JP2013243304A - 波長モニタ、及び波長モニタリング方法 - Google Patents

波長モニタ、及び波長モニタリング方法 Download PDF

Info

Publication number
JP2013243304A
JP2013243304A JP2012116749A JP2012116749A JP2013243304A JP 2013243304 A JP2013243304 A JP 2013243304A JP 2012116749 A JP2012116749 A JP 2012116749A JP 2012116749 A JP2012116749 A JP 2012116749A JP 2013243304 A JP2013243304 A JP 2013243304A
Authority
JP
Japan
Prior art keywords
light
wavelength
filter
light receiving
receiving surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012116749A
Other languages
English (en)
Inventor
Keita Mochizuki
敬太 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012116749A priority Critical patent/JP2013243304A/ja
Publication of JP2013243304A publication Critical patent/JP2013243304A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】装置を大型化することなくモニタ波長間隔の狭小化を図る。
【解決手段】波長モニタ10は、光源30と、フィルタ50と、検出器60とを有している。フィルタ50は、光の波長に対して周期的な透過率を有する。光源30から発せられて、フィルタ50を透過した光は、この光の波長に応じた強度を有する。検出器60は、フィルタ50を透過した光を、互いに異なる位置に配置された複数の受光面で検出する。これにより、検出器60は、フィルタ50を透過した光の空間分布を検出することができる。この空間分布は、光の波長に依存しており、フィルタ50の透過率とは異なる特性を示す。したがって、複数の受光面を適当に配置して光の空間分布を検出することにより、装置を大型化することなくモニタ波長間隔の狭小化を図ることができる。
【選択図】図1

Description

本発明は、波長モニタ、及び波長モニタリング方法に関する。
近年、高速に大容量のデータを送受信するために、WDM(Wavelength Division Multiplexing, 波長分割多重方式)技術を中核とする光通信技術が利用されている。WDM技術は、波長が異なる複数の光を1本の光ファイバに重畳することにより、多数の信号を同時に伝送する技術である。
WDM技術では、保守や運営の効率化の観点から、所望の波長の光を射出することが可能な光源が用いられる。この種の光源を用いる場合には、光源からの射出光の波長をモニタリングする必要がある。そこで、射出光の波長をモニタリングするための波長モニタが提案され、用いられている(例えば、特許文献1を参照)。
特許文献1に記載の技術に代表される一般的な波長モニタは、光を透過させるエタロン等のフィルタを備えている。フィルタを透過した光の強度は、フィルタの透過率に従い、光の波長に依存する。したがって、フィルタを透過した光を受光して、この光の強度を電気信号に変換する受光素子を用いると、光の波長を間接的にモニタリングすることができる。
特開2003−258362号公報
光の波長が変化したときにフィルタの透過率等が変動する周期は、フリースペクトルレンジ(以下、FSRという)と呼ばれる。このFSRが小さいほど、モニタ可能な波長間隔が小さくなる。フィルタの透過率のFSRは、フィルタの大きさに反比例する。このため、波長モニタのモニタ波長間隔を小さくするためにFSRを小さくしようとすると、フィルタのサイズが大きくなり、結果的に装置が大型化するおそれがある。
本発明は、上記の事情に鑑みてなされたもので、装置を大型化することなくモニタ波長間隔の狭小化を図ることを目的とする。
上記目的を達成するため、本発明の波長モニタは、
入射する光の波長に対する透過特性が周期的なフィルタと、
前記フィルタを透過した透過光の進行方向と交差する方向に離間して配置される複数の受光面を有し、前記複数の受光面に入射する前記透過光の強度に応じた信号を出力する第1検出手段と、
を備える。
本発明によれば、第1検出手段は、互いに離間して配置された複数の受光面で光を検出する。そのため、第1検出手段によって検出される光は、フィルタを透過した光の空間分布に応じたものとなる。この空間分布は、光の波長に依存する。したがって、複数の受光面を適当に配置することで、第1検出手段によって検出される光のFSRを、フィルタが有する透過率のFSRよりも短くすることができる。これにより、装置を大型化することなくモニタ波長間隔の狭小化を図ることができる。
第1の実施形態に係る波長モニタの構成を示す図である。 フィルタを透過する光を示す図である。 フィルタの透過率の特性の概形を示す図である。 複数の周波数それぞれについてフィルタを透過した光の強度分布を示す図である。 強度分布と2個の受光面との位置関係を示す図である。 強度分布と単一の受光面との位置関係を示す図である。 単一の受光面で光を検出した結果を示す図である。 2個の受光面で光を検出した結果を示す図である。 第2の実施形態に係る検出器を示す図である。 第3の実施形態に係る検出器を示す図である。 第4の実施形態に係る波長モニタの構成を示す図である。 第5の実施形態に係る波長モニタの構成を示す図である。 変形例に係る波長モニタの構成を示す図である。
以下、本発明の実施形態を、図面を参照しつつ詳細に説明する。なお、説明にあたっては、相互に直交するX軸、Y軸及びZ軸からなる座標系を用いる。
(第1の実施形態)
本実施形態に係る波長モニタ10は、図1に示されるように、キャリア20、光源30、レンズ40、フィルタ50、及び検出器60を有している。キャリア20は、波長モニタ10の各構成要素を支持する台座である。
光源30は、例えば、半導体基板上に形成された半導体レーザであって、レーザ光を+X方向及び−X方向の2方向へ向けて射出する。また、光源30は、射出されるレーザ光の波長を、1.569〜1.571μmの範囲内で変更することができる。−X方向へ射出されたレーザ光は、光通信等に用いられる。一方、+X方向へ射出されたレーザ光は、図1に示されるように拡散光B30となって、波長のモニタリングに用いられる。以下では、レーザ光を単に光という。
レンズ40は、光源30から射出された拡散光B30を、平行光B40にコリメートする。レンズ40は、拡散光B30の射出点との距離が1mmとなる位置に配置される。なお、レンズ40の焦点距離は、例えば1mmである。また、Y軸上において、レンズ40の中心と、拡散光B30の射出点とは、同一の位置に配置される。
フィルタ50は、平行光B40を所定の透過率で透過させる光学素子(エタロン、又はファブリペロー型干渉計)である。フィルタ50は、X軸上においてレンズ40の中心との距離が2mmとなる位置に配置される。また、フィルタ50の形状は、略直方体である。
図1には、平行光B40のうち光線R40がフィルタ50に入射する状態が示されている。フィルタ50に入射した光線R40は、フィルタ50の内部で反射を繰り返しながら、フィルタ50の+X側へ一部を出射させる。フィルタ50の+X側から出射した光は、干渉光B50となる。
フィルタ50を透過する光について、図2を用いて詳細に説明する。図2に示されるフィルタ50の厚さDは、例えば2mmである。フィルタ50は、水晶51、及び反射面F51、F52を有している。
水晶51の屈折率は、例えば1.5である。また、反射面F51、F52は、例えば、水晶51に蒸着された誘電体多層膜である。反射面F51は、水晶51の−X側の面上に形成され、反射面F52は、水晶51の+X側の面上に形成される。これにより、反射面F51、F52は、互いに対向する平行な面となる。光源30から射出される光の波長において、反射面F51、F52の反射率は、例えば約0.95であって、透過率は、例えば約0.06である。
図2に示されるように、X軸に沿って空気中を伝播する光線R40が、入射角θでフィルタ50に入射するように、フィルタ50は配置される。入射角θは、例えば4度(=0.07rad)である。光線R40の一部は、スネルの法則に従い、屈折角ψで屈折して、水晶51内を伝播する光線R51となる。
光線R51は、反射面F52で反射される光線R52と、反射面F52を透過する光線R53とに分岐する。光線R52の一部は反射面F51で反射して、光線R54となる。光線R54の一部は、反射面F52を透過して光線R55となる。さらに、水晶51内を伝播する光は、反射及び透過を繰り返す。そして、反射面F52を透過した光線は、干渉光B50となって、互いに干渉する。
続いて、干渉光B50の干渉について、光線R53、R55を例に説明する。水晶51の屈折率をnとし、空気の屈折率を1とすると、光線R53、R55の光路差ΔLは、以下の式(1)、(2)を用いて示される。
Figure 2013243304
なお、上記式(1)右辺の第1項は、図2に示される光線R52、R54の経路長の和を示す。また、上記式(1)右辺の第2項は、図2に示される光線R56の一部の経路長P56を示す。この経路長P56は、光線R55の出射点を通り光線R53に垂直な直線L56により規定される。
光路差ΔLが波長の整数倍となる場合に、光線R53、R55は互いに強めあって、干渉光B50の強度が大きくなる。この場合の光線R53、R55の周波数Wiは、光速をc、干渉次数(正の整数)をmとして、以下の式(3)を用いて表される。
Figure 2013243304
上記式(3)を用いて、干渉光B50の強度が大きくなる周波数の間隔Spが導かれる。この間隔Spは、干渉光B50の強度のFSRであって、具体的には、以下の式(4)を用いて表される。
Figure 2013243304
上記式(4)に示されるように、間隔Spは、フィルタ50の厚さDに反比例する。また、上記式(4)から、本実施形態に係る間隔Spは、約50GHzと導かれる。
なお、光線R53、R55の干渉を例に説明したが、干渉光B50を構成する他の光線の組み合わせについても、周波数Wi及び間隔Spは、上記式(3)、(4)で示される。また、フィルタ50に入射した光線R40の透過・干渉を例に説明したが、平行光B40を構成する他の光線の透過・干渉についても、周波数Wi及び間隔Spは、上記式(3)、(4)で示される。
また、干渉光B50の強度は、フィルタ50の透過率を意味する。このため、フィルタ50の透過率は、干渉光B50の強度と同様に、周波数(波長)に対して図3に示されるような特性を有する。フィルタ50の透過率は、周波数(波長)が変化すると、間隔Spに応じた周期で周期的に変化する。
続いて、干渉光B50の強度の空間分布について、図4を用いて説明する。図4には、周波数W1〜W5の光がフィルタ50に入射したときに、フィルタ50から射出される干渉光B50の強度分布Id1〜Id5が示されている。周波数W1と周波数W5との差は、間隔Spに相当する。周波数W2は周波数W1よりSp/4大きく、周波数W3は周波数W2よりSp/4大きく、周波数W4は周波数W3よりSp/4大きい。また、周波数W1は、図3の点P1における波長に対応している。同様に、周波数W2〜W5それぞれは、点P2〜P5それぞれにおける波長に対応している。
分布Id1、Id3、Id5それぞれの面積分値は、互いに同程度の値となる。分布Id2の面積分値は、最小の値となる。また、分布Id4の面積分値は、最大の値となる。面積分値はフィルタの透過率に相当する。このため、干渉光B50の周波数が周波数W1から周波数W5に変化したとすると、フィルタの透過率は図3の曲線に示されるように増減し、面積分値も透過率の変化に同期するように増減する。
図4に示される分布Id1〜Id5それぞれのうち白色の部分は、干渉光B50の強度が最も大きくなる部分(以下、最大光点という)である。図4を見るとわかるように、干渉光B50の最大光点の位置は、光の周波数によって異なっている。ただし、分布Id5は、分布Id1と同様の分布であるため、分布Id1、Id5の最大光点は、互いに等しい位置にある。
図1に戻り、検出器60は、例えばフォトダイオードであって、受光面61、62を有している。検出器60は、受光面61、62それぞれに入射した光の強度の和に応じた大きさの電流を出力する。受光面61、62それぞれの形状は、一辺が250μmの正方形である。また、受光面61、62は、受光面61、62の間の距離が100μmとなるように配置される。
図5には、干渉光B50の強度分布と、受光面61、62とが示されている。図5に示されるように、分布Id1、Id5の最大光点は、受光面62に含まれる。また、分布Id2、Id3の最大光点は、受光面61に含まれる。分布Id4の最大光点は、受光面61、62のいずれにも含まれない。
ここで、本実施形態に係る波長モニタ10の効果を説明するために、比較対象となる参考例について説明する。この参考例において、干渉光B50は、単一の受光面66で受光される。受光面66の形状は長方形であって、この長方形のY軸方向の一辺の長さは500μm、Z軸方向の一辺の長さは250μmである。
受光面66は、図6に示される位置に配置され、分布Id1〜Id5の最大光点をすべて含んでいる。このため、受光面66を用いて、分布Id1〜Id5相互間における空間分布の差異を観測することは、非常に困難である。
図7には、参考例のシミュレーション結果が示されている。図7の縦軸の波長モニタ係数は、受光面66を有する検出器の出力を示す。すなわち、波長モニタ係数は、受光面66で受光された干渉光B50の強度を示している。このため、波長モニタ係数は、図3に示されるフィルタ50の透過率とほぼ一致する。その結果、波長モニタ係数のFSRは、図3に示される強度の周期とほぼ等しくなる。
一方、図8には、本実施形態に係る波長モニタ10のシミュレーション結果が示されている。図8の波長モニタ係数は、検出器60の出力を示す。すなわち、この波長モニタ係数は、受光面61、62で検出された光の強度の和を示している。
図8に示されるように、本実施形態に係る波長モニタ係数は、波長に対して周期的な特性を有している。また、この波長モニタ係数のFSRは、参考例のFSRの約1/2となる。参考例のFSRは、フィルタ50の光学特性(透過率)により規定された。このため、本実施形態では、フィルタ50に固有のFSRよりも小さいFSRを有する波長モニタ係数を得ることができる。これにより、フィルタ50のサイズを変更することなく、波長モニタ10のモニタ波長間隔を狭小化することができる。
なお、本実施形態に係る波長モニタ係数の周期は、任意に変更することができる。例えば、受光面61、62の間の距離や大きさ、または受光面の数を変更することにより、波長モニタ係数の周期を任意に設定することができる。
(第2の実施形態)
続いて、第2の実施形態について、上述の第1の実施形態との相違点を中心に説明する。なお、上記実施形態と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
本実施形態に係る検出器60は、第1の実施形態に係る受光面61、62に代えて、互いに接する受光面601〜605を有している。
図9に示されるように、受光面601、603、605の形状は正方形であって、この正方形の一辺の長さは250μmである。また、受光面602、604の形状は、長方形である。この長方形のY軸に平行な辺の長さは100μmであって、Z軸に平行な辺の長さは250μmである。
ワイヤWr11、Wr21には、受光面601で受光された光の強度に応じた大きさの電流が流れる。また、ワイヤWr22には、受光面602で受光された光の強度に大きさの応じた電流が流れる。また、ワイヤWr13、Wr23には、受光面603で受光された光の強度に応じた大きさの電流が流れる。また、ワイヤWr24には、受光面604で受光された光の強度に応じた大きさの電流が流れる。また、ワイヤWr15、Wr25には、受光面605で受光された光の強度に応じた大きさの電流が流れる。
ワイヤWr11、Wr13、Wr15は、配線Wr10に接続される。これにより、配線Wr10には、受光面601、603、605で受光された光の強度の総和に応じた大きさの電流が流れる。受光面601、603、605それぞれは、互いに100μmだけ離間している。このため、配線Wr10を流れる電流を検出器60が出力する場合に、波長モニタ係数は、図8に示されるものと同様となる。
一方、ワイヤWr21、Wr22、Wr23、Wr24、Wr25は、配線Wr20に接続される。これにより、配線Wr20には、受光面601〜605それぞれで受光された光の強度の和に応じた大きさの電流が流れる。配線Wr20に流れる電流の大きさは、連続した単一の受光面で受光された光の強度に応じたものと等しくなる。そのため、配線Wr20を流れる電流を検出器60が出力する場合に、波長モニタ係数は、図7に示されるものと同様となる。
波長モニタ10は、検出器60の出力として用いる電流を、配線Wr10、Wr20から選択可能であるように構成される。例えば、波長モニタ10の使用者による操作に応じて、波長モニタ10は、配線Wr10又は配線Wr20を流れる電流を選択して、出力する。
以上説明したように、本実施形態に係る波長モニタ10は、配線Wr10、Wr20を選択することで、モニタ波長間隔を変更することができる。
(第3の実施形態)
続いて、第3の実施形態について、上述の第2の実施形態との相違点を中心に説明する。なお、上記実施形態と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
本実施形態に係る検出器60は、第2の実施形態に係る受光面602、604に代えて、干渉光B50を受光しない不感領域612、614と、受光面616とを有している。
不感領域612、614は、第2の実施形態に係る受光面602、604と同様の形状を有している。また、図10に示されるように、受光面616の形状は、長方形である。また、この長方形のZ軸に平行な辺の長さは100μmである。
受光面616は、受光面601、603、605と接している。また、干渉光B50の中心が、受光面616と受光面601、603、605との境界上に位置するように、各受光面が配置される。これにより、光の波長が変化した場合に、最大光点は、受光面616と受光面601、603、605との境界上を移動する。
ワイヤWr31には、受光面601で受光された光の強度に応じた大きさの電流が流れる。また、ワイヤWr33には、受光面603で受光された光の強度に応じた大きさの電流が流れる。また、ワイヤWr35には、受光面605で受光された光の強度に応じた大きさの電流が流れる。また、ワイヤWr46には、受光面616で受光された光の強度に応じた大きさの電流が流れる。
ワイヤWr31、Wr33、Wr35は、配線Wr30に接続される。これにより、配線Wr30には、受光面601、603、605で受光された光の強度の総和に応じた大きさの電流が流れる。受光面601、603、605それぞれは、互いに100μmだけ離間している。このため、配線Wr30を流れる電流を検出器60が出力する場合に、波長モニタ係数は、図8に示されるものと同様となる。
一方、ワイヤWr46は、配線Wr40に接続される。配線Wr40に流れる電流の大きさは、連続した単一の受光面616で受光された光の強度に応じたものとなる。これにより、配線Wr40を流れる電流を検出器60が出力する場合に、波長モニタ係数は、図7に示されるものと同様となる。
波長モニタ10は、検出器60の出力として用いる電流を、配線Wr30、Wr40から選択可能であるように構成される。
以上説明したように、本実施形態に係る波長モニタ10は、配線Wr30、Wr40を選択することで、モニタ波長間隔を変更することができる。
(第4の実施形態)
続いて、第4の実施形態について、上述の第1の実施形態との相違点を中心に説明する。なお、上記実施形態と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
本実施形態は、図11に示されるように、波長モニタ10が温調素子70及びセンサ71を備える点で、第1の実施形態と異なる。
温調素子70は、例えばペルチェ素子から構成される。温調素子70は、センサ71により計測された温度に従って、フィルタ50及び検出器60の温度を一定に保つ。本実施形態に係るフィルタ50及び検出器60は、温調素子70上に配置される。
以上説明したように、温調素子70によりフィルタ50の温度が調整される。これにより、フィルタ50の透過率が温度により変動してしまうことを防ぐことができる。ひいては、モニタ波長間隔を狭小化することができる。
(第5の実施形態)
続いて、第5の実施形態について、上述の第1の実施形態との相違点を中心に説明する。なお、上記実施形態と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
本実施形態は、図12に示されるように、ビームスプリッタ80、検出器81、及びコントローラ82を備える点で、第1の実施形態と異なっている。
ビームスプリッタ80は、レンズ40とフィルタ50との間に配置される。また、ビームスプリッタ80は、平行光B40を平行光B41、B42に分岐させる。具体的には、ビームスプリッタ80は、平行光B40の一部を透過させて、平行光B41をフィルタ50に入射させる。また、ビームスプリッタ80は、平行光B40の一部を反射して、−Y方向へ伝播する平行光B42とする。
検出器81は、平行光B42を直接受光して、平行光B42の強度を検出する。
コントローラ82は、検出器60によって検出された光の強度を、検出器81で検出された強度で規格化する。そして、コントローラ82は、規格化された強度を波長モニタ係数として出力する。
以上説明したように、検出器81は、光源30から射出された光の一部を、フィルタ50を介さずに直接受光する。このため、検出器81は、光源30から射出された光の強度の経時変化を直接検出することができる。
また、検出器60により検出された光の強度は、コントローラ82によって、検出器81により検出された光の強度で規格化される。これにより、波長モニタ10は、光源30から射出された光の経時変化に依存しない安定な波長モニタ係数を出力することができる。
なお、本実施形態では、ビームスプリッタ80を省いて、波長モニタ10を構成することもできる。例えば、検出器81に代えて、図13に示されるように、平行光B40の一部が検出器83に直接入射するように、検出器83を配置してもよい。
以上、本発明の実施形態について説明したが、本発明は上記実施形態によって限定されるものではない。
例えば、光源30、レンズ40、検出器60等の寸法や形状、材料、配置、個数は、上記実施形態に限らず、任意に変更可能である。
例えば、上記実施形態に係る波長モニタ10は、光源30を1個だけ備えたが、複数の光源30を有してもよい。また、出射されるレーザ光の波長範囲は1.569〜1.571μmである必要はない。また、光源30は、レーザ光の発振器である必要はない。例えば、波長モニタに接続された光ファイバを通じて、外部から入力されたレーザ光の波長をモニタリングする波長モニタを構成することもできる。
また、レンズ40の焦点距離は、1mmに限定されない。1mm以外の焦点距離を有するレンズを用いて波長モニタ10を構成することもできる。
また、フィルタ50を構成する水晶51に代えて、石英を用いることもできる。また、Si、GaAs、InP等の半導体材料を用いてもよい。あるいは、内部に空間(空気)を有するエアギャップエタロンをフィルタ50として用いてもよい。また、フィルタ50の形状は直方体に限らず、平行な面を有する円柱であってもよい。さらに、平行とならない反射面を対向させてフィルタ50を形成することもできる。
また、上記実施形態に係る受光面61、62、601、603、605は、正方形の形状を有し、受光面602、604、616は、長方形の形状を有したが、これには限られない。例えば辺の長さを変更してもよいし、円形の形状としてもよい。
また、第2の実施形態に係る受光面601〜605は、互いに接していたが、間隙を有してもよい。
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
本発明の波長モニタ、及び波長モニタリング方法は、光通信技術に適している。
10 波長モニタ
20 キャリア
30 光源
40 レンズ
50 フィルタ
51 水晶
60 検出器
61、62、66、601、602、603、604、605、616 受光面
612、614 不感領域
70 温調素子
71 センサ
80 ビームスプリッタ
81、83 検出器
82 コントローラ
θ 入射角
ψ 屈折角
B30 拡散光
B40、B41、B42 平行光
B50 干渉光
F51、F52 反射面
Id1、Id2、Id3、Id4、Id5 分布
P1、P2、P3、P4、P5 点
R40、R51、R52、R53、R54、R55、R56 光線
Wr10、Wr20、Wr30、Wr40 配線
Wr11、Wr13、Wr15、Wr21、Wr22、Wr23、Wr24、Wr25、Wr31、Wr33、Wr35、Wr46 ワイヤ

Claims (9)

  1. 入射する光の波長に対する透過特性が周期的なフィルタと、
    前記フィルタを透過した透過光の進行方向と交差する方向に離間して配置される複数の受光面を有し、前記複数の受光面に入射する前記透過光の強度に応じた信号を出力する第1検出手段と、
    を備える波長モニタ。
  2. 前記複数の受光面は、
    前記透過光の波長が変化したときに、前記透過光のうち強度が最大の光が移動する方向に配置される、
    請求項1に記載の波長モニタ。
  3. 前記第1検出手段は、
    前記複数の受光面とは異なる他の受光面を有し、該他の受光面で受光された前記透過光を、前記複数の受光面で受光された透過光とは個別に検出する、
    請求項1又は2に記載の波長モニタ。
  4. 前記フィルタは、
    互いに対向する平行な2個の反射面を有する、
    請求項1乃至3のいずれか1項に記載の波長モニタ。
  5. 前記フィルタの温度を調整する温度調整手段、
    を備える請求項1乃至4のいずれか1項に記載の波長モニタ。
  6. 射出される光の波長を変更可能な発光手段、
    を備え、
    前記発光手段は、半導体レーザである、
    請求項1乃至5のいずれか1項に記載の波長モニタ。
  7. 前記発光手段によって射出された光を検出する第2検出手段と、
    前記複数の受光面に入射した透過光の強度を、前記第2検出手段によって検出された光の強度を用いて規格化する規格化手段と、
    を備える請求項6に記載の波長モニタ。
  8. 前記発光手段によって射出された光を、第1の光と第2の光に分岐する分岐手段、
    を備え、
    前記第2検出手段は、前記第1の光を検出し、
    前記フィルタは、前記第2の光を透過させる、
    請求項7に記載の波長モニタ。
  9. 入射する光の波長に対する透過特性が周期的なフィルタに光を透過させるステップと、
    前記フィルタを透過した透過光の進行方向と交差する方向に離間して配置される複数の受光面で、前記透過光を受光するステップと、
    前記複数の受光面に入射する前記透過光の強度に応じた信号を出力するステップと、
    を含む波長モニタリング方法。
JP2012116749A 2012-05-22 2012-05-22 波長モニタ、及び波長モニタリング方法 Pending JP2013243304A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012116749A JP2013243304A (ja) 2012-05-22 2012-05-22 波長モニタ、及び波長モニタリング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116749A JP2013243304A (ja) 2012-05-22 2012-05-22 波長モニタ、及び波長モニタリング方法

Publications (1)

Publication Number Publication Date
JP2013243304A true JP2013243304A (ja) 2013-12-05

Family

ID=49843900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116749A Pending JP2013243304A (ja) 2012-05-22 2012-05-22 波長モニタ、及び波長モニタリング方法

Country Status (1)

Country Link
JP (1) JP2013243304A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029752A1 (ja) * 2015-08-20 2017-02-23 三菱電機株式会社 ビーム走査装置、光無線通信システムおよびビーム走査方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079723A (ja) * 1996-07-11 1998-03-24 Northern Telecom Ltd 波長分割多重光伝送システム用の波長監視制御装置
JP2002359430A (ja) * 2001-04-02 2002-12-13 Agilent Technol Inc 波長安定化光源及び校正方法
JP2003046188A (ja) * 2001-08-01 2003-02-14 Nec Corp 波長安定化レーザモジュール及びレーザ光の波長安定化方法
JP2003101130A (ja) * 2001-09-20 2003-04-04 Sumitomo Electric Ind Ltd 発光モジュール
JP2003332678A (ja) * 2002-05-16 2003-11-21 Toshiba Electronic Engineering Corp 光送信用デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079723A (ja) * 1996-07-11 1998-03-24 Northern Telecom Ltd 波長分割多重光伝送システム用の波長監視制御装置
JP2002359430A (ja) * 2001-04-02 2002-12-13 Agilent Technol Inc 波長安定化光源及び校正方法
JP2003046188A (ja) * 2001-08-01 2003-02-14 Nec Corp 波長安定化レーザモジュール及びレーザ光の波長安定化方法
JP2003101130A (ja) * 2001-09-20 2003-04-04 Sumitomo Electric Ind Ltd 発光モジュール
JP2003332678A (ja) * 2002-05-16 2003-11-21 Toshiba Electronic Engineering Corp 光送信用デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029752A1 (ja) * 2015-08-20 2017-02-23 三菱電機株式会社 ビーム走査装置、光無線通信システムおよびビーム走査方法
JPWO2017029752A1 (ja) * 2015-08-20 2017-08-17 三菱電機株式会社 ビーム走査装置、光無線通信システムおよびビーム走査方法
US10061132B2 (en) 2015-08-20 2018-08-28 Mitsubishi Electric Corporation Beam scanning device, optical wireless communication system, and beam scanning method

Similar Documents

Publication Publication Date Title
JP5645631B2 (ja) 波長モニタ、光モジュールおよび波長モニタ方法
CN112673274B (zh) Lidar输出信号的导引中的相位控制
JP2022088589A (ja) 環境の空間プロファイルの推定
KR101076603B1 (ko) 광학적 파장분할다중 방식 광통신모듈
KR20140112012A (ko) 집적된 서브-파장 격자 시스템
JP6165074B2 (ja) 波長モニタ及び波長モニタリング方法
KR20070050216A (ko) 양방향 광 송수신기
US11525967B1 (en) Photonics integrated circuit architecture
JP2015035553A (ja) 波長モニタおよび光モジュール
US20120261559A1 (en) Monolithic Optical Coupling Module Based On Total Internal Reflection Surfaces
JP2013207276A (ja) レーザモジュール
US20160146590A1 (en) Dual Wavelength Dual Interferometer with Combiner-Splitter
CN104040810A (zh) 具有波长测量功能的波长可变形激光装置
US20240077679A1 (en) Wavelength Agile Multiplexing
JP2013243304A (ja) 波長モニタ、及び波長モニタリング方法
JP2005004204A (ja) 光ハイブリッドモジュール及びその製造方法
US7496120B2 (en) Compact laser output monitoring using reflection and diffraction
KR101140493B1 (ko) 광통신용 파장 안정화 장치
KR20140030381A (ko) 렌즈형 광섬유를 이용한 미세홀 깊이 측정 장치 및 방법
KR20220154752A (ko) 양자 얽힘 단일 광자 상태를 포함하는 다수의 광자들을 생성하기 위한 장치
CN115103999A (zh) 用于外差干涉术的光学装置
GB2545912A (en) Interferometry
JP6822319B2 (ja) 波長多重光送信モジュール
JP2002344078A (ja) レーザーの放射波長を監視するための装置
JP6861775B2 (ja) 光導波路素子及び光軸調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329