JP2011214006A - Adhesive film, its application, and method for manufacturing semiconductor device - Google Patents

Adhesive film, its application, and method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2011214006A
JP2011214006A JP2011134729A JP2011134729A JP2011214006A JP 2011214006 A JP2011214006 A JP 2011214006A JP 2011134729 A JP2011134729 A JP 2011134729A JP 2011134729 A JP2011134729 A JP 2011134729A JP 2011214006 A JP2011214006 A JP 2011214006A
Authority
JP
Japan
Prior art keywords
adhesive film
semiconductor chip
external connection
pressure
melt viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011134729A
Other languages
Japanese (ja)
Other versions
JP5585542B2 (en
Inventor
Takeo Tomiyama
健男 富山
Keiichi Hatakeyama
恵一 畠山
Masaaki Yasuda
雅昭 安田
Teiichi Inada
禎一 稲田
Takayuki Matsuzaki
隆行 松崎
Michio Uruno
道生 宇留野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011134729A priority Critical patent/JP5585542B2/en
Publication of JP2011214006A publication Critical patent/JP2011214006A/en
Application granted granted Critical
Publication of JP5585542B2 publication Critical patent/JP5585542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive film for connecting a semiconductor chip and a member for external connection with wiring mounting the same or an another semiconductor chip which can be thermocompression bonded with 0.01 to 0.5 MPa pressing pressure.SOLUTION: The adhesive film for connecting a semiconductor chip and a member for external connection with wiring mounting the same or an another semiconductor chip has ≥1×10Pa s melt viscosity at ≤100°C to be a laminate temperature region, 5×10 to 1×10Pa s at a pressing temperature and a fixed relation of pressing pressure, pressing time and melt viscosity at a pressing temperature of the adhesive film. A method for manufacturing a semiconductor device is also provided.

Description

本発明は、半導体チップをその支持部材に接着する接着フィルムに関し、特に小さな圧着圧力で優れた接着性を発揮する接着フィルムに関する。   The present invention relates to an adhesive film for adhering a semiconductor chip to a supporting member thereof, and particularly to an adhesive film that exhibits excellent adhesiveness with a small pressure.

近年、パソコンや携帯電話などの電子機器の小型化、高性能化に伴い、半導体パッケージは、半導体チップとほぼ同じ大きさまで小型化したものまで開発、実用化されている。これら半導体パッケージは、チップサイズパッケージ(以下「CSP」という。)と称され、その一般的な構造は、接着材を用いて、半導体チップを配線層を有する外部接続部材に接着保持させ、チップと外部接続端子をワイヤーボンディングまたはTAB(Tape Automated Bonding)のインナーリードボンディングなどの各種方法により、電気的に接続し、さらに必要に応じてパッケージの一部又は全体を樹脂封止している。また近年では、外部接続部材に接着した半導体チップの上に、さらに別の半導体チップを接着材で接着することによって、半導体チップが積層された構造の半導体パッケージも提案、実用化されている。   In recent years, with the downsizing and high performance of electronic devices such as personal computers and mobile phones, semiconductor packages have been developed and put to practical use down to the same size as a semiconductor chip. These semiconductor packages are referred to as chip size packages (hereinafter referred to as “CSP”), and the general structure thereof is that an adhesive is used to adhere and hold a semiconductor chip to an external connection member having a wiring layer. The external connection terminals are electrically connected by various methods such as wire bonding or TAB (Tape Automated Bonding) inner lead bonding, and a part or the whole of the package is sealed with resin as necessary. In recent years, a semiconductor package having a structure in which semiconductor chips are laminated by bonding another semiconductor chip with an adhesive on the semiconductor chip bonded to the external connection member has been proposed and put into practical use.

半導体チップと外部接続部材または半導体チップ同士の接着に、フィルム状の接着材、すなわち接着フィルムを用いると、短時間で接着が可能となるので、接着フィルムを用いる方法が増加している。接着フィルムを用いる接着方法としては、個片圧着方法またはウェハ裏面貼付圧着方法などがある。個片圧着方法は、フィルム打ち抜き機構と熱圧着機構とを兼備したフィルム圧着機を用い、まず金型でシート状またはリール状の接着フィルムを所定の大きさに打ち抜き、これを外部接続部材の所定位置に仮圧着する。次に圧着治具を用いて、接着フィルムを熱圧着する。さらに、半導体チップを接着フィルムの上に位置合せした後、熱圧着することによって、外部接続部材と半導体チップとを接着する。   When a film-like adhesive, that is, an adhesive film, is used for bonding between the semiconductor chip and the external connection member or the semiconductor chips, the bonding can be performed in a short time, and therefore the method using the adhesive film is increasing. As an adhesion method using an adhesive film, there are an individual piece pressure bonding method, a wafer back surface bonding pressure bonding method, and the like. The piece crimping method uses a film crimping machine that has both a film punching mechanism and a thermocompression bonding mechanism. First, a sheet-shaped or reel-shaped adhesive film is punched into a predetermined size with a mold, and this is predetermined for an external connection member. Temporarily press in place. Next, the adhesive film is thermocompression-bonded using a crimping jig. Furthermore, after aligning the semiconductor chip on the adhesive film, the external connection member and the semiconductor chip are bonded by thermocompression bonding.

一方、ウェハ裏面貼付圧着方式は、半導体素子が形成されたウエハの裏面に、接着フィルムを加熱加圧ラミネート法などにより貼り付け、次ぎにダイシングテープをラミネートした後、ウエハおよび接着フィルムを一体に切断する。さらに、ダイシングテープを剥離し、接着フィルム付き半導体チップとし、これを配線付き外部接続部材や別の半導体チップへ熱圧着する。   On the other hand, in the wafer backside pressure bonding method, an adhesive film is attached to the backside of a wafer on which a semiconductor element is formed by a heat-pressure laminating method, etc., and then a dicing tape is laminated, and then the wafer and the adhesive film are cut together. To do. Further, the dicing tape is peeled off to form a semiconductor chip with an adhesive film, which is thermocompression bonded to an external connection member with wiring or another semiconductor chip.

いずれの圧着方式においても、チップ裏面が外部接続部材側に位置するフェイスアップ構造の場合、チップ素子面側から治具を用いて加圧圧着するので、素子の破壊を防ぐために小さな圧着圧力で圧着する必要がある。特に近年、半導体チップの薄型化、積層化の傾向に伴い、従来よりも小さな圧着圧力および低い温度で圧着する必要がある。   In any of the crimping methods, in the case of a face-up structure where the back surface of the chip is located on the external connection member side, pressure bonding is performed using a jig from the chip element surface side. There is a need to. Particularly in recent years, with the trend of thinning and stacking of semiconductor chips, it is necessary to perform pressure bonding at a pressure and pressure lower than those in the past.

一方、外部接続部材は、ポリイミドなどのフィルム基板やBT樹脂などのリジッド基板からなる基材に配線層が形成された構造である。配線層が半導体チップ側または外部接続端子部側に配置されている構造と、基板両面側に配置されている構造とに分類される。配線層が半導体チップ側に配置されているサーキットイン構造では、接着フィルムを圧着する外部接続部材表面に、配線層のパターンによる5〜20μm程度の凹凸が存在する。   On the other hand, the external connection member has a structure in which a wiring layer is formed on a base material made of a film substrate such as polyimide or a rigid substrate such as BT resin. The wiring layer is classified into a structure in which the wiring layer is disposed on the semiconductor chip side or the external connection terminal portion side and a structure in which the wiring layer is disposed on both sides of the substrate. In the circuit-in structure in which the wiring layer is arranged on the semiconductor chip side, there are irregularities of about 5 to 20 μm due to the pattern of the wiring layer on the surface of the external connection member to which the adhesive film is crimped.

しかし、従来の接着フィルム、たとえば、特開2000−256628号公報に開示された接着フィルムでは、圧着圧力が0.5〜3.0MPaにおいては、凹凸への充填性が良好であるが、圧着圧力が0.5MPaを下回ると、接着フィルムの充填が十分に行なわれず、接着界面に空隙(ボイド)が残存する。接着界面に空隙が存在すると、耐熱性および耐湿性などの信頼性が低下するという問題が発生するので、圧着圧力が0.5MPa以下の圧着圧力での圧着は、これまで採用されていなかった。   However, in the conventional adhesive film, for example, the adhesive film disclosed in Japanese Patent Application Laid-Open No. 2000-256628, when the pressure is 0.5 to 3.0 MPa, the filling into the unevenness is good. Is less than 0.5 MPa, the adhesive film is not sufficiently filled, and voids remain at the adhesion interface. If there is a void at the bonding interface, there arises a problem that reliability such as heat resistance and moisture resistance is lowered. Therefore, pressure bonding with a pressure of 0.5 MPa or less has not been adopted so far.

圧着時の空隙の発生は接着フィルムの流動性に依存するので、圧着温度での溶融粘度を小さくすることにより、空隙の発生を防止することができる。しかし溶融粘度が小さ過ぎると、チップ圧着時に、接着フィルム端部から接着組成物の過剰なはみ出しが生じ、リード端子部のボンディング不良を引き起こす問題がある。また、ウエハ裏面貼付圧着方法の場合、接着フィルムをウエハへラミネートする際にも、過剰なはみ出しが生じて、ウエハ表面やラミネート装置を汚染させることになる。さらに、圧着プロセスでの作業性に関しても、個片圧着方式では、接着フィルムが打ち抜き金型や搬送路へ付着したり、また、ウェハ裏面貼付圧着方式では、ダイシングテープとの剥離性が困難な問題があった。したがって、従来の接着フィルムでは、小さな圧着圧力での圧着性と作業性を両立させることができなかった。   Since the generation of voids at the time of pressure bonding depends on the fluidity of the adhesive film, the generation of voids can be prevented by reducing the melt viscosity at the pressure bonding temperature. However, if the melt viscosity is too small, excessive sticking of the adhesive composition from the edge of the adhesive film occurs at the time of chip crimping, which causes a problem of bonding failure of the lead terminal portion. In addition, in the case of the wafer back surface sticking pressure bonding method, when the adhesive film is laminated on the wafer, excessive protrusion occurs, and the wafer surface and the laminating apparatus are contaminated. Furthermore, with regard to workability in the crimping process, the adhesive film adheres to the punching die and the conveyance path in the individual piece crimping method, and it is difficult to peel off from the dicing tape in the wafer back surface bonding crimping method. was there. Therefore, in the conventional adhesive film, it was not possible to achieve both the pressure bonding property and workability with a small pressure bonding pressure.

本発明は、半導体チップとこれを支持する配線付き外部接続部材または半導体チップ同士を接続する接着フィルムにおいて、0.01〜0.5MPaの圧着圧力で熱圧着し得る、圧着性および圧着プロセスでの作業性に優れる半導体チップ接続用接着フィルムを提供することを目的とする。また本発明は、この接着フィルムを用いた信頼性に優れる半導体搭載用接続部材および半導体装置を提供することを目的とする。   The present invention relates to a pressure-bonding and pressure-bonding process that can be thermocompression bonded at a pressure of 0.01 to 0.5 MPa in an adhesive film for connecting a semiconductor chip and an external connection member with wiring supporting the semiconductor chip or between the semiconductor chips. An object of the present invention is to provide an adhesive film for connecting a semiconductor chip which is excellent in workability. Another object of the present invention is to provide a semiconductor mounting connecting member and a semiconductor device which are excellent in reliability using the adhesive film.

前記課題を解決するため、本発明者らは、接着フィルムのウエハ裏面へのラミネートおよび外部接続部材へ圧着する際の空隙やはみ出しの支配因子を調査し、その結果、小さな圧着圧力で熱圧着しても、圧着時に空隙を発生することがなく、半導体チップとこれを支持する配線付き外部接続部材または半導体チップ同士を接続できる接着フィルムの発明を完成させた。   In order to solve the above-mentioned problems, the present inventors investigated the governing factors of voids and protrusions when laminating the adhesive film to the back surface of the wafer and crimping to the external connection member, and as a result, thermocompression bonding was performed with a small pressure. However, the present invention has completed the invention of an adhesive film that can connect a semiconductor chip and an external connection member with wiring supporting the semiconductor chip or the semiconductor chips without generating any voids during pressure bonding.

すなわち、本発明は、半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップとを接続する接着フィルムであって、0.01〜0.5MPaの圧着圧力で熱圧着し得ることを特徴とする接着フィルムである。   That is, the present invention is an adhesive film that connects a semiconductor chip and an external connection member with wiring or another semiconductor chip on which the semiconductor chip is mounted, and can be thermocompression bonded at a pressure of 0.01 to 0.5 MPa. This is an adhesive film.

また本発明は、半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップとを接続する接着フィルムであって、圧着温度での溶融粘度が5×10〜1×105 Pa・sの範囲にあることを特徴とする接着フィルムである。 The present invention also provides an adhesive film for connecting a semiconductor chip and an external connection member with wiring or another semiconductor chip on which the semiconductor chip is mounted, and has a melt viscosity of 5 × 10 to 1 × 10 5 Pa at the pressure bonding temperature. -It is the adhesive film characterized by being in the range of s.

さらに本発明は、半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップとを接続する接着フィルムであって、圧着圧力(F)、圧着時間(t)、および圧着温度での溶融粘度(η)が、下記式(1)の関係を満たす条件で、半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップとを熱圧着し得ることを特徴とする接着フィルムである。
1×10≦F(Pa)・t(s)/η(Pa・s)≦5×103 (1)
Furthermore, the present invention is an adhesive film for connecting a semiconductor chip and an external connection member with wiring or another semiconductor chip on which the semiconductor chip is mounted, and has a pressure bonding pressure (F), a pressure bonding time (t), and a pressure bonding temperature. The semiconductor chip can be thermocompression-bonded to the external connection member with wiring or another semiconductor chip on which the semiconductor chip is mounted under the condition that the melt viscosity (η) satisfies the relationship of the following formula (1). It is an adhesive film.
1 × 10 ≦ F (Pa) · t (s) / η (Pa · s) ≦ 5 × 10 3 (1)

また本発明は、半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップとを接続する接着フィルムであって、プローブタック試験法で測定した25℃でのタック荷重が2〜20gfの範囲にあることを特徴する接着フィルムである。   The present invention is also an adhesive film for connecting a semiconductor chip and an external connection member with wiring or another semiconductor chip on which the semiconductor chip is mounted, and the tack load at 25 ° C. measured by the probe tack test method is 2 to 2. It is an adhesive film characterized by being in the range of 20 gf.

さらに本発明の、エポキシ樹脂とエポキシ樹脂硬化剤とエポキシ基含有(メタ)アクリル共重合体とを含む接着剤組成物を用いて、半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップとを接続する接着フィルムを作製する方法は、基材に塗布した前記接着剤組成物のワニスを80〜100℃の範囲で加熱乾燥し、ついで110〜150℃の範囲で加熱乾燥することを特徴とする接着フィルムの製造方法である。   Furthermore, using the adhesive composition containing the epoxy resin, the epoxy resin curing agent, and the epoxy group-containing (meth) acrylic copolymer of the present invention, a semiconductor chip and an external connection member with wiring for mounting the semiconductor chip or another The method for producing the adhesive film for connecting the semiconductor chip is to heat and dry the varnish of the adhesive composition applied to the substrate in the range of 80 to 100 ° C., and then heat and dry in the range of 110 to 150 ° C. This is a method for producing an adhesive film.

接着フィルムの圧着性に及ぼす圧着圧力(F)と圧着温度での溶融粘度(η)との関係を示す図である。It is a figure which shows the relationship between the crimping | compression-bonding pressure (F) which has on the crimping | compression-bonding property of an adhesive film, and the melt viscosity ((eta)) in crimping | compression-bonding temperature. 接着フィルムの圧着性およびはみ出し性に及ぼす、圧着圧力(F)、圧着時間(t)と圧着温度での溶融粘度(η)との関係を示す図である。It is a figure which shows the relationship between the crimping | compression-bonding pressure (F) and the crimping | compression-bonding time (t), and the melt viscosity ((eta)) in the crimping | compression-bonding temperature which influence on the crimping | compression-bonding property and protrusion property of an adhesive film. (a)は本発明による接着フィルム単体からなる接着フィルムを示す断面図、(b)は本発明によるコア材の両面に接着フィルムを備えた接着フィルムを示す断面図である。(A) is sectional drawing which shows the adhesive film which consists of an adhesive film single-piece | unit by this invention, (b) is sectional drawing which shows the adhesive film provided with the adhesive film on both surfaces of the core material by this invention. 本発明による接着フィルムを用いた半導体搭載用外部接続部材を示す断面図である。It is sectional drawing which shows the external connection member for semiconductor mounting using the adhesive film by this invention. 本発明による接着フィルム付き半導体搭載用外部接続部材に半導体チップが接着された半導体装置の断面図である。It is sectional drawing of the semiconductor device with which the semiconductor chip was adhere | attached on the external connection member for semiconductor mounting with an adhesive film by this invention.

本発明の接着フィルムは、エポキシ樹脂、エポキシ樹脂硬化剤およびエポキシ基含有(メタ)アクリル共重合体を含む熱硬化性樹脂が挙げられる。しかし、樹脂組成は、熱硬化性樹脂に限定されず、たとえば、ポリイミド、ポリエーテルアミドなどの熱可塑性樹脂を使用することもできる。エポキシ樹脂としては、たとえば、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂などの二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂などを使用することができる。   As for the adhesive film of this invention, the thermosetting resin containing an epoxy resin, an epoxy resin hardening | curing agent, and an epoxy group containing (meth) acryl copolymer is mentioned. However, the resin composition is not limited to the thermosetting resin, and for example, a thermoplastic resin such as polyimide or polyether amide can be used. As the epoxy resin, for example, a bifunctional epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin, a novolac type epoxy resin such as a phenol novolac type epoxy resin or a cresol novolac type epoxy resin, or the like can be used.

熱硬化性樹脂がエポキシ樹脂の場合は、硬化剤として、たとえば、フェノール性水酸基を1分子中に2個以上有する化合物である、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール類を使用することができる。そのなかで、吸湿時の耐電食性に優れる点から、フェノールノボラック樹脂、ビスフェノールノボラック樹脂、クレゾールノボラック樹脂などのフェノール樹脂が好ましい。   When the thermosetting resin is an epoxy resin, for example, bisphenols such as bisphenol A, bisphenol F, and bisphenol S, which are compounds having two or more phenolic hydroxyl groups in one molecule, may be used as a curing agent. it can. Of these, phenol resins such as phenol novolak resin, bisphenol novolak resin, and cresol novolak resin are preferable because of their excellent resistance to electric corrosion during moisture absorption.

エポキシ樹脂と硬化剤としてフェノール樹脂を使用する場合の配合量は、接着フィルムにしたときの硬化性の観点から、それぞれエポキシ当量と水酸基当量の当量比が、好ましくは0.70/0.30〜0.30/0.70、より好ましくは0.65/0.35〜0.35/0.65、さらに好ましくは0.60/0.40〜0.40/0.60、特に好ましくは0.55/0.45〜0.45/0.55である。   In the case of using a phenol resin as an epoxy resin and a curing agent, the equivalent ratio of epoxy equivalent and hydroxyl equivalent is preferably 0.70 / 0.30 from the viewpoint of curability when an adhesive film is used. 0.30 / 0.70, more preferably 0.65 / 0.35 to 0.35 / 0.65, still more preferably 0.60 / 0.40 to 0.40 / 0.60, particularly preferably 0. .55 / 0.45-0.45 / 0.55.

エポキシ基含有(メタ)アクリル共重合体を使用する場合は、−10℃以上のガラス転移温度(Tg)を有し、重量平均分子量が10万以上の共重合体が挙げられ、なかでもアクリルゴムが好ましい。アクリルゴムは、エポキシ樹脂と非相溶であるグリシジルアクリレートまたはグリシジルメタクリレートを官能性モノマーとし、接着力の確保とゲル化の防止の点から、このエポキシ基含有反復単位の量が、エポキシ基含有(メタ)アクリル共重合体に0.5〜6.0重量%含有されることが好ましい。このようなアクリルゴムとして、グリシジルを3重量%含有する帝国化学産業(株)製のHTR―860P−3が市販されている。   In the case of using an epoxy group-containing (meth) acrylic copolymer, a copolymer having a glass transition temperature (Tg) of −10 ° C. or higher and a weight average molecular weight of 100,000 or higher is mentioned. Is preferred. Acrylic rubber uses glycidyl acrylate or glycidyl methacrylate, which is incompatible with epoxy resin, as a functional monomer. From the viewpoint of securing adhesion and preventing gelation, the amount of this epoxy group-containing repeating unit contains epoxy group-containing ( It is preferable that 0.5 to 6.0 weight% is contained in the (meth) acrylic copolymer. As such an acrylic rubber, HTR-860P-3 manufactured by Teikoku Chemical Industry Co., Ltd. containing 3% by weight of glycidyl is commercially available.

アクリルゴムを使用する場合は、エポキシ基含有(メタ)アクリル共重合体の配合量bは、エポキシ樹脂とその硬化剤の合計量aに対して、a/bの比率が1〜10の範囲にあることが好ましい。この範囲にあると、圧着温度でのηが1×105Pa・s以下を満たすことができる。 When acrylic rubber is used, the blending amount b of the epoxy group-containing (meth) acrylic copolymer is such that the ratio of a / b is in the range of 1 to 10 with respect to the total amount a of the epoxy resin and its curing agent. Preferably there is. When in this range, η at the pressure bonding temperature can satisfy 1 × 10 5 Pa · s or less.

接着フィルムの特性値は、接着フィルムの圧着性やラミネート性に極めて大きな影響を及ぼす。すなわち、空隙の有無やはみ出しの大小で評価される接着フィルムの圧着性やラミネート性の支配因子は、圧着温度、接着フィルムの溶融粘度、圧着圧力、圧着時間および接着フィルムの厚みなどが挙げられる。しかし、圧着時間および接着フィルムの厚みは、生産効率、フィルムに対する要求値によって定められるので、限定された範囲で運用されているおり、自由度は少ない。したがって、主な支配因子は、圧着温度およびラミネート温度での接着フィルムの溶融粘度および圧着圧力である。そこで、溶融粘度の異なる接着フィルムを用いて、圧着性やラミネート性に及ぼす溶融粘度の影響を定量的に調査したところ、接着フィルムは、100℃以下で約1×104 Pa・s以上の溶融粘度を有し、かつ圧着温度での約5×10〜1×105 Pa・sの範囲の溶融粘度を有する場合に、良好な圧着性およびラミネート性が得られることが明らかになった。 The characteristic value of the adhesive film has a great influence on the pressure-bonding property and laminating property of the adhesive film. That is, the governing factors of the pressure-bonding property and laminating property of the adhesive film evaluated based on the presence / absence of voids and the amount of protrusion include the pressure-bonding temperature, the melt viscosity of the adhesive film, the pressure-bonding pressure, the pressure-bonding time, and the thickness of the adhesive film. However, since the crimping time and the thickness of the adhesive film are determined by the production efficiency and the required value for the film, they are operated within a limited range and have little freedom. Therefore, the main controlling factors are the melt viscosity and pressure of the adhesive film at the pressure and lamination temperatures. Therefore, when the influence of the melt viscosity on the pressure-bonding and laminating properties was quantitatively investigated using adhesive films having different melt viscosities, the adhesive film was melted at about 1 × 10 4 Pa · s or more at 100 ° C. or less. It has been clarified that good pressure-bonding properties and laminating properties can be obtained when it has a viscosity and has a melt viscosity in the range of about 5 × 10 to 1 × 10 5 Pa · s at the pressure-bonding temperature.

ここでの接着フィルムの溶融粘度は、平行平板プラストメータ法により測定、算出した値で評価される。すなわち、接着フィルムの溶融粘度(η)は、半径rの接着フィルムに荷重を一定時間加え、接着フィルムの厚さの変化を測定することにより、下記式(2)からηについて解いて算出した。   The melt viscosity of the adhesive film here is evaluated by a value measured and calculated by a parallel plate plastometer method. That is, the melt viscosity (η) of the adhesive film was calculated by solving for η from the following formula (2) by applying a load to the adhesive film having a radius r for a certain period of time and measuring the change in the thickness of the adhesive film.

ここでz0は荷重を加える前の接着フィルムの厚さ、zは荷重を加えた後の接着フィルムの厚さ、Vは接着フィルムの体積、Fは加えた荷重、tは荷重を加えた時間である。 Here, z 0 is the thickness of the adhesive film before the load is applied, z is the thickness of the adhesive film after the load is applied, V is the volume of the adhesive film, F is the applied load, and t is the time when the load is applied. It is.

数種類の樹脂組成を変化させた接着フィルムを用意し、圧着温度を、また一部は圧着時間も変化させて、接着フィルムを凹凸部のある外部接続部材へ圧着し、溶融粘度と圧着圧力が接着フィルムの圧着性およびラミネート性、すなわち空隙やはみ出しに与える影響を調べた。その結果、0.5MPa以下の小さな圧着圧力で空隙なく圧着するためには、圧着温度での接着フィルムの溶融粘度を約1×105 Pa・s以下とする必要があった。はみ出し量に関しても、はみ出し量を50μm以下にするためには、圧着温度での接着フィルムの溶融粘度を約5×10 Pa・s以上にする必要があった。 Adhesive films with several types of resin compositions are prepared, and the adhesive temperature is bonded to an external connection member with irregularities by changing the crimping temperature and, in part, the crimping time. The effect of the film on the pressure bonding and laminating properties, that is, the voids and protrusions was investigated. As a result, the melt viscosity of the adhesive film at the pressure bonding temperature needs to be about 1 × 10 5 Pa · s or less in order to perform pressure bonding without a gap with a small pressure of 0.5 MPa or less. Regarding the amount of protrusion, in order to make the amount of protrusion not more than 50 μm, the melt viscosity of the adhesive film at the pressure bonding temperature has to be about 5 × 10 3 Pa · s or more.

ここで、圧力範囲を0.5MPa以下としたのは、チップ素子面側から治具を用いて加圧する方式の場合では、圧着圧力がこれより大きいと、素子を破壊する恐れがあるからである。またはみ出し量を50μm以下としたのは、近年、高密度化が進み、チップ端部と外部接続部材側リードボンディング端子の距離が小さくなり、接着フィルムのはみ出しが50μm以上になると端子部まで達し、リードボンディングできなくなるからである。したがって、圧着温度での接着フィルムの溶融粘度を、約5×10〜1×105 Pa・sの範囲、特に好ましくは、140〜180℃での溶融粘度を約1×102〜1×104 Pa・sの範囲に設定することにより、空隙や過剰なはみ出しがなく、圧着できることを見いだした。 Here, the reason why the pressure range is set to 0.5 MPa or less is that, in the case of a method in which pressure is applied from the chip element surface side using a jig, there is a risk of destruction of the element if the pressure is higher than this. . Alternatively, the amount of protrusion is set to 50 μm or less in recent years, as the density has increased, the distance between the chip end and the external connection member side lead bonding terminal has decreased, and when the protrusion of the adhesive film has exceeded 50 μm, it has reached the terminal portion. This is because lead bonding cannot be performed. Accordingly, the melt viscosity of the adhesive film at the pressure bonding temperature is in the range of about 5 × 10 to 1 × 10 5 Pa · s, particularly preferably the melt viscosity at 140 to 180 ° C. is about 1 × 10 2 to 1 × 10. It was found that by setting it in the range of 4 Pa · s, there is no gap or excessive protrusion, and crimping is possible.

また、接着フィルムが、上記範囲内の溶融粘度において、実施例および比較例のデータを整理すると、図1に示すように、溶融粘度が小さくなるにつれて、圧着圧力が小さくなっても熱圧着し得ることを知見した。   In addition, when the adhesive film has the melt viscosity within the above range and the data of the examples and comparative examples are arranged, as shown in FIG. 1, as the melt viscosity becomes smaller, the thermocompression bonding can be performed. I found out.

さらに、圧着温度における溶融粘度(η)、圧着圧力(F)および圧着時間(t)を用いたF(Pa)・t(s)/η(Pa・s)というパラメータと圧着性の関係を整理すると、図2に示すように、下記式(1)の関係にある接着フィルムが、空隙や過剰なはみ出しがなく、圧着できることを見いだした。
1×10≦F(Pa)・t(s)/η(Pa・s)≦5×103 (1)
In addition, the relationship between the melt viscosity (η) at the crimping temperature, the pressure (F) and the crimping time (t), the parameter F (Pa) · t (s) / η (Pa · s), and the crimpability are arranged. Then, as shown in FIG. 2, it was found that the adhesive film having the relationship of the following formula (1) can be pressure-bonded without voids or excessive protrusion.
1 × 10 ≦ F (Pa) · t (s) / η (Pa · s) ≦ 5 × 10 3 (1)

また、ウエハ裏面貼付圧着方法では、接着フィルムのウエハ裏面へのラミネートは、外部接続部材とは異なり表面の凹凸がないので、圧着温度より低温の100℃前後、線圧0.1〜10MPaの条件で行われる。この場合も、接着フィルムの溶融粘度とラミネート後のウエハ端からの接着フィルムのはみ出しとの関係を調べたところ、接着フィルム樹脂のウエハ表面への廻りこみなくラミネートするためには、ラミネート温度での接着フィルムの溶融粘度を、約1×104 Pa・s以上とする必要があった。 In addition, in the wafer back surface bonding pressure bonding method, the lamination of the adhesive film to the wafer back surface has no surface irregularities unlike the external connection member, so the conditions are about 100 ° C. lower than the pressure bonding temperature and the linear pressure is 0.1 to 10 MPa. Done in Also in this case, when the relationship between the melt viscosity of the adhesive film and the protrusion of the adhesive film from the edge of the wafer after lamination was examined, in order to laminate the adhesive film resin without going around the wafer surface, The melt viscosity of the adhesive film had to be about 1 × 10 4 Pa · s or more.

以上の結果から、接着フィルムの100℃と180℃での溶融粘度の比を、1×10〜1×103 の範囲にすることが好ましい。溶融粘度の比がこの範囲にあると、溶融粘度の温度依存性が適切であるため、圧着可能な温度範囲が十分広くとることができ、また上記100℃以下と圧着温度である140〜180℃での溶融粘度の上記の好適な範囲を達成することができるからである。 From the above results, the ratio of the melt viscosity at 100 ° C. and 180 ° C. of the adhesive film is preferably in the range of 1 × 10 to 1 × 10 3 . If the melt viscosity ratio is in this range, the temperature dependence of the melt viscosity is appropriate, so that the temperature range in which pressure bonding can be performed can be sufficiently wide, and the pressure is 140 to 180 ° C., which is 100 ° C. or lower. This is because the above preferable range of the melt viscosity can be achieved.

さらに、打ち抜き金型または搬送路などへの接着フィルムの付着やダイシングテープとの剥離についても、接着フィルムの物性との相関を調べたところ、室温での粘着性と相関があることが分かった。粘着性、すなわちタック性の指標としては、JISZ0237に記載のプローブタック試験法を用いた。プローブタック試験法とは、プローブを接着フィルムに一定荷重をかけながら一定時間接触させた後、接着フィルムから垂直方向にプローブを引きはがすのに要する力を求める方法である。金型への付着やダイシングテープとの剥離性は、プローブタック法によって25℃で測定したタック荷重が2〜20gfの範囲にあると、金型への付着は見られず、またダイシングテープとの剥離も可能であり、作業性に優れ、さらに、接着フィルムと保護フィルムとの密着性が良好であるからである。   Further, when the correlation between the adhesion of the adhesive film to the punching die or the conveyance path and the peeling from the dicing tape with the physical properties of the adhesive film was examined, it was found that there was a correlation with the adhesiveness at room temperature. The probe tack test method described in JISZ0237 was used as an index of tackiness, that is, tackiness. The probe tack test method is a method for obtaining the force required to peel the probe in the vertical direction from the adhesive film after the probe is brought into contact with the adhesive film for a certain time while applying a certain load. As for the adhesion to the mold and the peelability from the dicing tape, when the tack load measured at 25 ° C. by the probe tack method is in the range of 2 to 20 gf, no adhesion to the mold is seen, and It is because peeling is also possible, it is excellent in workability | operativity, and also the adhesiveness of an adhesive film and a protective film is favorable.

さらに、接着フィルムとしては、半導体チップと実装基板の熱膨張係数差から生ずる熱応力を低減するために、低弾性率であることが好ましい。動的粘弾性測定装置を用いて測定した場合の熱硬化後の接着フィルムの貯蔵弾性率は、25℃で20〜2000MPa、260℃で3〜50MPaであり、また−65〜150℃での平均熱膨張係数は200ppm/℃以下であることが好ましい。なお、貯蔵弾性率の測定は、硬化させた接着フィルムに引張り荷重をかけて、周波数10Hz、昇温速度5〜10℃/分の条件で行った。平均熱膨張係数が200ppm/℃以下であると、接着フィルムに発生する熱応力が小さく、また貯蔵弾性率が、25℃で2000MPa以下および260℃で50MPa以下であると、半導体チップと配線基板であるインターポーザとの熱膨張係数の差によって発生する熱応力を緩和させる効果が十分維持でき、剥離やクラックの発生を回避できる。一方、貯蔵弾性率が、25℃で20MPa以上あると接着フィルムの取扱性は良好であり、260℃で3MPa以上あるとリフロークラックの発生も抑制できる。   Furthermore, the adhesive film preferably has a low elastic modulus in order to reduce thermal stress caused by the difference in thermal expansion coefficient between the semiconductor chip and the mounting substrate. The storage elastic modulus of the adhesive film after thermosetting when measured using a dynamic viscoelasticity measuring device is 20 to 2000 MPa at 25 ° C., 3 to 50 MPa at 260 ° C., and an average at −65 to 150 ° C. The thermal expansion coefficient is preferably 200 ppm / ° C. or less. The storage elastic modulus was measured under conditions of a frequency of 10 Hz and a temperature increase rate of 5 to 10 ° C./min by applying a tensile load to the cured adhesive film. When the average coefficient of thermal expansion is 200 ppm / ° C. or less, the thermal stress generated in the adhesive film is small, and when the storage elastic modulus is 2000 MPa or less at 25 ° C. and 50 MPa or less at 260 ° C., the semiconductor chip and the wiring substrate The effect of relaxing the thermal stress generated by the difference in thermal expansion coefficient with a certain interposer can be sufficiently maintained, and the occurrence of peeling and cracking can be avoided. On the other hand, when the storage elastic modulus is 20 MPa or higher at 25 ° C., the handleability of the adhesive film is good, and when it is 3 MPa or higher at 260 ° C., the occurrence of reflow cracks can be suppressed.

接着フィルムは、上記物性値の範囲にあれば、単独フィルムの構造でも、またはコア材の両面に接着フィルムを形成した構造でもよい。接着フィルムの厚みは、接着フィルム単独の場合は10〜200μm、コア材を用いる場合はコア材両面に形成した状態で50〜250μm程度が好ましい。また、コア材の両面に形成する接着フィルムの厚みは、各々が同じ厚みであっても、また異なる厚みであってもよい。外部接続部材の配線層への埋込性を向上するために、外部接続部材側の接着フィルムの厚みを、半導体チップ側の接着フィルムの厚みよりも厚くすることもできる。さらに、コア材両面に形成する接着フィルムの種類が異なっていることもできる。   The adhesive film may have a structure of a single film or a structure in which an adhesive film is formed on both surfaces of the core material as long as it is within the above physical property values. The thickness of the adhesive film is preferably about 10 to 200 [mu] m in the case of the adhesive film alone, and about 50 to 250 [mu] m in the state of being formed on both surfaces of the core material when the core material is used. Moreover, the thickness of the adhesive film formed on both surfaces of the core material may be the same or different. In order to improve the embedding property of the external connection member in the wiring layer, the thickness of the adhesive film on the external connection member side can be made larger than the thickness of the adhesive film on the semiconductor chip side. Furthermore, the kind of adhesive film formed on both surfaces of the core material can be different.

コア材は、ガラス転移温度が200℃以上のポリイミド、ポリエーテルスルホン、ポリアミド、ポリエーテルイミド、ポリエステルポリスルホン、ポリエーテルエーテルケトン、ポリウレタンなどの耐熱性熱可塑フィルム、またはこれらの耐熱性熱可塑多孔質フィルムが好ましい。   The core material is a heat-resistant thermoplastic film such as polyimide, polyethersulfone, polyamide, polyetherimide, polyesterpolysulfone, polyetheretherketone, and polyurethane having a glass transition temperature of 200 ° C. or higher, or a heat-resistant thermoplastic porous material thereof. A film is preferred.

接着フィルムは、半硬化状態(Bステージ)で外部接続部材へ圧着し、その後硬化させる。このとき、接着フィルム中の残存揮発成分が多いと、硬化時にフィルム自身が発泡し、フィルム内部に空隙が生じ、信頼性の低下原因となる。そこで、硬化時の発泡と残存揮発分量の関係を調べた結果、残存揮発分を3.0%以下とすることによって、硬化時の発泡を低減することができる。   The adhesive film is pressure-bonded to the external connection member in a semi-cured state (B stage) and then cured. At this time, if there are many residual volatile components in the adhesive film, the film itself foams at the time of curing, and voids are generated inside the film, causing a decrease in reliability. Therefore, as a result of investigating the relationship between foaming at the time of curing and the amount of residual volatile matter, the foaming at the time of curing can be reduced by setting the residual volatile matter to 3.0% or less.

接着フィルムの溶融粘度(η)の制御は、樹脂組成のほかに、樹脂組成の配合に基づく接着フィルム作製時の塗工条件、すなわちBステージ化度によって行なうことができる。   In addition to the resin composition, the melt viscosity (η) of the adhesive film can be controlled by the coating conditions at the time of preparing the adhesive film based on the blending of the resin composition, that is, the B-stage degree.

樹脂ワニスをフィルム化するときの塗工条件は、塗工温度および塗工時間などにより、フィルムの半硬化状態を調整することによって、接着フィルムの溶融粘度を制御することができる。特に、樹脂ワニスを塗布した後、80〜100℃の比較的低温度で加熱乾燥させ、次いで樹脂の組成に応じて、110〜150℃の範囲で、適切な加熱温度と加熱時間を選択することにより、接着フィルムの溶融粘度を本発明の範囲に制御する。   The coating conditions for forming the resin varnish into a film can control the melt viscosity of the adhesive film by adjusting the semi-cured state of the film according to the coating temperature and the coating time. In particular, after applying the resin varnish, heat drying at a relatively low temperature of 80 to 100 ° C., and then selecting an appropriate heating temperature and heating time in the range of 110 to 150 ° C. depending on the composition of the resin. Thus, the melt viscosity of the adhesive film is controlled within the range of the present invention.

また後述する無機フィラーの添加も、接着フィルムの溶融粘度の微調整に寄与する。   Moreover, addition of the inorganic filler mentioned later also contributes to fine adjustment of the melt viscosity of an adhesive film.

接着フィルムのタック荷重の制御も、溶融粘度の制御と同様に、樹脂組成物の配合とフィルム作製時の塗工条件で制御することができる。なお、タック荷重には、樹脂組成物中の残存揮発分の量も影響を及ぼす因子である。   The tack load of the adhesive film can also be controlled by the blending of the resin composition and the coating conditions during film production, similarly to the control of the melt viscosity. The tack load is a factor that also affects the amount of residual volatile components in the resin composition.

接着フィルムの樹脂には、溶融粘度の微調整に加えて、難燃化および吸湿率の低減を目的として、無機フィラーを配合することができる。無機フィラーとしては、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、アンチモン酸化物などが挙げられる。さらに、異種材料界面での接着を向上するために、カップリング剤を配合することもできる。また、イオン性不純物を吸着して吸湿時の絶縁信頼性をよくするために、イオン捕捉剤を配合することもできる。   In addition to fine adjustment of the melt viscosity, an inorganic filler can be blended with the resin of the adhesive film for the purpose of flame retardancy and reduction of moisture absorption. Inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whisker, boron nitride, crystalline silica, Examples thereof include amorphous silica and antimony oxide. Furthermore, in order to improve the adhesion at the interface between different materials, a coupling agent can be blended. In addition, an ion scavenger can be blended in order to adsorb ionic impurities and improve insulation reliability during moisture absorption.

接着フィルムを用いた半導体チップと配線付き外部接続部材の接続方法は、個片圧着方法またはウェハ裏面貼付圧着方法などがある。個片圧着方法は、フィルム打ち抜き機構と熱圧着機構とを兼備した接着フィルム圧着機を用いて、まずシート状またはリール状の接着フィルムを所定の大きさに金型で打ち抜き、外部接続部材の所定位置に仮圧着する。次に、圧着治具を用い接着フィルムを熱圧着する。さらに、半導体チップを接着フィルムの上に位置合せした後、熱圧着することによって、外部接続部材と半導体チップとを接着する。一方、ウェハ裏面貼付圧着方式は、半導体素子が形成されたウエハの裏面に、接着フィルムを加熱加圧ラミネート法などで貼り付け、さらにダイシングテープをラミネートした後、ウエハおよび接着フィルムを一体に切断する。さらに、ダイシングテープを剥離し、接着フィルム付き半導体チップとし、これを配線付き外部接続部材や他の半導体チップへ熱圧着する。   As a method of connecting the semiconductor chip using the adhesive film and the external connection member with wiring, there are a method of individual piece crimping or a method of pasting and bonding a wafer back surface. The individual piece crimping method uses an adhesive film crimping machine having both a film punching mechanism and a thermocompression bonding mechanism. First, a sheet-shaped or reel-shaped adhesive film is punched into a predetermined size with a die, and a predetermined external connection member is predetermined. Temporarily press in place. Next, the adhesive film is thermocompression bonded using a crimping jig. Furthermore, after aligning the semiconductor chip on the adhesive film, the external connection member and the semiconductor chip are bonded by thermocompression bonding. On the other hand, in the wafer back surface adhesion pressure bonding method, an adhesive film is attached to the back surface of a wafer on which a semiconductor element is formed by a heat and pressure laminating method, and a dicing tape is further laminated, and then the wafer and the adhesive film are integrally cut. . Further, the dicing tape is peeled off to obtain a semiconductor chip with an adhesive film, which is thermocompression bonded to an external connection member with wiring or another semiconductor chip.

いずれの圧着方法でも、半導体素子の破壊を防ぐため、圧着圧力は0.5MPa以下が必要である。ラミネートまたは圧着温度と圧着時間は、接着界面に空隙や過剰なはみ出しがなく接着できれば、特に限定されないが、ラミネート温度は100℃前後、圧着温度は外部接続部材の耐熱性の点から100〜200℃、特に140〜180℃が好ましい。また、圧着時間は生産性を考慮すると0.5〜5秒が好ましい。   In any of the crimping methods, the crimping pressure is required to be 0.5 MPa or less in order to prevent destruction of the semiconductor element. Lamination or pressure bonding time and pressure bonding time are not particularly limited as long as there is no gap or excessive protrusion at the bonding interface, but the lamination temperature is around 100 ° C., and the pressure bonding temperature is 100 to 200 ° C. from the viewpoint of the heat resistance of the external connection member. In particular, 140 to 180 ° C. is preferable. Further, the pressure bonding time is preferably 0.5 to 5 seconds in consideration of productivity.

本発明の半導体搭載用外部接続基板に用いる基板材料は、セラミック基板または有機基板を用いることができる。セラミック基板としては、アルミナ基板、窒化アルミニウム基板などを用いることができる。有機基板としては、ポリイミドフィルムを基材として用いたポリイミドフィルム基板、ガラスクロスにエポキシ樹脂を含浸させたFR−4基板、ビスマレイミド−トリアジン樹脂を含浸させたBT基板などを用いることができる。配線層は、片面配線、両面配線または多層配線のいずれかの構造であることができる。また、基板には、リフロー時に発生する蒸気圧を半導体パッケージ外へ逃がすための微小な貫通孔を設けることもできる。   As a substrate material used for the external connection substrate for mounting semiconductor according to the present invention, a ceramic substrate or an organic substrate can be used. As the ceramic substrate, an alumina substrate, an aluminum nitride substrate, or the like can be used. As the organic substrate, a polyimide film substrate using a polyimide film as a base material, an FR-4 substrate in which a glass cloth is impregnated with an epoxy resin, a BT substrate in which a bismaleimide-triazine resin is impregnated, or the like can be used. The wiring layer can have any structure of single-sided wiring, double-sided wiring, or multilayer wiring. The substrate can also be provided with minute through holes for releasing the vapor pressure generated during reflow out of the semiconductor package.

本発明の接着フィルムの構造は、図3(a)に示すように、単独の接着フィルム1でも、図3(b)に示すように、コア材2の両面に接着フィルム1を備えた接着フィルムでも良い。また、本発明の半導体搭載用外部接続部材は、図4に示すように、配線3を形成した外部接続部材4の上に、上記接着フィルム1が接着された構造である。さらに、本発明の半導体装置の例としては、図5に示すように、図4に示した半導体搭載用外部接続部材と半導体チップ5、さらにその上の別の半導体チップ5が接着フィルム1で接着され、半導体チップのパッドと外部接続部材とをボンディングワイヤ6で接続し、半導体チップ5および外部接続部材を封止材7で封止、外部接続端子8にはんだボールを設けた構造などがある。   The structure of the adhesive film of the present invention is as shown in FIG. 3 (a). Even if the adhesive film 1 is a single adhesive film, the adhesive film 1 is provided with adhesive films 1 on both sides of the core material 2 as shown in FIG. 3 (b). But it ’s okay. Moreover, the external connection member for mounting a semiconductor according to the present invention has a structure in which the adhesive film 1 is bonded onto the external connection member 4 on which the wiring 3 is formed, as shown in FIG. Furthermore, as an example of the semiconductor device of the present invention, as shown in FIG. 5, the semiconductor mounting external connection member and the semiconductor chip 5 shown in FIG. There is a structure in which the pads of the semiconductor chip and the external connection member are connected by the bonding wires 6, the semiconductor chip 5 and the external connection member are sealed by the sealing material 7, and the solder balls are provided on the external connection terminals 8.

実施例1
エポキシ樹脂としてクレゾールノボラック型エポキシ樹脂(東都化成株式会社製、商品名:YDCN−703)42重量部、エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製,商品名:プライオーフェンLF2882)12重量部およびフェノール樹脂(三井化学工業株式会社製、商品名:XLC−LL)18重量部、エポキシ基含有アクリルゴム(帝国化学産業株式会社製、商品名:HTR−860P−3)44重量部、硬化促進剤として1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社製、商品名:キュアゾール2PZ−CN)0.025重量部、カップリング剤として3−メルカプトプロピルトリメトキシシラン1重量部および3−ウレイドプロピルトリメトキシシラン2重量部、フィラーとして平均粒径0.016μmの煙霧質シリカ(日本アエロジル(株)製、商品名:アエロジルR972)5.3重量部に、溶剤としてメチルエチルケトンを加えて、撹拌溶解し、樹脂ワニスとした。このワニスを、ポリエチレンテレフタレートフィルム上に塗布し、90℃で20分間加熱乾燥し、次いで120℃で5分間加熱乾燥し、厚み約50μmのBステージの接着フィルムAを作製した。
Example 1
42 parts by weight of cresol novolac type epoxy resin (trade name: YDCN-703, manufactured by Toto Kasei Co., Ltd.) as an epoxy resin, phenol novolac resin (manufactured by Dainippon Ink & Chemicals, Inc., trade name: Pliofen) as a curing agent for the epoxy resin LF2882) 12 parts by weight and phenol resin (trade name: XLC-LL, manufactured by Mitsui Chemicals, Inc.), epoxy group-containing acrylic rubber (product name: HTR-860P-3) 44 1 part by weight, 1-cyanoethyl-2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: Curesol 2PZ-CN) 0.025 part by weight as a curing accelerator, 1 part by weight of 3-mercaptopropyltrimethoxysilane as a coupling agent And 3-ureidopropyltrimethoxysilane Methyl ethyl ketone is added as a solvent to 5.3 parts by weight of fumed silica (product name: Aerosil R972, manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of 0.016 μm as a filler, and dissolved by stirring. did. This varnish was applied onto a polyethylene terephthalate film, dried by heating at 90 ° C. for 20 minutes, and then heated and dried at 120 ° C. for 5 minutes to prepare a B-stage adhesive film A having a thickness of about 50 μm.

実施例2
実施例1のエポキシ基含有アクリルゴム(HTR−860P−3)の配合量を44重量部から31重量部に変更した以外は、実施例1と同様にして樹脂ワニスを作製した。このワニスをポリエチレンテレフタレートフィルム上に塗布し、90℃で5分間加熱乾燥し、次いで140℃で5分間加熱乾燥し、厚み約50μmの接着フィルムBを作製した。
Example 2
A resin varnish was produced in the same manner as in Example 1 except that the amount of the epoxy group-containing acrylic rubber (HTR-860P-3) in Example 1 was changed from 44 parts by weight to 31 parts by weight. This varnish was applied onto a polyethylene terephthalate film, heat-dried at 90 ° C. for 5 minutes, and then heat-dried at 140 ° C. for 5 minutes to prepare an adhesive film B having a thickness of about 50 μm.

比較例1
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(油化シェルエポキシ株式会社製、商品名:エピコート828)30重量部、クレゾールノボラック型エポキシ樹脂(住友化学工業株式会社製、商品名:ESCN195)10重量部、フェノールノボラック樹脂(大日本インキ化学工業株式会社製,商品名:プライオーフェンLF2882)25重量部、エポキシ基含有アクリルゴム(帝国化学産業株式会社製、商品名:HTR−860P−3)150重量部、硬化促進剤として1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社製、商品名:2PZ−CN)0.5重量部、カップリング剤として3−メルカプトプロピルトリメトキシシラン、3−ウレイドプロピルトリメトキシシランを各々2重量部に、溶剤としてメチルエチルケトンを加えて、撹拌溶解し樹脂ワニスとした。このワニスを、ポリエチレンテレフタレートフィルム上に塗布し、90℃で20分間加熱乾燥し、次いで140℃で5分間加熱乾燥し、厚み約50μmの接着フィルムCを作製した。
Comparative Example 1
As epoxy resin, 30 parts by weight of bisphenol A type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., trade name: Epicoat 828), 10 parts by weight of cresol novolac type epoxy resin (trade name: ESCN195, manufactured by Sumitomo Chemical Co., Ltd.), phenol 25 parts by weight of novolak resin (Dainippon Ink Chemical Co., Ltd., trade name: PRIOFEN LF2882), 150 parts by weight of epoxy group-containing acrylic rubber (product name: HTR-860P-3), cured 0.5 parts by weight of 1-cyanoethyl-2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) as an accelerator, 3-mercaptopropyltrimethoxysilane, 3-ureidopropyltrimethoxy as a coupling agent 2 parts by weight of silane as solvent Adding methyl ethyl ketone, was stirred dissolved resin varnish. This varnish was applied onto a polyethylene terephthalate film, dried by heating at 90 ° C. for 20 minutes, and then dried by heating at 140 ° C. for 5 minutes to produce an adhesive film C having a thickness of about 50 μm.

比較例2
実施例1で作製した樹脂ワニスをポリエチレンテレフタレートフィルム上に塗布し、90℃で20分間加熱乾燥し、次いで160℃で5分間加熱乾燥し、厚み約50μmの接着フィルムDを作製した。
Comparative Example 2
The resin varnish produced in Example 1 was applied onto a polyethylene terephthalate film, dried by heating at 90 ° C. for 20 minutes, and then dried by heating at 160 ° C. for 5 minutes to produce an adhesive film D having a thickness of about 50 μm.

比較例3
実施例1で作製した樹脂ワニスをポリエチレンテレフタレートフィルム上に塗布し、90℃で20分間加熱乾燥し、次いで100℃で5分間加熱乾燥し、厚み約50μmの接着フィルムEを作製した。
Comparative Example 3
The resin varnish produced in Example 1 was applied onto a polyethylene terephthalate film, dried by heating at 90 ° C. for 20 minutes, and then dried by heating at 100 ° C. for 5 minutes to produce an adhesive film E having a thickness of about 50 μm.

比較例4
実施例2で作製した樹脂ワニスをポリエチレンテレフタレートフィルム上に塗布し、90℃で20分間加熱乾燥し、次いで100℃で5分間加熱乾燥し、厚み約50μmの接着フィルムFを作製した。
Comparative Example 4
The resin varnish produced in Example 2 was applied onto a polyethylene terephthalate film, dried by heating at 90 ° C. for 20 minutes, and then dried by heating at 100 ° C. for 5 minutes to produce an adhesive film F having a thickness of about 50 μm.

比較例5
実施例2で作製した樹脂ワニスをポリエチレンテレフタレートフィルム上に塗布し、90℃で25分間加熱乾燥し、厚み約50μmの接着フィルムGを作製した。
Comparative Example 5
The resin varnish produced in Example 2 was applied on a polyethylene terephthalate film and dried by heating at 90 ° C. for 25 minutes to produce an adhesive film G having a thickness of about 50 μm.

作製した接着フィルムについて、Bステージでのフィルムの物性、硬化物の物性、圧着性と作業性の評価、および信頼性の評価を行った。結果を、表1〜表4に示す。なお、フィルムおよび加熱硬化物の物性値の測定方法ならびに圧着性、作業性の評価および信頼性の評価は、以下の方法で行った。   About the produced adhesive film, the physical property of the film in B stage, the physical property of hardened | cured material, press-fit property, workability | operativity evaluation, and reliability evaluation were performed. The results are shown in Tables 1 to 4. In addition, the measuring method of the physical-property value of a film and a heat-hardened material, and evaluation of pressure bonding property, workability, and reliability were performed by the following methods.

Bステージの接着フィルムの溶融粘度は以下の方法で測定した。
接着フィルムを8枚ラミネートし、厚み約400μmの接着フィルムを作製した。この接着フィルムを直径11.3mmの円形に打ち抜き、設定温度において荷重2.5kgfで5秒間加圧し、加圧前後の接着フィルムの厚みから、前述の式(2)を用いて、溶融粘度を算出した。接着フィルムのタック荷重は、RHESCA社製タッキング試験機を用いて、JIS Z0237−1991参考欄に記載の方法により25℃で測定した。測定条件は、プローブ径5.1φmm、引きはがし速度10mm/秒、接触荷重100gf/cm2、接触時間1.0秒で行った。接着フィルムの残存揮発分は、接着フィルムの170℃/1hの硬化前後での重量から、下記式(3)を用いて算出した。
The melt viscosity of the B-stage adhesive film was measured by the following method.
Eight adhesive films were laminated to produce an adhesive film having a thickness of about 400 μm. This adhesive film is punched out into a circle with a diameter of 11.3 mm, pressurized at a set temperature with a load of 2.5 kgf for 5 seconds, and the melt viscosity is calculated from the thickness of the adhesive film before and after pressurization using the above formula (2). did. The tack load of the adhesive film was measured at 25 ° C. by the method described in the JIS Z0237-1991 reference column using a RHESCA tacking tester. The measurement conditions were a probe diameter of 5.1 mm, a peeling speed of 10 mm / second, a contact load of 100 gf / cm 2 , and a contact time of 1.0 second. The residual volatile content of the adhesive film was calculated using the following formula (3) from the weight of the adhesive film before and after curing at 170 ° C./1 h.

残存揮発分(%)=[(硬化前のフィルム重量−硬化後のフィルム重量)
/硬化前のフィルム重量]×100 (3)
Residual volatile content (%) = [(film weight before curing−film weight after curing)
/ Film weight before curing] × 100 (3)

接着フィルム硬化物の物性は、Bステージの接着フィルムを170℃で1時間加熱硬化させたサンプルを用いて測定した。貯蔵弾性率は、動的粘弾性測定装置(レオロジ社製、DVE−V4)を用いて、サンプルサイズ:長さ20mm、幅4mm、膜厚60μm、昇温速度5℃/分、引張りモード、10Hz、自動静荷重の条件で測定した。また熱膨張係数熱は、熱膨張率測定機(真空理工(株)製、TM−7000)を用いて測定し、−65〜150℃の平均熱膨張係数を求めた。   The physical properties of the cured adhesive film were measured using a sample obtained by heat-curing the B-stage adhesive film at 170 ° C. for 1 hour. The storage elastic modulus is measured using a dynamic viscoelasticity measuring device (DVE-V4, manufactured by Rheology). Sample size: length 20 mm, width 4 mm, film thickness 60 μm, heating rate 5 ° C./min, tension mode, 10 Hz Measured under the conditions of automatic static load. Moreover, the thermal expansion coefficient heat was measured using a thermal expansion coefficient measuring machine (manufactured by Vacuum Riko Co., Ltd., TM-7000), and an average thermal expansion coefficient of −65 to 150 ° C. was obtained.

接着フィルムのラミネート性、圧着性は以下の方法で評価した。
接着フィルムを280μm厚のウエハの裏面に、温度100℃、線圧1MPa、速度0.2m/分の条件でラミネートした。この時、接着フィルムがウエハ端部からはみ出しウエハ表面まで達した場合を、ラミネート性不良と判断した。さらにダイシングテープ(古河電工株式会社製、商品名:UC−334EP)を室温でラミネートした後、接着フィルム付きウエハを7.0×9.0mmに切断し、紫外線(高圧水銀灯)をダイシングテープに500mJ/cm2照射した後、ダイシングテープを剥離して接着フィルム付き半導体チップとした。これを表2に示した条件で配線付き外部接続部材へ熱圧着し、空隙が接着フィルム全体の面積に対して10%以内、またはチップ端からのはみ出しが50μm以内の場合を、圧着性良好と判断した。
The laminating property and pressure bonding property of the adhesive film were evaluated by the following methods.
The adhesive film was laminated on the back surface of a 280 μm thick wafer under the conditions of a temperature of 100 ° C., a linear pressure of 1 MPa, and a speed of 0.2 m / min. At this time, the case where the adhesive film protruded from the edge of the wafer and reached the surface of the wafer was judged as a poor laminate property. After dicing tape (Furukawa Electric Co., Ltd., trade name: UC-334EP) was laminated at room temperature, the wafer with the adhesive film was cut to 7.0 × 9.0 mm, and UV (high pressure mercury lamp) was applied to the dicing tape at 500 mJ. After irradiation with / cm 2 , the dicing tape was peeled off to obtain a semiconductor chip with an adhesive film. When this is thermocompression-bonded to the external connection member with wiring under the conditions shown in Table 2 and the gap is within 10% of the entire area of the adhesive film, or the protrusion from the chip end is within 50 μm, the crimpability is good. It was judged.

また硬化時の発泡は、接着フィルムを外部接続部材へ圧着し、オーブンで170℃/1時間硬化した後に、顕微鏡でフィルム断面を観察し、微細な空隙がある場合を発泡ありと判断した。外部接続部材には、配線層の配線幅30μm、最狭配線間幅40μm、配線層厚み20μm、厚み50μmのポリイミド系フィルムからなる貫通孔付きのTABテープを用いた。圧着条件は加圧時間を1秒間および3秒間とし、温度を140〜180℃、圧着圧力を0.05〜0.2MPaの範囲で行った。ダイシングテープとの剥離性は、接着フィルムと露光後のダイシングテープとの室温でのピール強度を測定し、40gf/cm以上の場合を剥離困難と判断した。   Further, foaming at the time of curing was carried out by pressure bonding the adhesive film to the external connection member and curing in an oven at 170 ° C./1 hour, and then observing the film cross section with a microscope, and judged that there was foaming when there was a fine void. As the external connection member, a TAB tape with a through hole made of a polyimide film having a wiring layer wiring width of 30 μm, the narrowest wiring width of 40 μm, a wiring layer thickness of 20 μm, and a thickness of 50 μm was used. The pressure bonding conditions were a pressurization time of 1 second and 3 seconds, a temperature of 140 to 180 ° C., and a pressure of pressure of 0.05 to 0.2 MPa. For peelability from the dicing tape, the peel strength at room temperature between the adhesive film and the exposed dicing tape was measured, and when it was 40 gf / cm or more, it was judged that peeling was difficult.

信頼性は、上記の半導体チップ付き外部接続部材を封止用樹脂(日立化成工業株式会社製、商品名:CEL−9120)で封止して作製した半導体パッケージを用いて評価した。信頼性項目としては、耐リフロー性、耐PCT性および耐温度サイクル性を評価した。耐リフロー性は、作製した半導体パッケージを85℃、85%の雰囲気で24時間吸湿した後、赤外線リフロー装置で半導体パッケージ表面の最大到達温度が265℃で10秒間となる条件で3回処理を行った後、超音波探査探傷装置で半導体パッケージ内部を検査し、接着界面の剥離やクラックなどを評価した。耐PCT性は、リフロー処理した半導体パッケージを、121℃、100%の雰囲気で200時間処理した後、同様に接着界面の剥離や外部接続部材の貫通孔から接着フィルム樹脂のしみ出しの有無を評価した。耐温度サイクル性は、半導体パッケージを−55℃〜125℃で15分間の雰囲気で処理した後、超音波探査探傷装置で半導体パッケージ内部を検査し、接着界面の剥離やクラックなどを評価した。   Reliability was evaluated using a semiconductor package prepared by sealing the above external connection member with a semiconductor chip with a sealing resin (trade name: CEL-9120, manufactured by Hitachi Chemical Co., Ltd.). As the reliability items, reflow resistance, PCT resistance and temperature cycle resistance were evaluated. For reflow resistance, the fabricated semiconductor package is moisture-absorbed for 24 hours in an atmosphere of 85 ° C. and 85%, and then processed three times with an infrared reflow device under the condition that the maximum temperature on the surface of the semiconductor package is 265 ° C. for 10 seconds. After that, the inside of the semiconductor package was inspected with an ultrasonic inspection flaw detector and evaluated for peeling and cracking of the adhesive interface. PCT resistance is evaluated for the presence of exfoliation of the adhesive interface and exudation of the adhesive film resin from the through-hole of the external connection member after processing the reflow-treated semiconductor package at 121 ° C. and 100% atmosphere for 200 hours. did. For the temperature cycle resistance, the semiconductor package was treated at −55 ° C. to 125 ° C. in an atmosphere for 15 minutes, and then the inside of the semiconductor package was inspected with an ultrasonic inspection flaw detector to evaluate peeling or cracking of the adhesive interface.

[発明の効果]
表1〜4より、本発明の接着フィルムは、100℃以下での溶融粘度が1×104Pa・s以上、圧着温度での溶融粘度が5×10〜1×105Pa・s、タック荷重が2〜20gf、残存揮発分が3%以下を有し、0.01〜0.5MPaの小さな圧着圧力で、半導体チップとこれを塔載する配線付き外部接続用部材を接続することができる。したがって、本発明は、圧着性、作業性および信頼性に優れた接着フィルムを提供することができる。
[The invention's effect]
From Tables 1 to 4, the adhesive film of the present invention has a melt viscosity at 100 ° C. or lower of 1 × 10 4 Pa · s or more, a melt viscosity at a pressure bonding temperature of 5 × 10 to 1 × 10 5 Pa · s, and tack. The load is 2 to 20 gf, the residual volatile content is 3% or less, and the semiconductor chip and the external connection member with wiring for mounting it can be connected with a small pressure of 0.01 to 0.5 MPa. . Therefore, this invention can provide the adhesive film excellent in the press bonding property, workability, and reliability.

1 接着フィルム
2 コア材
3 配線
4 外部接続部材
5 半導体チップ
6 ボンディングワイヤ
7 封止用樹脂
8 外部接続端子
1 Adhesive Film 2 Core Material 3 Wiring 4 External Connection Member 5 Semiconductor Chip 6 Bonding Wire 7 Sealing Resin 8 External Connection Terminal

Claims (12)

半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップとを接続する接着フィルムであって、
前記接着フィルムが、圧着圧力0.2MPa、圧着温度180℃、圧着時間1秒で熱圧着し得ることを特徴とする接着フィルム。
An adhesive film for connecting a semiconductor chip and an external connection member with wiring for mounting the semiconductor chip or another semiconductor chip,
The adhesive film is characterized in that the adhesive film can be thermocompression bonded with a pressure bonding pressure of 0.2 MPa, a pressure bonding temperature of 180 ° C., and a pressure bonding time of 1 second.
半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップとを接続する接着フィルムであって、圧着温度での溶融粘度が5×10〜1×10Pa・sの範囲にある請求項1記載の接着フィルム。 An adhesive film for connecting a semiconductor chip and an external connection member with wiring or another semiconductor chip on which the semiconductor chip is mounted, and having a melt viscosity at a pressure bonding temperature in a range of 5 × 10 to 1 × 10 5 Pa · s. The adhesive film according to claim 1. 前記接着フィルムであって、圧着圧力(F)、圧着時間(t)、および圧着温度での溶融粘度(η)が、下記式(1)の関係を満たす条件で熱圧着し得る請求項1又は2記載の接着フィルム。
1×10≦F(Pa)・t(s)/η(Pa・s)≦5×10 (1)
The said adhesive film, Comprising: Crimping pressure (F), crimping | compression-bonding time (t), and melt viscosity ((eta)) in crimping | compression-bonding temperature can be thermocompression-bonded on the conditions which satisfy | fill the relationship of following formula (1). 2. The adhesive film according to 2.
1 × 10 ≦ F (Pa) · t (s) / η (Pa · s) ≦ 5 × 10 3 (1)
前記接着フィルムが、さらに、100℃以下で1×10Pa・s以上の溶融粘度を有する、請求項1〜3のいずれか1項記載の接着フィルム。 The adhesive film according to claim 1, wherein the adhesive film further has a melt viscosity of 1 × 10 4 Pa · s or higher at 100 ° C. or lower. 前記接着フィルムの100℃と180℃での溶融粘度の比が、1×10〜1×10の範囲にある、請求項1〜4のいずれか1項記載の接着フィルム。 The adhesive film according to claim 1, wherein a ratio of melt viscosity at 100 ° C. and 180 ° C. of the adhesive film is in a range of 1 × 10 to 1 × 10 3 . 前記接着フィルムが、プローブタック試験法で測定した25℃でのタック荷重が2〜20gfの範囲にある請求項1〜5のいずれか1項記載の接着フィルム。   The adhesive film according to any one of claims 1 to 5, wherein the adhesive film has a tack load at 25 ° C measured by a probe tack test method in a range of 2 to 20 gf. 前記接着フィルムが、25℃で20〜2000MPaおよび260℃で3〜50MPaの貯蔵弾性率と、−65〜150℃の温度域で200ppm/℃以下の平均熱膨張係数を有する、請求項1〜6のいずれか1項記載の接着フィルム。   The adhesive film has a storage elastic modulus of 20 to 2000 MPa at 25 ° C and 3 to 50 MPa at 260 ° C, and an average coefficient of thermal expansion of 200 ppm / ° C or less in a temperature range of -65 to 150 ° C. The adhesive film of any one of these. 前記接着フィルムが、3.0%以下の残存揮発分を有する、請求項1〜7のいずれか1項記載の接着フィルム。   The adhesive film according to claim 1, wherein the adhesive film has a residual volatile content of 3.0% or less. 前記接着フィルムが、10〜200μmの厚さを有する、請求項1〜8のいずれか1項記載の接着フィルム。   The adhesive film according to claim 1, wherein the adhesive film has a thickness of 10 to 200 μm. 前記接着フィルムが、エポキシ樹脂とエポキシ樹脂硬化剤とエポキシ基含有(メタ)アクリル共重合体とを含む、請求項1〜9のいずれか1項記載の接着フィルム。   The adhesive film according to claim 1, wherein the adhesive film includes an epoxy resin, an epoxy resin curing agent, and an epoxy group-containing (meth) acrylic copolymer. エポキシ樹脂とエポキシ樹脂硬化剤とエポキシ基含有(メタ)アクリル共重合体と、を含む接着剤組成物を用いて、半導体チップと、これを搭載する配線付き外部接続用部材または別の半導体チップと、を接続する接着フィルムを作製する方法であって、
前記接着フィルムの140〜180℃での溶融粘度が1×10〜1×10Pa・sの範囲にあるように、
基材に塗布した前記接着剤組成物のワニスを80〜100℃の範囲で加熱乾燥し、ついで110〜150℃の範囲で加熱乾燥することを特徴とする接着フィルムの製造方法。
Using an adhesive composition containing an epoxy resin, an epoxy resin curing agent, and an epoxy group-containing (meth) acrylic copolymer, a semiconductor chip, an external connection member with wiring on which the semiconductor chip is mounted, or another semiconductor chip A method for producing an adhesive film for connecting
The melt viscosity at 140 to 180 ° C. of the adhesive film is in the range of 1 × 10 2 to 1 × 10 4 Pa · s,
A method for producing an adhesive film, characterized in that the varnish of the adhesive composition applied to a substrate is heat-dried in the range of 80 to 100 ° C and then heat-dried in the range of 110 to 150 ° C.
請求項1〜10のいずれか1項記載の接着フィルムを介して、半導体チップを、配線付き外部接続用部材または別の半導体チップに接着した半導体装置。   The semiconductor device which adhere | attached the semiconductor chip to the member for external connection with wiring, or another semiconductor chip through the adhesive film of any one of Claims 1-10.
JP2011134729A 2011-06-17 2011-06-17 Adhesive film, use thereof, and method for manufacturing semiconductor device Expired - Lifetime JP5585542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134729A JP5585542B2 (en) 2011-06-17 2011-06-17 Adhesive film, use thereof, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134729A JP5585542B2 (en) 2011-06-17 2011-06-17 Adhesive film, use thereof, and method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008321444A Division JP2009135506A (en) 2008-12-17 2008-12-17 Adhesive film, use of the same, and method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2011214006A true JP2011214006A (en) 2011-10-27
JP5585542B2 JP5585542B2 (en) 2014-09-10

Family

ID=44944068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134729A Expired - Lifetime JP5585542B2 (en) 2011-06-17 2011-06-17 Adhesive film, use thereof, and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP5585542B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167174A (en) * 2011-02-14 2012-09-06 Lintec Corp Adhesive composition, adhesive sheet, and method of manufacturing semiconductor device
JP2013235974A (en) * 2012-05-09 2013-11-21 Sekisui Chem Co Ltd Method for manufacturing semiconductor device, and semiconductor bonding adhesive
JP2014192238A (en) * 2013-03-26 2014-10-06 Nitto Denko Corp Underfill material, sealing sheet and method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917810A (en) * 1994-10-31 1997-01-17 Hitachi Chem Co Ltd Method and apparatus for laminating film-like organic die bonding material, method and apparatus for die bonding, semiconductor device and manufacture thereof
JP2000154356A (en) * 1998-11-24 2000-06-06 Hitachi Chem Co Ltd Adhesive member, wiring board having adhesive member disposed thereon for loading semiconductor, and semiconductor device using the same
JP2000256628A (en) * 1999-03-08 2000-09-19 Hitachi Chem Co Ltd Adhesive material film, semiconductor mounting external connecting member, semiconductor device and their production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917810A (en) * 1994-10-31 1997-01-17 Hitachi Chem Co Ltd Method and apparatus for laminating film-like organic die bonding material, method and apparatus for die bonding, semiconductor device and manufacture thereof
JP2000154356A (en) * 1998-11-24 2000-06-06 Hitachi Chem Co Ltd Adhesive member, wiring board having adhesive member disposed thereon for loading semiconductor, and semiconductor device using the same
JP2000256628A (en) * 1999-03-08 2000-09-19 Hitachi Chem Co Ltd Adhesive material film, semiconductor mounting external connecting member, semiconductor device and their production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167174A (en) * 2011-02-14 2012-09-06 Lintec Corp Adhesive composition, adhesive sheet, and method of manufacturing semiconductor device
JP2013235974A (en) * 2012-05-09 2013-11-21 Sekisui Chem Co Ltd Method for manufacturing semiconductor device, and semiconductor bonding adhesive
JP2014192238A (en) * 2013-03-26 2014-10-06 Nitto Denko Corp Underfill material, sealing sheet and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP5585542B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP4258984B2 (en) Manufacturing method of semiconductor device
US8017444B2 (en) Adhesive sheet, semiconductor device, and process for producing semiconductor device
JP4816871B2 (en) Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device
KR100603484B1 (en) Semiconductor device, semiconductor chip mounting substrate, methods of manufacturing the device and substrate, adhesive, and adhesive double coated film
JP5364991B2 (en) Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor device
JP5499516B2 (en) Adhesive composition, circuit member connecting adhesive sheet, and method for manufacturing semiconductor device
JP4449325B2 (en) Adhesive film for semiconductor, semiconductor device, and manufacturing method of semiconductor device.
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
JPWO2008105169A1 (en) Adhesive film for semiconductor and semiconductor device using the same
JP4957064B2 (en) Semiconductor device and manufacturing method thereof
JP3528639B2 (en) Adhesive, adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP5532575B2 (en) Adhesive sheet
JP3539242B2 (en) Adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP4161544B2 (en) Adhesive film for mounting semiconductor elements
JP2004039928A (en) Adhesive sheet
JP5585542B2 (en) Adhesive film, use thereof, and method for manufacturing semiconductor device
JP3617504B2 (en) Adhesive film for mounting semiconductor elements
JPH11209724A (en) Flame retarded adhesive, flame retarded bonding member, wiring board for loading semiconductor having flame retarded bonding member and semiconductor device using the same
JP5272284B2 (en) Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device
KR100483102B1 (en) Semiconductor device, semiconductor chip mounting substrate, methods of manufacturing the device and substrate, adhesive, and adhesive double coated film
JP2009135506A (en) Adhesive film, use of the same, and method of manufacturing semiconductor device
JP2000144077A (en) Double-sided adhesive film and semiconductor device using the same
JP2001131501A (en) Three-layer adhesive film, semiconductor chip-carrying substrate and semiconductor device
JP7223090B1 (en) Adhesive composition, film-like adhesive, semiconductor package using film-like adhesive, and manufacturing method thereof
JP2000164607A (en) Electronic part adhesive member, semiconductor mounting wiring board equipped therewith, and semiconductor device provided therewith

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

EXPY Cancellation because of completion of term