JP2013243526A - 無線通信システム及び無線通信方法 - Google Patents

無線通信システム及び無線通信方法 Download PDF

Info

Publication number
JP2013243526A
JP2013243526A JP2012115527A JP2012115527A JP2013243526A JP 2013243526 A JP2013243526 A JP 2013243526A JP 2012115527 A JP2012115527 A JP 2012115527A JP 2012115527 A JP2012115527 A JP 2012115527A JP 2013243526 A JP2013243526 A JP 2013243526A
Authority
JP
Japan
Prior art keywords
signal
transmission
transmission path
wireless communication
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012115527A
Other languages
English (en)
Inventor
Atsushi Masuno
淳 増野
Takatoshi Sugiyama
隆利 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012115527A priority Critical patent/JP2013243526A/ja
Publication of JP2013243526A publication Critical patent/JP2013243526A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmitters (AREA)

Abstract

【課題】スペクトラム圧縮伝送における伝送路推定の精度の向上を実現することができる無線通信システムを提供する。
【解決手段】スペクトラム圧縮伝送を行う無線通信システムであって、送信装置は、パイロット信号を直接拡散する直接拡散手段と、変調後のデータ信号に直接拡散したパイロット信号を重畳して重畳信号を出力する合成手段と、伝送路を介して、重畳信号に対して帯域圧縮した送信信号を送信する送信手段とを備え、受信装置は、伝送路を介して、送信信号を受信して受信信号として出力する受信手段と、受信信号を逆拡散してパイロット信号を復元する逆拡散手段と、復元したパイロット信号に基づき、伝送路の推定を行い伝送路推定値を出力する伝送路推定手段とを備えた。
【選択図】図2

Description

本発明は、送信信号のスペクトラムの一部帯域を抽出し、別信号に重畳して送信された信号を復調・復号して送信データを復元する無線通信システム及び無線通信方法に関する。
従来、無線通信や有線通信において、需要増大に伴い周波数の帯域の利用効率の向上が求められている。周波数利用効率の向上を図るための有効手段の一つとしては、複数無線システムにより同一周波数帯を共有し、空き周波数資源を限りなく減らすことで周波数資源利用率を高める手法が検討されている。非特許文献1に示されるMB−OFDM(MultiBand−Orthogonal Frequency Division Multiplexing)では、マルチキャリア信号の特徴を利用し空き周波数帯域に合わせて使用サブキャリアを決定し、周波数利用効率を高めている。
ただし、マルチキャリア信号の欠点としてPAPR(Peak to Average Power Ratio)が高いという点が挙げられ、地上系無線通信システムにおける移動無線局や、衛星通信システムにおける衛星中継器のように、搭載できるパワーアンプの制約から電力要求が厳しい無線(送信・中継)局への適用が難しいという問題を有している。
一方、非特許文献2においてSC−FDMA(Single Carrier-Frequency Division Multiple Access)が提案されている。これは、シングルキャリア変調信号をDFT(Discrete Fourier Transform)により周波数領域信号に変換し、DFTポイントのマッピング処理により送信スペクトラムを複数の帯域(以下、「サブスペクトラム」という。)に分割し、空き周波数帯に割り当てて送信することでシングルキャリア信号においても空き周波数資源の削減による周波数利用効率の向上が可能となる。ただし、サブスペクトラム間の直交性はサブスペクトル毎の周波数同期および時間同期によって成立するため、一般に非同期となる異種無線通信システム間の周波数共用には向かない。
また、非特許文献3で提案されているDSD(Direct Spectrum Division)では、サブスペクトラムが帯域制限フィルタリング処理により生成されるため、SC−FDMAよりも大幅に隣接チャネル漏洩電力を低減することができる。ゆえにSC−FDMAのようにサブスペクトラム間の直交性を保つ必要はなくなり、シングルキャリア伝送を行う異種システムの共存が容易となる。
また、DSDを活用した周波数有効利用技術としてスペクトラム圧縮伝送(例えば、特許文献1)が提案されている。スペクトラム圧縮伝送ではDSDで分解したサブスペクトラムの一部を送信側で削除することで占有周波数帯域幅を削減し、周波数利用効率を向上させる。受信側では伝送路推定を実施し復調復号を実施するが、スペクトラム削除による波形歪みおよびシンボル間干渉は受信側の誤り訂正処理等により補償する。
一方、伝送路推定手法としては従来技術としてパイロット(トレーニング)信号を伝送信号に挿入する手法が広く知られており、シングルキャリア伝送に適合するものとして時間多重型パイロットや周波数多重型パイロット、拡散(コード)多重型パイロットがある(例えば、非特許文献4)。
特開2010−040028号公報
A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Transactions on Microwave Theory and Techniques, pp. 2123 - 2138 , vol. 52, no. 9, Sept. 2004. H. G. Myung, J. Lim, and D. J. Goodman, "Single carrier FDMA for uplink wireless transmission," IEEE Vehicular Technology Magazine, vol. 1, no. 3, pp. 30-38, Sept. 2006. J. Abe, F. Yamashita, and K. Kobayashi, "Direct spectrum division transmission for highly efficient satellite communications," Advanced satellite multimedia systems conference (ASMS), IEEE, pp. 401-406, Sept. 2010. 岸山ほか「VSF−OFCDMにおけるパイロットチャネル構成の検討」、電子情報通信学会、信学技報RCS2002−169、pp.19−24、2002年 阿部ほか 「帯域分散アダプタによる既存衛星局の周波数利用効率の向上」、電子情報通信学会、2011年総合大会、p.288、2011年
しかしながら、従来の時間多重型パイロットは、非バースト通信すなわち連続信号伝送を想定する伝送システムには適用できない。例えば非特許文献5に示されるような既存モデムの送受信機の間に帯域分散アダプタを挟み、任意の伝送信号をサブスペクトラムに分割するDSD構成では、既存モデム信号を時分割することができないため時間多重型パイロット信号の挿入ができないという問題がある。
また、DSDでは広帯域にサブスペクトラムを分散配置するため、周波数多重型パイロットを使用する場合、伝送路推定精度確保の観点から、複数のパイロットキャリアを立てる必要がある。しかしながら、DSDやスペクトラム圧縮伝送が狙う目的は、占有周波数帯域幅の削減による周波数利用効率の向上であり、通信に直接的に寄与しないパイロットキャリアを複数準備することは、この目的の達成に反する行為となってしまう。
また、拡散(コード)多重型パイロットでは、スペクトラム圧縮伝送における帯域圧縮に対応することが難しい。帯域圧縮率に追従して、パイロット信号の占有周波数帯域幅をデータ信号の帯域圧縮後の占有周波数帯域に収める必要があるからである。対応策としては、拡散系列の拡散率を可変とするか、あるいは拡散系列のサンプルレートを可変とする方法がある。
しかしながら、可変拡散率を実現する符号として知られるOVSF(orthogonal variable spreading factor)符号は、2のべき乗倍でしか拡散率が変更できず、数%あるいは数十%単位での帯域圧縮制御を想定するスペクトラム圧縮伝送では拡散率の変化が過多となり、結果として十分な拡散ができず、パイロット信号の拡散利得が稼げず、またデータ信号に対して大きな干渉を与える恐れがある。またサンプルレートを可変とする場合、送受ともに帯域圧縮率に応じた各サンプルレートに対応した拡散系列乗算回路(相関器)が必要となり回路規模が大きくなるという問題がある。
本発明は、このような事情に鑑みてなされたもので、スペクトラム圧縮伝送における伝送路推定の精度の向上を実現することができる無線通信システム及び無線通信方法を提供することを目的とする。
本発明は、スペクトラム圧縮伝送を行う無線通信システムであって、送信装置は、パイロット信号を直接拡散する直接拡散手段と、変調後のデータ信号に前記直接拡散した前記パイロット信号を重畳して重畳信号を出力する合成手段と、伝送路を介して、前記重畳信号に対して帯域圧縮した送信信号を送信する送信手段とを備え、受信装置は、前記伝送路を介して、前記送信信号を受信して受信信号として出力する受信手段と、前記受信信号を逆拡散して前記パイロット信号を復元する逆拡散手段と、前記復元したパイロット信号に基づき、前記伝送路の推定を行い伝送路推定値を出力する伝送路推定手段とを備えたことを特徴とする。
本発明は、前記受信装置は、前記受信信号に基づき、送信レプリカ信号を生成する送信レプリカ生成手段と、前記送信レプリカ信号と前記伝送路推定値とを乗算することにより、受信レプリカ信号を生成する乗算手段と、前記受信信号から前記受信レプリカ信号を減算して出力する減算手段とをさらに備え、前記逆拡散手段は、前記減算手段の出力を逆拡散することにより前記パイロット信号を復元することを特徴とする。
本発明は、前記受信装置は、誤り訂正符号を復号することにより前記データ信号の圧縮成分を復元する手段をさらに備えたことを特徴とする。
本発明は、スペクトラム圧縮伝送を行うために送信装置と受信装置とから構成する無線通信システムが行う無線通信方法であって、前記送信装置が、パイロット信号を直接拡散する直接拡散ステップと、前記送信装置が、変調後のデータ信号に前記直接拡散した前記パイロット信号を重畳して重畳信号を出力する合成ステップと、前記送信装置が、伝送路を介して、前記重畳信号に対して帯域圧縮した送信信号を送信する送信ステップと、前記受信装置が、前記伝送路を介して、前記送信信号を受信して受信信号として出力する受信ステップと、前記受信装置が、前記受信信号を逆拡散して前記パイロット信号を復元する逆拡散ステップと、前記受信装置が、前記復元したパイロット信号に基づき、前記伝送路の推定を行い伝送路推定値を出力する伝送路推定ステップとを有することを特徴とする。
本発明は、前記受信装置が、前記受信信号に基づき、送信レプリカ信号を生成する送信レプリカ生成ステップと、前記受信装置が、前記送信レプリカ信号と前記伝送路推定値とを乗算することにより、受信レプリカ信号を生成する乗算ステップと、前記受信装置が、前記受信信号から前記受信レプリカ信号を減算して出力する減算ステップとをさらに有し、前記逆拡散ステップでは、前記減算ステップの出力を逆拡散することにより前記パイロット信号を復元することを特徴とする。
本発明は、前記受信装置が、誤り訂正符号を復号することにより前記データ信号の圧縮成分を復元するステップをさらに有することを特徴とする。
本発明によれば、スペクトラム圧縮伝送における伝送路推定の精度の向上を実現することができるという効果が得られる。
本発明の原理を示す説明図である。 第1の実施形態による無線通信システムの機能構成を示すブロック図である。 送信装置の回路構成を示すブロック図である。 受信装置の回路構成を示すブロック図である。 第2の実施形態による無線通信システムの機能構成を示すブロック図である。 受信装置の回路構成を示すブロック図である。 64倍拡散を行った際の拡散系列相関値と帯域圧縮率の関係を示す図である。
<第1の実施形態>
以下、図面を参照して、本発明の第1の実施形態による無線通信システムを説明する。始めに、本発明の原理について説明する。図1は、本発明の原理を示す図である。本発明は、拡散重畳型パイロットの抑圧伝送を行うものであるが、図1に示すように、データ部だけでなく、拡散重畳型パイロットも帯域圧縮して伝送を行う。そして、データ抑圧成分は誤り訂正技術の誤り訂正能力を活用し復元し、パイロット抑圧成分は逆拡散利得を活用して復元する。
図2は、第1の実施形態による無線通信システムの機能構成を示すブロック図である。図2において、符号1を伝送すべき信号を変調するモデムである。符号2は、パイロット信号を生成するパイロット信号生成器である。符号3は、パイロット信号を直接拡散する直接拡散器である。符号4は、モデム1が出力する変調信号と直接拡散器3が出力する信号とを合成する合成器である。符号5は、帯域圧縮伝送を行う送信側の帯域圧縮伝送アダプタである。符号6は伝送路である。符号7は、受信側の帯域圧縮伝送アダプタである。符号8は、逆拡散する逆拡散器である。符号9は、逆拡散したパイロット信号から伝送路を推定する伝送路推定器である。符号10は、伝送路推定器9の出力を参照して信号を復調するモデムである。
次に、図2に示す無線通信システムの動作を説明する。送信側は、直接拡散器3により直接拡散されたパイロット信号をモデム1による変調後のデータ信号に合成器4によって重畳した上で、重畳信号に対し帯域圧縮伝送アダプタ5により帯域圧縮して伝送する。これは、拡散したパイロット信号とデータ信号の重畳を帯域圧縮伝送アダプタの「前」で行うことが特徴である。一方、受信側は、受信信号を逆拡散器8に逆拡散することで、拡散前のパイロット信号を復元して、伝送路推定器9により伝送路を推定することを特徴とするものです。
これにより、パイロット信号には逆拡散利得があり、帯域圧縮による波形歪みの影響を軽減することができるため、スペクトラム圧縮伝送において伝送路を推定することができる。特に、伝送路状態(受信SNR)に応じて可変制御される帯域圧縮率に追従して、パイロット伝送帯域を可変にすることができるとともに、簡易な回路構成で、数十%程度までの帯域圧縮に柔軟に対応することができる。
次に、図3を参照して、図2に示す送信側の装置(送信装置という)の回路構成を説明する。図3は、送信装置の回路構成を示すブロック図である。図3において、符号21は、入力ビット(送信すべきデータ)を入力して誤り訂正符号化を行う誤り訂正符号化器である。符号22は、誤り訂正符号化された信号を変調する変調器である。符号23は、パイロット信号を生成するパイロット信号生成器である。符号24は、パイロット信号を直接拡散する直接拡散器である。符号25は、変調後の信号に直接拡散したパイロット信号を重畳する合成器である。符号26〜28は、合成器25から出力するベースバンド信号を入力して複数のサブスペクトラムに分割して出力する帯域分割フィルタである。ここでは、3つの帯域分割フィルタを図示したが、必要に応じて増設してもよい。3つの帯域分割フィルタを設けた場合、帯域分割フィルタ26、27、28は、それぞれがローパスフィルタ、バンドパスフィルタ、ハイパスフィルタで構成すればよい。
また、帯域分割フィルタ26、27、28は、それぞれが分割したサブスペクトラムを加算することにより、分割する前のベースバンド信号を再現できる周波数特性を有している。例えば、各サブスペクトラムの占有帯域幅が同一である場合、帯域分割フィルタ26、27、28のスロープ特性を同一に設定する。かつ、帯域分割フィルタ26の高周波側のカットオフ周波数と、帯域分割フィルタ27の低周波側のカットオフ周波数とを同一に設定する。更に、帯域分割フィルタ27の高周波側のカットオフ周波数と、帯域分割フィルタ28の低周波側のカットオフ周波数とを同一に設定することにより、上述の周波数特性を実現することができる。
符号29〜31は、設定されたフィルタ・パラメータに応じて帯域分割フィルタ26〜28から出力されるサブスペクトラムの特定周波数帯における送信エネルギーを抑圧する帯域圧縮フィルタである。符号32は、フィルタ・パラメータを設定する帯域圧縮制御回路である。帯域圧縮フィルタ29〜31は、帯域圧縮制御回路32によりフィルタ・パラメータが設定され、この設定に応じて帯域分割フィルタ26〜28から出力されるサブスペクトラムの特定周波数帯における送信エネルギーを抑圧する。これにより、帯域圧縮フィルタ29〜31は、帯域分割フィルタ26〜28から出力されるサブスペクトラムが占有する周波数帯域幅を狭め、送信に利用する各周波数帯域に収まるようにする。
符号33〜35は、帯域抑圧制御回路32の制御により、帯域分割フィルタ26〜28から出力されるサブスペクトラムと、帯域圧縮フィルタ29〜31から出力される一部の周波数帯域が抑圧されたサブスペクトラムとのいずれか一方を選択して出力するスイッチである。帯域抑圧制御回路32は、通信に利用する複数(図3においては3つ)の周波数帯域の帯域幅に応じて予め定められたフィルタのパラメータを帯域圧縮フィルタ29〜31それぞれに出力し、帯域圧縮フィルタ29〜31の周波数特性を設定する。ここで、フィルタのパラメータは、フィルタのタイプを示す情報や、カットオフ周波数を示す情報である。例えば、送信装置において、帯域圧縮フィルタ29をローパスフィルタに設定し、帯域抑圧フィルタ31をハイパスフィルタに設定し、それぞれのカットオフ周波数を適切に設定し、送信する信号のサブスペクトラムにより占有される周波数帯域幅を狭め、通信に利用する周波数帯域に収まるようにする。なお、送信する信号のサブスペクトラムに対して抑圧する帯域幅は、分割した各サブスペクトラムの総帯域幅と、通信に利用する周波数帯域の総帯域幅との差に基づいて決定する。
符号36〜38は、スイッチ33〜35から出力するサブスペクトラムを通信に利用する複数の周波数帯域それぞれに周波数変換する周波数シフタである。符号39は、周波数シフタ36〜38それぞれから出力する周波数変換されたサブスペクトラムを加算により合成する合成器である。符号40は、合成器39により合成されたスペクトラムをアンテナ41を介して送信するRF回路である。
このように、送信装置は、直接拡散によりスペクトル拡散されたパイロット信号をデータ信号に加算し重畳した上で、データ信号・パイロット信号の双方を本来の変調帯域よりも狭い通過帯域幅を持つフィルタに通過させ帯域制限して伝送を行う。
次に、図4を参照して、図2に示す受信側の装置(受信装置という)の回路構成を説明する。図4は、受信装置の回路構成を示すブロック図である。図4において、符号52は、アンテナ51を介して、送信装置より送信された信号を受信し、受信した受信信号を出力するRF回路である。符号53〜55は、RF回路52から出力す信号を入力して帯域を制限して出力する帯域制限フィルタであり、それぞれが送信装置に備えられている帯域分割フィルタ26〜28と同じ周波数特性を有し、特定の周波数帯域のみを通過させる通過させる特性を有する。ここでは、3つの帯域制限フィルタを図示したが、必要に応じて増設してもよい。帯域制限フィルタ53〜55と、帯域分割フィルタ26〜28とには、例えば、一対でフルロールオフ特性を満足するルートロールオフフィルタなどを用いる。
符号56〜58は、ヌル信号を生成して出力するヌル信号生成器である。符号59は、帯域圧縮動作を制御する帯域圧縮制御回路である。符号63〜65は、帯域圧縮制御回路59の制御により、帯域制限フィルタ53〜55から出力されるサブスペクトラムと、ヌル信号生成器56〜58から出力するヌル信号とのいずれか一方を選択して出力するスイッチである。符号63〜65は、スイッチ60〜62から出力するサブスペクトラムを通信に利用する複数の周波数帯域それぞれに周波数変換する周波数シフタである。符号66は、周波数シフタ63〜65それぞれから出力する周波数変換されたサブスペクトラムを加算により合成する合成器である。
符号67は、合成器66から出力する合成後の受信信号に対して逆拡散を行い拡散前のパイロット信号を復元する逆拡散器である。符号68は、復元されたパイロット信号から伝送路の推定を行う伝送路推定器である。符号69は、伝送路推定器68の出力に基づき、合成器66から出力する受信信号を元の送信信号を復元する等化器である。符号70は、復元された送信信号の復調を行う復調器である。符号71は、復調された送信信号の誤り訂正符号の復号を行い、元のデータ信号を復元する復号器である。
このように、受信装置で受信信号を逆拡散することで拡散前のパイロット信号を復元する。パイロット信号も拡散後帯域圧縮されているため、波形歪みの影響を受けるが、逆拡散利得により拡散前のパイロット信号を復元することができる。
送信信号の占有帯域を分割し、生成された各サブ変調信号を周波数軸上で分散配置して、不連続な空き帯域を有効活用して送信する帯域分割伝送方式の1つであるスペクトラム圧縮伝送では、伝送路の状態に応じて占有周波数帯域を制御している。このスペクトラム圧縮伝送における伝送路推定法として拡散多重型パイロットを用いて、拡散したパイロット信号とデータ信号の重畳を帯域圧縮伝送アダプタの「後」で行った場合、データ部の帯域圧縮に追随してパイロット信号の占有帯域を可変にすることが困難となる。本実施形態による送信装置では、直接拡散したパイロット信号を変調後のデータ信号に重畳した上で、重畳信号に対して帯域圧縮して伝送するようにした。これは、拡散したパイロット信号とデータ信号の重畳を帯域圧縮伝送アダプタの「前」で行うことを意味する。そして、受信装置は、受信信号を逆拡散することで、パイロット信号を復元して、伝送路を推定するようにした。これにより、パイロット信号には逆拡散利得があり、帯域圧縮による波形歪みの影響を軽減することができるため、スペクトラム圧縮伝送において伝送路を確実に推定することができるようになる。
<第2の実施形態>
次に、本発明の第2の実施形態による無線通信システムを説明する。図5は、第2の実施形態による無線通信システムの機能構成を示すブロック図である。この図において、図2に示すシステムと同一の部分には同一の符号を付し、その説明を省略する。この図に示すシステムが図2に示すシステムと異なる点は、送信レプリカ生成器11、乗算器12及び減算器13が新たに設けられている点である。
図5に示す無線通信システムは、モデム10によって仮復調復号したデータ信号から、送信レプリカ生成器11によって生成された送信レプリカ信号と伝送路推定器9から出力する信号とを乗算器12によって乗算することにより、受信レプリカ信号を生成し、減算器13によって、受信レプリカ信号を受信信号から差し引いて逆拡散器8に入力する構成である。これにより逆拡散により得られる拡散前のパイロット信号精度を向上させることが可能となる。また、この処理を繰り返すことによりさらにパイロット信号精度を向上させることができる。
次に、図6を参照して、図5に示す受信側の装置(受信装置という)の回路構成を説明する。図6は、受信装置の回路構成を示すブロック図である。図5に示す送信側の回路構成は、図3に示す回路構成と同様であるのでここでは詳細な説明を省略する。図6において、図4に示す回路と同一の部分には同一の符号を付し、その説明を省略する。この図に示す回路と図2に示す回路とは、以下で説明する点で相違する。
符号72は、復号器71から出力する仮復調復号したデータ信号を再度符号化する再符号化器である。符号73は、再符号化されたデータ信号を再度変調する再変調器である。符号74〜76は、再変調器73から出力する再変調後の信号を入力して複数のサブスペクトラムに分割して出力する帯域分割フィルタである。
符号77〜79は、設定されたフィルタ・パラメータに応じて帯域分割フィルタ74〜76から出力されるサブスペクトラムの特定周波数帯における送信エネルギーを抑圧する帯域圧縮フィルタである。符号80は、フィルタ・パラメータを設定する帯域圧縮制御回路である。帯域圧縮フィルタ29〜31は、帯域圧縮制御回路32によりフィルタ・パラメータが設定され、この設定に応じて帯域分割フィルタ74〜76から出力されるサブスペクトラムの特定周波数帯における送信エネルギーを抑圧する。
符号81〜83は、帯域抑圧制御回路80の制御により、帯域分割フィルタ74〜76から出力されるサブスペクトラムと、帯域圧縮フィルタ77〜79から出力される一部の周波数帯域が抑圧されたサブスペクトラムとのいずれか一方を選択して出力するスイッチである。符号84は、スイッチ81〜83それぞれから出力する信号を合成する合成器である。符号85は、合成器84から出力する合成後の信号と伝送路推定器68から出力信号とを乗算することにより受信レプリカ信号を生成する伝送路計数乗算器である。符号86は、合成器66から出力する合成後の信号から伝送路係数乗算器85から出力する受信レプリカ信号を減算して逆拡散器67に対して出力する減算器である。
このように、逆拡散して復元された拡散前のパイロット信号を用いて伝送路推定を実施し、仮復調復号して得られたデータ信号を元に、送信レプリカ信号を生成し、さらに伝送路推定値を用いて受信レプリカ信号を生成し、受信信号から受信レプリカ信号を差し引いたものを再度逆拡散しパイロット信号を復元すると、パイロット信号から見た干渉成分であるデータ信号がある程度除去されることが期待されるため、パイロット信号の復元精度を高めることができる。また、この処理を繰り返すことで、さらにパイロット信号の復元精度を向上させることが可能となる。
次に、図7を参照して、拡散重畳型パイロットの抑圧伝送において、前述した無線通信システムを適用した場合の拡散系列相関値と帯域圧縮率の関係について説明する。図7は、64倍拡散を行った際の拡散系列相関値と帯域圧縮率の関係を示す図である。図7から明らかなように、数十%程度の帯域圧縮であれば拡散系列の劣化はほとんどない。
以上、図面を参照して本発明の実施の形態を説明してきたが、上記実施の形態は本発明の例示に過ぎず、本発明が上記実施の形態に限定されるものではないことは明らかである。したがって、本発明の技術思想及び範囲を逸脱しない範囲で構成要素の追加、省略、置換、その他の変更を行っても良い。
拡散重畳型のパイロット信号の抑圧伝送を行うことが不可欠な用途に適用できる。
1・・・モデム(送信)、2・・・パイロット信号生成器、3・・・直接拡散器、4・・・合成器、5・・・帯域圧縮伝送アダプタ(送信)、6・・・伝送路、7・・・帯域圧縮伝送アダプタ(受信)、8・・・逆拡散(相関)器、9・・・伝送路推定器、10・・・モデム(受信)、11・・・送信レプリカ生成器、12・・・乗算器、13・・・減算器

Claims (6)

  1. スペクトラム圧縮伝送を行う無線通信システムであって、
    送信装置は、
    パイロット信号を直接拡散する直接拡散手段と、
    変調後のデータ信号に前記直接拡散した前記パイロット信号を重畳して重畳信号を出力する合成手段と、
    伝送路を介して、前記重畳信号に対して帯域圧縮した送信信号を送信する送信手段とを備え、
    受信装置は、
    前記伝送路を介して、前記送信信号を受信して受信信号として出力する受信手段と、
    前記受信信号を逆拡散して前記パイロット信号を復元する逆拡散手段と、
    前記復元したパイロット信号に基づき、前記伝送路の推定を行い伝送路推定値を出力する伝送路推定手段とを備えた
    ことを特徴とする無線通信システム。
  2. 前記受信装置は、
    前記受信信号に基づき、送信レプリカ信号を生成する送信レプリカ生成手段と、
    前記送信レプリカ信号と前記伝送路推定値とを乗算することにより、受信レプリカ信号を生成する乗算手段と、
    前記受信信号から前記受信レプリカ信号を減算して出力する減算手段とをさらに備え、
    前記逆拡散手段は、前記減算手段の出力を逆拡散することにより前記パイロット信号を復元することを特徴とする請求項1に記載の無線通信システム。
  3. 前記受信装置は、
    誤り訂正符号を復号することにより前記データ信号の圧縮成分を復元する手段をさらに備えたことを特徴とする請求項1または2に記載の無線通信システム。
  4. スペクトラム圧縮伝送を行うために送信装置と受信装置とから構成する無線通信システムが行う無線通信方法であって、
    前記送信装置が、パイロット信号を直接拡散する直接拡散ステップと、
    前記送信装置が、変調後のデータ信号に前記直接拡散した前記パイロット信号を重畳して重畳信号を出力する合成ステップと、
    前記送信装置が、伝送路を介して、前記重畳信号に対して帯域圧縮した送信信号を送信する送信ステップと、
    前記受信装置が、前記伝送路を介して、前記送信信号を受信して受信信号として出力する受信ステップと、
    前記受信装置が、前記受信信号を逆拡散して前記パイロット信号を復元する逆拡散ステップと、
    前記受信装置が、前記復元したパイロット信号に基づき、前記伝送路の推定を行い伝送路推定値を出力する伝送路推定ステップと
    を有することを特徴とする無線通信方法。
  5. 前記受信装置が、前記受信信号に基づき、送信レプリカ信号を生成する送信レプリカ生成ステップと、
    前記受信装置が、前記送信レプリカ信号と前記伝送路推定値とを乗算することにより、受信レプリカ信号を生成する乗算ステップと、
    前記受信装置が、前記受信信号から前記受信レプリカ信号を減算して出力する減算ステップとをさらに有し、
    前記逆拡散ステップでは、前記減算ステップの出力を逆拡散することにより前記パイロット信号を復元することを特徴とする請求項4に記載の無線通信方法。
  6. 前記受信装置が、誤り訂正符号を復号することにより前記データ信号の圧縮成分を復元するステップをさらに有することを特徴とする請求項4または5に記載の無線通信方法。
JP2012115527A 2012-05-21 2012-05-21 無線通信システム及び無線通信方法 Pending JP2013243526A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115527A JP2013243526A (ja) 2012-05-21 2012-05-21 無線通信システム及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115527A JP2013243526A (ja) 2012-05-21 2012-05-21 無線通信システム及び無線通信方法

Publications (1)

Publication Number Publication Date
JP2013243526A true JP2013243526A (ja) 2013-12-05

Family

ID=49844011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115527A Pending JP2013243526A (ja) 2012-05-21 2012-05-21 無線通信システム及び無線通信方法

Country Status (1)

Country Link
JP (1) JP2013243526A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109607A (ja) * 2013-12-05 2015-06-11 日本電信電話株式会社 帯域分散伝送システム、帯域分散伝送方法、送信装置および受信装置
WO2015129195A1 (ja) * 2014-02-28 2015-09-03 日本電気株式会社 無線送信装置、無線受信装置、無線通信システムおよび無線通信方法
JP2017069630A (ja) * 2015-09-28 2017-04-06 日本電信電話株式会社 無線通信システム及び無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CSNJ201110040290; 増野  淳 外: 'スペクトラム抑圧型伝送におけるサブスペクトラムレプリカを用いた波形等化の提案' 電子情報通信学会2011年総合大会講演論文集  通信1 , 20110228, p.290 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109607A (ja) * 2013-12-05 2015-06-11 日本電信電話株式会社 帯域分散伝送システム、帯域分散伝送方法、送信装置および受信装置
WO2015129195A1 (ja) * 2014-02-28 2015-09-03 日本電気株式会社 無線送信装置、無線受信装置、無線通信システムおよび無線通信方法
JP2017069630A (ja) * 2015-09-28 2017-04-06 日本電信電話株式会社 無線通信システム及び無線通信方法

Similar Documents

Publication Publication Date Title
JP4119696B2 (ja) 送信装置、受信装置及び無線通信方法
US7356075B2 (en) Method and apparatus for signal separation
JP6465469B2 (ja) 高性能モバイルフロントホール向けの組込み型制御信号によるカスケード波形変調
US7307943B2 (en) Mobile station, base station, communication system, and communication method
JP5237214B2 (ja) 送信装置、受信装置、または無線通信の処理方法
US20110080936A1 (en) Orthogonal spread-spectrum waveform generation with non-contiguous spectral occupancy for use in cdma communications
CA2902073C (en) Improvement of spread spectrum gmsk signals
Dommel et al. 5G in space: PHY-layer design for satellite communications using non-orthogonal multi-carrier transmission
US20020118783A1 (en) Smart antenna based spectrum multiplexing using a pilot signal
WO2017010623A1 (ko) 무선통신 시스템에서 비선형 자기간섭 채널을 추정하기 위한 방법 및 이를 위한 장치
WO2002069523A1 (en) Smart antenna based spectrum multiplexing using a pilot signal
JP2013243526A (ja) 無線通信システム及び無線通信方法
WO2014079209A1 (zh) 基站及其信号回传的方法、设备
JP2001274768A (ja) 通信装置及び通信方法
US20120064848A1 (en) Low Sample Rate Peak Power Reduction
JP5290006B2 (ja) 送信装置、受信装置および通信装置
JP4696012B2 (ja) 無線通信システムおよび受信装置
JP5502219B2 (ja) 無線通信システム、及び、ベースバンドユニット
De Gaudenzi et al. A performance comparison of orthogonal code division multiple-access techniques for mobile satellite communications
JP5897651B2 (ja) 通信方法、通信装置および帯域合成回路
JP5296240B1 (ja) 受信装置および受信方法
JP5718785B2 (ja) 無線通信システム、無線受信機および無線送信機
JP2018121204A (ja) コンテンションベースの通信システム
JP4963097B2 (ja) 伝送システム、送信機、受信機及び伝送方法
JP5583243B2 (ja) 送信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804