費が、厳しい仕様範囲に合うように調整されることができること、4)偏光問題が最小されること、5)エッチ・ミラーの使用が、良好な出力モードを提供すること、6)単一マイクロレンズ光学部品が使用されてもよいこと、7)位相変調器および振幅変調器が組合されることができること、8)DFB1次レーザ源を同調型とすることができること、9)デバイスが、モノリシックに集積化されることができること、10)振幅制御が簡単であることを含みうる。こうした実施形態のいくつかの難題は、1)大規模(たとえば、200のディスクリート素子)を製造すること、2)マイクロ光学部品の同時集積化、3)垂直カプラーの性能を検証すること、4)位相シフター用の制御ループを開発すること、5)コヒーレント・ビーム形成およびビーム品質を検証することを含みうる。
図5に示す実施形態は、別個の位相変調器および振幅変調器(たとえば、DFBまたはDBRレーザ)を備える。垂直カプラーの実施形態は、エッチングされたミラーまたはテーパ付き受動導光層の上部の2次(2D)回折格子を含む。こうした実施形態のいくつかの利点は、1)増幅器が小面の近くに維持されることができ、それにより、損失が最小にされること、2)デバイスの電力消費が、厳しい仕様範囲に合うように調整されることができること、3)偏光問題が最小されること、4)エッチ・ミラーの使用が、良好な出力モードを提供すること、5)デバイスの構築が、ウェハ・ボンディング手法を含むことができることを含みうる。こうした実施形態のいくつかの難題は、1)注入同期機構の安定性を検証すること、2)振幅制御を開発すること、3)多数のDFBまたはDBR振幅変調器を製造するための均一構築(homogeneous construction)法、4)局所的または大域的温度変動に対する感度を含みうる。
図6に示す実施形態は、別個の位相変調器および振幅変調器(たとえば、リング・レーザ)を備える。垂直カプラーの実施形態は、エッチングされたミラーまたはテーパ付き受動導光層の上部の2次(2D)回折格子を含む。こうした実施形態のいくつかの利点は、1)増幅器が小面の近くに維持されることができ、それにより、損失が最小にされること、2)デバイスの電力消費が、厳しい仕様範囲に合うように調整されることができること、3)小面問題が取除かれること、4)偏光問題が最小されること、5)エッチ・ミラーの使用が、良好な出力モードを提供すること、6)簡単なマイクロレンズ光学部品が使用されてもよいこと、7)デバイスの構築が、ウェハ・ボンディング手法を含むことができることを含みうる。こうした実施形態のいくつかの難題は、1)注入同期機構の安定性を検証すること、2)振幅制御を開発すること、3)多数のDFBまたはDBR振幅変調器を製造するための均一構築法、4)局所的または大域的温度変動に対する感度を含みうる。
図7に示す実施形態は、垂直カプラーと集積化される、別個の位相変調器および振幅変調器を備える。垂直カプラーの実施形態は、垂直結合能力とDBF能力の両方を有する2次(2D)回折格子を含む。こうした実施形態のいくつかの利点は、1)増幅器が小面の近くに維持されることができ、それにより、損失が最小にされること、2)デバイスの構築が、ウェハ・ボンディング手法を含むことができること、3)振幅変調器および垂直光結合を、垂直放出フォトニック結晶DFBアレイに集積化することによる、よりコンパクトな設計を含みうる。こうした実施形態のいくつかの難題は、1)機能デバイスの歩留まりを減少させること、2)注入同期の安定性を維持すること、3)振幅変調に対する複雑な制御スキーム、4)局所的または大域的温度変動に対する感度、5)垂直に放出されたビームの品質の低下、6)偏光制御を維持する困難さ、垂直光結合の効率の低下、7)非効率的な電力消費を含みうる。
図8に示す実施形態は、垂直カプラーと集積化される、別個の位相変調器および振幅変調器を備える。垂直カプラーの実施形態は、垂直結合能力とDBF能力の両方を有する2次(2D)回折格子を含む。吸収体が、垂直カプラーのアレイ間に組込まれることができる。こうした実施形態のいくつかの利点は、1)増幅器が小面の近くに維持されることができ、それにより、損失が最小にされること、2)デバイスの構築が、ウェハ・ボンディング手法を含むことができること、3)振幅変調器および垂直光結合を、垂直放出フォトニック結晶DFBアレイに集積化することによる、よりコンパクトな設計、4)外部1次レーザ光源を必要としない(たとえば、1次レーザは、垂直放出フォトニック結晶DFBアレイおよび位相変調器の垂直カプラーのアレイ内にあることができる)可能性があることを含みうる。こうした実施形態のいくつかの難題は、1)機能デバイスの歩留まりを減少させること、2)注入同期の安定性を維持すること、3)振幅変調に対する複雑な制御スキーム、4)局所的または大域的温度変動に対する感度、5)垂直に放出されたビームの品質の低下、6)偏光制御を維持する困難さ、7)垂直光結合の効率の低下、非効率的な電力消費を含みうる。
図11Aに示すデバイス100の実施形態は、垂直カプラー120と集積化される、別個の位相変調器165および振幅変調器170を備える。垂直カプラー120の実施形態は、垂直結合能力とDBF能力の両方を有する1次(1D)回折格子を含む。導波路テーパ1110は、位相変調器165と(たとえば、振幅変調器170を有する)垂直カプラー120との間の結合を容易にしうる。1D DFBレーザのいくつかの実施形態は、好ましくは、8の周期を有し、8は、1次レーザ105によって放出される光の波長に等しい。いくつかの実施形態では、ビーム操向は、1つの次元で波長を調整し、他の方向で位相変調器を調整することによって達成される。いくつかの場合、1Dレーザは、1Dレーザから出てくる光がまさしく楕円になるような2Dビームを生成でき、マイクロレンズ(図示せず)が楕円ビームを結合してコリメートされた単一球ビームにすることは難題でありうる。挿入図面(図1B)に示すように、こうした実施形態の1つの難題は、レーザ・キャビティの内部で双方向に進む光、したがって、4つの回折ビームを含み、2つのビームは、1つの方向(たとえば、挿入図で右を指す実線矢印)に進み、2つのビームは、反対方向(たとえば、挿入図で左を指すハッチング矢印)に進む。いくつかの実施形態では、対称性は、同じラインに沿って配列される対の順序(pair order)をなくす非対称回折格子を使用することによって部分的に破られうる。いくつかの実施形態では、残っているスプリアス順序(挿入図において下を指す矢印)は、光が、垂直結合されたビームだけに沿って建設的に再配向されるように、レーザ媒体の下に適切なミラー(たとえば、別個の回折格子)を位置決めすることによって実質的に相殺されうる。
実施形態が詳細に述べられたが、実施形態は、本開示の範囲から逸脱することなく、本明細書において種々の変更、置換、および代替を行うことができることを当業者は理解すべきである。

Claims (10)

  1. 光学フォトニック・デバイスであって、
    導光層を上に有する平面半導体基板と、
    前記導光層内の1次レーザ光源と、
    前記導光層の導波路部分によって前記1次レーザ光源に光学的に結合した垂直カプラーであって、前記1次レーザ光源から光ビームを受信し、前記平面基板の表面に実質的に垂直な方向に、前記光ビームを方向転換するように構成される、垂直カプラーと、
    前記垂直カプラーに光学的に結合した回折レンズであって、前記垂直カプラーから放出された前記光ビームを、前記実質的に垂直な方向にコリメートするように構成されている、回折レンズとを備えるデバイス。
  2. 前記垂直カプラーは、前記導光層に隣接して、または、前記導光層内に回折格子を含み、前記回折格子は、前記1次レーザ光源からの前記光ビームを、前記実質的に垂直な方向に方向転換するように構成される請求項1に記載のデバイス。
  3. 前記垂直カプラーは、前記導光層に隣接して、または、前記導光層内にミラーを含み、前記ミラーは、前記1次レーザ光源からの前記光ビームを、前記実質的に垂直な方向に方向転換するように構成される請求項1に記載のデバイス。
  4. 前記1次レーザ光源および前記垂直カプラーは、前記平面半導体基板内にモノリシックに集積化される請求項1に記載のデバイス。
  5. 光学フォトニック・デバイスであって、
    導光層を上に有する平面半導体基板と、
    前記導光層内の1次レーザ光源と、
    前記導光層の導波路部分によって前記1次レーザ光源に光学的に結合した垂直カプラーであって、前記1次レーザ光源から光ビームを受信し、前記平面基板の表面に実質的に垂直な方向に、前記光ビームを方向転換するように構成される、垂直カプラーとを備え、
    前記垂直カプラーのアレイをさらに含み、前記垂直カプラーのうちのそれぞれの1つの垂直カプラーは、前記導光層の導波路部分を分岐させることによって、前記1次レーザ光源に光学的に結合されるデバイス。
  6. 複数の位相変調器をさらに含み、前記位相変調器のうちのそれぞれの1つの位相変調器は、前記1次レーザ光源と前記垂直カプラーの少なくとも1つとの間の光路内にある請求項5に記載のデバイス。
  7. 複数の振幅変調器をさらに含み、前記複数の振幅変調器のうちのそれぞれの1つの振幅変調器は、前記1次レーザ光源と前記垂直カプラーの少なくとも1つとの間の光路内にある請求項6に記載のデバイス。
  8. 前記複数の振幅変調器のうちのそれぞれの1つの振幅変調器は、前記垂直カプラーに組込まれ、前記垂直カプラーのうちのそれぞれの1つの垂直カプラーの回折格子パターンは、前記光ビームを前記実質的に垂直な方向に向けると共に、前記光ビームを振幅変調するように構成される請求項7に記載のデバイス。
  9. フォトニック・デバイスを使用する方法であって、
    平面フォトニック・デバイス基板の表面に実質的に垂直な方向に光ビームを放出するステップを含み、放出するステップは、
    前記平面基板上に配置された導光層内の1次レーザ内で光ビームを生成するステップと、
    前記光ビームを、横方向に前記導光層の導波路部分を通して垂直カプラーに送信するステップと、
    前記光ビームを、前記垂直カプラーを通して前記実質的に垂直な方向に方向転換するステップとを含み、前記垂直カプラーは、前記垂直カプラーのアレイの一部であり、前記垂直カプラーのうちのそれぞれの1つの垂直カプラーは、前記導光層の導波路部分を分岐させることによって、前記1次レーザ光源に光学的に結合される方法。
  10. フォトニック・デバイスを製造する方法であって、
    平面半導体基板上に導光層を形成するステップと、
    1次レーザ用の回折格子構造を少なくとも形成するために、前記導光層の複数の部分内にドーパントを埋め込むステップと、
    前記導光層上にまたは前記導光層内に垂直カプラーを形成するステップと、
    前記1次レーザ光源ならびに前記1次レーザ光源および前記垂直カプラーを光学的に結合する導波路構造を形成するために、前記導光層をパターニングするステップとを含み、前記垂直カプラーは、前記垂直カプラーのアレイの一部であり、前記垂直カプラーのうちのそれぞれの1つの垂直カプラーは、前記導光層の導波路部分を分岐させることによって、前記1次レーザ光源に光学的に結合される方法。
JP2012528032A 2009-09-02 2010-09-02 電子操向能力を有する垂直に光を放出するフォトニック・デバイス Withdrawn JP2013504212A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US23930109P 2009-09-02 2009-09-02
US61/239,301 2009-09-02
US12/638,820 2009-12-15
US12/638,820 US8515217B2 (en) 2009-09-02 2009-12-15 Vertical optically emitting photonic devices with electronic steering capability
PCT/US2010/047623 WO2011028865A2 (en) 2009-09-02 2010-09-02 Vertical optically emitting photonic devices with electronic steering capability

Publications (1)

Publication Number Publication Date
JP2013504212A true JP2013504212A (ja) 2013-02-04

Family

ID=43625045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012528032A Withdrawn JP2013504212A (ja) 2009-09-02 2010-09-02 電子操向能力を有する垂直に光を放出するフォトニック・デバイス

Country Status (7)

Country Link
US (1) US8515217B2 (ja)
EP (1) EP2473874A2 (ja)
JP (1) JP2013504212A (ja)
KR (1) KR20120054030A (ja)
CN (1) CN102498424A (ja)
SG (1) SG178955A1 (ja)
WO (1) WO2011028865A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208137A (ja) * 2011-03-29 2012-10-25 Hitachi Ltd 光インターコネクトモジュールおよび光電気ハイブリッド混載ボード
JP2014216330A (ja) * 2013-04-22 2014-11-17 浜松ホトニクス株式会社 半導体レーザ装置
JP2016173524A (ja) * 2015-03-18 2016-09-29 日本電信電話株式会社 光集積素子
JP2019101299A (ja) * 2017-12-05 2019-06-24 日本放送協会 光偏向装置
JP2020076991A (ja) * 2018-11-09 2020-05-21 株式会社東芝 光デバイス
WO2021149620A1 (ja) * 2020-01-20 2021-07-29 浜松ホトニクス株式会社 光源モジュール
JP2022515816A (ja) * 2018-08-08 2022-02-22 ロッキード マーティン コーポレイション 自由空間光通信、コヒーレントlidar、及びそれ以外の用途のための平面光ヘッド
WO2023171629A1 (ja) * 2022-03-09 2023-09-14 浜松ホトニクス株式会社 半導体発光素子

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8615028B1 (en) * 2010-10-12 2013-12-24 Hrl Laboratories, Llc Vertically integrated optical phased array with pseudo-random array architecture
KR101845514B1 (ko) * 2010-12-17 2018-04-04 삼성전자주식회사 소형 광 변조기 및 이를 포함하는 광 송신기
US9229169B2 (en) 2011-08-16 2016-01-05 International Business Machines Corporation Lens array optical coupling to photonic chip
US9086608B2 (en) * 2011-09-07 2015-07-21 Alcon Research, Ltd. Laser probe with an electrically steerable light beam
WO2013078435A1 (en) * 2011-11-21 2013-05-30 California Institute Of Technology Integrated optical phased arrays
US8901576B2 (en) 2012-01-18 2014-12-02 International Business Machines Corporation Silicon photonics wafer using standard silicon-on-insulator processes through substrate removal or transfer
JP6200642B2 (ja) * 2012-11-30 2017-09-20 日本オクラロ株式会社 光学装置
US20140161385A1 (en) * 2012-12-07 2014-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Coupling to an Optical Waveguide in a Silicon Photonics Die
JP6363619B2 (ja) * 2013-01-08 2018-07-25 マサチューセッツ インスティテュート オブ テクノロジー 光フェーズドアレイ
US9476981B2 (en) 2013-01-08 2016-10-25 Massachusetts Institute Of Technology Optical phased arrays
WO2015012213A1 (ja) * 2013-07-22 2015-01-29 技術研究組合光電子融合基盤技術研究所 光電気混載基板に設けた光送信機または光送受信機の送信部
WO2015015249A1 (en) 2013-07-30 2015-02-05 Nokia Corporation Optical beams
JP6143601B2 (ja) * 2013-08-05 2017-06-07 オリンパス株式会社 画像表示装置
DE102014219663A1 (de) * 2014-09-29 2016-03-31 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Photonisch integrierter Chip, optisches Bauelement mit photonisch integriertem Chip und Verfahren zu deren Herstellung
US9746608B1 (en) * 2014-12-11 2017-08-29 Partow Technologies, Llc. Integrated optical assembly apparatus and integrated fabrication method for coupling optical energy
WO2016134332A1 (en) * 2015-02-20 2016-08-25 Hrl Laboratories, Llc Chip-scale power scalable ultraviolet optical source
CN104765102B (zh) * 2015-04-21 2018-03-13 四川飞阳科技有限公司 一种硅光子芯片的封装结构
DE102016104602A1 (de) 2016-03-14 2017-09-14 Osram Opto Semiconductors Gmbh Halbleiterlichtquelle
DE102016104616B4 (de) * 2016-03-14 2021-09-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterlichtquelle
US11456532B2 (en) 2016-05-04 2022-09-27 California Institute Of Technology Modular optical phased array
DE102016217749B4 (de) * 2016-09-16 2023-07-06 Sicoya Gmbh Photonisches Bauelement
US9831637B1 (en) * 2016-09-18 2017-11-28 Alcatel-Lucent Usa Inc. Optical modulator with vertical-cavity surface-emitting lasers
US11249369B2 (en) * 2016-10-07 2022-02-15 California Institute Of Technology Integrated optical phased arrays with optically enhanced elements
EP3336892A1 (en) * 2016-12-15 2018-06-20 Caliopa NV Photonic integrated circuit
WO2018165633A1 (en) 2017-03-09 2018-09-13 California Institute Of Technology Co-prime optical transceiver array
US11262605B2 (en) * 2017-08-31 2022-03-01 Lightwave Logic Inc. Active region-less polymer modulator integrated on a common PIC platform and method
US10527786B2 (en) * 2017-08-31 2020-01-07 Lightwave Logic Inc. Polymer modulator and laser integrated on a common platform and method
US10509164B2 (en) * 2017-09-14 2019-12-17 Lightwave Logic Inc. Guide transition device and method
EP3688422B1 (en) 2017-09-29 2024-05-15 Apple Inc. Connected epitaxial optical sensing systems
US10511146B2 (en) * 2017-11-14 2019-12-17 Lightwave Logic Inc. Guide transition device with digital grating deflectors and method
FR3074587B1 (fr) 2017-12-06 2020-01-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Puce photonique a repliement de trajet optique et structure de collimation integree
FR3077652B1 (fr) 2018-02-05 2022-05-27 Commissariat Energie Atomique Puce photonique a structure de collimation integree
TW202401933A (zh) * 2018-07-08 2024-01-01 美商光程研創股份有限公司 發光裝置
US11500154B1 (en) 2019-10-18 2022-11-15 Apple Inc. Asymmetric optical power splitting system and method
US11482649B2 (en) * 2020-07-29 2022-10-25 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and manufacturing method of semiconductor package
US20220059992A1 (en) * 2020-08-20 2022-02-24 Apple Inc. Integrated Edge-Generated Vertical Emission Laser
US11815719B2 (en) 2020-09-25 2023-11-14 Apple Inc. Wavelength agile multiplexing

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144609A (ja) 1984-12-18 1986-07-02 Omron Tateisi Electronics Co 2つの基板間の光結合装置
DE3687162D1 (de) * 1985-12-10 1993-01-07 Siemens Ag Integriert-optischer multiplex-demultiplex-modul fuer die optische nachrichtenuebertragung.
US4969712A (en) * 1989-06-22 1990-11-13 Northern Telecom Limited Optoelectronic apparatus and method for its fabrication
DE69024959T2 (de) * 1990-10-30 1996-11-14 Ibm Integrierte optische Kopfstruktur
DE59204710D1 (de) * 1991-02-08 1996-02-01 Siemens Ag Optoelektronisches Bauelement zum Aus- und Einkoppeln von Strahlung
US5854868A (en) * 1994-06-22 1998-12-29 Fujitsu Limited Optical device and light waveguide integrated circuit
JPH0846292A (ja) * 1994-07-29 1996-02-16 Furukawa Electric Co Ltd:The 半導体レーザ素子及びその製造方法
US5835646A (en) * 1995-09-19 1998-11-10 Fujitsu Limited Active optical circuit sheet or active optical circuit board, active optical connector and optical MCM, process for fabricating optical waveguide, and devices obtained thereby
JPH10209554A (ja) 1997-01-17 1998-08-07 Fujikura Ltd 面発光型半導体レーザ
US6236773B1 (en) * 1998-12-15 2001-05-22 Texas Instruments Incorporated Single wavelength semiconductor laser with grating-assisted dielectric waveguide coupler
US6628690B1 (en) * 1999-09-02 2003-09-30 Agility Communications, Inc. Opto-electronic laser with integrated modulator
NL1021205C2 (nl) * 2002-08-02 2004-02-18 Framatome Connectors Int Optisch connector samenstel, koppelstuk en werkwijze voor het positioneren van het koppelstuk en een structuur van golfgeleiders.
US7203387B2 (en) * 2003-09-10 2007-04-10 Agency For Science, Technology And Research VLSI-photonic heterogeneous integration by wafer bonding
US7327771B2 (en) * 2003-10-21 2008-02-05 Electronics And Telecommunications Research Institute WDM-PON system with optical wavelength alignment function
JP4321267B2 (ja) * 2004-01-09 2009-08-26 ソニー株式会社 光電複合装置及びこの装置に用いられる光導波路、並びに光電複合装置の実装構造
KR100684179B1 (ko) 2004-08-20 2007-02-20 한국전자통신연구원 발광표시장치
US7206472B2 (en) * 2005-03-15 2007-04-17 Fujitsu Ltd. Optical backplanes with integrated optical couplers and methods of making the same
AT503585B1 (de) * 2006-05-08 2007-11-15 Austria Tech & System Tech Leiterplattenelement sowie verfahren zu dessen herstellung
US7643709B2 (en) * 2006-05-12 2010-01-05 Interuniversitair Microelektronica Centrum (Imec) Slanted segmented coupler
US7394841B1 (en) * 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications
US7650052B2 (en) * 2007-07-05 2010-01-19 Sun Microsystems, Inc. Method and apparatus for coupling optical signals onto a semiconductor chip
US7555176B2 (en) * 2007-08-22 2009-06-30 Ccs Technology, Inc. Method for producing an optical splitter, and optical splitter
US20090290837A1 (en) * 2008-05-22 2009-11-26 The Chinese University Of Hong Kong Optical devices for coupling of light
JP2010091863A (ja) * 2008-10-09 2010-04-22 Oki Electric Ind Co Ltd 送受信モジュール

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379276B2 (en) 2011-03-29 2016-06-28 Hitachi, Ltd. Optical interconnection module and optical-electrical hybrid board
JP2012208137A (ja) * 2011-03-29 2012-10-25 Hitachi Ltd 光インターコネクトモジュールおよび光電気ハイブリッド混載ボード
JP2014216330A (ja) * 2013-04-22 2014-11-17 浜松ホトニクス株式会社 半導体レーザ装置
JP2016173524A (ja) * 2015-03-18 2016-09-29 日本電信電話株式会社 光集積素子
JP7005320B2 (ja) 2017-12-05 2022-01-21 日本放送協会 光偏向装置
JP2019101299A (ja) * 2017-12-05 2019-06-24 日本放送協会 光偏向装置
JP2022515816A (ja) * 2018-08-08 2022-02-22 ロッキード マーティン コーポレイション 自由空間光通信、コヒーレントlidar、及びそれ以外の用途のための平面光ヘッド
JP7353368B2 (ja) 2018-08-08 2023-09-29 ロッキード マーティン コーポレイション 自由空間光通信、コヒーレントlidar、及びそれ以外の用途のための平面光ヘッド
JP2020076991A (ja) * 2018-11-09 2020-05-21 株式会社東芝 光デバイス
JP2021114553A (ja) * 2020-01-20 2021-08-05 浜松ホトニクス株式会社 光源モジュール
WO2021149620A1 (ja) * 2020-01-20 2021-07-29 浜松ホトニクス株式会社 光源モジュール
JP7308157B2 (ja) 2020-01-20 2023-07-13 浜松ホトニクス株式会社 光源モジュール
WO2023171629A1 (ja) * 2022-03-09 2023-09-14 浜松ホトニクス株式会社 半導体発光素子

Also Published As

Publication number Publication date
WO2011028865A2 (en) 2011-03-10
US8515217B2 (en) 2013-08-20
EP2473874A2 (en) 2012-07-11
WO2011028865A3 (en) 2011-05-26
US20110052114A1 (en) 2011-03-03
SG178955A1 (en) 2012-04-27
KR20120054030A (ko) 2012-05-29
CN102498424A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
US8515217B2 (en) Vertical optically emitting photonic devices with electronic steering capability
US11387626B1 (en) Integrated high-power tunable laser with adjustable outputs
US5088105A (en) Optical amplifier with folded light path and laser-amplifier combination
US10707650B2 (en) High-speed VCSEL device
US8615028B1 (en) Vertically integrated optical phased array with pseudo-random array architecture
Guo et al. Two-dimensional optical beam steering with InP-based photonic integrated circuits
US7283706B2 (en) Parabolic waveguide-type collimating lens with tunable external cavity laser diode provided with the same
US6917729B2 (en) Tailored index single mode optical amplifiers and devices and systems including same
US20070002925A1 (en) External cavity laser diode system and method thereof
US20120183009A1 (en) Horizontal cavity surface emitting laser diodes, vertical illuminated photodiodes, and methods of their fabrication
US20140185980A1 (en) Silicon-On-Insulator Platform for Integration of Tunable Laser Arrays
US11435522B2 (en) Grating coupled laser for Si photonics
JP2013251394A (ja) 半導体レーザ装置
KR101940071B1 (ko) 수직 공진 표면광 레이저와 실리콘 광학소자를 이용한 외부 공진 레이저
KR102337648B1 (ko) 라이다 센서용 광위상배열 디바이스
US7437037B2 (en) Optical module having gain member and partial reflection section waveguides formed on a substrate
US11462885B2 (en) Variable-confinement monolithic master oscillator power amplifier
Misugi et al. Silicon Based High Resolution Passive Optical Phased Array Consisting of Multi-Mode Waveguides
US20060215950A1 (en) Integrated optical systems for generating an array of beam outputs
CN117178201A (zh) 包括喇叭形激光源的具有相控阵天线的光电发射器
US20060104329A1 (en) Apparatus for diode laser beam quality control
JP2014082263A (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130401