JP2013235974A - Method for manufacturing semiconductor device, and semiconductor bonding adhesive - Google Patents

Method for manufacturing semiconductor device, and semiconductor bonding adhesive Download PDF

Info

Publication number
JP2013235974A
JP2013235974A JP2012107731A JP2012107731A JP2013235974A JP 2013235974 A JP2013235974 A JP 2013235974A JP 2012107731 A JP2012107731 A JP 2012107731A JP 2012107731 A JP2012107731 A JP 2012107731A JP 2013235974 A JP2013235974 A JP 2013235974A
Authority
JP
Japan
Prior art keywords
semiconductor
adhesive
bonding
bonding adhesive
semiconductor bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012107731A
Other languages
Japanese (ja)
Other versions
JP5989397B2 (en
Inventor
Sayaka Wakioka
さやか 脇岡
Hiroaki Nakagawa
弘章 中川
Yoshio Nishimura
善雄 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012107731A priority Critical patent/JP5989397B2/en
Publication of JP2013235974A publication Critical patent/JP2013235974A/en
Application granted granted Critical
Publication of JP5989397B2 publication Critical patent/JP5989397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device, capable of suppressing attachment and contamination of a semiconductor bonding adhesive to a bonding device, and achieving high reliability by suppressing a void.SOLUTION: A method for manufacturing a semiconductor device comprises the steps of: supplying a semiconductor bonding adhesive to a bump electrode formation surface of a semiconductor wafer on which a bump electrode having a tip composed of solder is formed (step 1); dicing the semiconductor wafer to obtain a semiconductor chip with the semiconductor bonding adhesive (step 2); allowing a bonding tool to suction and hold the semiconductor chip with the semiconductor bonding adhesive from a back surface (step 3); positioning the semiconductor chip with the semiconductor bonding adhesive to a circuit board (step 4); heating the semiconductor chip with the semiconductor bonding adhesive to a temperature equal to or more than a solder melting point to bond the bump electrode of the semiconductor chip with the semiconductor bonding adhesive to an electrode of the circuit board with the semiconductor bonding adhesive temporarily adhered thereto (step 5); and heating the semiconductor bonding adhesive under a pressurized atmosphere to remove a void (step 6). The semiconductor bonding adhesive has melt viscosity of 10kPa s or less at 60-100°C, and has a tack value of 10 gf/5 mmφ or less at 25°C when measured by a probe tack method.

Description

本発明は、ボンディング装置への半導体接合用接着剤の付着及び汚染を抑制することができ、ボイドを抑制して高い信頼性を実現することができる半導体装置の製造方法に関する。また、本発明は、該半導体装置の製造方法に用いられる半導体接合用接着剤に関する。 The present invention relates to a method for manufacturing a semiconductor device that can suppress the adhesion and contamination of a semiconductor bonding adhesive to a bonding apparatus, and can achieve high reliability by suppressing voids. Moreover, this invention relates to the adhesive agent for semiconductor joining used for the manufacturing method of this semiconductor device.

半導体装置の小型化及び高密度化に伴い、半導体チップを基板に実装する方法として、表面に多数の突起電極が形成された半導体チップを用いたフリップチップ実装が注目され、急速に広まってきている。
フリップチップ実装においては、接合部分の接続信頼性を確保するための方法として、半導体チップの突起電極と基板の電極部とを接合した後に、半導体チップと基板との隙間に液状封止接着剤(アンダーフィル)を注入し、硬化させることが一般的な方法として採られている。しかしながら、アンダーフィルを用いたフリップチップ実装は、製造コストが高い、アンダーフィル充填に時間がかかる、電極間の距離及び半導体チップと基板との距離を狭めるのに限界がある等の問題を抱えている。
As semiconductor devices are miniaturized and densified, flip chip mounting using a semiconductor chip having a large number of protruding electrodes formed on the surface has attracted attention and is rapidly spreading as a method for mounting a semiconductor chip on a substrate. .
In flip chip mounting, as a method for ensuring the connection reliability of the joint portion, after bonding the protruding electrode of the semiconductor chip and the electrode portion of the substrate, a liquid sealing adhesive (in the gap between the semiconductor chip and the substrate) It is a common method to inject and cure the underfill. However, flip chip mounting using underfill has problems such as high manufacturing cost, long time for underfill filling, and limitations in reducing the distance between electrodes and the distance between the semiconductor chip and the substrate. Yes.

そこで、近年、基板上にペースト状接着剤を塗布した後、半導体チップを搭載する方法、半導体ウエハ又は半導体チップ上に接着剤を供給した後、接着剤付き半導体チップを基板上に搭載する方法等のいわゆる先塗布型のフリップチップ実装が提案されている。特に接着剤付き半導体チップを基板上に搭載する場合には、半導体ウエハ上に接着剤を一括供給し、ダイシングによって接着剤付き半導体チップを一括で多量に生産できることから、大幅なプロセス短縮が期待される。 Therefore, in recent years, a method of mounting a semiconductor chip after applying a paste adhesive on a substrate, a method of mounting a semiconductor chip with an adhesive on a substrate after supplying an adhesive on a semiconductor wafer or semiconductor chip, etc. The so-called pre-coating type flip chip mounting has been proposed. In particular, when mounting semiconductor chips with adhesives on a substrate, the adhesive can be supplied all over the semiconductor wafer, and a large number of semiconductor chips with adhesives can be produced in large quantities by dicing. The

しかしながら、先塗布型のフリップチップ実装では、半導体チップの突起電極と基板の電極部とを接触させる際に、半導体チップ又は基板と接着剤との間に空気を巻き込んでボイドを生じたり、半導体チップを基板上に搭載する際の熱圧着工程において、接着剤からの揮発成分によってボイドが生じたりすることがある。このようなボイドは、電極間の短絡を招いたり、接着剤中にクラックを発生させる要因となったりする。また、先塗布型のフリップチップ実装では、熱圧着工程において突起電極の接合と接着剤の熱硬化とを同時に行うことから、精度の高い突起電極の接合とボイドの抑制とを同時に行うことは困難である。 However, in the pre-applied flip chip mounting, when the protruding electrode of the semiconductor chip and the electrode portion of the substrate are brought into contact with each other, air is involved between the semiconductor chip or the substrate and the adhesive to generate a void, or the semiconductor chip In the thermocompression bonding process when mounting the substrate on the substrate, a void may be generated due to a volatile component from the adhesive. Such voids may cause a short circuit between the electrodes or cause cracks in the adhesive. Also, in the pre-coating type flip chip mounting, it is difficult to simultaneously perform high-precision bonding of the protruding electrodes and suppression of voids because the bonding of the protruding electrodes and the thermosetting of the adhesive are simultaneously performed in the thermocompression bonding process. It is.

ボイドを抑制するために、接着剤の熱硬化を加圧雰囲気下で行うことによりボイドを収縮させる方法、半導体チップと基板とを仮接合した後、仮接合体を加圧雰囲気下で加熱することによりボイドを小さくする方法等が提案されている(例えば、特許文献1〜3)。これらの方法は、基板上にペースト状接着剤を塗布した後、半導体チップを搭載する場合にはある程度有効性がある。しかしながら、接着剤付き半導体チップを基板上に搭載する場合には、基板の凹凸により空気を巻き込みやすいことから、ボイドを充分に抑制することは困難である。 In order to suppress voids, the adhesive is thermally cured in a pressurized atmosphere, the void is shrunk, the semiconductor chip and the substrate are temporarily bonded, and then the temporary bonded body is heated in a pressurized atmosphere. A method of reducing the void by the above has been proposed (for example, Patent Documents 1 to 3). These methods are effective to some extent when a semiconductor chip is mounted after applying a paste adhesive on a substrate. However, when a semiconductor chip with an adhesive is mounted on a substrate, it is difficult to sufficiently suppress voids because air is easily involved due to the unevenness of the substrate.

特開2004−311709号公報JP 2004-311709 A 特開2009−004462号公報JP 2009-004462 A 特許第4640380号公報Japanese Patent No. 4640380

本発明は、ボンディング装置への半導体接合用接着剤の付着及び汚染を抑制することができ、ボイドを抑制して高い信頼性を実現することができる半導体装置の製造方法を提供することを目的とする。また、本発明は、該半導体装置の製造方法に用いられる半導体接合用接着剤を提供することを目的とする。 It is an object of the present invention to provide a method for manufacturing a semiconductor device that can suppress adhesion and contamination of a semiconductor bonding adhesive to a bonding apparatus, and can achieve high reliability by suppressing voids. To do. Another object of the present invention is to provide an adhesive for semiconductor bonding used in the method for manufacturing the semiconductor device.

本発明は、先端部が半田からなる突起電極が形成された半導体ウエハの突起電極形成面に、半導体接合用接着剤を供給する工程1、前記半導体ウエハを個片化して、半導体接合用接着剤付き半導体チップを得る工程2、前記半導体接合用接着剤付き半導体チップを裏面からボンディングツールに吸着保持させる工程3、前記半導体接合用接着剤付き半導体チップと、基板とを位置あわせする工程4、前記半導体接合用接着剤付き半導体チップを半田溶融点以上の温度に加熱して、前記半導体接合用接着剤付き半導体チップの突起電極と前記基板の電極部とを接合させると同時に、前記半導体接合用接着剤を仮接着させる工程5、及び、前記半導体接合用接着剤を加圧雰囲気下で加熱して、ボイドを除去する工程6を有し、前記半導体接合用接着剤は、60〜100℃における溶融粘度が10kPa・s以下であり、かつ、プローブタック法で測定した25℃におけるタック値が10gf/5mmφ以下である半導体装置の製造方法である。
以下、本発明を詳述する。
The present invention includes a step 1 of supplying a semiconductor bonding adhesive to a protruding electrode forming surface of a semiconductor wafer on which a protruding electrode made of solder is formed at a tip portion. Step 2 for obtaining a semiconductor chip with adhesive, Step 3 for attracting and holding the semiconductor chip with adhesive for semiconductor bonding to a bonding tool from the back surface, Step 4 for aligning the semiconductor chip with adhesive for semiconductor bonding and the substrate, A semiconductor chip with a semiconductor bonding adhesive is heated to a temperature equal to or higher than a solder melting point to bond the protruding electrode of the semiconductor chip with a semiconductor bonding adhesive and the electrode portion of the substrate at the same time as the bonding for semiconductor bonding. A step 5 for temporarily adhering the agent, and a step 6 for removing the void by heating the adhesive for semiconductor bonding in a pressurized atmosphere. Agents, melt viscosity at 60 to 100 [° C. is not more than 10 kPa · s, and a method of manufacturing a semiconductor device tack value at 25 ° C. as measured by the probe tack method is not more than 10 gf / 5 mm.phi.
The present invention is described in detail below.

半導体接合用接着剤付き半導体チップの突起電極と基板の電極部とを接合させた後、半導体接合用接着剤を加圧雰囲気下で加熱してボイドを除去する方法において、加圧雰囲気下で加熱してボイドを小さくしようとすると、半導体接合用接着剤に流動性をもたせることが必要である。一方、半導体接合用接着剤付き半導体チップを裏面からボンディングツールに吸着保持させる際、半導体チップは、スライダーと呼ばれるチップ搬送ステージ上に半導体接合用接着剤側が接するようにして配置される。このため、半導体接合用接着剤の流動性を高くすると、スライダーに半導体接合用接着剤が付着してボンディングツールへの吸着不良が生じたり、ボンディングツールに半導体接合用接着剤が付着して実装に支障をきたしたりすることがある。
本発明者は、半導体接合用接着剤の60〜100℃における溶融粘度を所定範囲内とし、突起電極を確実に接合した後、適度な流動性のある状態で半導体接合用接着剤を加圧雰囲気下で加熱することで、精度の高い突起電極の接合とボイドの抑制とを同時に行うことができることを見出した。また、本発明者は、半導体接合用接着剤のプローブタック法で測定した25℃におけるタック値を所定範囲内とすることで、ボンディング装置(スライダー、ボンディングツール等)への半導体接合用接着剤の付着及び汚染を抑制できることを見出し、本発明を完成させるに至った。
In a method in which the bumps are removed by heating the semiconductor bonding adhesive in a pressurized atmosphere after bonding the protruding electrode of the semiconductor chip with the semiconductor bonding adhesive to the electrode portion of the substrate, heating in the pressurized atmosphere. In order to reduce the voids, it is necessary to provide fluidity to the semiconductor bonding adhesive. On the other hand, when a semiconductor chip with a semiconductor bonding adhesive is sucked and held by the bonding tool from the back surface, the semiconductor chip is arranged so that the semiconductor bonding adhesive side is in contact with a chip conveyance stage called a slider. For this reason, if the fluidity of the semiconductor bonding adhesive is increased, the semiconductor bonding adhesive will adhere to the slider, causing poor adhesion to the bonding tool, or the semiconductor bonding adhesive will adhere to the bonding tool for mounting. It may cause trouble.
The present inventor made the semiconductor bonding adhesive into a pressurized atmosphere in a state of adequate fluidity after the melt viscosity of the semiconductor bonding adhesive at 60 to 100 ° C. was within a predetermined range, and the protruding electrodes were securely bonded. It has been found that, by heating underneath, high-precision projection electrode bonding and void suppression can be performed simultaneously. In addition, the present inventor makes the adhesive value of the semiconductor bonding agent to the bonding apparatus (slider, bonding tool, etc.) by setting the tack value at 25 ° C. measured by the probe tack method of the bonding adhesive for semiconductor bonding within a predetermined range. It has been found that adhesion and contamination can be suppressed, and the present invention has been completed.

本発明の半導体装置の製造方法では、まず、先端部が半田からなる突起電極が形成された半導体ウエハの突起電極形成面に、半導体接合用接着剤を供給する工程1を行う。
上記半導体ウエハとして、例えば、シリコン、ガリウム砒素等の半導体からなり、先端部が半田からなる突起電極が表面に形成された半導体チップが挙げられる。なお、先端部が半田からなる突起電極は、先端部が半田からなっていれば、突起電極の一部が半田からなっていても、突起電極全体が半田からなってもよい。
In the method for manufacturing a semiconductor device of the present invention, first, Step 1 of supplying a semiconductor bonding adhesive to the bump electrode forming surface of a semiconductor wafer on which a bump electrode having a tip formed of solder is formed is performed.
Examples of the semiconductor wafer include a semiconductor chip made of a semiconductor such as silicon or gallium arsenide and having a protruding electrode formed on the surface with a tip portion made of solder. In addition, as for the protruding electrode which a tip part consists of solder, as long as the front end part consists of solder, even if a part of protruding electrode consists of solder, the whole protruding electrode may consist of solder.

上記半導体ウエハの突起電極形成面に半導体接合用接着剤を供給する方法は特に限定されず、半導体接合用接着剤がペースト状である場合、例えば、スピンコート法等により上記半導体ウエハの突起電極形成面に半導体接合用接着剤を塗布して乾燥させる方法等が挙げられる。また、半導体接合用接着剤がフィルム状である場合、例えば、常圧下でのラミネート、真空ラミネート等により上記半導体ウエハの突起電極形成面に半導体接合用接着剤を貼り合せる方法等が挙げられる。常圧下でのラミネートでは空気が巻き込まれる場合があるが、上記工程1の後、ボイドを除去する工程6と同様の加圧キュアオーブン(例えば、PCO−083TA(NTTアトバンステクノロジ社製))等を用いて半導体接合用接着剤を加圧雰囲気下で加熱して、ボイドを除去してもよい。 The method for supplying the semiconductor bonding adhesive to the protruding electrode forming surface of the semiconductor wafer is not particularly limited. When the semiconductor bonding adhesive is in a paste form, for example, the protruding electrode formation of the semiconductor wafer is performed by spin coating or the like. Examples of the method include applying a semiconductor bonding adhesive to the surface and drying. Further, when the semiconductor bonding adhesive is in the form of a film, for example, there may be mentioned a method of bonding the semiconductor bonding adhesive to the protruding electrode forming surface of the semiconductor wafer by lamination under normal pressure, vacuum lamination, or the like. In the case of lamination under normal pressure, air may be involved, but after the above step 1, the same pressure curing oven as in step 6 for removing voids (for example, PCO-083TA (manufactured by NTT Atvans Technology)) etc. The semiconductor bonding adhesive may be heated in a pressurized atmosphere to remove the voids.

上記半導体接合用接着剤は、60〜100℃における溶融粘度が10kPa・s以下である。溶融粘度が10kPa・sを超えると、ボイドを除去する工程6において半導体接合用接着剤の流動性が低下し、ボイドを充分に除去することができない。溶融粘度の好ましい上限は9kPa・sである。なお、溶融粘度とは、回転式レオメーター(例えば、VAR−100(レオロジカ社製))を用いて、昇温速度5℃/分、周波数1Hz、歪み1%で測定した値を意味する。
上記半導体接合用接着剤の60〜100℃における溶融粘度の下限は特に限定されないが、好ましい下限は0.1kPa・sである。
The adhesive for semiconductor bonding has a melt viscosity at 60 to 100 ° C. of 10 kPa · s or less. When the melt viscosity exceeds 10 kPa · s, the fluidity of the adhesive for semiconductor bonding is lowered in Step 6 for removing voids, and the voids cannot be sufficiently removed. The upper limit with preferable melt viscosity is 9 kPa * s. The melt viscosity means a value measured at a temperature rising rate of 5 ° C./min, a frequency of 1 Hz, and a strain of 1% using a rotary rheometer (for example, VAR-100 (manufactured by Rheologica)).
Although the minimum of the melt viscosity in 60-100 degreeC of the said adhesive agent for semiconductor joining is not specifically limited, A preferable minimum is 0.1 kPa * s.

上記半導体接合用接着剤は、プローブタック法で測定した25℃におけるタック値が10gf/5mmφ以下である。タック値が10gf/5mmφを超えると、半導体チップをボンディングツールに吸着保持させる工程3においてボンディング装置(スライダー、ボンディングツール等)への半導体接合用接着剤の付着及び汚染を充分に抑制することができず、吸着不良等が生じる。このような不具合があると、連続的に半導体チップの実装を行うことが困難となり、量産性に支障をきたすことがある。タック値の好ましい上限は9gf/5mmφである。なお、プローブタック法で測定したタック値とは、プローブタック測定装置(例えば、タッキング試験機TAC−2(RHESCA社製))を用いて、プローブ径5mm、接触速さ120mm/分、テストスピード600mm/分、接触荷重10mN/mm、接触時間10秒で測定したタック値を意味する。
上記半導体接合用接着剤のプローブタック法で測定した25℃におけるタック値の下限は特に限定されないが、好ましい下限は1gf/5mmφである。
The adhesive for semiconductor bonding has a tack value at 25 ° C. measured by a probe tack method of 10 gf / 5 mmφ or less. When the tack value exceeds 10 gf / 5 mmφ, adhesion and contamination of the semiconductor bonding adhesive to the bonding apparatus (slider, bonding tool, etc.) can be sufficiently suppressed in the step 3 in which the semiconductor chip is attracted and held by the bonding tool. Inadequate adsorption occurs. If there is such a problem, it becomes difficult to continuously mount semiconductor chips, which may hinder mass productivity. A preferable upper limit of the tack value is 9 gf / 5 mmφ. The tack value measured by the probe tack method is a probe tack measuring device (for example, tacking tester TAC-2 (manufactured by RHESCA)), probe diameter 5 mm, contact speed 120 mm / min, test speed 600 mm. / Tuck, means a tack value measured with a contact load of 10 mN / mm 2 and a contact time of 10 seconds.
Although the minimum of the tack value in 25 degreeC measured by the probe tack method of the said adhesive agent for semiconductor joining is not specifically limited, A preferable minimum is 1 gf / 5mm (phi).

上記半導体接合用接着剤は、DSCにおける発熱開始温度が100℃以上であることが好ましい。発熱開始温度が100℃未満であると、半導体接合用接着剤を仮接着させる工程5において半導体接合用接着剤の硬化が進み、電極間に半導体接合用接着剤を噛み込んで電極接合状態が悪くなることがある。また、ボイドを除去する工程6においてボイドが除去される前に半導体接合用接着剤の硬化が進んでしまい、ボイドを除去する工程6において半導体接合用接着剤の流動性が低下するため、ボイドを充分に除去できないことがある。
上記半導体接合用接着剤のDSCにおける発熱開始温度の上限は特に限定されないが、200℃未満であることが好ましい。発熱開始温度が200℃以上であると、半導体接合用接着剤の硬化のために多量の熱量を加えることとなり、揮発成分によりアウトガスが生じたり、半導体接合用接着剤が劣化したりすることがある。
The semiconductor bonding adhesive preferably has a heat generation start temperature in DSC of 100 ° C. or higher. When the heat generation starting temperature is less than 100 ° C., the semiconductor bonding adhesive is hardened in the step 5 of temporarily bonding the semiconductor bonding adhesive, and the semiconductor bonding adhesive is bitten between the electrodes and the electrode bonding state is poor. May be. Moreover, since the hardening of the adhesive for semiconductor bonding proceeds before the void is removed in the step 6 for removing the void, and the fluidity of the adhesive for semiconductor bonding is lowered in the step 6 for removing the void, the void is removed. It may not be removed sufficiently.
Although the upper limit of the heat generation start temperature in DSC of the adhesive for semiconductor bonding is not particularly limited, it is preferably less than 200 ° C. When the heat generation starting temperature is 200 ° C. or higher, a large amount of heat is applied to cure the semiconductor bonding adhesive, which may cause outgassing due to volatile components or deterioration of the semiconductor bonding adhesive. .

上記半導体接合用接着剤は、ペースト状であってもフィルム状であってもよく、熱硬化性樹脂、熱硬化剤及び高分子量化合物を含有することが好ましい。なかでも、プローブタック法で測定した25℃におけるタック値を上記範囲内とするためには、常温(25℃)で液状の成分とガラス転移温度(Tg)が0℃以下の高分子量化合物とを合わせた含有量が5重量%以下であることがより好ましい。なお、常温(25℃)で液状の成分は、熱硬化性樹脂であっても、熱硬化剤であっても、高分子量化合物であってもよく、これら以外の成分(例えば、希釈剤、カップリング剤、密着性付与剤等の添加剤等)であってもよい。
上記半導体接合用接着剤における上記常温(25℃)で液状の成分とガラス転移温度(Tg)が0℃以下の高分子量化合物とを合わせた含有量の下限は特に限定されないが、半導体接合用接着剤の製膜性、可撓性等の観点から、好ましい下限は1重量%である。
The semiconductor bonding adhesive may be in the form of a paste or a film, and preferably contains a thermosetting resin, a thermosetting agent, and a high molecular weight compound. In particular, in order to keep the tack value at 25 ° C. measured by the probe tack method within the above range, a liquid component at room temperature (25 ° C.) and a high molecular weight compound having a glass transition temperature (Tg) of 0 ° C. or less are used. The combined content is more preferably 5% by weight or less. The liquid component at room temperature (25 ° C.) may be a thermosetting resin, a thermosetting agent, or a high molecular weight compound, and other components (for example, a diluent, a cup Ring agents, additives such as adhesion promoters, etc.) may be used.
The lower limit of the combined content of the liquid component at the normal temperature (25 ° C.) and the high molecular weight compound having a glass transition temperature (Tg) of 0 ° C. or less in the adhesive for semiconductor bonding is not particularly limited. From the viewpoint of film forming property and flexibility of the agent, the preferred lower limit is 1% by weight.

上記熱硬化性樹脂は特に限定されず、例えば、付加重合、重縮合、重付加、付加縮合、開環重合等の反応により硬化する化合物が挙げられる。上記熱硬化性樹脂として、具体的には例えば、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリベンズイミダゾール樹脂、ジアリルフタレート樹脂、キシレン樹脂、アルキル−ベンゼン樹脂、エポキシアクリレート樹脂、珪素樹脂、ウレタン樹脂等が挙げられる。なかでも、半導体接合用接着剤の硬化物の強度及び接合信頼性を確保する観点から、エポキシ樹脂、アクリル樹脂が好ましい。 The said thermosetting resin is not specifically limited, For example, the compound hardened | cured by reaction, such as addition polymerization, polycondensation, polyaddition, addition condensation, ring-opening polymerization, is mentioned. Specific examples of the thermosetting resin include urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, acrylic resin, polyester resin, polyamide resin, polybenzimidazole resin, diallyl phthalate resin, xylene resin, alkyl -A benzene resin, an epoxy acrylate resin, a silicon resin, a urethane resin, etc. are mentioned. Especially, an epoxy resin and an acrylic resin are preferable from a viewpoint of ensuring the intensity | strength and joining reliability of the hardened | cured material of the adhesive agent for semiconductor joining.

上記エポキシ樹脂は特に限定されず、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型等のビスフェノール型エポキシ樹脂、フェノールノボラック型、クレゾールノボラック型等のノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、トリスフェノールメタントリグリシジルエーテル等の芳香族エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリエーテル変性エポキシ樹脂、NBR変性エポキシ樹脂、CTBN変性エポキシ樹脂、及び、これらの水添化物等が挙げられる。これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。 The epoxy resin is not particularly limited. For example, bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type and bisphenol S type, novolac type epoxy resins such as phenol novolak type and cresol novolak type, resorcinol type epoxy Resin, aromatic epoxy resin such as trisphenolmethane triglycidyl ether, naphthalene type epoxy resin, fluorene type epoxy resin, dicyclopentadiene type epoxy resin, polyether modified epoxy resin, NBR modified epoxy resin, CTBN modified epoxy resin, and These hydrogenated products can be mentioned. These epoxy resins may be used independently and may use 2 or more types together.

上記エポキシ樹脂は、常温で液状のエポキシ樹脂であっても、常温で固体のエポキシ樹脂であってもよく、これらを適宜組み合わせて用いてもよい。
上記常温で液状のエポキシ樹脂のうち、市販品として、例えば、EPICLON 840、840−S、850、850−S、EXA−850CRP(以上、DIC社製)等のビスフェノールA型エポキシ樹脂、EPICLON 830、830−S、EXA−830CRP(以上、DIC社製)等のビスフェノールF型エポキシ樹脂、EPICLON HP−4032、HP−4032D(以上、DIC社製)等のナフタレン型エポキシ樹脂、EPICLON EXA−7015(DIC社製)、EX−252(ナガセケムテックス社製)等の水添ビスフェノールA型エポキシ樹脂、EX−201(ナガセケムテックス社製)等のレゾルシノール型エポキシ樹脂等が挙げられる。
The epoxy resin may be an epoxy resin that is liquid at room temperature, or may be an epoxy resin that is solid at room temperature, or may be used in appropriate combination.
Among the epoxy resins that are liquid at room temperature, commercially available products include, for example, bisphenol A type epoxy resins such as EPICLON 840, 840-S, 850, 850-S, EXA-850CRP (manufactured by DIC), EPICLON 830, Bisphenol F type epoxy resin such as 830-S, EXA-830CRP (above, manufactured by DIC), naphthalene type epoxy resin such as EPICLON HP-4032, HP-4032D (above, manufactured by DIC), EPICLON EXA-7015 (DIC) And hydrogenated bisphenol A type epoxy resin such as EX-252 (manufactured by Nagase ChemteX), resorcinol type epoxy resin such as EX-201 (manufactured by Nagase ChemteX), and the like.

上記常温で固体のエポキシ樹脂のうち、市販品として、例えば、EPICLON 860、10550、1055(以上、DIC社製)等のビスフェノールA型エポキシ樹脂、EPICLON EXA−1514(DIC社製)等のビスフェノールS型エポキシ樹脂、EPICLON HP−4700、HP−4710、HP−4770(以上、DIC社製)等のナフタレン型エポキシ樹脂、EPICLON HP−7200シリーズ(DIC社製)等のジシクロペンタジエン型エポキシ樹脂、EPICLON HP−5000、EXA−9900(以上、DIC社製)等のクレゾールノボラック型エポキシ樹脂等が挙げられる。 Among the epoxy resins that are solid at room temperature, commercially available products include, for example, bisphenol A type epoxy resins such as EPICLON 860, 10550, and 1055 (manufactured by DIC), and bisphenol S such as EPICLON EXA-1514 (manufactured by DIC). Type epoxy resin, naphthalene type epoxy resin such as EPICLON HP-4700, HP-4710, HP-4770 (manufactured by DIC), dicyclopentadiene type epoxy resin such as EPICLON HP-7200 series (made by DIC), EPICLON Examples thereof include cresol novolak type epoxy resins such as HP-5000 and EXA-9900 (manufactured by DIC).

上記熱硬化剤は特に限定されず、従来公知の熱硬化剤を上記熱硬化性樹脂に合わせて適宜選択することができる。上記熱硬化性樹脂としてエポキシ樹脂を用いる場合、上記熱硬化剤として、例えば、酸無水物系硬化剤、フェノール系硬化剤、アミン系硬化剤、ジシアンジアミド等の潜在性硬化剤、カチオン系触媒型硬化剤等が挙げられる。これらの熱硬化剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、硬化速度、硬化物の物性等に優れることから、酸無水物系硬化剤が好ましい。 The said thermosetting agent is not specifically limited, A conventionally well-known thermosetting agent can be suitably selected according to the said thermosetting resin. When an epoxy resin is used as the thermosetting resin, the thermosetting agent may be, for example, an acid anhydride curing agent, a phenol curing agent, an amine curing agent, a latent curing agent such as dicyandiamide, or a cationic catalytic curing. Agents and the like. These thermosetting agents may be used independently and may use 2 or more types together. Of these, an acid anhydride curing agent is preferable because of excellent curing speed, physical properties of the cured product, and the like.

上記酸無水物系硬化剤のうち、市販品として、例えば、YH−306、YH−307(以上、三菱化学社製、常温(25℃)で液状)、YH−309(三菱化学社製、酸無水物系硬化剤、常温(25℃)で固体)等が挙げられる。 Among the acid anhydride curing agents, commercially available products include, for example, YH-306, YH-307 (above, manufactured by Mitsubishi Chemical Corporation, liquid at room temperature (25 ° C.)), YH-309 (manufactured by Mitsubishi Chemical Corporation, acid Anhydride type curing agent, solid at normal temperature (25 ° C.)) and the like.

上記熱硬化剤の含有量は特に限定されず、常温(25℃)で液状の成分とガラス転移温度(Tg)が0℃以下の高分子量化合物とを合わせた含有量を上記範囲内とすることが好ましい。上記熱硬化性樹脂としてエポキシ樹脂を用い、エポキシ基と等量反応する熱硬化剤を用いる場合、上記熱硬化剤の含有量は、半導体接合用接着剤中に含まれるエポキシ基の総量に対する好ましい下限が60当量、好ましい上限が110当量である。含有量が60当量未満であると、半導体接合用接着剤を充分に硬化させることができないことがある。含有量が110当量を超えても、特に半導体接合用接着剤の硬化性には寄与せず、過剰な熱硬化剤が揮発することによってボイドの原因となることがある。含有量のより好ましい下限は70当量、より好ましい上限は100当量である。 Content of the said thermosetting agent is not specifically limited, The content which combined the liquid component and high molecular weight compound whose glass transition temperature (Tg) is 0 degrees C or less at normal temperature (25 degreeC) shall be in the said range. Is preferred. When using an epoxy resin as the thermosetting resin and using a thermosetting agent that reacts with an epoxy group in the same amount, the content of the thermosetting agent is a preferable lower limit with respect to the total amount of epoxy groups contained in the adhesive for semiconductor bonding. Is 60 equivalents, and a preferred upper limit is 110 equivalents. If the content is less than 60 equivalents, the semiconductor bonding adhesive may not be sufficiently cured. Even if the content exceeds 110 equivalents, it does not particularly contribute to the curability of the adhesive for semiconductor bonding, and may cause voids due to volatilization of the excessive thermosetting agent. The more preferable lower limit of the content is 70 equivalents, and the more preferable upper limit is 100 equivalents.

上記半導体接合用接着剤は、硬化速度、硬化物の物性等を調整する目的で、更に、硬化促進剤を含有してもよい。
上記硬化促進剤は特に限定されず、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤等が挙げられる。なかでも、硬化速度、硬化物の物性等の調整をするための反応系の制御をしやすいことから、イミダゾール系硬化促進剤が好ましい。
The adhesive for semiconductor bonding may further contain a curing accelerator for the purpose of adjusting the curing speed, the physical properties of the cured product, and the like.
The said hardening accelerator is not specifically limited, For example, an imidazole series hardening accelerator, a tertiary amine type hardening accelerator, etc. are mentioned. Of these, an imidazole curing accelerator is preferred because it is easy to control the reaction system for adjusting the curing speed and the physical properties of the cured product.

上記イミダゾール系硬化促進剤は特に限定されず、例えば、フジキュア7000(T&K TOKA社製、常温(25℃)で液状)、イミダゾールの1位をシアノエチル基で保護した1−シアノエチル−2−フェニルイミダゾール、イソシアヌル酸で塩基性を保護したイミダゾール系硬化促進剤(商品名「2MA−OK」、四国化成工業社製、常温(25℃)で固体)、2MZ、2MZ−P、2PZ、2PZ−PW、2P4MZ、C11Z−CNS、2PZ−CNS、2PZCNS−PW、2MZ−A、2MZA−PW、C11Z−A、2E4MZ−A、2MAOK−PW、2PZ−OK、2MZ−OK、2PHZ、2PHZ−PW、2P4MHZ、2P4MHZ−PW、2E4MZ・BIS、VT、VT−OK、MAVT、MAVT−OK(以上、四国化成工業社製)等が挙げられる。これらのイミダゾール系硬化促進剤は、単独で用いてもよく、2種以上を併用してもよい。 The imidazole curing accelerator is not particularly limited. For example, Fujicure 7000 (manufactured by T & K TOKA, liquid at room temperature (25 ° C.)), 1-cyanoethyl-2-phenylimidazole in which 1-position of imidazole is protected with a cyanoethyl group, Imidazole-based curing accelerator with basicity protected with isocyanuric acid (trade name “2MA-OK”, manufactured by Shikoku Kasei Kogyo Co., Ltd., solid at room temperature (25 ° C.)), 2MZ, 2MZ-P, 2PZ, 2PZ-PW, 2P4MZ , C11Z-CNS, 2PZ-CNS, 2PZCNS-PW, 2MZ-A, 2MZA-PW, C11Z-A, 2E4MZ-A, 2MAOK-PW, 2PZ-OK, 2MZ-OK, 2PHZ, 2PHZ-PW, 2P4MHZ, 2P4MHZ -PW, 2E4MZ ・ BIS, VT, VT-OK, MAVT, MAVT-OK Above, it includes the Shikoku Chemicals Co., Ltd.), and the like. These imidazole type hardening accelerators may be used independently and may use 2 or more types together.

上記硬化促進剤の含有量は特に限定されず、常温(25℃)で液状の成分とガラス転移温度(Tg)が0℃以下の高分子量化合物とを合わせた含有量を上記範囲内とすることが好ましいが、熱硬化剤100重量部に対する好ましい下限が5重量部、好ましい上限が50重量部である。含有量が5重量部未満であると、半導体接合用接着剤の熱硬化のために高温で長時間の加熱を必要とすることがある。含有量が50重量部を超えると、半導体接合用接着剤の貯蔵安定性が不充分となったり、過剰な硬化促進剤が揮発することによってボイドの原因となったりすることがある。含有量のより好ましい下限は10重量部、より好ましい上限は30重量部である。 Content of the said hardening accelerator is not specifically limited, Content which combined the liquid component and high molecular weight compound whose glass transition temperature (Tg) is 0 degrees C or less at normal temperature (25 degreeC) shall be in the said range. However, the preferable lower limit with respect to 100 parts by weight of the thermosetting agent is 5 parts by weight, and the preferable upper limit is 50 parts by weight. When the content is less than 5 parts by weight, heating at a high temperature for a long time may be required for the thermosetting of the adhesive for semiconductor bonding. If the content exceeds 50 parts by weight, the storage stability of the adhesive for semiconductor bonding may be insufficient, or voids may be caused by excessive volatilization of the curing accelerator. The more preferable lower limit of the content is 10 parts by weight, and the more preferable upper limit is 30 parts by weight.

上記高分子量化合物は、ガラス転移温度(Tg)が0℃以下の高分子量化合物であっても、ガラス転移温度(Tg)が0℃を超える高分子量化合物であっても、これらの混合物であってもよい。上記高分子量化合物を用いることで、半導体接合用接着剤に製膜性、可撓性等を付与するとともに、半導体接合用接着剤の硬化物に強靭性を持たせ、高い接合信頼性を確保することができる。
上記高分子量化合物は特に限定されず、例えば、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリベンズイミダゾール樹脂、ジアリルフタレート樹脂、キシレン樹脂、アルキル−ベンゼン樹脂、エポキシアクリレート樹脂、珪素樹脂、ウレタン樹脂等の公知の高分子量化合物が挙げられる。なかでも、エポキシ基を有する高分子量化合物が好ましい。
The high molecular weight compound may be a high molecular weight compound having a glass transition temperature (Tg) of 0 ° C. or lower, or a high molecular weight compound having a glass transition temperature (Tg) exceeding 0 ° C., and a mixture thereof. Also good. By using the above-mentioned high molecular weight compound, film-forming properties, flexibility, etc. are imparted to the semiconductor bonding adhesive, and the cured product of the semiconductor bonding adhesive is toughened to ensure high bonding reliability. be able to.
The high molecular weight compound is not particularly limited. For example, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, acrylic resin, polyester resin, polyamide resin, polybenzimidazole resin, diallyl phthalate resin, xylene resin, alkyl- Known high molecular weight compounds such as benzene resin, epoxy acrylate resin, silicon resin, and urethane resin can be used. Among these, a high molecular weight compound having an epoxy group is preferable.

上記エポキシ基を有する高分子量化合物を添加することで、半導体接合用接着剤の硬化物は、優れた可撓性を発現する。即ち、上記半導体接合用接着剤の硬化物は、上記熱硬化性樹脂としてのエポキシ樹脂に由来する優れた機械的強度、耐熱性及び耐湿性と、上記エポキシ基を有する高分子量化合物に由来する優れた可撓性とを兼備することとなるので、耐冷熱サイクル性、耐ハンダリフロー性、寸法安定性等に優れるものとなり、高い接合信頼性及び高い導通信頼性を発現することとなる。 By adding the high molecular weight compound having the epoxy group, the cured product of the adhesive for semiconductor bonding exhibits excellent flexibility. That is, the cured product of the adhesive for semiconductor bonding is excellent in mechanical strength, heat resistance and moisture resistance derived from the epoxy resin as the thermosetting resin, and excellent in the high molecular weight compound having the epoxy group. Therefore, it is excellent in cold-heat cycle resistance, solder reflow resistance, dimensional stability, etc., and exhibits high joint reliability and high conduction reliability.

上記エポキシ基を有する高分子量化合物は、末端及び/又は側鎖(ペンダント位)にエポキシ基を有する高分子量化合物であれば特に限定されず、例えば、エポキシ基含有アクリルゴム、エポキシ基含有ブタジエンゴム、ビスフェノール型高分子量エポキシ樹脂、エポキシ基含有フェノキシ樹脂、エポキシ基含有アクリル樹脂、エポキシ基含有ウレタン樹脂、エポキシ基含有ポリエステル樹脂等が挙げられる。なかでも、エポキシ基を多く含む高分子化合物を得ることができ、硬化物の機械的強度及び耐熱性がより優れたものとなることから、エポキシ基含有アクリル樹脂が好ましい。これらのエポキシ基を有する高分子量化合物は、単独で用いてもよく、2種以上を併用してもよい。 The high molecular weight compound having an epoxy group is not particularly limited as long as it is a high molecular weight compound having an epoxy group at the terminal and / or side chain (pendant position). For example, an epoxy group-containing acrylic rubber, an epoxy group-containing butadiene rubber, Examples thereof include bisphenol type high molecular weight epoxy resin, epoxy group-containing phenoxy resin, epoxy group-containing acrylic resin, epoxy group-containing urethane resin, and epoxy group-containing polyester resin. Among them, an epoxy group-containing acrylic resin is preferable because a polymer compound containing a large amount of epoxy groups can be obtained and the cured product has better mechanical strength and heat resistance. These high molecular weight compounds having an epoxy group may be used alone or in combination of two or more.

上記高分子量化合物として、上記エポキシ基を有する高分子量化合物、特に、エポキシ基含有アクリル樹脂を用いる場合、上記エポキシ基を有する高分子量化合物の重量平均分子量の好ましい下限は1万、好ましい上限は100万である。重量平均分子量が1万未満であると、半導体接合用接着剤の製膜性が不充分となったり、半導体接合用接着剤の硬化物の可撓性が充分に向上しなかったりすることがある。重量平均分子量が100万を超えると、半導体ウエハに半導体接合用接着剤を供給する工程1において半導体接合用接着剤を一定の厚みに供給することが困難となったり、ボイドを除去する工程6において半導体接合用接着剤の溶融粘度が高くなりすぎ、ボイドを充分に除去できなかったりすることがある。 When the high molecular weight compound having an epoxy group, particularly an epoxy group-containing acrylic resin is used as the high molecular weight compound, the preferred lower limit of the weight average molecular weight of the high molecular weight compound having the epoxy group is 10,000, and the preferred upper limit is 1,000,000. It is. If the weight average molecular weight is less than 10,000, the film forming property of the semiconductor bonding adhesive may be insufficient, or the flexibility of the cured product of the semiconductor bonding adhesive may not be sufficiently improved. . When the weight average molecular weight exceeds 1,000,000, it becomes difficult to supply the semiconductor bonding adhesive to a certain thickness in the step 1 of supplying the semiconductor bonding adhesive to the semiconductor wafer, or in the step 6 of removing the voids. The melt viscosity of the semiconductor bonding adhesive may become too high, and voids may not be sufficiently removed.

上記高分子量化合物として、上記エポキシ基を有する高分子量化合物、特に、エポキシ基含有アクリル樹脂を用いる場合、上記エポキシ基を有する高分子量化合物のエポキシ当量の好ましい下限が200、好ましい上限が1000である。エポキシ当量が200未満であると、半導体接合用接着剤の硬化物の可撓性が充分に向上しないことがある。エポキシ当量が1000を超えると、半導体接合用接着剤の硬化物の機械的強度又は耐熱性が不充分となることがある。 When the high molecular weight compound having an epoxy group, particularly an epoxy group-containing acrylic resin is used as the high molecular weight compound, the preferable lower limit of the epoxy equivalent of the high molecular weight compound having the epoxy group is 200, and the preferable upper limit is 1000. If the epoxy equivalent is less than 200, the flexibility of the cured product of the adhesive for semiconductor bonding may not be sufficiently improved. When the epoxy equivalent exceeds 1000, the mechanical strength or heat resistance of the cured product of the adhesive for semiconductor bonding may be insufficient.

上記半導体接合用接着剤における上記高分子量化合物の含有量は特に限定されず、常温(25℃)で液状の成分とガラス転移温度(Tg)が0℃以下の高分子量化合物とを合わせた含有量を上記範囲内とすることが好ましいが、上記半導体接合用接着剤における好ましい下限は3重量%、好ましい上限は30重量%である。含有量が3重量%未満であると、熱ひずみに対する充分な信頼性が得られないことがある。含有量が30重量%を超えると、半導体接合用接着剤の耐熱性が低下することがある。 Content of the said high molecular weight compound in the said adhesive agent for semiconductor joining is not specifically limited, Content which combined the liquid component and high molecular weight compound whose glass transition temperature (Tg) is 0 degrees C or less at normal temperature (25 degreeC). Is preferably within the above range, but the preferred lower limit for the semiconductor bonding adhesive is 3% by weight, and the preferred upper limit is 30% by weight. If the content is less than 3% by weight, sufficient reliability against thermal strain may not be obtained. When content exceeds 30 weight%, the heat resistance of the adhesive for semiconductor joining may fall.

上記半導体接合用接着剤は、更に、無機フィラーを含有することが好ましい。なかでも、60〜100℃における溶融粘度を上記範囲内とするためには、上記無機フィラーの含有量が40重量%以下であることが好ましい。含有量が40重量%を超えると、ボイドを除去する工程6において半導体接合用接着剤の流動性が低下し、ボイドを充分に除去することができないことがある。
上記半導体接合用接着剤における上記無機フィラーの含有量の下限は特に限定されないが、半導体接合用接着剤の硬化物の強度及び接合信頼性を確保する観点から、好ましい下限は10重量%である。
It is preferable that the adhesive for semiconductor bonding further contains an inorganic filler. Especially, in order to make melt viscosity in 60-100 degreeC into the said range, it is preferable that content of the said inorganic filler is 40 weight% or less. If the content exceeds 40% by weight, the fluidity of the adhesive for semiconductor bonding is lowered in the step 6 for removing voids, and the voids may not be sufficiently removed.
Although the minimum of content of the said inorganic filler in the said adhesive for semiconductor joining is not specifically limited, From a viewpoint of ensuring the intensity | strength and joining reliability of the hardened | cured material of the adhesive for semiconductor joining, a preferable minimum is 10 weight%.

上記無機フィラーは特に限定されず、例えば、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化珪素、炭化珪素、酸化マグネシウム、酸化亜鉛等が挙げられる。なかでも、流動性に優れることから球状シリカが好ましく、メチルシランカップリング剤、フェニルシランカップリング剤等で表面処理された球状シリカがより好ましい。表面処理された球状シリカを用いることで、半導体接合用接着剤の増粘を抑えることができ、ボイドを除去する工程6において極めて効率的にボイドを除去することができる。 The inorganic filler is not particularly limited, and examples thereof include silica, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, magnesium oxide, and zinc oxide. Of these, spherical silica is preferable because of excellent fluidity, and spherical silica surface-treated with a methylsilane coupling agent, a phenylsilane coupling agent, or the like is more preferable. By using the surface-treated spherical silica, thickening of the adhesive for semiconductor bonding can be suppressed, and voids can be removed very efficiently in the step 6 of removing voids.

上記無機フィラーの平均粒子径は特に限定されないが、半導体接合用接着剤の透明性、流動性、接合信頼性等の観点から、0.01〜1μm程度が好ましい。 The average particle diameter of the inorganic filler is not particularly limited, but is preferably about 0.01 to 1 μm from the viewpoint of transparency, fluidity, bonding reliability, and the like of the adhesive for semiconductor bonding.

上記半導体接合用接着剤は、必要に応じて、更に、希釈剤、チキソトロピー付与剤、溶媒、無機イオン交換体、ブリード防止剤、イミダゾールシランカップリング剤等の接着性付与剤、密着性付与剤、ゴム粒子等の応力緩和剤等のその他の添加剤を含有してもよい。 The adhesive for semiconductor bonding, if necessary, further, a diluent, a thixotropy imparting agent, a solvent, an inorganic ion exchanger, a bleed inhibitor, an imidazole silane coupling agent or other adhesive imparting agent, an adhesion imparting agent, You may contain other additives, such as stress relaxation agents, such as rubber particles.

上記半導体接合用接着剤を製造する方法は特に限定されず、例えば、熱硬化性樹脂、熱硬化剤及び高分子量化合物に、必要に応じて硬化促進剤、無機フィラー及びその他の添加剤を所定量配合して混合する方法が挙げられる。上記混合の方法は特に限定されず、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等を使用する方法が挙げられる。 The method for producing the adhesive for semiconductor bonding is not particularly limited. For example, a predetermined amount of a curing accelerator, an inorganic filler, and other additives is added to a thermosetting resin, a thermosetting agent, and a high molecular weight compound as necessary. The method of mix | blending and mixing is mentioned. The mixing method is not particularly limited, and examples thereof include a method using a homodisper, a universal mixer, a Banbury mixer, a kneader and the like.

本発明の半導体装置の製造方法では、次いで、上記半導体ウエハを個片化して、半導体接合用接着剤付き半導体チップを得る工程2を行う。
上記半導体ウエハを個片化する方法は特に限定されず、例えば、突起電極形成面に上記半導体接合用接着剤が供給された半導体ウエハをダイシングテープにマウントした後、従来公知のブレードダイシング、レーザーダイシング等の方法を用いて個片化する方法等が挙げられる。
In the method for manufacturing a semiconductor device of the present invention, step 2 is then performed in which the semiconductor wafer is separated into individual pieces to obtain a semiconductor chip with an adhesive for semiconductor bonding.
The method for dividing the semiconductor wafer into individual pieces is not particularly limited. For example, after mounting a semiconductor wafer having the protruding electrode forming surface supplied with the semiconductor bonding adhesive on a dicing tape, conventionally known blade dicing or laser dicing is used. And the like and the like.

本発明の半導体装置の製造方法では、次いで、上記半導体接合用接着剤付き半導体チップを裏面からボンディングツールに吸着保持させる工程3を行う。
上記工程3では、上記工程2にて得られた半導体接合用接着剤付き半導体チップをピックアップして取り出し、スライダーと呼ばれるチップ搬送ステージ上に半導体接合用接着剤側が接するようにして配置させる。その後、半導体接合用接着剤付き半導体チップをスライダーによってボンディングツール下方に搬送し、裏面からボンディングツールに吸着保持させる。これにより、半導体接合用接着剤付き半導体チップは、スライダーからボンディングツールへ受け渡される。本発明の半導体装置の製造方法では、上記半導体接合用接着剤のプローブタック法で測定した25℃におけるタック値を上記範囲内とすることで、ボンディング装置(スライダー、ボンディングツール等)への半導体接合用接着剤の付着及び汚染を抑制することができる。
In the method for manufacturing a semiconductor device of the present invention, step 3 is then performed in which the semiconductor chip with an adhesive for semiconductor bonding is sucked and held by the bonding tool from the back surface.
In the step 3, the semiconductor chip with the semiconductor bonding adhesive obtained in the step 2 is picked up and taken out, and is arranged so that the semiconductor bonding adhesive side is in contact with a chip transfer stage called a slider. Thereafter, the semiconductor chip with an adhesive for semiconductor bonding is conveyed below the bonding tool by a slider and is sucked and held by the bonding tool from the back surface. Thus, the semiconductor chip with the semiconductor bonding adhesive is delivered from the slider to the bonding tool. In the method of manufacturing a semiconductor device of the present invention, the semiconductor bonding to a bonding apparatus (slider, bonding tool, etc.) is performed by setting the tack value at 25 ° C. measured by the probe tack method of the adhesive for semiconductor bonding within the above range. Adhesion and contamination of the adhesive can be suppressed.

本発明の半導体装置の製造方法では、次いで、上記半導体接合用接着剤付き半導体チップと、基板とを位置あわせする工程4を行う。
上記工程4では、通常、半導体接合用接着剤付き半導体チップを吸着保持しているボンディングツールと、基板が配置されているボンディングステージとの間にカメラを挿入し、上記半導体接合用接着剤付き半導体チップの突起電極、基板の電極部、並びに、半導体チップ及び基板上に設けられたアライメントマークの位置をカメラに認識させることで、X、Y方向及び回転方向(θ方向)に自動的に位置あわせを行う。
Next, in the method for manufacturing a semiconductor device of the present invention, step 4 of aligning the semiconductor chip with the semiconductor bonding adhesive and the substrate is performed.
In the step 4, a semiconductor is usually inserted between a bonding tool holding and holding a semiconductor chip with a semiconductor bonding adhesive and a bonding stage on which a substrate is disposed, and the semiconductor with an adhesive for semiconductor bonding is inserted. Automatically aligns the X and Y directions and the rotation direction (θ direction) by making the camera recognize the position of the protruding electrodes on the chip, the electrode portions of the substrate, and the alignment marks provided on the semiconductor chip and the substrate. I do.

本発明の半導体装置の製造方法では、次いで、上記半導体接合用接着剤付き半導体チップを半田溶融点以上の温度に加熱して、上記半導体接合用接着剤付き半導体チップの突起電極と上記基板の電極部とを接合させると同時に、上記半導体接合用接着剤を仮接着させる工程5を行う。
上記工程5では、半導体接合用接着剤付き半導体チップを吸着保持しているボンディングツールを、基板が配置されているボンディングステージに向かって下降させ、上記半導体接合用接着剤付き半導体チップを半田溶融点以上の温度に加熱することで、上記半導体接合用接着剤付き半導体チップの突起電極と上記基板の電極部とを接合させると同時に、上記半導体接合用接着剤を仮接着させる。
In the semiconductor device manufacturing method of the present invention, the semiconductor chip with the semiconductor bonding adhesive is then heated to a temperature equal to or higher than the solder melting point, and the protruding electrode of the semiconductor bonding adhesive semiconductor chip and the electrode of the substrate At the same time as joining the parts, step 5 of temporarily adhering the semiconductor bonding adhesive is performed.
In the step 5, the bonding tool holding the semiconductor chip with the adhesive for semiconductor bonding is lowered toward the bonding stage on which the substrate is arranged, and the semiconductor chip with the adhesive for semiconductor bonding is soldered to the melting point. By heating to the above temperature, the protruding electrode of the semiconductor chip with the semiconductor bonding adhesive and the electrode portion of the substrate are bonded, and at the same time, the semiconductor bonding adhesive is temporarily bonded.

半田溶融点は、通常、225〜235℃程度である。上記半田溶融点以上の温度の好ましい下限は240℃、好ましい上限は300℃である。温度が240℃未満であると、半田が充分に溶融せず、電極接合が形成されないことがある。温度が300℃を超えると、半導体接合用接着剤から揮発成分が発生してボイドを増加させることがある。また、ボイドを除去する工程6においてボイドが除去される前に半導体接合用接着剤の硬化が進んでしまい、ボイドを除去する工程6において半導体接合用接着剤の流動性が低下するため、ボイドを充分に除去できないことがある。 The solder melting point is usually about 225 to 235 ° C. The preferable lower limit of the temperature above the solder melting point is 240 ° C., and the preferable upper limit is 300 ° C. If the temperature is lower than 240 ° C., the solder may not be sufficiently melted, and electrode bonding may not be formed. When temperature exceeds 300 degreeC, a volatile component may generate | occur | produce from the adhesive agent for semiconductor joining, and a void may be increased. Moreover, since the hardening of the adhesive for semiconductor bonding proceeds before the void is removed in the step 6 for removing the void, and the fluidity of the adhesive for semiconductor bonding is lowered in the step 6 for removing the void, the void is removed. It may not be removed sufficiently.

上記半導体接合用接着剤付き半導体チップを半田溶融点以上の温度に加熱する時間(保持時間)は、好ましい下限が1秒、好ましい上限が3秒である。保持時間が1秒未満であると、半田が充分に溶融せず、電極接合が形成されないことがある。保持時間が3秒を超えると、半導体接合用接着剤から揮発成分が発生してボイドを増加させることがある。また、ボイドを除去する工程6においてボイドが除去される前に半導体接合用接着剤の硬化が進んでしまい、ボイドを除去する工程6において半導体接合用接着剤の流動性が低下するため、ボイドを充分に除去できないことがある。 As for the time (holding time) for heating the semiconductor chip with the semiconductor bonding adhesive to a temperature equal to or higher than the solder melting point, a preferable lower limit is 1 second, and a preferable upper limit is 3 seconds. If the holding time is less than 1 second, the solder may not be sufficiently melted and electrode bonding may not be formed. If the holding time exceeds 3 seconds, a volatile component may be generated from the semiconductor bonding adhesive to increase voids. Moreover, since the hardening of the adhesive for semiconductor bonding proceeds before the void is removed in the step 6 for removing the void, and the fluidity of the adhesive for semiconductor bonding is lowered in the step 6 for removing the void, the void is removed. It may not be removed sufficiently.

上記工程5では、上記半導体接合用接着剤付き半導体チップに対して圧力をかけることが好ましい。圧力は、電極接合が形成される圧力であれば特に限定されないが、0.3〜3MPaが好ましい。 In the step 5, it is preferable to apply pressure to the semiconductor chip with the semiconductor bonding adhesive. Although a pressure will not be specifically limited if it is a pressure in which electrode joining is formed, 0.3-3 Mpa is preferable.

本発明の半導体装置の製造方法では、次いで、上記半導体接合用接着剤を加圧雰囲気下で加熱して、ボイドを除去する工程6を行う。
加圧雰囲気下とは、常圧(大気圧)より高い圧力雰囲気下を意味する。本発明の半導体装置の製造方法では、上記半導体接合用接着剤の60〜100℃における溶融粘度を上記範囲内とし、突起電極を確実に接合した後、適度な流動性のある状態で半導体接合用接着剤を加圧雰囲気下で加熱することで、精度の高い突起電極の接合とボイドの抑制とを同時に行うことができる。上記工程6では、ボイドを単に成長させないだけではなく、積極的に除去できるものと考えられることから、本発明の半導体装置の製造方法では、仮に半導体接合用接着剤に空気が巻き込まれた場合であってもボイドを除去することができる。
In the method for manufacturing a semiconductor device of the present invention, next, step 6 of removing the voids is performed by heating the adhesive for semiconductor bonding in a pressurized atmosphere.
Under a pressurized atmosphere means a pressure atmosphere higher than normal pressure (atmospheric pressure). In the method for manufacturing a semiconductor device according to the present invention, the melt viscosity at 60 to 100 ° C. of the adhesive for semiconductor bonding is within the above range, and after the protruding electrodes are securely bonded, the adhesive for semiconductor bonding in a state with appropriate fluidity. By heating the adhesive in a pressurized atmosphere, it is possible to simultaneously perform highly accurate bonding of bump electrodes and suppression of voids. In the above step 6, since it is considered that the void is not simply grown but can be removed positively, in the method for manufacturing a semiconductor device of the present invention, it is assumed that air is entrained in the adhesive for semiconductor bonding. Even if it exists, the void can be removed.

上記半導体接合用接着剤を加圧雰囲気下で加熱する方法として、例えば、加圧キュアオーブン(例えば、PCO−083TA(NTTアトバンステクノロジ社製))を用いる方法等が挙げられる。
上記加圧キュアオーブンの圧力の好ましい下限は0.1MPa、好ましい上限は10MPaである。圧力が0.1MPa未満であると、ボイドを充分に除去することができないことがある。圧力が10MPaを超えると、半導体接合用接着剤自体の変形が生じ、半導体装置の信頼性に悪影響を及ぼすことがある。圧力のより好ましい下限は0.3MPa、より好ましい上限は1MPaである。
Examples of the method for heating the adhesive for semiconductor bonding in a pressurized atmosphere include a method using a pressure curing oven (for example, PCO-083TA (manufactured by NTT Atvans Technology)).
The preferable lower limit of the pressure of the pressure curing oven is 0.1 MPa, and the preferable upper limit is 10 MPa. If the pressure is less than 0.1 MPa, the void may not be sufficiently removed. When the pressure exceeds 10 MPa, the semiconductor bonding adhesive itself is deformed, which may adversely affect the reliability of the semiconductor device. The more preferable lower limit of the pressure is 0.3 MPa, and the more preferable upper limit is 1 MPa.

上記半導体接合用接着剤を加圧雰囲気下で加熱する際の加熱温度の好ましい下限は60℃、好ましい上限は150℃である。ただし、上記半導体接合用接着剤を加圧雰囲気下で加熱する際には、一定温度及び一定圧力で保持してもよいし、昇温及び/又は昇圧しながら段階的に温度及び/又は圧力を変化させてもよい。
また、ボイドをより確実に除去するためには、上記半導体接合用接着剤を加圧雰囲気下で加熱する際の加熱時間は、10分以上であることが好ましい。
The preferable lower limit of the heating temperature when the adhesive for semiconductor bonding is heated in a pressurized atmosphere is 60 ° C., and the preferable upper limit is 150 ° C. However, when the adhesive for semiconductor bonding is heated in a pressurized atmosphere, it may be maintained at a constant temperature and a constant pressure, or the temperature and / or pressure may be increased stepwise while raising and / or raising the pressure. It may be changed.
Moreover, in order to remove a void more reliably, it is preferable that the heating time at the time of heating the said adhesive for semiconductor joining in a pressurized atmosphere is 10 minutes or more.

本発明の半導体装置の製造方法では、ボイドを除去する工程6を行った後、半導体接合用接着剤を完全に硬化させる工程7を行ってもよい。
上記半導体接合用接着剤を完全に硬化させる方法として、例えば、ボイドを除去する工程6を行った後、加圧雰囲気下でそのまま温度を上げて半導体接合用接着剤を完全に硬化させる方法、常圧下で半導体接合用接着剤を加熱して完全に硬化させる方法等が挙げられる。上記半導体接合用接着剤を完全に硬化させる際の加熱温度は特に限定されないが、150〜200℃程度が好ましい。
In the method for manufacturing a semiconductor device of the present invention, after performing step 6 for removing voids, step 7 for completely curing the adhesive for semiconductor bonding may be performed.
As a method of completely curing the adhesive for semiconductor bonding, for example, a method of completely curing the adhesive for semiconductor bonding by performing a step 6 of removing voids and then raising the temperature as it is under a pressurized atmosphere. Examples thereof include a method of heating the semiconductor bonding adhesive under pressure to completely cure it. The heating temperature for completely curing the semiconductor bonding adhesive is not particularly limited, but is preferably about 150 to 200 ° C.

本発明の半導体装置の製造方法によれば、半導体接合用接着剤の60〜100℃における溶融粘度を上記範囲内とし、突起電極を確実に接合した後、適度な流動性のある状態で半導体接合用接着剤を加圧雰囲気下で加熱することで、精度の高い突起電極の接合とボイドの抑制とを同時に行うことができる。また、半導体接合用接着剤のプローブタック法で測定した25℃におけるタック値を上記範囲内とすることで、ボンディング装置(スライダー、ボンディングツール等)への半導体接合用接着剤の付着及び汚染を抑制することができる。本発明の半導体装置の製造方法に用いられ、60〜100℃における溶融粘度が10kPa・s以下であり、かつ、プローブタック法で測定した25℃におけるタック値が10gf/5mmφ以下である半導体接合用接着剤もまた、本発明の1つである。 According to the method for manufacturing a semiconductor device of the present invention, the melt viscosity at 60 to 100 ° C. of the adhesive for semiconductor bonding is within the above range, and the protruding electrodes are securely bonded, and then the semiconductor bonding is performed in an appropriate fluid state. By heating the adhesive for use in a pressurized atmosphere, it is possible to simultaneously perform highly accurate projection electrode bonding and void suppression. In addition, by setting the tack value at 25 ° C. measured by the probe tack method of the semiconductor bonding adhesive within the above range, adhesion and contamination of the semiconductor bonding adhesive to the bonding apparatus (slider, bonding tool, etc.) can be suppressed. can do. Used for a semiconductor device manufacturing method of the present invention, having a melt viscosity at 60 to 100 ° C. of 10 kPa · s or less and a tack value at 25 ° C. measured by a probe tack method of 10 gf / 5 mmφ or less. An adhesive is also one aspect of the present invention.

本発明によれば、ボンディング装置への半導体接合用接着剤の付着及び汚染を抑制することができ、ボイドを抑制して高い信頼性を実現することができる半導体装置の製造方法を提供することができる。また、本発明によれば、該半導体装置の製造方法に用いられる半導体接合用接着剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the semiconductor device which can suppress adhesion and contamination of the adhesive for semiconductor joining to a bonding apparatus, and can implement | achieve high reliability by suppressing a void is provided. it can. Moreover, according to this invention, the adhesive agent for semiconductor joining used for the manufacturing method of this semiconductor device can be provided.

以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Examples of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1〜6及び比較例1〜5)
(1)半導体接合用接着剤の製造
表1に記載の配合組成に従って、各材料を溶媒としてのMEKに添加し、ホモディスパーを用いて攪拌混合することにより半導体接合用接着剤溶液を製造した。得られた半導体接合用接着剤溶液を、アプリケーターを用いて離型PETフィルム上に乾燥後の厚みが30μmとなるように塗工し、乾燥することにより、フィルム状の半導体接合用接着剤を製造した。使用時まで、得られた接着剤層の表面を離型PETフィルム(保護フィルム)で保護した。
(Examples 1-6 and Comparative Examples 1-5)
(1) Manufacture of adhesive for semiconductor bonding According to the composition shown in Table 1, each material was added to MEK as a solvent, and a semiconductor bonding adhesive solution was manufactured by stirring and mixing using a homodisper. The obtained semiconductor bonding adhesive solution is coated on a release PET film with an applicator so that the thickness after drying is 30 μm, and dried to produce a film-like semiconductor bonding adhesive did. Until use, the surface of the obtained adhesive layer was protected with a release PET film (protective film).

(2)溶融粘度の測定
回転式レオメーター(VAR−100、レオロジカ社製)を用いて、昇温速度5℃/分、周波数1Hz、歪み1%で半導体接合用接着剤の溶融粘度を測定し、半導体接合用接着剤の60℃、80℃及び100℃における溶融粘度を求めた。
(2) Measurement of melt viscosity Using a rotary rheometer (VAR-100, manufactured by Rheologica), the melt viscosity of the adhesive for semiconductor bonding was measured at a heating rate of 5 ° C / min, a frequency of 1 Hz, and a strain of 1%. The melt viscosity at 60 ° C., 80 ° C. and 100 ° C. of the adhesive for semiconductor bonding was determined.

(3)プローブタック法によるタック値の測定
プローブタック測定装置(タッキング試験機TAC−2、RHESCA社製)を用いて、プローブ径5mm、接触速さ120mm/分、テストスピード600mm/分、接触荷重10mN/mm、接触時間10秒で25℃における半導体接合用接着剤表面のタック値を測定した。
(3) Measurement of tack value by probe tack method Using a probe tack measuring device (tacking tester TAC-2, manufactured by RHESCA), probe diameter 5 mm, contact speed 120 mm / min, test speed 600 mm / min, contact load The tack value of the adhesive surface for semiconductor bonding at 25 ° C. was measured at 10 mN / mm 2 and a contact time of 10 seconds.

(4)DSCにおける発熱開始温度の測定
DSC6220(セイコーインツル社製)を用いて、30℃から300℃まで10℃/minで昇温し、半導体接合用接着剤の熱分析を行った。検出された発熱ピークにおける発熱開始温度を測定した。
(4) Measurement of heat generation start temperature in DSC Using DSC 6220 (manufactured by Seiko Instruments Inc.), the temperature was raised from 30 ° C. to 300 ° C. at 10 ° C./min, and thermal analysis of the adhesive for semiconductor bonding was performed. The exothermic onset temperature at the detected exothermic peak was measured.

(5)半導体装置の製造
(5−1)工程1、工程2
先端部が半田からなる突起電極が50μmピッチでペリフェラル状に形成された半導体ウエハ(WALTS−TEG MB50−0101JY、半田溶融点235℃、ウォルツ社製)を用意した。
半導体接合用接着剤の片面の保護フィルムを剥がし、真空ラミネーター(ATM−812M、タカトリ社製)を用いて、ステージ温度80℃、真空度80Paで半導体ウエハの突起電極形成面に半導体接合用接着剤を貼り合わせた(工程1)。次いで、研削装置(DFG8560、ディスコ社製)を用いて、厚みが100μmとなるまで半導体ウエハの裏面を研削した。半導体ウエハの研削した面にダイシングテープを貼り付け、ダイシング装置(DFD651、ディスコ社製)を用いて、送り速度20mm/秒で半導体ウエハを個片化して、厚みが30μmの半導体接合用接着剤が付着した半導体接合用接着剤付き半導体チップ(7.6mm□)を得た(工程2)。
(5) Manufacturing of semiconductor device (5-1) Step 1 and Step 2
A semiconductor wafer (WALTS-TEG MB50-0101JY, solder melting point 235 ° C., manufactured by Waltz Co., Ltd.) in which protruding electrodes made of solder at the tip portion were formed in a peripheral shape at a pitch of 50 μm was prepared.
The protective film on one side of the adhesive for semiconductor bonding is peeled off, and the adhesive for semiconductor bonding on the protruding electrode forming surface of the semiconductor wafer at a stage temperature of 80 ° C. and a vacuum of 80 Pa using a vacuum laminator (ATM-812M, manufactured by Takatori) Were bonded together (step 1). Next, the back surface of the semiconductor wafer was ground using a grinding apparatus (DFG8560, manufactured by Disco Corporation) until the thickness reached 100 μm. A dicing tape is applied to the ground surface of the semiconductor wafer, and the dicing machine (DFD651, manufactured by Disco Corporation) is used to separate the semiconductor wafer at a feed rate of 20 mm / sec. A semiconductor chip (7.6 mm □) with an adhesive for adhering semiconductor bonding was obtained (step 2).

(5−2)工程3、工程4、工程5
Ni/Au電極を有する基板(WALTS−KIT MB50−0101JY、ウォルツ社製)を用意した。
フリップチップボンダ(FC−3000、東レエンジニアリング社製)を用いて、得られた半導体接合用接着剤付き半導体チップをスライダー上に配置し、裏面からボンディングツールに吸着保持させた(工程3)。次いで、半導体接合用接着剤付き半導体チップを、ボンディングステージ上に配置された基板に対して位置あわせし(工程4)、ボンディングステージ温度120℃の条件下で、160℃接触で280℃まで昇温し、0.8MPaで2秒間荷重をかけ、半導体接合用接着剤付き半導体チップの突起電極と基板の電極部とを接合させると同時に、半導体接合用接着剤を仮接着させた(工程5)。
(5-2) Step 3, Step 4, Step 5
A substrate having a Ni / Au electrode (WALTS-KIT MB50-0101JY, manufactured by Waltz) was prepared.
Using a flip chip bonder (FC-3000, manufactured by Toray Engineering Co., Ltd.), the obtained semiconductor chip with an adhesive for semiconductor bonding was placed on a slider and adsorbed and held on the bonding tool from the back surface (step 3). Next, the semiconductor chip with the adhesive for semiconductor bonding is aligned with the substrate placed on the bonding stage (step 4), and the temperature is raised to 280 ° C. at 160 ° C. under the condition of the bonding stage temperature of 120 ° C. Then, a load was applied at 0.8 MPa for 2 seconds to bond the protruding electrode of the semiconductor chip with the semiconductor bonding adhesive to the electrode portion of the substrate, and at the same time, temporarily bonded the semiconductor bonding adhesive (step 5).

(5−3)工程6、工程7
得られた仮接着体を、加圧キュアオーブン(PCO−083TA、NTTアドバンステクノロジ社製)に投入し、以下の加圧、加熱条件により半導体接合用接着剤を加圧雰囲気下で加熱して、ボイドを除去するとともに(工程6)、半導体接合用接着剤を完全に硬化させて(工程7)、半導体装置を得た。ただし、比較例5においては、工程6は行わず、得られた仮接着体を常圧170℃オーブンで30分間保持することにより半導体接合用接着剤を完全に硬化させて(工程7)、半導体装置を得た。
<加圧、加熱条件>
STEP1:25℃から80℃まで10分で一定昇温、0.5MPa
STEP2:80℃で60分保持、0.5MPa
STEP3:80℃から170℃まで一定昇温、0.5MPa
STEP4:170℃で10分保持、0.5MPa
STEP5:170℃から25℃まで30分で降温、0.5MPa
STEP6:室温まで60分で一定降温、0.5MPa
(5-3) Step 6 and Step 7
The obtained temporary adhesive body was put into a pressure curing oven (PCO-083TA, manufactured by NTT Advanced Technology), and the semiconductor bonding adhesive was heated in a pressurized atmosphere under the following pressure and heating conditions. While removing the void (step 6), the semiconductor bonding adhesive was completely cured (step 7) to obtain a semiconductor device. However, in Comparative Example 5, Step 6 is not performed, and the obtained temporary adhesive body is held in a normal pressure 170 ° C. oven for 30 minutes to completely cure the semiconductor bonding adhesive (Step 7). Got the device.
<Pressurization and heating conditions>
STEP1: Constant temperature increase from 25 ° C to 80 ° C in 10 minutes, 0.5 MPa
STEP2: Hold at 80 ° C. for 60 minutes, 0.5 MPa
STEP3: Constant temperature increase from 80 ° C to 170 ° C, 0.5 MPa
STEP 4: Hold at 170 ° C. for 10 minutes, 0.5 MPa
STEP5: Temperature drop from 170 ° C to 25 ° C in 30 minutes, 0.5 MPa
STEP6: Constant temperature drop to room temperature in 60 minutes, 0.5 MPa

<評価>
実施例及び比較例で得られた半導体装置について、以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the semiconductor device obtained by the Example and the comparative example. The results are shown in Table 1.

(1)ボンディングツールへの吸着不良の有無
半導体チップをボンディングツールに吸着保持させる工程3において、スライダー又はボンディングツールへの半導体接合用接着剤の付着及び汚染がなく、半導体チップを吸着保持できた場合を○、半導体チップを吸着保持することはできたものの、実装後に確認するとスライダー又はボンディングツールの一部に半導体接合用接着剤の付着が見られた場合を△、スライダーに半導体接合用接着剤が付着し、半導体チップを吸着保持できなかった場合を×とした。
(1) Presence or absence of adsorption failure to the bonding tool In the case where the semiconductor chip is adsorbed and held in the bonding tool in step 3, the semiconductor chip can be adsorbed and held without adhesion and contamination of the semiconductor bonding adhesive to the slider or bonding tool. ◯, semiconductor chip can be adsorbed and held, but after mounting, if the adhesive for semiconductor bonding is seen on the slider or part of the bonding tool, △, the semiconductor bonding adhesive is on the slider The case where it adhered and the semiconductor chip could not be adsorbed and held was marked as x.

(2)電極接合状態
研磨機を用いて半導体装置を断面研磨し、マイクロスコープを用いて電極接合部の電極接合状態を観察した。上下電極間に半導体接合用接着剤の噛み込みが無く、電極接合状態が良好であった場合を○、上下電極間にわずかに半導体接合用接着剤の噛み込みがあるものの、上下電極が接合していた場合を△、上下電極間に半導体接合用接着剤の噛み込みがあり、上下電極が全く接合していなかった場合を×とした。
(2) Electrode bonding state The semiconductor device was cross-section polished using a polishing machine, and the electrode bonding state of the electrode bonding portion was observed using a microscope. ○ When there is no biting of the semiconductor bonding adhesive between the upper and lower electrodes and the electrode bonding state is good, the upper and lower electrodes are bonded although there is a slight biting of the semiconductor bonding adhesive between the upper and lower electrodes. In the case where the upper and lower electrodes were sandwiched, Δ, and the case where the upper and lower electrodes were not joined at all was marked as x.

(3)ボイドの有無
超音波探査映像装置(C−SAM D9500、日本バーンズ社製)を用いて半導体装置のボイドを観察し、ボイドの有無を評価した。半導体チップ面積に対するボイド発生部分の面積が1%未満であった場合を○、1%以上5%未満であった場合を△、5%以上であった場合を×とした。
(3) Presence / absence of voids The voids of the semiconductor device were observed using an ultrasonic imaging apparatus (C-SAM D9500, manufactured by Nihon Burns Co., Ltd.), and the presence / absence of voids was evaluated. The case where the area of the void generation portion with respect to the semiconductor chip area was less than 1% was evaluated as ◯, the case where it was 1% or more and less than 5% was Δ, and the case where it was 5% or more was rated as x.

(4)信頼性評価(TCT試験)
半導体装置について−55℃〜125℃(30分/サイクル)の冷熱サイクル試験を行い、100サイクルごとに導通抵抗値を測定した。導通抵抗値が、冷熱サイクル試験前の初期導通抵抗値に比べ5%以上変化した時点をNG判定とし、5%未満の導通抵抗値が保たれていたサイクル数を評価した。サイクル数が1000サイクル以上であった場合を○、300サイクル以上1000サイクル未満であった場合を△、300サイクル未満であった場合を×とした。
(4) Reliability evaluation (TCT test)
The semiconductor device was subjected to a thermal cycle test of −55 ° C. to 125 ° C. (30 minutes / cycle), and the conduction resistance value was measured every 100 cycles. The time when the conduction resistance value changed by 5% or more compared to the initial conduction resistance value before the thermal cycle test was determined as NG, and the number of cycles in which the conduction resistance value of less than 5% was maintained was evaluated. The case where the number of cycles was 1000 cycles or more was evaluated as “◯”, the case where it was 300 cycles or more and less than 1000 cycles as “Δ”, and the case where it was less than 300 cycles as “×”.

Figure 2013235974
Figure 2013235974

本発明によれば、ボンディング装置への半導体接合用接着剤の付着及び汚染を抑制することができ、ボイドを抑制して高い信頼性を実現することができる半導体装置の製造方法を提供することができる。また、本発明によれば、該半導体装置の製造方法に用いられる半導体接合用接着剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the semiconductor device which can suppress adhesion and contamination of the adhesive for semiconductor joining to a bonding apparatus, and can implement | achieve high reliability by suppressing a void is provided. it can. Moreover, according to this invention, the adhesive agent for semiconductor joining used for the manufacturing method of this semiconductor device can be provided.

Claims (5)

先端部が半田からなる突起電極が形成された半導体ウエハの突起電極形成面に、半導体接合用接着剤を供給する工程1、
前記半導体ウエハを個片化して、半導体接合用接着剤付き半導体チップを得る工程2、
前記半導体接合用接着剤付き半導体チップを裏面からボンディングツールに吸着保持させる工程3、
前記半導体接合用接着剤付き半導体チップと、基板とを位置あわせする工程4、
前記半導体接合用接着剤付き半導体チップを半田溶融点以上の温度に加熱して、前記半導体接合用接着剤付き半導体チップの突起電極と前記基板の電極部とを接合させると同時に、前記半導体接合用接着剤を仮接着させる工程5、及び、
前記半導体接合用接着剤を加圧雰囲気下で加熱して、ボイドを除去する工程6を有し、
前記半導体接合用接着剤は、60〜100℃における溶融粘度が10kPa・s以下であり、かつ、プローブタック法で測定した25℃におけるタック値が10gf/5mmφ以下である
ことを特徴とする半導体装置の製造方法。
Supplying a semiconductor bonding adhesive to a bump electrode forming surface of a semiconductor wafer on which a bump electrode having a tip made of solder is formed;
Step 2 of obtaining a semiconductor chip with an adhesive for semiconductor bonding by dividing the semiconductor wafer into pieces,
Step 3 of adsorbing and holding the semiconductor chip with adhesive for semiconductor bonding to the bonding tool from the back surface;
A step 4 of aligning the semiconductor chip with the semiconductor bonding adhesive and the substrate;
The semiconductor chip with the semiconductor bonding adhesive is heated to a temperature equal to or higher than the solder melting point to bond the protruding electrode of the semiconductor chip with the semiconductor bonding adhesive and the electrode portion of the substrate at the same time. Step 5 of temporarily bonding the adhesive, and
Heating the semiconductor bonding adhesive in a pressurized atmosphere to remove voids;
The semiconductor bonding adhesive has a melt viscosity at 60 to 100 ° C. of 10 kPa · s or less and a tack value at 25 ° C. measured by a probe tack method of 10 gf / 5 mmφ or less. Manufacturing method.
半導体接合用接着剤は、熱硬化性樹脂、熱硬化剤及び高分子量化合物を含有し、常温(25℃)で液状の成分とガラス転移温度(Tg)が0℃以下の高分子量化合物とを合わせた含有量が5重量%以下であることを特徴とする請求項1記載の半導体装置の製造方法。 A semiconductor bonding adhesive contains a thermosetting resin, a thermosetting agent, and a high molecular weight compound, and combines a liquid component at room temperature (25 ° C.) with a high molecular weight compound having a glass transition temperature (Tg) of 0 ° C. or lower. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the content is 5% by weight or less. 半導体接合用接着剤は、更に、無機フィラーを含有し、前記無機フィラーの含有量が40重量%以下であることを特徴とする請求項2記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 2, wherein the adhesive for semiconductor bonding further contains an inorganic filler, and the content of the inorganic filler is 40% by weight or less. 半導体接合用接着剤は、DSCにおける発熱開始温度が100℃以上であることを特徴とする請求項1、2又は3記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor bonding adhesive has a heat generation start temperature in DSC of 100 [deg.] C. or higher. 請求項1、2、3又は4記載の半導体装置の製造方法に用いられ、60〜100℃における溶融粘度が10kPa・s以下であり、かつ、プローブタック法で測定した25℃におけるタック値が10gf/5mmφ以下であることを特徴とする半導体接合用接着剤。 5. The semiconductor device manufacturing method according to claim 1, wherein the melt viscosity at 60 to 100 ° C. is 10 kPa · s or less, and the tack value at 25 ° C. measured by the probe tack method is 10 gf. An adhesive for semiconductor bonding, characterized in that it is / 5 mmφ or less.
JP2012107731A 2012-05-09 2012-05-09 Semiconductor device manufacturing method and semiconductor bonding adhesive Expired - Fee Related JP5989397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107731A JP5989397B2 (en) 2012-05-09 2012-05-09 Semiconductor device manufacturing method and semiconductor bonding adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107731A JP5989397B2 (en) 2012-05-09 2012-05-09 Semiconductor device manufacturing method and semiconductor bonding adhesive

Publications (2)

Publication Number Publication Date
JP2013235974A true JP2013235974A (en) 2013-11-21
JP5989397B2 JP5989397B2 (en) 2016-09-07

Family

ID=49761851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107731A Expired - Fee Related JP5989397B2 (en) 2012-05-09 2012-05-09 Semiconductor device manufacturing method and semiconductor bonding adhesive

Country Status (1)

Country Link
JP (1) JP5989397B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186704A1 (en) * 2014-06-05 2015-12-10 積水化学工業株式会社 Conductive paste, connected structure and method for producing connected structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203427A (en) * 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Circuit connecting material, method for manufacturing circuit board using it, and circuit board
JP2007116079A (en) * 2005-09-26 2007-05-10 Sumitomo Bakelite Co Ltd Sealing resin composition for preapplication, and process of manufacturing semiconductor device using it
JP2010287836A (en) * 2009-06-15 2010-12-24 Hitachi Chem Co Ltd Adhesive film laminate for semiconductor processing
JP2011202177A (en) * 2009-09-30 2011-10-13 Sekisui Chem Co Ltd Adhesive for semiconductor bonding, adhesive film for semiconductor bonding, method for mounting semiconductor chip, and semiconductor device
JP2011214006A (en) * 2011-06-17 2011-10-27 Hitachi Chem Co Ltd Adhesive film, its application, and method for manufacturing semiconductor device
JPWO2012026431A1 (en) * 2010-08-23 2013-10-28 積水化学工業株式会社 Adhesive sheet and semiconductor chip mounting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203427A (en) * 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Circuit connecting material, method for manufacturing circuit board using it, and circuit board
JP2007116079A (en) * 2005-09-26 2007-05-10 Sumitomo Bakelite Co Ltd Sealing resin composition for preapplication, and process of manufacturing semiconductor device using it
JP2010287836A (en) * 2009-06-15 2010-12-24 Hitachi Chem Co Ltd Adhesive film laminate for semiconductor processing
JP2011202177A (en) * 2009-09-30 2011-10-13 Sekisui Chem Co Ltd Adhesive for semiconductor bonding, adhesive film for semiconductor bonding, method for mounting semiconductor chip, and semiconductor device
JPWO2012026431A1 (en) * 2010-08-23 2013-10-28 積水化学工業株式会社 Adhesive sheet and semiconductor chip mounting method
JP2011214006A (en) * 2011-06-17 2011-10-27 Hitachi Chem Co Ltd Adhesive film, its application, and method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186704A1 (en) * 2014-06-05 2015-12-10 積水化学工業株式会社 Conductive paste, connected structure and method for producing connected structure
JP5860191B1 (en) * 2014-06-05 2016-02-16 積水化学工業株式会社 Conductive paste, connection structure, and manufacturing method of connection structure
CN105900180A (en) * 2014-06-05 2016-08-24 积水化学工业株式会社 Conductive paste, connected structure and method for producing connected structure

Also Published As

Publication number Publication date
JP5989397B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5564151B1 (en) Manufacturing method of semiconductor device and adhesive for flip chip mounting
JP5788107B2 (en) Adhesive for semiconductor
JP2012174861A (en) Method of flip chip mounting
JP6438340B2 (en) Adhesive film for semiconductor bonding and method for manufacturing semiconductor device
JP6009860B2 (en) Manufacturing method of semiconductor device
JP6460899B2 (en) Adhesive for semiconductor bonding
JP5989397B2 (en) Semiconductor device manufacturing method and semiconductor bonding adhesive
JP6030233B2 (en) Adhesive film for semiconductor chip with through electrode and method for producing adhesive film for semiconductor chip with through electrode
JP2013102092A (en) Semiconductor device manufacturing method
JP5646021B2 (en) Semiconductor package
JP5914226B2 (en) Manufacturing method of semiconductor device and adhesive for flip chip mounting
JP2014107354A (en) Method for manufacturing semiconductor device
JP2014107355A (en) Method for manufacturing semiconductor device
JP2012216831A (en) Semiconductor chip packaging body manufacturing method
JP2013214619A (en) Semiconductor device manufacturing method
JP2015002338A (en) Method for manufacturing semiconductor device
JP2014116503A (en) Semiconductor device manufacturing method
JP2016096305A (en) Adhesive agent for bonding semiconductor and adhesive film for bonding semiconductor
JP2012044058A (en) Semiconductor element bonding method
JP2014103313A (en) Film-like adhesive for semiconductor junction, and manufacturing method of semiconductor device
JP2014068004A (en) Semiconductor device manufacturing method
JP2015216273A (en) Thermosetting resin composition, and method for manufacturing semiconductor device
JP2016207814A (en) Semiconductor device manufacturing method
JP2015126120A (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R151 Written notification of patent or utility model registration

Ref document number: 5989397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees