JPWO2012026431A1 - Adhesive sheet and semiconductor chip mounting method - Google Patents

Adhesive sheet and semiconductor chip mounting method Download PDF

Info

Publication number
JPWO2012026431A1
JPWO2012026431A1 JP2011537092A JP2011537092A JPWO2012026431A1 JP WO2012026431 A1 JPWO2012026431 A1 JP WO2012026431A1 JP 2011537092 A JP2011537092 A JP 2011537092A JP 2011537092 A JP2011537092 A JP 2011537092A JP WO2012026431 A1 JPWO2012026431 A1 JP WO2012026431A1
Authority
JP
Japan
Prior art keywords
thermosetting
layer
adhesive sheet
semiconductor chip
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011537092A
Other languages
Japanese (ja)
Other versions
JP5385988B2 (en
Inventor
さやか 脇岡
さやか 脇岡
善雄 西村
善雄 西村
中山 篤
篤 中山
洋洙 李
洋洙 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011537092A priority Critical patent/JP5385988B2/en
Publication of JPWO2012026431A1 publication Critical patent/JPWO2012026431A1/en
Application granted granted Critical
Publication of JP5385988B2 publication Critical patent/JP5385988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/068Copolymers with monomers not covered by C09J133/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/16Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
    • C09J2301/162Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer the carrier being a laminate constituted by plastic layers only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/006Presence of (meth)acrylic polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L2021/60007Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
    • H01L2021/60022Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting
    • H01L2021/6006Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting with temporary supporting member not part of an apparatus, e.g. removable coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8185Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/81855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8185Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/81855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/81862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]

Abstract

本発明は、突起電極の損傷及び変形を抑制することができ、信頼性に優れた半導体チップ実装体の製造に好適に用いられる接着シート、及び、該接着シートを用いた半導体チップの実装方法を提供することを目的とする。本発明は、表面に突起電極を有する半導体チップを基板又は他の半導体チップに実装するために用いられる接着シートであって、40〜80℃での引張貯蔵弾性率が0.5GPa以上である硬質層と、その少なくとも一方の面に積層され、40〜80℃での引張貯蔵弾性率が10kPa〜9MPaである架橋アクリルポリマーからなる柔軟層とを有する樹脂基材を有し、前記柔軟層上に形成され、回転式レオメーターを用いて、昇温速度5℃/分、周波数1Hzで40〜80℃における溶融粘度を測定した場合の最低溶融粘度が3000Pa・sより大きく100000Pa・s以下である熱硬化性接着剤層を有する接着シートである。The present invention provides an adhesive sheet that can suppress damage and deformation of the protruding electrode and is preferably used for manufacturing a highly reliable semiconductor chip mounting body, and a semiconductor chip mounting method using the adhesive sheet. The purpose is to provide. The present invention is an adhesive sheet used for mounting a semiconductor chip having a protruding electrode on a surface thereof to a substrate or another semiconductor chip, and has a tensile storage elastic modulus at 40 to 80 ° C. of 0.5 GPa or more. A resin base material having a layer and a flexible layer made of a cross-linked acrylic polymer having a tensile storage elastic modulus at 40 to 80 ° C. of 10 kPa to 9 MPa, which is laminated on at least one surface thereof, on the flexible layer Heat that is formed and the minimum melt viscosity is greater than 3000 Pa · s and less than or equal to 100000 Pa · s when measured at 40 to 80 ° C. at a heating rate of 5 ° C./min and a frequency of 1 Hz using a rotary rheometer An adhesive sheet having a curable adhesive layer.

Description

本発明は、突起電極の損傷及び変形を抑制することができ、信頼性に優れた半導体チップ実装体の製造に好適に用いられる接着シート、及び、該接着シートを用いた半導体チップの実装方法に関する。 The present invention relates to an adhesive sheet that can suppress damage and deformation of a protruding electrode and is preferably used for manufacturing a highly reliable semiconductor chip mounting body, and a semiconductor chip mounting method using the adhesive sheet. .

近年、半導体装置の小型化、高集積化が進展し、表面に電極として複数の突起(バンプ)を有するフリップチップ、複数の薄研削した半導体チップを積層したスタックドチップ等が生産されるようになった。同時に半導体チップの実装方法も種々の方法が提案されているが、現在では、半導体チップの接着は接着剤を用いてなされることが多い(特許文献1、2等)。 In recent years, miniaturization and high integration of semiconductor devices have progressed, and flip chips having a plurality of protrusions (bumps) as electrodes on the surface, stacked chips in which a plurality of thinly ground semiconductor chips are stacked, and the like are produced. became. At the same time, various methods for mounting semiconductor chips have been proposed, but at present, semiconductor chips are often bonded using an adhesive (Patent Documents 1 and 2, etc.).

このような小型の半導体チップは、例えば、フリップチップ実装を用いた以下のような方法により製造される。
まず、電極として複数の突起(バンプ)を有する半導体ウエハ原板のおもて面に、バックグラインドテープと呼ばれる粘着シート又はテープを貼り合わせ、この状態で半導体ウエハ原板の裏面を所定の厚さにまで研削する。研削終了後、バックグラインドテープを剥離する。次いで、研削後の半導体ウエハをダイシングして個々の半導体チップとし、得られた半導体チップを、他の半導体チップ又は基板上にフリップチップ実装によりボンディングする。その後、アンダーフィル剤を充填して硬化する。しかしながら、このような工程は極めて煩雑であるという問題がある。
Such a small semiconductor chip is manufactured by, for example, the following method using flip chip mounting.
First, an adhesive sheet or tape called back grind tape is bonded to the front surface of a semiconductor wafer master having a plurality of protrusions (bumps) as electrodes, and the back surface of the semiconductor wafer master is brought to a predetermined thickness in this state. Grind. After grinding, the back grind tape is peeled off. Next, the ground semiconductor wafer is diced into individual semiconductor chips, and the obtained semiconductor chips are bonded to other semiconductor chips or substrates by flip chip mounting. Thereafter, the underfill agent is filled and cured. However, there is a problem that such a process is extremely complicated.

そこで、より簡便な方法として、バックグラインドテープを剥離する代わりに、バックグラインドテープの接着剤層を半導体ウエハ上に残したまま基材だけを剥離し、得られた半導体チップを、接着剤層を介して他の半導体チップ又は基板上にフリップチップ実装する方法が提案されている。 Therefore, as a simpler method, instead of peeling the back grind tape, only the base material is peeled while leaving the adhesive layer of the back grind tape on the semiconductor wafer, and the obtained semiconductor chip is attached to the adhesive layer. A method of flip-chip mounting on another semiconductor chip or substrate is proposed.

例えば、特許文献3には、基材と、基材上に形成された層間接着用接着剤層とからなる粘着シートの層間接着用接着剤層とウエハとを貼り合わせる工程1、ウエハを、粘着シートに固定した状態で研削する工程2、研削後のウエハから、層間接着用接着剤層を残して基材を剥離して、層間接着用接着剤層が付着したウエハを得る工程3を有する半導体の製造方法が開示されている。特許文献3には、同文献の方法によれば、極めて簡便に、薄研削された層間接着剤付きのウエハを得ることができ、得られたウエハを用いて半導体装置が得られることが記載されている。 For example, Patent Document 3 discloses a process 1 in which an adhesive layer for adhesion between an adhesive sheet and a wafer composed of a base material and an adhesive layer for interlayer adhesion formed on the base material is bonded to the wafer. Semiconductor having step 2 for grinding in a state of being fixed to a sheet, and step 3 for obtaining a wafer having an adhesive layer for adhesion between layers removed from the ground wafer by removing the base material while leaving an adhesive layer for interlayer adhesion A manufacturing method is disclosed. Patent Document 3 describes that according to the method of this document, a wafer with an interlayer adhesive that has been thinly ground can be obtained very simply, and a semiconductor device can be obtained using the obtained wafer. ing.

また、通常、特許文献3に記載のような方法において、接着剤層の厚みが半導体ウエハ原板上の突起電極の高さよりも厚い場合には、粘着シート又はテープと半導体ウエハ原板とを貼り合わせると、半導体ウエハ原板上の突起電極は粘着シート又はテープの接着剤層に埋もれた状態となる。そして、研削時にかかる圧力によって突起電極の頂部から接着剤が押し除かれ、これにより、基材の剥離後には突起電極の頂部が接着剤層から露出することができ、フリップチップ実装により電気的な接続を行うことができる。また、接着剤層の厚みが半導体ウエハ原板上の突起電極の高さ以下である場合には、粘着シート又はテープと半導体ウエハ原板とを貼り合わせる工程及び研削時において、突起電極の頂部から接着剤が押し除かれ、これによってフリップチップ実装により電気的な接続を行うことができる。 Also, usually, in the method as described in Patent Document 3, when the thickness of the adhesive layer is thicker than the height of the protruding electrode on the semiconductor wafer original plate, the adhesive sheet or tape and the semiconductor wafer original plate are bonded together. The protruding electrodes on the semiconductor wafer original plate are buried in the adhesive layer of the adhesive sheet or tape. Then, the adhesive is pushed away from the top of the protruding electrode by the pressure applied during grinding, so that the top of the protruding electrode can be exposed from the adhesive layer after the substrate is peeled off. Connection can be made. Further, when the thickness of the adhesive layer is equal to or less than the height of the protruding electrode on the semiconductor wafer original plate, the adhesive is applied from the top of the protruding electrode in the step of bonding the adhesive sheet or tape and the semiconductor wafer original plate and during grinding. Is pushed away, so that an electrical connection can be made by flip-chip mounting.

このような方法において、粘着シート又はテープには、接着剤層を塗工、乾燥する際にも熱膨張及び収縮が少なく、良好な形状保持性を維持できることから、一般に、ポリエチレンテレフタレート(PET)等の硬い材料からなる基材が多用されている。しかしながら、硬い材料からなる基材を用いると、貼り合わせ工程又は研削時にかかる圧力によって突起電極の損傷及び変形が生じ、得られる半導体チップ実装体の信頼性が低下することが問題である。 In such a method, the pressure-sensitive adhesive sheet or tape has little thermal expansion and contraction even when the adhesive layer is applied and dried, and can maintain good shape retention. Therefore, in general, polyethylene terephthalate (PET) or the like A base material made of a hard material is frequently used. However, when a base material made of a hard material is used, there is a problem that the protrusion electrode is damaged and deformed by the pressure applied during the bonding process or grinding, and the reliability of the obtained semiconductor chip package is lowered.

このような問題に対し、特許文献4には、少なくとも、回路面と接する層(A層)が所定の熱硬化性樹脂層であり、A層の上に直接積層された層(B層)が40℃〜80℃で1〜300MPaの引張り弾性率を有する熱可塑性樹脂層であり、かつ最外層(C層)が少なくとも25℃で非可塑性の熱可塑性樹脂層である積層シートが開示されている。しかしながら、特許文献4に記載のような熱硬化性樹脂層(A層)を用いた場合には、貼り合わせ工程又は半導体チップを他の半導体チップ又は基板上にボンディングする際に、熱硬化性樹脂層(A層)にボイドが発生してしまうことが問題であり、得られる半導体チップ実装体の信頼性は依然として不充分である。 For such a problem, Patent Document 4 discloses that at least a layer (A layer) in contact with a circuit surface is a predetermined thermosetting resin layer, and a layer (B layer) directly laminated on the A layer is provided. A laminated sheet is disclosed which is a thermoplastic resin layer having a tensile elastic modulus of 1 to 300 MPa at 40 ° C. to 80 ° C., and the outermost layer (C layer) is a non-plastic thermoplastic resin layer at least at 25 ° C. . However, when the thermosetting resin layer (A layer) as described in Patent Document 4 is used, the thermosetting resin is used in the bonding process or when the semiconductor chip is bonded to another semiconductor chip or substrate. The problem is that voids are generated in the layer (A layer), and the reliability of the resulting semiconductor chip package is still insufficient.

特開2005−126658号公報JP 2005-126658 A 特開2003−231875号公報JP 2003-231875 A 特開2008−016624号公報JP 2008-016624 A 特許第4170839号公報Japanese Patent No. 4170839

本発明は、突起電極の損傷及び変形を抑制することができ、信頼性に優れた半導体チップ実装体の製造に好適に用いられる接着シート、及び、該接着シートを用いた半導体チップの実装方法を提供することを目的とする。 The present invention provides an adhesive sheet that can suppress damage and deformation of a protruding electrode and is preferably used for manufacturing a highly reliable semiconductor chip package, and a semiconductor chip mounting method using the adhesive sheet. The purpose is to provide.

本発明は、表面に突起電極を有する半導体チップを基板又は他の半導体チップに実装するために用いられる接着シートであって、40〜80℃での引張貯蔵弾性率が0.5GPa以上である硬質層と、その少なくとも一方の面に積層され、40〜80℃での引張貯蔵弾性率が10kPa〜9MPaである架橋アクリルポリマーからなる柔軟層とを有する樹脂基材を有し、前記柔軟層上に形成され、回転式レオメーターを用いて、昇温速度5℃/分、周波数1Hzで40〜80℃における溶融粘度を測定した場合の最低溶融粘度が3000Pa・sより大きく100000Pa・s以下である熱硬化性接着剤層を有する接着シートである。
以下、本発明を詳述するが、引張貯蔵弾性率を単に弾性率と表記する。
The present invention is an adhesive sheet used for mounting a semiconductor chip having a protruding electrode on a substrate or another semiconductor chip, and has a tensile storage elastic modulus at 40 to 80 ° C. of 0.5 GPa or more. A resin base material having a layer and a flexible layer made of a cross-linked acrylic polymer having a tensile storage elastic modulus at 40 to 80 ° C. of 10 kPa to 9 MPa, which is laminated on at least one surface thereof, on the flexible layer Heat that is formed and the minimum melt viscosity is greater than 3000 Pa · s and less than or equal to 100000 Pa · s when measured at 40 to 80 ° C. at a heating rate of 5 ° C./min and a frequency of 1 Hz using a rotary rheometer An adhesive sheet having a curable adhesive layer.
Hereinafter, the present invention will be described in detail, but the tensile storage elastic modulus is simply expressed as elastic modulus.

貼り合わせ工程又は研削時にかかる圧力によって生じる突起電極の損傷及び変形を抑制するためには、例えば、軟らかい材料からなる基材を用いることが考えられる。しかしながら、軟らかい材料からなる基材を用いると、研削時に半導体ウエハ原板を保護する支持体としての機能、即ちバックグラインドテープとしての機能の低下につながる。これに対し、本発明者は、所定の弾性率を有する硬質層と、その少なくとも一方の面に積層された所定の弾性率を有する架橋アクリルポリマーからなる柔軟層とを有し、この柔軟層上に熱硬化性接着剤層が形成されてなる接着シートを用いることにより、突起電極の損傷及び変形を抑制できることを見出した。更に、本発明者は、熱硬化性接着剤層の40〜80℃における最低溶融粘度を所定範囲とすることにより、突起電極の損傷及び変形の抑制に加えてボイドを低減することもでき、信頼性に優れた半導体チップ実装体を製造できることを見出し、本発明を完成させるに至った。 In order to suppress damage and deformation of the protruding electrode caused by the pressure applied during the bonding process or grinding, for example, it is conceivable to use a base material made of a soft material. However, when a base material made of a soft material is used, the function as a support for protecting the semiconductor wafer original plate during grinding, that is, the function as a back grind tape is reduced. On the other hand, the inventor has a hard layer having a predetermined elastic modulus and a flexible layer made of a crosslinked acrylic polymer having a predetermined elastic modulus laminated on at least one surface thereof. It was found that damage and deformation of the protruding electrode can be suppressed by using an adhesive sheet in which a thermosetting adhesive layer is formed. Furthermore, the present inventor can reduce voids in addition to suppressing damage and deformation of the protruding electrodes by setting the minimum melt viscosity at 40 to 80 ° C. of the thermosetting adhesive layer to a predetermined range. The present inventors have found that a semiconductor chip mounting body excellent in performance can be manufactured, and have completed the present invention.

表面に突起電極を有する半導体チップを基板又は他の半導体チップに実装する際には、突起電極を有する半導体ウエハ原板の裏面を所定の厚さにまで研削した後、研削後の半導体ウエハをダイシングして半導体チップに個片化し、得られた半導体チップを基板又は他の半導体チップ上にフリップチップ実装によりボンディングする。
本発明の接着シートは、このように、表面に突起電極を有する半導体チップを基板又は他の半導体チップに実装する際に用いられる。より具体的には、本発明の接着シートは、突起電極を有する半導体ウエハ原板のおもて面に貼り合わされて用いられる。
When mounting a semiconductor chip having a protruding electrode on a substrate or another semiconductor chip, after grinding the back surface of the semiconductor wafer having a protruding electrode to a predetermined thickness, the semiconductor wafer after grinding is diced. The semiconductor chip is separated into individual pieces, and the obtained semiconductor chip is bonded to a substrate or another semiconductor chip by flip chip mounting.
Thus, the adhesive sheet of this invention is used when mounting the semiconductor chip which has a protruding electrode on the surface on a board | substrate or another semiconductor chip. More specifically, the adhesive sheet of the present invention is used by being bonded to the front surface of a semiconductor wafer original plate having protruding electrodes.

本発明の接着シートは、硬質層と、その少なくとも一方の面に積層された柔軟層とを有する樹脂基材を有する。
硬質層は、40〜80℃での弾性率の下限が0.5GPaである。このような弾性率を有する硬質層を有することで、本発明の接着シートは、研削時に半導体ウエハ原板を保護する支持体としての機能を充分に果たすことができる。従って、本発明の接着シートを用いることで、半導体ウエハ原板の研削工程を良好に行うことができる。40〜80℃での弾性率が0.5GPa未満であると、得られる接着シートは、研削時に半導体ウエハ原板を保護する支持体としての機能が低下する。また、40〜80℃での弾性率が0.5GPa未満であると、得られる接着シートは、半導体ウエハ原板に貼り合わされる際にシワ、ヨレ等を生じることがある。40〜80℃での弾性率の好ましい下限は1GPa、より好ましい下限は3GPaである。
The adhesive sheet of this invention has a resin base material which has a hard layer and the flexible layer laminated | stacked on the at least one surface.
The lower limit of the elastic modulus at 40 to 80 ° C. of the hard layer is 0.5 GPa. By having a hard layer having such an elastic modulus, the adhesive sheet of the present invention can sufficiently function as a support for protecting the semiconductor wafer original plate during grinding. Therefore, by using the adhesive sheet of the present invention, it is possible to satisfactorily perform the grinding process of the semiconductor wafer original plate. When the elastic modulus at 40 to 80 ° C. is less than 0.5 GPa, the resulting adhesive sheet has a reduced function as a support for protecting the semiconductor wafer original plate during grinding. Moreover, when the elasticity modulus in 40-80 degreeC is less than 0.5 GPa, when the obtained adhesive sheet is bonded together to a semiconductor wafer original plate, a wrinkle, a twist, etc. may be produced. The preferable lower limit of the elastic modulus at 40 to 80 ° C. is 1 GPa, and the more preferable lower limit is 3 GPa.

硬質層の40〜80℃での弾性率の好ましい上限は50GPaである。40〜80℃での弾性率が50GPaを超えると、得られる接着シートは、製造時の加工性に劣ることがある。40〜80℃での弾性率のより好ましい上限は10GPaである。 The upper limit with a preferable elasticity modulus in 40-80 degreeC of a hard layer is 50 GPa. When the elasticity modulus in 40-80 degreeC exceeds 50 GPa, the adhesive sheet obtained may be inferior to the workability at the time of manufacture. The upper limit with a more preferable elasticity modulus in 40-80 degreeC is 10 GPa.

なお、本明細書中、弾性率とは、商品名「DVA−200」、アイティー計測制御社製の動的粘弾性測定装置により、10Hzの周波数で測定した弾性率を意味する。
また、40〜80℃との温度範囲は、例えば半導体ウエハ原板の研削工程等の、本発明の接着シートの樹脂基材が基材としての役割を果たす工程における温度範囲を考慮して設定されている。このような温度範囲での硬質層の弾性率を上記範囲とすることにより、本発明の接着シートは、研削時に半導体ウエハ原板を保護する支持体としての機能を充分に果たすことができ、本発明の接着シートを用いて、信頼性に優れた半導体チップ実装体を製造することができる。
In the present specification, the elastic modulus means an elastic modulus measured at a frequency of 10 Hz by a product name “DVA-200”, a dynamic viscoelasticity measuring apparatus manufactured by IT Measurement Control Co., Ltd.
Further, the temperature range of 40 to 80 ° C. is set in consideration of the temperature range in a process in which the resin base material of the adhesive sheet of the present invention serves as a base material, such as a grinding process of a semiconductor wafer original plate. Yes. By setting the elastic modulus of the hard layer in such a temperature range within the above range, the adhesive sheet of the present invention can sufficiently function as a support for protecting the semiconductor wafer original plate during grinding. By using this adhesive sheet, it is possible to manufacture a semiconductor chip mounting body excellent in reliability.

硬質層は、弾性率が温度によって大きく変化しないことが好ましい。
本発明の接着シートを半導体ウエハ原板に貼り合わせる際には、熱硬化性接着剤層をやや溶融させて突起電極に追従させやすくする目的で、50℃以上100℃未満程度に加熱することが好ましい。そのため、硬質層の弾性率が温度によって大きく変化すると、得られる接着シートは、半導体ウエハ原板に貼り合わされる際にシワ等を生じることがある。
なお、弾性率が温度によって大きく変化する硬質層であっても、その他の補強手段を講じてシワ等を抑制することにより使用することができるが、この場合には、補強手段を講じる必要があるため作業が煩雑になることがある。
The hard layer preferably has an elastic modulus that does not vary greatly with temperature.
When the adhesive sheet of the present invention is bonded to a semiconductor wafer original plate, it is preferable to heat the thermosetting adhesive layer to a temperature of about 50 ° C. or more and less than about 100 ° C. for the purpose of facilitating the melting of the thermosetting adhesive layer to make it easier to follow the protruding electrodes. . For this reason, when the elastic modulus of the hard layer largely changes depending on the temperature, the obtained adhesive sheet may be wrinkled when being bonded to the semiconductor wafer original plate.
It should be noted that even a hard layer whose elastic modulus changes greatly with temperature can be used by taking other reinforcing means to suppress wrinkles and the like, but in this case, it is necessary to take reinforcing means. Therefore, the work may be complicated.

具体的には、硬質層は、100℃での弾性率を30℃での弾性率で除した値の好ましい下限が0.5、より好ましい下限が0.6である。また、硬質層は、70℃での弾性率を30℃での弾性率で除した値の好ましい下限が0.8、より好ましい下限が0.9である。 Specifically, the preferable lower limit of the value obtained by dividing the elastic modulus at 100 ° C. by the elastic modulus at 30 ° C. is 0.5, and the more preferable lower limit is 0.6 for the hard layer. The hard layer has a preferred lower limit of 0.8 and a more preferred lower limit of the value obtained by dividing the elastic modulus at 70 ° C. by the elastic modulus at 30 ° C.

硬質層は、40〜80℃での弾性率が上記範囲を満たしていればよく、例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン等からなる層が挙げられる。なかでも、硬質層は、PETを含有する層であることが好ましい。 The hard layer only needs to have an elastic modulus at 40 to 80 ° C. satisfying the above range, for example, from polyethylene terephthalate (PET), polycarbonate, polymethyl methacrylate, polyethylene naphthalate, polybutylene terephthalate, polyethylene, polypropylene, and the like. Layer. Especially, it is preferable that a hard layer is a layer containing PET.

硬質層の厚みの好ましい下限は5μm、好ましい上限は200μmである。硬質層の厚みが5μm未満であると、得られる接着シートは、研削時に半導体ウエハ原板を保護する支持体としての機能が低下することがある。硬質層の厚みが200μmを超えると、得られる樹脂基材が研削後の半導体ウエハから熱硬化性接着剤層を残したまま剥離される際に、半導体ウエハに過剰の応力を発生させることがある。硬質層の厚みのより好ましい下限は10μm、より好ましい上限は50μmである。 The preferable lower limit of the thickness of the hard layer is 5 μm, and the preferable upper limit is 200 μm. When the thickness of the hard layer is less than 5 μm, the resulting adhesive sheet may have a reduced function as a support for protecting the semiconductor wafer original plate during grinding. When the thickness of the hard layer exceeds 200 μm, excessive stress may be generated on the semiconductor wafer when the obtained resin base material is peeled off from the ground semiconductor wafer while leaving the thermosetting adhesive layer. . A more preferable lower limit of the thickness of the hard layer is 10 μm, and a more preferable upper limit is 50 μm.

本発明の接着シートは、硬質層の少なくとも一方の面に積層された柔軟層を有する。
柔軟層は、40〜80℃での弾性率の下限が10kPa、上限が9MPaである。このような弾性率を有する柔軟層を有することで、本発明の接着シートは、貼り合わせ工程又は研削時にかかる圧力によって生じる突起電極の損傷及び変形を抑制することができる。従って、本発明の接着シートを用いて、信頼性に優れた半導体チップ実装体を製造することができる。40〜80℃での弾性率が10kPa未満であると、得られる接着シートは、研削時に半導体ウエハ原板を保護する支持体としての機能が低下する。40〜80℃での弾性率が9MPaを超えると、得られる接着シートを用いると、貼り合わせ工程又は研削時にかかる圧力によって突起電極の損傷及び変形が生じやすく、半導体チップ実装体の信頼性が低下しやすくなる。40〜80℃での弾性率の好ましい下限が15kPa、より好ましい下限が20kPaであり、好ましい上限が5MPa、より好ましい上限が1MPaである。
The adhesive sheet of the present invention has a flexible layer laminated on at least one surface of the hard layer.
The flexible layer has a lower limit of elastic modulus at 40 to 80 ° C. and an upper limit of 9 MPa. By having the flexible layer having such an elastic modulus, the adhesive sheet of the present invention can suppress damage and deformation of the protruding electrode caused by pressure applied during the bonding process or grinding. Therefore, the semiconductor chip mounting body excellent in reliability can be manufactured using the adhesive sheet of the present invention. When the elastic modulus at 40 to 80 ° C. is less than 10 kPa, the obtained adhesive sheet has a reduced function as a support for protecting the semiconductor wafer original plate during grinding. When the elastic modulus at 40 to 80 ° C. exceeds 9 MPa, when the obtained adhesive sheet is used, damage and deformation of the protruding electrode are likely to occur due to pressure applied during the bonding process or grinding, and the reliability of the semiconductor chip mounting body is lowered. It becomes easy to do. A preferable lower limit of the elastic modulus at 40 to 80 ° C. is 15 kPa, a more preferable lower limit is 20 kPa, a preferable upper limit is 5 MPa, and a more preferable upper limit is 1 MPa.

本明細書中、柔軟層の弾性率とは、必ずしも、本発明の接着シートにおける柔軟層について測定した値を意味しない。即ち、弾性率は材料に固有の値であるため、例えば、柔軟層が非常に軟らかい材料からなる場合には、弾性率を充分に測定することのできる程度の厚みを有する柔軟層を別途作製し、得られた柔軟層について弾性率を測定してもよい。 In this specification, the elastic modulus of the flexible layer does not necessarily mean a value measured for the flexible layer in the adhesive sheet of the present invention. In other words, since the elastic modulus is a value inherent to the material, for example, when the flexible layer is made of a very soft material, a flexible layer having a thickness that can sufficiently measure the elastic modulus is separately prepared. The elastic modulus of the obtained flexible layer may be measured.

柔軟層は、熱硬化性接着剤層と接する面の表面粗さRaの好ましい上限が0.4μmである。表面粗さRaが0.4μmを超えると、熱硬化性接着剤層の表面に柔軟層の表面の凹凸が転写されてしまうことがある。熱硬化性接着剤層の表面に凹凸が形成されてしまうと、硬化後の熱硬化性接着剤層と被着体との界面にボイドが生じやすくなって半導体チップ実装体の信頼性が低下することがある。また、熱硬化性接着剤層の表面に凹凸が形成されてしまうと透明性が損なわれるため、ダイシング工程やフリップチップ実装工程において、熱硬化性接着剤層を介して半導体チップ上のアライメントマーク又は突起電極を認識することができないことがある。 A preferable upper limit of the surface roughness Ra of the surface in contact with the thermosetting adhesive layer of the flexible layer is 0.4 μm. When the surface roughness Ra exceeds 0.4 μm, irregularities on the surface of the flexible layer may be transferred to the surface of the thermosetting adhesive layer. If irregularities are formed on the surface of the thermosetting adhesive layer, voids are likely to occur at the interface between the cured thermosetting adhesive layer and the adherend, thereby reducing the reliability of the semiconductor chip package. Sometimes. In addition, since the transparency is impaired when irregularities are formed on the surface of the thermosetting adhesive layer, in the dicing process or the flip chip mounting process, the alignment mark or the semiconductor chip on the semiconductor chip via the thermosetting adhesive layer The protruding electrode may not be recognized.

表面粗さRaを上記範囲とするためには、例えば、硬質層となるフィルムの少なくとも一方の面に柔軟層となるフィルムを積層する場合には、柔軟層となるフィルムとして上記範囲の表面粗さRaを有するフィルムを用いることが好ましい。また、例えば、硬質層上に柔軟層となる樹脂の塗液を塗布した後、乾燥する場合には、塗布及び乾燥後の柔軟層の表面粗さRaが上記範囲となるように調整することが好ましい。
なお、表面粗さRaは、JIS B 0601に準じて、例えば、カラー3Dレーザー顕微鏡(商品名「VK−9700」、キーエンス社製)を用いて測定することができる。
In order to set the surface roughness Ra within the above range, for example, when a film serving as a flexible layer is laminated on at least one surface of a film serving as a hard layer, the surface roughness within the above range as a film serving as a flexible layer. It is preferable to use a film having Ra. In addition, for example, in the case of drying after applying a resin coating solution to be a flexible layer on the hard layer, the surface roughness Ra of the flexible layer after application and drying may be adjusted to be in the above range. preferable.
The surface roughness Ra can be measured according to JIS B 0601 using, for example, a color 3D laser microscope (trade name “VK-9700”, manufactured by Keyence Corporation).

柔軟層は、架橋アクリルポリマーからなるものである。
架橋アクリルポリマーとは、ポリアルキル(メタ)アクリレート(以下、単にアクリルポリマーという)の主鎖間に架橋構造が形成されているポリマーをいう。架橋構造の度合いを調整したり、アクリルポリマーを構成する(メタ)アクリル酸アルキルエステルモノマーの種類や構成比率を調整したりすること等により、柔軟層の40〜80℃での弾性率を調整することができる。架橋構造を形成する方法として、例えば、架橋可能な官能基を有するアクリルポリマー(以下、官能基含有アクリルポリマーともいう)に架橋剤を配合する方法が挙げられる。
The flexible layer is made of a crosslinked acrylic polymer.
The cross-linked acrylic polymer refers to a polymer in which a cross-linked structure is formed between the main chains of polyalkyl (meth) acrylate (hereinafter simply referred to as “acrylic polymer”). Adjust the elastic modulus at 40 to 80 ° C. of the flexible layer by adjusting the degree of the cross-linked structure or adjusting the type and composition ratio of the (meth) acrylic acid alkyl ester monomer constituting the acrylic polymer. be able to. As a method for forming a crosslinked structure, for example, a method of blending a crosslinking agent with an acrylic polymer having a crosslinkable functional group (hereinafter also referred to as a functional group-containing acrylic polymer) can be mentioned.

アクリルポリマーは、例えば、1種又は2種以上の(メタ)アクリル酸アルキルエステルモノマーを重合又は共重合してなる一般的な(メタ)アクリル酸アルキルエステル系樹脂、(メタ)アクリル酸アルキルエステルモノマーとこれと共重合することのできる他のビニルモノマーとの共重合体等が挙げられる。なかでも、(メタ)アクリル酸アルキルエステルモノマーとこれと共重合することのできる他のビニルモノマーとの共重合体が好ましい。
なお、本明細書中、(メタ)アクリレートとは、アクリレートとメタクリレートとの両方を意味し、(メタ)アクリル酸とは、アクリル酸とメタクリル酸との両方を意味する。
The acrylic polymer is, for example, a general (meth) acrylic acid alkyl ester resin obtained by polymerizing or copolymerizing one or two or more (meth) acrylic acid alkyl ester monomers, and a (meth) acrylic acid alkyl ester monomer. And other vinyl monomers that can be copolymerized therewith. Among these, a copolymer of a (meth) acrylic acid alkyl ester monomer and another vinyl monomer that can be copolymerized therewith is preferable.
In this specification, (meth) acrylate means both acrylate and methacrylate, and (meth) acrylic acid means both acrylic acid and methacrylic acid.

(メタ)アクリル酸アルキルエステルモノマーは、アルキル基の炭素数が2〜12であることが好ましく、具体的には、例えば、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸−2−エチルヘキシル等が挙げられる。これらの(メタ)アクリル酸アルキルエステルモノマーは、単独で用いてもよく、2種以上を併用してもよい。 The (meth) acrylic acid alkyl ester monomer preferably has 2 to 12 carbon atoms in the alkyl group. Specifically, for example, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic And acid-2-ethylhexyl. These (meth) acrylic acid alkyl ester monomers may be used alone or in combination of two or more.

官能基含有アクリルポリマーは、一般的なアクリルポリマーの場合と同様に、アルキル基の炭素数が通常2〜18の範囲にある(メタ)アクリル酸アルキルエステルモノマーを主モノマーとし、このような主モノマーと、官能基含有モノマーと、必要に応じてこれらと共重合することのできる他の改質用モノマーとを常法により共重合させることにより得られる、常温で粘着性を有するポリマーであることが好ましい。 The functional group-containing acrylic polymer has, as in the case of general acrylic polymers, a (meth) acrylic acid alkyl ester monomer in which the alkyl group usually has 2 to 18 carbon atoms as the main monomer, and such main monomer. And a functional group-containing monomer and, if necessary, other modifying monomers that can be copolymerized with these by a conventional method, a polymer having adhesiveness at room temperature preferable.

官能基含有モノマーとしては、例えば、(メタ)アクリル酸等のカルボキシル基含有モノマー、(メタ)アクリル酸ヒドロキシエチル等のヒドロキシル基含有モノマー、(メタ)アクリル酸グリシジル等のエポキシ基含有モノマー、(メタ)アクリル酸イソシアネートエチル等のイソシアネート基含有モノマー、(メタ)アクリル酸アミノエチル等のアミノ基含有モノマー等が挙げられる。
他の改質用モノマーは、例えば、酢酸ビニル、アクリロニトリル、スチレン等の一般的な(メタ)アクリル酸アルキルエステル系樹脂に用いられる各種モノマーが挙げられる。
Examples of the functional group-containing monomer include a carboxyl group-containing monomer such as (meth) acrylic acid, a hydroxyl group-containing monomer such as hydroxyethyl (meth) acrylate, an epoxy group-containing monomer such as glycidyl (meth) acrylate, (meth ) Isocyanate group-containing monomers such as isocyanate ethyl acrylate, and amino group-containing monomers such as aminoethyl (meth) acrylate.
Examples of other modifying monomers include various monomers used for general (meth) acrylic acid alkyl ester resins such as vinyl acetate, acrylonitrile, and styrene.

更に、架橋可能な官能基としてラジカル重合性不飽和基を有するアクリルポリマーも用いることができる。
ラジカル重合性不飽和結合を有するアクリルポリマーは、分子内に官能基を有する官能基含有アクリルポリマーを予め合成し、分子内に上記の官能基と反応する官能基とラジカル重合性不飽和基とを有する化合物を反応させることにより得られることが好ましい。
なお、柔軟層がラジカル重合性不飽和基を有するアクリルポリマーを含有する場合、柔軟層は、光重合開始剤又は熱重合開始剤を含有することが好ましい。
Furthermore, an acrylic polymer having a radically polymerizable unsaturated group as a crosslinkable functional group can also be used.
The acrylic polymer having a radical polymerizable unsaturated bond is prepared by previously synthesizing a functional group-containing acrylic polymer having a functional group in the molecule, and the functional group reacting with the functional group and the radical polymerizable unsaturated group in the molecule. It is preferably obtained by reacting a compound having the same.
In addition, when a flexible layer contains the acrylic polymer which has a radically polymerizable unsaturated group, it is preferable that a flexible layer contains a photoinitiator or a thermal-polymerization initiator.

アクリルポリマーの重量平均分子量は、通常、20万〜200万程度である。 The weight average molecular weight of the acrylic polymer is usually about 200,000 to 2,000,000.

架橋剤は、例えば、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、金属キレート型架橋剤等が挙げられる。なかでも、イソシアネート系架橋剤のイソシアネート基と、アクリルポリマーにおけるアルコール性水酸基とが反応して部分的な3次元構造を形成することにより、柔軟層の40〜80℃での弾性率を容易に調整できること、樹脂基材を剥離する際に糊残りが生じにくいことから、イソシアネート系架橋剤が好ましい。 Examples of the crosslinking agent include an isocyanate crosslinking agent, an aziridine crosslinking agent, an epoxy crosslinking agent, and a metal chelate crosslinking agent. In particular, the elastic modulus at 40 to 80 ° C. of the flexible layer is easily adjusted by reacting the isocyanate group of the isocyanate-based crosslinking agent with the alcoholic hydroxyl group in the acrylic polymer to form a partial three-dimensional structure. An isocyanate-based cross-linking agent is preferable because adhesive residue is hardly generated when the resin base material is peeled off.

柔軟層は、更に、後述する熱硬化性接着剤層に含まれる熱硬化剤と同一の熱硬化剤を含有してもよい。ここで、熱硬化剤に加えて熱硬化促進剤を併用する場合、本明細書における熱硬化剤は、熱硬化剤単独又は熱硬化剤と熱硬化促進剤の組合せのいずれをも包含するものとする。 The flexible layer may further contain the same thermosetting agent as the thermosetting agent contained in the thermosetting adhesive layer described later. Here, in the case where a thermosetting accelerator is used in addition to the thermosetting agent, the thermosetting agent in the present specification includes either the thermosetting agent alone or a combination of the thermosetting agent and the thermosetting accelerator. To do.

柔軟層に熱硬化剤を配合することにより、柔軟層上に熱硬化性接着剤層が積層された状態で一定期間経過する場合に、熱硬化剤が熱硬化性接着剤層から柔軟層へ移行してしまうことを抑制したり遅延させたりすることができる。
なお、柔軟層上に熱硬化性接着剤層が積層された状態で一定期間経過した後には、柔軟層に含まれる熱硬化剤は、熱硬化性接着剤層から移行してきた熱硬化剤を含有していてもよい。
By adding a thermosetting agent to the flexible layer, the thermosetting agent moves from the thermosetting adhesive layer to the flexible layer when a certain period of time elapses with the thermosetting adhesive layer laminated on the flexible layer. Can be suppressed or delayed.
After a certain period of time with the thermosetting adhesive layer laminated on the flexible layer, the thermosetting agent contained in the flexible layer contains the thermosetting agent transferred from the thermosetting adhesive layer. You may do it.

柔軟層に熱硬化剤を配合する場合、熱硬化剤の配合量は、アクリルポリマー100重量部に対する好ましい下限が0.1重量部、好ましい上限が10重量部である。熱硬化剤の配合量が0.1重量部未満であると、柔軟層に熱硬化剤を配合する効果が充分に得られないことがある。熱硬化剤の配合量が10重量部を超えると、得られる樹脂基材を研削後の半導体ウエハから熱硬化性接着剤層を残したまま剥離する際に、糊残りが生じることがある。 When mix | blending a thermosetting agent with a flexible layer, as for the compounding quantity of a thermosetting agent, the preferable minimum with respect to 100 weight part of acrylic polymers is 0.1 weight part, and a preferable upper limit is 10 weight part. If the blending amount of the thermosetting agent is less than 0.1 parts by weight, the effect of blending the thermosetting agent into the flexible layer may not be sufficiently obtained. When the blending amount of the thermosetting agent exceeds 10 parts by weight, an adhesive residue may be generated when the obtained resin base material is peeled from the ground semiconductor wafer while leaving the thermosetting adhesive layer.

柔軟層の厚みの好ましい下限は2μm、好ましい上限は100μmである。柔軟層の厚みが2μm未満であると、得られる接着シートは、研削時に半導体ウエハ原板の電極を保護する機能が低下することがあり、また、貼り合わせ工程又は研削時に突起電極の頂部から接着剤を押し除くことが困難となることがある。柔軟層の厚みが100μmを超えると、得られる接着シートは、研削時に充分な半導体ウエハ原板の保持ができず、半導体ウエハの厚みのバラツキ、亀裂等を発生させることがある。柔軟層の厚みのより好ましい下限は4μm、更に好ましい下限は10μm、より好ましい上限は60μm、更に好ましい上限は50μmである。 The preferable lower limit of the thickness of the flexible layer is 2 μm, and the preferable upper limit is 100 μm. If the thickness of the flexible layer is less than 2 μm, the resulting adhesive sheet may have a reduced function of protecting the electrode of the semiconductor wafer original plate during grinding, and the adhesive agent is applied from the top of the protruding electrode during the bonding process or grinding. It may be difficult to push out. When the thickness of the flexible layer exceeds 100 μm, the obtained adhesive sheet cannot hold the semiconductor wafer substrate sufficiently during grinding, and may cause variations in the thickness of the semiconductor wafer, cracks, and the like. A more preferable lower limit of the thickness of the flexible layer is 4 μm, a further preferable lower limit is 10 μm, a more preferable upper limit is 60 μm, and a still more preferable upper limit is 50 μm.

柔軟層は、硬質層の一方の面に積層されていればよいが、硬質層の両面に積層されていてもよい。
柔軟層が硬質層の両面に積層されている場合には、硬質層の線膨張率と柔軟層の線膨張率とが異なることに起因する問題、即ち、加熱又は冷却を伴う工程において、得られる接着シートに反り及び変形が生じることがあるという問題を防ぐことができる。なお、接着シートに反り及び変形が生じると、例えば、接着シート自体の製造が困難となったり、樹脂基材と熱硬化性接着剤層との間で剥離が生じることにより半導体チップの実装を良好に行うことが困難となったりすることがある。
なお、加熱を伴う工程として、例えば、樹脂基材上に接着剤組成物を塗工、乾燥する工程、接着シートと半導体ウエハ原板とを貼り合わせる工程等が挙げられる。冷却を伴う工程として、例えば、半導体ウエハ原板の研削工程、接着シートの冷蔵保存時等が挙げられる。加熱又は冷却を伴う工程が行われる温度範囲は、例えば、−20〜100℃程度の温度範囲が挙げられる。
The flexible layer may be laminated on one side of the hard layer, but may be laminated on both sides of the hard layer.
When the flexible layer is laminated on both sides of the hard layer, the problem is caused by the difference between the linear expansion coefficient of the hard layer and that of the flexible layer, i.e., in a process involving heating or cooling. It is possible to prevent a problem that warpage and deformation may occur in the adhesive sheet. In addition, when warpage and deformation occur in the adhesive sheet, for example, it becomes difficult to manufacture the adhesive sheet itself, or peeling between the resin base material and the thermosetting adhesive layer causes good mounting of the semiconductor chip. It may be difficult to carry out.
In addition, as a process with a heating, the process of applying an adhesive composition on a resin base material, drying, the process of bonding an adhesive sheet and a semiconductor wafer original plate, etc. are mentioned, for example. Examples of the process involving cooling include a grinding process of a semiconductor wafer original plate and a cold storage of an adhesive sheet. As for the temperature range in which the process accompanied by a heating or cooling is performed, the temperature range of about -20-100 degreeC is mentioned, for example.

本発明の接着シートは、樹脂基材の柔軟層上に形成された熱硬化性接着剤層を有する。熱硬化性接着剤層は、回転式レオメーターを用いて、昇温速度5℃/分、周波数1Hzで40〜80℃における溶融粘度を測定した場合の最低溶融粘度が3000Pa・sより大きく100000Pa・s以下である。
最低溶融粘度が3000Pa・sを超えることで、得られる接着シートを半導体ウエハ原板に貼り合わせる際、及び、半導体チップを熱硬化性接着剤層を介して基板又は他の半導体チップ上にボンディングする際に、熱硬化性接着剤層の凝集力によって、ボイドを低減することができる。また、最低溶融粘度が3000Pa・sを超えることで、研削後の半導体ウエハから熱硬化性接着剤層を残したまま樹脂基材を剥離する際に、糊残り無く、比較的容易に剥離することができる。即ち、このような最低溶融粘度を有する熱硬化性接着剤層と上述したような樹脂基材とを積層することにより、軽剥離という利点を得ることができる。最低溶融粘度は、4000Pa・s以上であることがより好ましい。
The adhesive sheet of the present invention has a thermosetting adhesive layer formed on a flexible layer of a resin base material. The thermosetting adhesive layer has a minimum melt viscosity of more than 3000 Pa · s when measured at 40 to 80 ° C. at a temperature rising rate of 5 ° C./min and a frequency of 1 Hz using a rotary rheometer. s or less.
When the minimum adhesive viscosity exceeds 3000 Pa · s, when the resulting adhesive sheet is bonded to the original semiconductor wafer, and when the semiconductor chip is bonded to a substrate or another semiconductor chip via a thermosetting adhesive layer Furthermore, voids can be reduced by the cohesive force of the thermosetting adhesive layer. Also, since the minimum melt viscosity exceeds 3000 Pa · s, when the resin base material is peeled off from the ground semiconductor wafer while leaving the thermosetting adhesive layer, it can be peeled off relatively easily without adhesive residue. Can do. That is, by laminating the thermosetting adhesive layer having such a minimum melt viscosity and the resin base as described above, an advantage of light peeling can be obtained. The minimum melt viscosity is more preferably 4000 Pa · s or more.

最低溶融粘度が100000Pa・sを超えると、熱硬化性接着剤層の流動性不足によって、半導体ウエハと熱硬化性接着剤層との密着性が充分に得られない。半導体ウエハと熱硬化性接着剤層との密着性が不充分であると、樹脂基材を研削後の半導体ウエハから熱硬化性接着剤層を残したまま剥離する際に、半導体ウエハと熱硬化性接着剤層との間で界面剥離が生じやすい。また、半導体チップを熱硬化性接着剤層を介して基板又は他の半導体チップ上にボンディングする際に、巻き込みボイドの排出性が低下するため、巻き込みボイドが残存しやすくなる。このような場合、ボイドによって、ハンダ耐熱性、温度サイクル耐熱性等が低下することがある。最低溶融粘度の好ましい上限は50000Pa・sである。 When the minimum melt viscosity exceeds 100,000 Pa · s, sufficient adhesion between the semiconductor wafer and the thermosetting adhesive layer cannot be obtained due to insufficient fluidity of the thermosetting adhesive layer. If the adhesiveness between the semiconductor wafer and the thermosetting adhesive layer is insufficient, the resin substrate is thermally cured with the semiconductor wafer when it is peeled off from the ground semiconductor wafer while leaving the thermosetting adhesive layer. Interfacial peeling is likely to occur with the adhesive layer. In addition, when the semiconductor chip is bonded to the substrate or another semiconductor chip via the thermosetting adhesive layer, the discharge of the entrapped voids is reduced, and therefore the entrapped voids are likely to remain. In such a case, the solder heat resistance, temperature cycle heat resistance, and the like may decrease due to voids. A preferable upper limit of the minimum melt viscosity is 50000 Pa · s.

最低溶融粘度を上記範囲に調整する方法として、例えば、熱硬化性接着剤層に含まれる各成分を所定の配合量で配合することにより最低溶融粘度を調整する方法が挙げられる。
熱硬化性接着剤層は、得られる半導体チップ実装体の信頼性をより向上できることから、熱硬化性化合物及び熱硬化剤を含有する接着剤組成物を用いて形成される熱硬化性接着剤層が好ましい。また、熱硬化性接着剤層として、例えば、熱硬化性化合物、光硬化性化合物、熱硬化剤及び光重合開始剤を含有する接着剤組成物を用いて形成される熱硬化性接着剤層等も挙げられる。
As a method of adjusting the minimum melt viscosity to the above range, for example, a method of adjusting the minimum melt viscosity by blending each component contained in the thermosetting adhesive layer in a predetermined blending amount can be mentioned.
Since the thermosetting adhesive layer can further improve the reliability of the obtained semiconductor chip mounting body, the thermosetting adhesive layer formed using an adhesive composition containing a thermosetting compound and a thermosetting agent Is preferred. Further, as the thermosetting adhesive layer, for example, a thermosetting adhesive layer formed using an adhesive composition containing a thermosetting compound, a photocurable compound, a thermosetting agent, and a photopolymerization initiator, etc. Also mentioned.

光硬化性化合物を含有する接着剤組成物を用いて形成されることにより、得られる熱硬化性接着剤層は、エネルギー線の照射によって半硬化し、このような半硬化した熱硬化性接着剤層は、なお充分な接着性を有する。従って、例えば、本発明の接着シートを、半導体ウエハ原板と貼り合わせて半導体ウエハ原板の裏面を研削した後、熱硬化性接着剤層を半硬化させ、次いで、研削後の半導体ウエハから樹脂基材を剥離することにより、半硬化した熱硬化性接着剤層が付着した半導体ウエハを製造することができる。更に、このような半硬化した熱硬化性接着剤層が付着した半導体ウエハをダイシングして半導体チップに個片化し、得られた半硬化した熱硬化性接着剤層が付着した半導体チップを、基板又は他の半導体チップ上にフリップチップ実装によりボンディングすることにより、半導体チップ実装体を簡便に製造することができる。 By being formed using an adhesive composition containing a photocurable compound, the resulting thermosetting adhesive layer is semi-cured by irradiation with energy rays, and such a semi-cured thermosetting adhesive The layer still has sufficient adhesion. Therefore, for example, after bonding the adhesive sheet of the present invention to the semiconductor wafer original plate and grinding the back surface of the semiconductor wafer original plate, the thermosetting adhesive layer is semi-cured and then the ground semiconductor wafer is resin base material. By peeling off, a semiconductor wafer to which a semi-cured thermosetting adhesive layer is attached can be manufactured. Further, the semiconductor wafer to which the semi-cured thermosetting adhesive layer is attached is diced into semiconductor chips, and the obtained semiconductor chip to which the semi-cured thermosetting adhesive layer is attached Alternatively, the semiconductor chip mounting body can be easily manufactured by bonding to another semiconductor chip by flip chip mounting.

熱硬化性化合物は、エポキシ樹脂を含有することが好ましい。
エポキシ樹脂は、多環式炭化水素骨格を主鎖に有するエポキシ樹脂であることが好ましい。熱硬化性化合物が多環式炭化水素骨格を主鎖に有するエポキシ樹脂を含有することにより、得られる熱硬化性接着剤層の硬化物は、剛直で分子の運動が阻害されるため優れた機械的強度及び耐熱性を発現し、また、吸水性が低くなるため優れた耐湿性を発現することができる。
The thermosetting compound preferably contains an epoxy resin.
The epoxy resin is preferably an epoxy resin having a polycyclic hydrocarbon skeleton in the main chain. Since the thermosetting compound contains an epoxy resin having a polycyclic hydrocarbon skeleton in the main chain, the cured product of the resulting thermosetting adhesive layer is rigid and the movement of molecules is hindered. High strength and heat resistance are exhibited, and excellent moisture resistance can be achieved because of low water absorption.

多環式炭化水素骨格を主鎖に有するエポキシ樹脂は、例えば、ジシクロペンタジエンジオキシド、ジシクロペンタジエン骨格を有するフェノールノボラックエポキシ樹脂等のジシクロペンタジエン骨格を有するエポキシ樹脂(以下、ジシクロペンタジエン型エポキシ樹脂ともいう)、1−グリシジルナフタレン、2−グリシジルナフタレン、1,2−ジグリシジルナフタレン、1,5−ジグリシジルナフタレン、1,6−ジグリシジルナフタレン、1,7−ジグリシジルナフタレン、2,7−ジグリシジルナフタレン、トリグリシジルナフタレン、1,2,5,6−テトラグリシジルナフタレン等のナフタレン骨格を有するエポキシ樹脂(以下、ナフタレン型エポキシ樹脂ともいう)、テトラヒドロキシフェニルエタン型エポキシ樹脂、テトラキス(グリシジルオキシフェニル)エタン、3,4−エポキシ−6−メチルシクロヘキシルメチル−3,4−エポキシ−6−メチルシクロヘキサンカルボネート等が挙げられる。なかでも、ジシクロペンタジエンジオキシドが好ましい。これらの多環式炭化水素骨格を主鎖に有するエポキシ樹脂は、単独で用いてもよく、2種類以上を併用してもよい。 Epoxy resins having a polycyclic hydrocarbon skeleton in the main chain are, for example, epoxy resins having a dicyclopentadiene skeleton such as dicyclopentadiene dioxide and phenol novolac epoxy resins having a dicyclopentadiene skeleton (hereinafter referred to as dicyclopentadiene type). 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidylnaphthalene, 2, Epoxy resins having a naphthalene skeleton such as 7-diglycidylnaphthalene, triglycidylnaphthalene, 1,2,5,6-tetraglycidylnaphthalene (hereinafter also referred to as naphthalene type epoxy resin), tetrahydroxyphenylethane type epoxy resin, teto Tetrakis (glycidyloxyphenyl) ethane, 3,4-epoxy-6-methylcyclohexyl-3,4-epoxy-6-methylcyclohexane carbonate, and the like. Of these, dicyclopentadiene dioxide is preferable. These epoxy resins having a polycyclic hydrocarbon skeleton in the main chain may be used alone or in combination of two or more.

多環式炭化水素骨格を主鎖に有するエポキシ樹脂の重量平均分子量の好ましい下限は500、好ましい上限は2000である。重量平均分子量が500未満であると、得られる熱硬化性接着剤層の硬化物の機械的強度、耐熱性、耐湿性等が充分に向上しないことがある。重量平均分子量が2000を超えると、得られる熱硬化性接着剤層の硬化物が剛直になりすぎて、脆くなることがある。 The preferable lower limit of the weight average molecular weight of the epoxy resin having a polycyclic hydrocarbon skeleton in the main chain is 500, and the preferable upper limit is 2000. When the weight average molecular weight is less than 500, the mechanical strength, heat resistance, moisture resistance and the like of the cured product of the resulting thermosetting adhesive layer may not be sufficiently improved. When the weight average molecular weight exceeds 2000, the cured product of the resulting thermosetting adhesive layer may become too rigid and brittle.

また、エポキシ樹脂として、エポキシ基を有するアクリルポリマーも挙げられる。
エポキシ基を有するアクリルポリマーは、例えば、グリシジル(メタ)アクリレートとアルキル(メタ)アクリレートとからなる共重合体等が挙げられる。なかでも、グリシジル(メタ)アクリレートとアルキル(メタ)アクリレートとからなり、エポキシ当量が約300g/eqである共重合体が好ましい。
Moreover, the acrylic resin which has an epoxy group as an epoxy resin is also mentioned.
As for the acrylic polymer which has an epoxy group, the copolymer etc. which consist of glycidyl (meth) acrylate and alkyl (meth) acrylate are mentioned, for example. Especially, the copolymer which consists of glycidyl (meth) acrylate and alkyl (meth) acrylate and whose epoxy equivalent is about 300 g / eq is preferable.

エポキシ基を有するアクリルポリマーの重量平均分子量の好ましい下限は1万、好ましい上限は100万である。重量平均分子量が1万未満であると、得られる接着剤組成物を用いて熱硬化性接着剤層を形成することが困難となったり、硬化物の接着力が不足したりすることがある。重量平均分子量が100万を超えると、得られる接着剤組成物を用いて一定の厚みを有する熱硬化性接着剤層を形成することが困難となることがある。 The preferable lower limit of the weight average molecular weight of the acrylic polymer having an epoxy group is 10,000, and the preferable upper limit is 1,000,000. If the weight average molecular weight is less than 10,000, it may be difficult to form a thermosetting adhesive layer using the resulting adhesive composition, or the adhesive strength of the cured product may be insufficient. When the weight average molecular weight exceeds 1,000,000, it may be difficult to form a thermosetting adhesive layer having a certain thickness using the obtained adhesive composition.

熱硬化剤は、例えば、熱硬化性化合物がエポキシ樹脂を含有する場合には、トリアルキルテトラヒドロ無水フタル酸等の熱硬化型酸無水物系硬化剤、フェノール系硬化剤、アミン系硬化剤、ジシアンジアミド等の潜在性硬化剤、カチオン系触媒型硬化剤等が挙げられる。これらのエポキシ樹脂用硬化剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、熱硬化型酸無水物系硬化剤が好ましい。熱硬化剤として熱硬化型酸無水物系硬化剤を用いると、熱硬化速度が速いため、硬化物におけるボイドを効果的に低減することができ、得られる接着シートを用いて、より信頼性に優れた半導体チップ実装体を製造することができる。 For example, when the thermosetting compound contains an epoxy resin, the thermosetting agent is a thermosetting acid anhydride-based curing agent such as trialkyltetrahydrophthalic anhydride, a phenol-based curing agent, an amine-based curing agent, or dicyandiamide. And a latent curing agent such as a cationic catalyst-type curing agent. These epoxy resin curing agents may be used alone or in combination of two or more. Of these, thermosetting acid anhydride curing agents are preferred. When a thermosetting acid anhydride curing agent is used as the thermosetting agent, the thermosetting speed is fast, so voids in the cured product can be effectively reduced, and the resulting adhesive sheet can be used more reliably. An excellent semiconductor chip mounting body can be manufactured.

熱硬化剤の配合量は、熱硬化性化合物の官能基と等量反応する熱硬化剤を用いる場合には、熱硬化性化合物の官能基量に対する好ましい下限が0.8当量、好ましい上限が1.2当量である。熱硬化剤の配合量が0.8当量未満であると、得られる熱硬化性接着剤層を加熱しても、充分に硬化させることができないことがあり、特に接着シートの保管中に熱硬化剤が熱硬化性接着剤層から柔軟層へ移行した場合には深刻な硬化不足となることがある。熱硬化剤の配合量が1.2当量を超えても特に熱硬化性接着剤層の熱硬化性に寄与せず、過剰な熱硬化剤が揮発することによってボイドの原因となることがある。
また、接着シートの保管中に熱硬化剤が熱硬化性接着剤層から柔軟層へ移行してしまうことを考慮すると、熱硬化剤の配合量は、熱硬化性化合物の官能基量に対する好ましい下限が0.9当量である。ただし、熱硬化剤の配合量が0.9当量未満であっても、上述のように柔軟層が熱硬化性接着剤層に含まれる熱硬化剤と同一の熱硬化剤を含有する場合には、熱硬化剤の移行を抑制したり遅延したりすることができるため深刻な問題とはならない。
When using a thermosetting agent that reacts in an equivalent amount with the functional group of the thermosetting compound, the preferable lower limit for the functional group amount of the thermosetting compound is 0.8 equivalent, and the preferable upper limit is 1 .2 equivalents. If the blending amount of the thermosetting agent is less than 0.8 equivalent, even if the resulting thermosetting adhesive layer is heated, it may not be able to be cured sufficiently, especially during storage of the adhesive sheet. When the agent is transferred from the thermosetting adhesive layer to the soft layer, serious curing may be insufficient. Even if the blending amount of the thermosetting agent exceeds 1.2 equivalents, it may not contribute to the thermosetting property of the thermosetting adhesive layer, and may cause voids due to volatilization of the excessive thermosetting agent.
In consideration of the fact that the thermosetting agent moves from the thermosetting adhesive layer to the flexible layer during storage of the adhesive sheet, the blending amount of the thermosetting agent is a preferred lower limit for the functional group amount of the thermosetting compound. Is 0.9 equivalent. However, even if the blending amount of the thermosetting agent is less than 0.9 equivalent, the flexible layer contains the same thermosetting agent as the thermosetting agent contained in the thermosetting adhesive layer as described above. Since the migration of the thermosetting agent can be suppressed or delayed, it is not a serious problem.

光硬化性化合物は、例えば、ラジカルにより架橋可能な二重結合を有するアクリルポリマー等が挙げられる。
アクリルポリマーは、例えば、イソボロニルアクリレート、2−エチルヘキシルアクリレート、ブチルアクリレート、メチルメタクリレート、2−ヒドロキシエチルメタクリレート、グリシジルメタクリレート等からなる分子量5万〜60万程度の重合体又は共重合体に、2重結合で反応するようにメタクリレート基をウレタン結合で結合させた樹脂等が挙げられる。なかでも、二重結合の量が約1meq/gであるアクリレート、メタクリレートの重合体又は共重合体が好ましい。これらのアクリルポリマーは、単独で用いてもよく、2種以上を併用してもよい。
As for a photocurable compound, the acrylic polymer etc. which have the double bond which can be bridge | crosslinked with a radical are mentioned, for example.
The acrylic polymer is, for example, a polymer or copolymer having a molecular weight of about 50,000 to 600,000 consisting of isobornyl acrylate, 2-ethylhexyl acrylate, butyl acrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate, etc. Examples thereof include a resin in which a methacrylate group is bonded with a urethane bond so as to react with a heavy bond. Among them, an acrylate or methacrylate polymer or copolymer having a double bond amount of about 1 meq / g is preferable. These acrylic polymers may be used independently and may use 2 or more types together.

光硬化性化合物を使用する場合、接着剤組成物には光重合開始剤が配合されることが好ましい。
光重合開始剤は、例えば、250〜800nmの波長の光を照射することにより活性化される光重合開始剤が好ましく、例えば、メトキシアセトフェノン等のアセトフェノン誘導体化合物や、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル系化合物や、ベンジルジメチルケタール、アセトフェノンジエチルケタール等のケタール誘導体化合物や、フォスフィンオキシド誘導体化合物や、ビス(η5−シクロペンタジエニル)チタノセン誘導体化合物、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、トデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、α−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシメチルフェニルプロパン等の光ラジカル重合開始剤等が挙げられる。これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
When using a photocurable compound, it is preferable that a photoinitiator is mix | blended with adhesive composition.
The photopolymerization initiator is preferably, for example, a photopolymerization initiator that is activated by irradiation with light having a wavelength of 250 to 800 nm. For example, acetophenone derivative compounds such as methoxyacetophenone, benzoinpropyl ether, benzoin isobutyl ether, etc. Benzoin ether compounds, ketyl derivative compounds such as benzyldimethyl ketal and acetophenone diethyl ketal, phosphine oxide derivative compounds, bis (η5-cyclopentadienyl) titanocene derivative compounds, benzophenone, Michler's ketone, chlorothioxanthone, todecyl Initiation of photo radical polymerization of thioxanthone, dimethylthioxanthone, diethylthioxanthone, α-hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, etc. Agents and the like. These photoinitiators may be used independently and may use 2 or more types together.

光重合開始剤の配合量は、硬化度、経済性等を考慮すると、光硬化性化合物100重量部に対する好ましい下限が0.05重量部、好ましい上限が5重量部である。 In consideration of the degree of curing, economy and the like, the lower limit of the photopolymerization initiator is preferably 0.05 parts by weight and the upper limit is preferably 5 parts by weight with respect to 100 parts by weight of the photocurable compound.

接着剤組成物が熱硬化性化合物と光硬化性化合物とを含有する場合、熱硬化性化合物100重量部に対する光硬化性化合物の配合量の好ましい下限は10重量部、好ましい上限は40重量部である。光硬化性化合物の配合量が10重量部未満であると、得られる熱硬化性接着剤層にエネルギー線を照射しても、充分な形状保持効果が得られないことがある。光硬化性化合物の配合量が40重量部を超えると、得られる熱硬化性接着剤層の硬化物の耐熱性が不足することがある。 When an adhesive composition contains a thermosetting compound and a photocurable compound, the preferable minimum of the compounding quantity of the photocurable compound with respect to 100 weight part of thermosetting compounds is 10 weight part, and a preferable upper limit is 40 weight part. is there. When the blending amount of the photocurable compound is less than 10 parts by weight, a sufficient shape retention effect may not be obtained even when the resulting thermosetting adhesive layer is irradiated with energy rays. When the compounding quantity of a photocurable compound exceeds 40 weight part, the heat resistance of the hardened | cured material of the thermosetting adhesive layer obtained may be insufficient.

接着剤組成物は、更に、エポキシ樹脂と反応する官能基を有する固形ポリマーを含有してもよい。
エポキシ基と反応する官能基を有する固形ポリマーは、例えば、アミノ基、ウレタン基、イミド基、水酸基、カルボキシル基、エポキシ基等を有する樹脂が挙げられる。なかでも、エポキシ基を有するポリマーが好ましい。
The adhesive composition may further contain a solid polymer having a functional group that reacts with the epoxy resin.
As for the solid polymer which has a functional group which reacts with an epoxy group, resin which has an amino group, a urethane group, an imide group, a hydroxyl group, a carboxyl group, an epoxy group etc. is mentioned, for example. Among these, a polymer having an epoxy group is preferable.

接着剤組成物がエポキシ基を有するポリマーを含有することにより、得られる熱硬化性接着剤層の硬化物は、優れた可撓性を発現することができる。従って、例えば、接着剤組成物が多環式炭化水素骨格を主鎖に有するエポキシ樹脂と、エポキシ基を有するポリマーとを含有する場合、得られる熱硬化性接着剤層の硬化物は、多環式炭化水素骨格を主鎖に有するエポキシ樹脂に由来する優れた機械的強度、優れた耐熱性及び優れた耐湿性と、エポキシ基を有するポリマーに由来する優れた可撓性とを有し、得られる接着シートを用いて、優れた耐冷熱サイクル性、耐ハンダリフロー性、寸法安定性及び接着信頼性等を実現することができる。 When the adhesive composition contains a polymer having an epoxy group, the cured product of the resulting thermosetting adhesive layer can exhibit excellent flexibility. Therefore, for example, when the adhesive composition contains an epoxy resin having a polycyclic hydrocarbon skeleton in the main chain and a polymer having an epoxy group, the cured product of the resulting thermosetting adhesive layer is polycyclic. It has excellent mechanical strength, excellent heat resistance and excellent moisture resistance derived from an epoxy resin having a hydrocarbon skeleton in the main chain, and excellent flexibility derived from a polymer having an epoxy group. By using such an adhesive sheet, it is possible to achieve excellent cold cycle resistance, solder reflow resistance, dimensional stability, adhesion reliability, and the like.

エポキシ基を有するポリマーは、末端及び/又は側鎖にエポキシ基を有するポリマーであればよく、例えば、エポキシ基含有アクリルゴム、エポキシ基含有ブタジエンゴム、ビスフェノール型高分子量エポキシ樹脂、エポキシ基含有フェノキシ樹脂、エポキシ基含有アクリルポリマー、エポキシ基含有ウレタン樹脂、エポキシ基含有ポリエステル樹脂等が挙げられる。これらのエポキシ基を有するポリマーは、単独で用いてもよく、2種以上を併用してもよい。なかでも、エポキシ基を多く含み、得られる熱硬化性接着剤層の硬化物の機械的強度及び耐熱性をより高めることができることから、エポキシ基含有アクリルポリマーが好ましい。 The polymer having an epoxy group may be a polymer having an epoxy group at the terminal and / or side chain. For example, an epoxy group-containing acrylic rubber, an epoxy group-containing butadiene rubber, a bisphenol type high molecular weight epoxy resin, an epoxy group-containing phenoxy resin , Epoxy group-containing acrylic polymer, epoxy group-containing urethane resin, epoxy group-containing polyester resin, and the like. These polymers having an epoxy group may be used alone or in combination of two or more. Among them, an epoxy group-containing acrylic polymer is preferable because it contains a large amount of epoxy groups and can further increase the mechanical strength and heat resistance of the cured product of the resulting thermosetting adhesive layer.

接着剤組成物は、熱硬化性接着剤層の硬化速度又は硬化物の物性等を調整する目的で、更に、熱硬化促進剤を含有してもよい。
熱硬化促進剤は、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤等が挙げられる。これらの熱硬化促進剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、硬化速度又は硬化物の物性等の調整をするための反応系の制御をしやすいことから、イミダゾール系硬化促進剤が好ましい。
The adhesive composition may further contain a thermosetting accelerator for the purpose of adjusting the curing rate of the thermosetting adhesive layer or the physical properties of the cured product.
Examples of the thermosetting accelerator include imidazole-based curing accelerators and tertiary amine-based curing accelerators. These thermosetting accelerators may be used alone or in combination of two or more. Among these, an imidazole-based curing accelerator is preferable because it is easy to control the reaction system for adjusting the curing speed or the physical properties of the cured product.

イミダゾール系硬化促進剤は、例えば、イミダゾールの1位をシアノエチル基で保護した1−シアノエチル−2−フェニルイミダゾール、イソシアヌル酸で塩基性を保護したイミダゾール系硬化促進剤(商品名「2MA−OK」、四国化成工業社製)、液状イミダゾール(商品名「FUJICURE 7000」、T&K TOKA社製)等が挙げられる。また、その他、例えば、2−エチル−4−メチルイミダゾール、1―メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾ−ル、1−ベンジル−2−メチルイミダゾ−ル、1−シアノエチル−2−メチルイミダゾ−ル、1−ベンジル−2−エチルイミダゾ−ル、1−ベンジル−2−フェニルイミダゾ−ル、1−シアノエチル−2−フェニル−4,5−ジ−(シアノエトキシメチル)イミダゾ−ル、1,8−ジアザビシクロ(5.4.0)ウンデセン−7等のイミダゾール化合物、及び、これらの誘導体等が挙げられる。これらのイミダゾール系硬化促進剤は、単独で用いてもよく、2種以上を併用してもよい。 Examples of the imidazole-based accelerator include 1-cyanoethyl-2-phenylimidazole in which the 1-position of imidazole is protected with a cyanoethyl group, and an imidazole-based accelerator that protects basicity with isocyanuric acid (trade name “2MA-OK”, Shikoku Kasei Kogyo Co., Ltd.), liquid imidazole (trade name “FUJICURE 7000”, manufactured by T & K TOKA) and the like. In addition, for example, 2-ethyl-4-methylimidazole, 1-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl- 2-methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-phenyl-4,5-di- (cyanoethoxymethyl) imidazole And imidazole compounds such as 1,8-diazabicyclo (5.4.0) undecene-7, and derivatives thereof. These imidazole type hardening accelerators may be used independently and may use 2 or more types together.

熱硬化促進剤の配合量は、熱硬化剤100重量部に対する好ましい下限が5重量部、好ましい上限が50重量部である。熱硬化促進剤の配合量が5重量部未満であると、得られる熱硬化性接着剤層を加熱しても、充分に硬化させることができないことがあり、特に接着シートの保管中に熱硬化促進剤が熱硬化性接着剤層から柔軟層へ移行した場合には深刻な硬化不足となることがある。熱硬化促進剤の配合量が50重量部を超えても特に熱硬化性接着剤層の熱硬化性に寄与しない。 As for the compounding quantity of a thermosetting accelerator, the preferable minimum with respect to 100 weight part of thermosetting agents is 5 weight part, and a preferable upper limit is 50 weight part. When the blending amount of the thermosetting accelerator is less than 5 parts by weight, the resulting thermosetting adhesive layer may not be sufficiently cured even when heated, especially during storage of the adhesive sheet. When the accelerator is transferred from the thermosetting adhesive layer to the soft layer, serious curing may be insufficient. Even if the blending amount of the thermosetting accelerator exceeds 50 parts by weight, it does not particularly contribute to the thermosetting of the thermosetting adhesive layer.

熱硬化性接着剤層における熱硬化剤及び/又は熱硬化促進剤の配合量は、本発明の接着シートを作製し、室温で2週間保管した後に上述した範囲内に保たれていることが好ましい。
ただし、熱硬化剤及び/又は熱硬化促進剤は、接着シートの保管中に熱硬化性接着剤層から柔軟層へ移行してしまうことがある。このような熱硬化剤及び/又は熱硬化促進剤の移行は、柔軟層が架橋アクリルポリマーからなるために生じやすくなるものと考えられる。特に熱硬化剤及び/又は熱硬化促進剤が液状成分又は溶剤可溶成分である場合には、熱硬化剤及び/又は熱硬化促進剤は、接着シートの保管中に熱硬化性接着剤層から柔軟層へ移行しやすくなることが懸念される。
The blending amount of the thermosetting agent and / or the thermosetting accelerator in the thermosetting adhesive layer is preferably maintained within the above-mentioned range after the adhesive sheet of the present invention is prepared and stored at room temperature for 2 weeks. .
However, the thermosetting agent and / or the thermosetting accelerator may shift from the thermosetting adhesive layer to the flexible layer during storage of the adhesive sheet. Such migration of the thermosetting agent and / or the thermosetting accelerator is considered to be likely to occur because the flexible layer is made of a crosslinked acrylic polymer. In particular, when the thermosetting agent and / or the thermosetting accelerator is a liquid component or a solvent-soluble component, the thermosetting agent and / or the thermosetting accelerator is removed from the thermosetting adhesive layer during storage of the adhesive sheet. There is concern that it will be easier to move to the flexible layer.

熱硬化剤及び/又は熱硬化促進剤が接着シートの保管中に熱硬化性接着剤層から柔軟層へ移行してしまった場合であっても、熱硬化性接着剤層を充分に硬化させるためには、例えば、予め、所望の材料により所望の厚みに形成した柔軟層と熱硬化性接着剤層とを積層して、一定期間経過後に移行する熱硬化剤及び/又は熱硬化促進剤の量を観察し、熱硬化性接着剤層に当該移行量分を余剰に添加する方法、上述のように柔軟層に熱硬化剤及び/又は熱硬化促進剤を配合しておく方法等が挙げられる。 In order to sufficiently cure the thermosetting adhesive layer even when the thermosetting agent and / or the thermosetting accelerator has moved from the thermosetting adhesive layer to the flexible layer during storage of the adhesive sheet. For example, the amount of a thermosetting agent and / or a thermosetting accelerator that is transferred after a certain period of time by laminating a flexible layer and a thermosetting adhesive layer formed in advance with a desired material to a desired thickness. And a method of adding an excessive amount of the migration amount to the thermosetting adhesive layer, a method of blending a thermosetting agent and / or a thermosetting accelerator in the flexible layer as described above, and the like.

本発明の接着シートを作製し、室温で2週間保管した後における熱硬化性接着剤層及び樹脂基材の柔軟層における熱硬化剤及び/又は熱硬化促進剤の配合量は、例えば、GC−MS測定を行うことにより直接的に求めることができる。
また、熱硬化性接着剤層の物性変化を調べることによって、熱硬化剤及び/又は熱硬化促進剤の移行の程度を間接的に調べることもできる。例えば、示差走査熱量測定(DSC)によって、本発明の接着シートの作製直後、及び、室温で2週間保管した後における熱硬化性接着剤層のガラス転移温度(Tg)を測定し、Tgの変化量を求めることによって、熱硬化剤及び/又は熱硬化促進剤の移行の程度を調べることができる。
なお、接着シートの作製直後とは、接着シートの作製から3時間以内であることが好ましい。ただし、接着シートの作製から3時間より長い時間が経過した場合であっても、接着シートを作製して直ちに10℃以下で冷蔵保存した場合には、接着シートの作製直後とみなすことができる。
The amount of the thermosetting agent and / or the thermosetting accelerator in the thermosetting adhesive layer and the soft layer of the resin base material after the adhesive sheet of the present invention is prepared and stored at room temperature for 2 weeks is, for example, GC- It can be obtained directly by performing MS measurement.
In addition, the degree of migration of the thermosetting agent and / or the thermosetting accelerator can be indirectly checked by examining the change in physical properties of the thermosetting adhesive layer. For example, the glass transition temperature (Tg) of the thermosetting adhesive layer is measured by differential scanning calorimetry (DSC) immediately after the production of the adhesive sheet of the present invention and after storage for 2 weeks at room temperature, and the change in Tg. By determining the amount, the degree of migration of the thermosetting agent and / or thermosetting accelerator can be examined.
Note that “immediately after the production of the adhesive sheet” is preferably within 3 hours from the production of the adhesive sheet. However, even if a time longer than 3 hours has elapsed since the preparation of the adhesive sheet, it can be regarded as immediately after the preparation of the adhesive sheet if the adhesive sheet is prepared and immediately stored at 10 ° C. or lower.

本発明の接着シートの作製直後と、室温で2週間保管した後における熱硬化性接着剤層のTgの変化量は、3℃未満であることが好ましく、2℃未満であることがより好ましい。Tgの変化量が3℃以上であると、半導体チップ実装体の信頼性が低下することがある。Tgの変化量を3℃未満に調整する方法として、例えば、上述のように、熱硬化性接着剤層に移行量分を余剰に添加したり、柔軟層に熱硬化剤を配合したりする方法が挙げられる。
また、DSCによって観測される熱硬化性接着剤層のTgは、0℃以上20℃未満が好ましい。Tgが0℃未満であると、タックによって作業性が低下することがある。Tgが20℃以上であると、樹脂基材を剥離する際や研削時に、熱硬化性接着剤層の割れが生じたりクラックが入ったりすることがある。Tgは3℃以上15℃未満であることがより好ましい。
The amount of change in Tg of the thermosetting adhesive layer immediately after the production of the adhesive sheet of the present invention and after storage for 2 weeks at room temperature is preferably less than 3 ° C, and more preferably less than 2 ° C. When the amount of change in Tg is 3 ° C. or higher, the reliability of the semiconductor chip package may be lowered. As a method of adjusting the change amount of Tg to less than 3 ° C., for example, as described above, a method of adding an excess amount to the thermosetting adhesive layer or blending a thermosetting agent into the flexible layer Is mentioned.
The Tg of the thermosetting adhesive layer observed by DSC is preferably 0 ° C. or higher and lower than 20 ° C. When Tg is less than 0 ° C., workability may be reduced due to tack. When Tg is 20 ° C. or higher, the thermosetting adhesive layer may be cracked or cracked when the resin substrate is peeled off or during grinding. Tg is more preferably 3 ° C. or more and less than 15 ° C.

接着剤組成物は、無機充填材を含有することが好ましい。
接着剤組成物に無機充填材を配合することにより、得られる熱硬化性接着剤層の硬化物の機械的強度を確保することができ、また、硬化物の線膨張率を低下させて、高い接合信頼性を実現することができる。
The adhesive composition preferably contains an inorganic filler.
By blending an inorganic filler in the adhesive composition, the mechanical strength of the cured product of the resulting thermosetting adhesive layer can be ensured, and the linear expansion coefficient of the cured product is reduced and high. Bonding reliability can be realized.

無機充填材は、例えば、シリカ粒子、ガラス粒子、アルミナ等が挙げられる。なかでも、熱硬化性接着剤層の貯蔵弾性率を所望の範囲内に調整することが容易であることから、シリカ粒子が好ましく、特に、流動性や接合信頼性等の点から球状シリカが好ましい。 Examples of the inorganic filler include silica particles, glass particles, and alumina. Among them, silica particles are preferable because it is easy to adjust the storage elastic modulus of the thermosetting adhesive layer within a desired range, and spherical silica is particularly preferable from the viewpoint of fluidity and bonding reliability. .

無機充填材の平均粒子径の好ましい下限は0.01μm、好ましい上限は1μmである。平均粒子径が0.01μm未満であると、熱硬化性接着剤層を形成するための接着剤溶液の粘度が増大するため、該接着剤溶液の流動性及び塗工性が低下することがある。また、接着剤溶液の粘度が増大すると、得られる接着シートは、半導体ウエハ原板に貼り合わされる際に追従性が低下し、ボイドが生じやすくなって半導体チップ実装体の信頼性が低下することがある。平均粒子径が1μmを超えると、熱硬化性接着剤層の透明性が損なわれるため、フリップチップ実装において、熱硬化性接着剤層を介して半導体チップ上のアライメントマーク又は突起電極を認識することができないことがある。平均粒子径のより好ましい下限は0.02μm、より好ましい上限は0.5μm、更に好ましい下限は0.05μm、更に好ましい上限は0.3μmである。
なお、接着剤溶液の塗工性の向上と、熱硬化性接着剤層の透明性の向上とを共に達成するために、異なる平均粒子径を有する2種類以上の無機充填材を併用してもよい。
The minimum with a preferable average particle diameter of an inorganic filler is 0.01 micrometer, and a preferable upper limit is 1 micrometer. When the average particle size is less than 0.01 μm, the viscosity of the adhesive solution for forming the thermosetting adhesive layer increases, and thus the fluidity and coating properties of the adhesive solution may decrease. . Further, when the viscosity of the adhesive solution increases, the resulting adhesive sheet has a poor followability when bonded to a semiconductor wafer original plate, and voids are likely to occur, reducing the reliability of the semiconductor chip package. is there. When the average particle diameter exceeds 1 μm, the transparency of the thermosetting adhesive layer is impaired, and therefore, in flip chip mounting, the alignment mark or protruding electrode on the semiconductor chip is recognized through the thermosetting adhesive layer. May not be possible. The more preferable lower limit of the average particle diameter is 0.02 μm, the more preferable upper limit is 0.5 μm, the still more preferable lower limit is 0.05 μm, and the still more preferable upper limit is 0.3 μm.
In addition, in order to achieve both the improvement of the coating property of the adhesive solution and the improvement of the transparency of the thermosetting adhesive layer, two or more kinds of inorganic fillers having different average particle diameters may be used in combination. Good.

熱硬化性接着剤層の厚みの好ましい下限は5μm、好ましい上限は150μmである。熱硬化性接着剤層の厚みが5μm未満であると、得られる熱硬化性接着剤層は、硬化物の接着力が不足することがある。熱硬化性接着剤層の厚みが150μmを超えると、得られる接着シートを用いて製造される半導体チップ実装体が厚くなりすぎることがある。
熱硬化性接着剤層の厚みは、突起電極の高さに応じて調整することが好ましく、突起電極の高さと同等又はそれ以下の厚みであることが好ましい。
The preferable lower limit of the thickness of the thermosetting adhesive layer is 5 μm, and the preferable upper limit is 150 μm. If the thickness of the thermosetting adhesive layer is less than 5 μm, the resulting thermosetting adhesive layer may lack the adhesive strength of the cured product. If the thickness of the thermosetting adhesive layer exceeds 150 μm, the semiconductor chip package manufactured using the resulting adhesive sheet may be too thick.
The thickness of the thermosetting adhesive layer is preferably adjusted according to the height of the protruding electrode, and is preferably equal to or less than the height of the protruding electrode.

本発明の接着シートを製造する方法は、例えば、樹脂基材を製造した後、適当な溶媒で希釈した接着剤組成物を、樹脂基材の柔軟層上に塗工した後、乾燥させる方法等が挙げられる。
塗工する方法は、例えば、コンマコート、グラビアコート、ダイコート等のコーティング法や、キャスティング法が挙げられる。
樹脂基材を製造する方法は、例えば、硬質層となるフィルムの少なくとも一方の面にラミネーターを用いて柔軟層となるフィルムを積層する方法、共押出装置を利用した成形による方法、硬質層上に柔軟層となる樹脂の塗液を塗布した後、乾燥する方法等が挙げられる。
The method for producing the adhesive sheet of the present invention is, for example, a method in which, after a resin substrate is produced, an adhesive composition diluted with an appropriate solvent is applied on the flexible layer of the resin substrate and then dried. Is mentioned.
Examples of the coating method include coating methods such as comma coating, gravure coating, and die coating, and casting methods.
The method for producing a resin base material is, for example, a method of laminating a film to be a flexible layer using a laminator on at least one surface of a film to be a hard layer, a method by molding using a co-extrusion apparatus, The method of drying after apply | coating the coating liquid of resin used as a flexible layer is mentioned.

本発明の接着シートを用いる半導体チップの実装方法であって、本発明の接着シートの熱硬化性接着剤層と、回路が形成されるとともに突起電極を有する半導体ウエハ原板のおもて面とを貼り合わせる工程1と、本発明の接着シートが貼り合わされた半導体ウエハ原板の裏面を研削する工程2と、研削後の半導体ウエハに貼り合わされた本発明の接着シートから、樹脂基材のみを剥離して、熱硬化性接着剤層が付着した半導体ウエハを得る工程3と、熱硬化性接着剤層が付着した半導体ウエハをダイシングして、熱硬化性接着剤層が付着した半導体チップに個片化する工程4と、熱硬化性接着剤層が付着した半導体チップを、熱硬化性接着剤層を介して基板又は他の半導体チップに接着して半導体チップを実装する工程5とをこの順に備える半導体チップの実装方法もまた、本発明の1つである。
このような半導体チップの実装方法によって実装される表面に突起電極を有する半導体チップとして、例えば、フリップチップ、TSV等が挙げられる。
なお、以下の説明において、本発明の半導体チップの実装方法を単に本発明方法と記載する。
A method of mounting a semiconductor chip using the adhesive sheet of the present invention, comprising: a thermosetting adhesive layer of the adhesive sheet of the present invention; and a front surface of a semiconductor wafer original plate on which a circuit is formed and having a protruding electrode. Only the resin base material is peeled from the bonding step 1, the step 2 of grinding the back surface of the semiconductor wafer original plate to which the adhesive sheet of the present invention is bonded, and the adhesive sheet of the present invention bonded to the ground semiconductor wafer. Step 3 for obtaining a semiconductor wafer to which a thermosetting adhesive layer is attached and dicing the semiconductor wafer to which a thermosetting adhesive layer is attached are separated into semiconductor chips to which the thermosetting adhesive layer is attached. And a step 5 of mounting the semiconductor chip by adhering the semiconductor chip having the thermosetting adhesive layer attached thereto to a substrate or another semiconductor chip via the thermosetting adhesive layer. Implementation of the conductor chip is also one of the present invention.
Examples of the semiconductor chip having a protruding electrode on the surface mounted by such a semiconductor chip mounting method include a flip chip and a TSV.
In the following description, the semiconductor chip mounting method of the present invention is simply referred to as the present invention method.

本発明方法においては、まず、本発明の接着シートの熱硬化性接着剤層と、回路が形成されるとともに突起電極を有する半導体ウエハ原板のおもて面とを貼り合わせる工程1を行う。
半導体ウエハ原板は、例えば、シリコン、ガリウム砒素等の半導体からなり、金、銅、銀−錫ハンダ、アルミニウム、ニッケル等からなる突起電極を表面に有する半導体ウエハ原板が挙げられる。
In the method of the present invention, first, Step 1 is performed in which the thermosetting adhesive layer of the adhesive sheet of the present invention is bonded to the front surface of a semiconductor wafer original plate on which a circuit is formed and which has protruding electrodes.
Examples of the semiconductor wafer original plate include a semiconductor wafer original plate made of a semiconductor such as silicon or gallium arsenide and having a protruding electrode made of gold, copper, silver-tin solder, aluminum, nickel or the like on the surface.

工程1は常圧下で行ってもよいが、より密着性や突起電極への追従性を向上するためには、1torr程度の真空下で行うことが好ましい。貼り合わせる方法は、真空ラミネーターを用いる方法が好ましい。 Step 1 may be performed under normal pressure, but it is preferably performed under a vacuum of about 1 torr in order to further improve the adhesion and followability to the protruding electrode. The method of bonding is preferably a method using a vacuum laminator.

本発明方法においては、次いで、本発明の接着シートが貼り合わされた半導体ウエハ原板の裏面を研削する工程2を行う。これにより、半導体ウエハ原板を所望の厚みに研削する。
研削する方法は、従来公知の方法を用いることができ、例えば、市販の研削装置(例えば、Disco社製の「DFG8540」等)を用いて、2400rpmの回転で10〜0.1μm/sの研削量の条件にて研削を行い、最終的にはCMPで仕上げる方法等が挙げられる。
Next, in the method of the present invention, step 2 of grinding the back surface of the semiconductor wafer original plate on which the adhesive sheet of the present invention is bonded is performed. Thereby, the semiconductor wafer original plate is ground to a desired thickness.
As a grinding method, a conventionally known method can be used. For example, using a commercially available grinding apparatus (for example, “DFG8540” manufactured by Disco Corporation), grinding at 10 to 0.1 μm / s at a rotation of 2400 rpm. There is a method in which grinding is performed under the condition of the amount, and finally the finish is performed by CMP.

熱硬化性接着剤層の厚みが半導体ウエハ原板上の突起電極の高さよりも厚い場合には、工程2を行う前、突起電極は熱硬化性接着剤層中に埋もれている。そして、工程2の研削時にかかる圧力によって突起電極の頂部から接着剤が押し除かれる。また、熱硬化性接着剤層の厚みが半導体ウエハ原板上の突起電極の高さ以下である場合には、工程1及び工程2において、突起電極の頂部から接着剤が押し除かれる。
このとき、後の工程において樹脂基材を剥離した後、突起電極の頂部が熱硬化性接着剤層から露出する程度に突起電極の頂部から充分に接着剤が押し除かれていてもよいが、必ずしも突起電極の頂部が熱硬化性接着剤層から露出する必要はない。更に、本発明の接着シートは、柔軟層を有することにより貼り合わせ工程又は研削時にかかる圧力によって生じる突起電極の損傷及び変形を抑制することができるため、本発明の接着シートを用いることで、信頼性に優れた半導体チップ実装体を製造することができる。
When the thickness of the thermosetting adhesive layer is thicker than the height of the protruding electrode on the semiconductor wafer original plate, the protruding electrode is buried in the thermosetting adhesive layer before performing Step 2. Then, the adhesive is pushed away from the top of the protruding electrode by the pressure applied during the grinding in step 2. Further, when the thickness of the thermosetting adhesive layer is equal to or less than the height of the protruding electrode on the semiconductor wafer original plate, the adhesive is pushed away from the top of the protruding electrode in Step 1 and Step 2.
At this time, after peeling the resin base material in a later step, the adhesive may be sufficiently pushed away from the top of the protruding electrode to the extent that the top of the protruding electrode is exposed from the thermosetting adhesive layer, The top of the protruding electrode does not necessarily have to be exposed from the thermosetting adhesive layer. Furthermore, since the adhesive sheet of the present invention can suppress damage and deformation of the protruding electrodes caused by the pressure applied during the laminating process or grinding by having the flexible layer, the adhesive sheet of the present invention can be reliably used. A semiconductor chip mounting body excellent in performance can be manufactured.

本発明方法においては、熱硬化性接着剤層に光硬化性化合物が含有される場合、工程2の後、研削後の半導体ウエハに貼り合わせられた本発明の接着シートにエネルギー線を照射して、熱硬化性接着剤層を半硬化させる工程を行ってもよい。これにより、熱硬化性接着剤層の接着性が低下し、後の工程における樹脂基材の剥離が容易になる。また、このとき、熱硬化性接着剤層は完全な硬化ではなく「半硬化」することから、熱硬化性接着剤層は、後の工程における基板又は他の半導体チップとの接着時には、なお充分な接着性を発揮することができる。 In the method of the present invention, when the photocurable compound is contained in the thermosetting adhesive layer, after the step 2, the adhesive sheet of the present invention bonded to the ground semiconductor wafer is irradiated with energy rays. The step of semi-curing the thermosetting adhesive layer may be performed. Thereby, the adhesiveness of a thermosetting adhesive bond layer falls and peeling of the resin base material in a subsequent process becomes easy. At this time, since the thermosetting adhesive layer is “semi-cured” rather than completely cured, the thermosetting adhesive layer is still sufficient when bonded to a substrate or another semiconductor chip in a later step. Can exhibit excellent adhesiveness.

本明細書において半硬化とは、ゲル分率が10〜60重量%であることを意味する。ゲル分率が10重量%未満である熱硬化性接着剤層は流動性が高く、形状保持力が不足したり、ダイシング時に綺麗に切断することが困難となったりすることがある。ゲル分率が60重量%を超える熱硬化性接着剤層は、接着性が不充分となり、このような熱硬化性接着剤層が付着した半導体チップは、ボンディングすることが困難となることがある。 In the present specification, semi-cured means that the gel fraction is 10 to 60% by weight. A thermosetting adhesive layer having a gel fraction of less than 10% by weight has high fluidity, and the shape-retaining ability may be insufficient, or it may be difficult to cleanly cut during dicing. A thermosetting adhesive layer having a gel fraction exceeding 60% by weight has insufficient adhesion, and it is sometimes difficult to bond a semiconductor chip to which such a thermosetting adhesive layer is attached. .

なお、ゲル分率は、例えば、酢酸メチル又はメチルエチルケトン等の、接着剤組成物を充分に溶解できる溶解度を有する溶剤に半硬化した熱硬化性接着剤層を浸透させ、充分な時間撹拌し、メッシュを用いてろ過した後、乾燥して得られる未溶解物の量から下記式(1)により算出することができる。
ゲル分率(重量%)=100×(W−W)/(W−W) (1)
式(1)中、Wは樹脂基材の重量を表し、Wは溶剤に浸漬する前の接着シートの重量を表し、Wは溶剤に浸漬し乾燥した後の接着シートの重量を表す。
The gel fraction is determined by, for example, infiltrating a semi-cured thermosetting adhesive layer into a solvent having a solubility capable of sufficiently dissolving the adhesive composition, such as methyl acetate or methyl ethyl ketone, and stirring for a sufficient time. It can be calculated by the following formula (1) from the amount of undissolved material obtained by filtering using
Gel fraction (% by weight) = 100 × (W 2 −W 0 ) / (W 1 −W 0 ) (1)
In Formula (1), W 0 represents the weight of the resin base material, W 1 represents the weight of the adhesive sheet before being immersed in the solvent, and W 2 represents the weight of the adhesive sheet after being immersed in the solvent and dried. .

半硬化した状態は、光硬化性化合物の種類、又は、接着剤組成物の配合を上述のように選択したり、例えば、熱硬化性接着剤層が光硬化性化合物としてラジカルにより架橋可能な二重結合を有するアクリルポリマーを含有する場合には、エネルギー線の照射量を調整したりすることによって、容易に達成することができる。
例えば、熱硬化性接着剤層が光硬化性化合物としてラジカルにより架橋可能な二重結合を有するアクリルポリマーを含有する場合、エネルギー線の照射により発生したラジカルが、アクリロイル基の炭素−炭素二重結合の連鎖反応を促し、三次元ネットワーク構造を形成して、半硬化した状態を形成する。
In the semi-cured state, the type of the photocurable compound or the composition of the adhesive composition is selected as described above, for example, the thermosetting adhesive layer can be cross-linked by radicals as a photocurable compound. In the case of containing an acrylic polymer having a heavy bond, it can be easily achieved by adjusting the irradiation amount of energy rays.
For example, when the thermosetting adhesive layer contains an acrylic polymer having a double bond that can be cross-linked by radicals as a photocurable compound, the radical generated by irradiation with energy rays is a carbon-carbon double bond of an acryloyl group. The chain reaction is promoted to form a three-dimensional network structure to form a semi-cured state.

エネルギー線を照射する方法は、例えば、本発明の接着シート側から、超高圧水銀灯を用いて、365nm付近の紫外線を半導体ウエハ面への照度が60mW/cmとなるよう照度を調節して20秒間照射する(積算光量1200mJ/cm)方法等が挙げられる。The method of irradiating the energy beam is, for example, by adjusting the illuminance from the adhesive sheet side of the present invention by using an ultra-high pressure mercury lamp so that the illuminance of the semiconductor wafer surface is 60 mW / cm 2 with an ultraviolet ray around 365 nm. A method of irradiating for 2 seconds (integrated light amount 1200 mJ / cm 2 ) is exemplified.

本発明方法においては、次いで、研削後の半導体ウエハに貼り合わせられた本発明の接着シートから、樹脂基材のみを剥離して、熱硬化性接着剤層が付着した半導体ウエハを得る工程3を行う。 Next, in the method of the present invention, the step 3 of obtaining a semiconductor wafer having a thermosetting adhesive layer adhered thereto by peeling only the resin base material from the adhesive sheet of the present invention bonded to the semiconductor wafer after grinding. Do.

工程3において、熱硬化性接着剤層の接着剤は、突起電極の頂部よりも樹脂基材の柔軟層側に付着しやすいことから、突起電極の頂部に残存する接着剤量は抑制される。また、エネルギー線の照射により熱硬化性接着剤層が半硬化している場合には、樹脂基材を極めて容易に剥離することができる。 In step 3, since the adhesive of the thermosetting adhesive layer is more likely to adhere to the flexible layer side of the resin substrate than the top of the protruding electrode, the amount of adhesive remaining on the top of the protruding electrode is suppressed. Further, when the thermosetting adhesive layer is semi-cured by irradiation with energy rays, the resin substrate can be peeled off very easily.

本発明方法においては、次いで、熱硬化性接着剤層が付着した半導体ウエハをダイシングして、熱硬化性接着剤層が付着した半導体チップに個片化する工程4を行う。
ダイシングする方法は、例えば、従来公知の砥石やレーザー等を用いて切断分離する方法等が挙げられる。
Next, in the method of the present invention, a process 4 is performed in which the semiconductor wafer to which the thermosetting adhesive layer is attached is diced and separated into semiconductor chips to which the thermosetting adhesive layer is attached.
Examples of the dicing method include a method of cutting and separating using a conventionally known grindstone or a laser.

工程4においては、エネルギー線の照射により熱硬化性接着剤層が半硬化している場合には特に、熱硬化性接着剤層に起因するヒゲが発生することなく、熱硬化性接着剤層ごと綺麗に、容易に切断することができる。また、熱硬化性接着剤層が半硬化している場合には特に、切削くずが熱硬化性接着剤層に付着することを抑制することができ、ダイシング時に使用する水による熱硬化性接着剤層の劣化も抑制することができる。 In step 4, especially when the thermosetting adhesive layer is semi-cured by irradiation with energy rays, the thermosetting adhesive layer does not generate whiskers due to the thermosetting adhesive layer. It can be cut cleanly and easily. In addition, particularly when the thermosetting adhesive layer is semi-cured, it is possible to suppress cutting chips from adhering to the thermosetting adhesive layer, and the thermosetting adhesive with water used during dicing. Deterioration of the layer can also be suppressed.

本発明方法においては、次いで、熱硬化性接着剤層が付着した半導体チップを、熱硬化性接着剤層を介して基板又は他の半導体チップに接着して半導体チップを実装する工程5を行う。 Next, in the method of the present invention, step 5 is performed in which the semiconductor chip is mounted by adhering the semiconductor chip to which the thermosetting adhesive layer is adhered to the substrate or another semiconductor chip via the thermosetting adhesive layer.

なお、熱硬化性接着剤層が半硬化している場合であっても、熱硬化性接着剤層はなお充分な接着性を有しており、熱硬化性接着剤層が付着した半導体チップを、熱硬化性接着剤層を介して基板又は他の半導体チップに接着することができる。
また、本明細書において半導体チップの実装とは、基板上に半導体チップを実装する場合と、基板上に実装されている1以上の半導体チップ上に、更に半導体チップを実装する場合との両方を含む。
Even if the thermosetting adhesive layer is semi-cured, the thermosetting adhesive layer still has sufficient adhesion, and the semiconductor chip to which the thermosetting adhesive layer is attached Can be bonded to a substrate or other semiconductor chip via a thermosetting adhesive layer.
In this specification, the mounting of a semiconductor chip includes both a case where a semiconductor chip is mounted on a substrate and a case where a semiconductor chip is further mounted on one or more semiconductor chips mounted on the substrate. Including.

工程5により半導体チップを実装した後、更に、加熱することによって熱硬化性接着剤層を硬化させる工程6を行うことにより、より安定した接合状態を実現することができ、接続信頼性に優れた半導体装置を得ることができる。 After mounting the semiconductor chip by the step 5, by performing the step 6 of further curing the thermosetting adhesive layer by heating, a more stable bonding state can be realized and the connection reliability is excellent. A semiconductor device can be obtained.

上記の説明においては、熱硬化性接着剤層が付着した半導体ウエハを得る工程3を行った後、該熱硬化性接着剤層が付着した半導体ウエハをダイシングして、熱硬化性接着剤層が付着した半導体チップに個片化する工程4を行った。
この他の態様として、工程3で得られた熱硬化性接着剤層が付着した半導体ウエハ上に、熱硬化性接着剤層を介して他の半導体ウエハを積層して半導体ウエハ積層体を製造し、得られた半導体ウエハ積層体を一括的にダイシングして、熱硬化性接着剤層が付着した半導体チップの積層体を得てもよい。
In the above description, after performing step 3 of obtaining a semiconductor wafer to which a thermosetting adhesive layer is attached, the semiconductor wafer to which the thermosetting adhesive layer is attached is diced to obtain a thermosetting adhesive layer. Step 4 was performed to separate the attached semiconductor chip.
As another embodiment, a semiconductor wafer laminate is manufactured by laminating another semiconductor wafer via the thermosetting adhesive layer on the semiconductor wafer to which the thermosetting adhesive layer obtained in Step 3 is attached. Then, the obtained semiconductor wafer laminate may be diced collectively to obtain a semiconductor chip laminate to which the thermosetting adhesive layer is adhered.

本発明によれば、突起電極の損傷及び変形を抑制することができ、信頼性に優れた半導体チップ実装体の製造に好適に用いられる接着シート、及び、該接着シートを用いた半導体チップの実装方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the damage and deformation | transformation of a protruding electrode can be suppressed, the adhesive sheet used suitably for manufacture of the semiconductor chip mounting body excellent in reliability, and the mounting of the semiconductor chip using this adhesive sheet A method can be provided.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

以下に実施例及び比較例で使用した材料を示す。
(硬質層)
PETフィルム(商品名「テイジンテトロンフィルムHPE」、厚さ25μm、50μm、帝人デュポンフィルム社製)
ポリオレフィン系フィルム(商品名「ハイシボオーブ」、厚さ200μm、林一二社製)
PETとポリエチレンとの積層フィルム(大倉工業社製)
The materials used in Examples and Comparative Examples are shown below.
(Hard layer)
PET film (trade name “Teijin Tetron Film HPE”, thickness 25 μm, 50 μm, manufactured by Teijin DuPont Films)
Polyolefin film (trade name “Hi-shibo orb”, thickness 200 μm, manufactured by Hayashi Kajisha)
Laminated film of PET and polyethylene (Okura Industry Co., Ltd.)

(柔軟層)
アクリルポリマーA(商品名「SKダイン1495C」、綜研化学社製)
アクリルポリマーB(商品名「HT−6537AM」、新綜工業社製)
ポリエチレンフィルム(厚さ50μm、大倉工業社製)
オレフィンフィルム(厚さ50μm、表面シボ加工)
イソシアネート系架橋剤(商品名「コロネートL−45」、日本ポリウレタン社製)
(Flexible layer)
Acrylic polymer A (trade name “SK Dyne 1495C”, manufactured by Soken Chemical Co., Ltd.)
Acrylic polymer B (trade name “HT-6537AM”, manufactured by Shinseng Industries Co., Ltd.)
Polyethylene film (thickness 50μm, manufactured by Okura Industry Co., Ltd.)
Olefin film (thickness 50μm, surface embossing)
Isocyanate-based crosslinking agent (trade name “Coronate L-45”, manufactured by Nippon Polyurethane Co., Ltd.)

(熱硬化性化合物)
ジシクロペンタジエン型エポキシ樹脂(エピクロン「HP−7200HH」、DIC社製)
レゾルシノール型エポキシ樹脂(デナコール「EX201P」、ナガセケムテックス社製)
ナフタレン型エポキシ樹脂(エピクロン「HP−4710」、DIC社製)
(エポキシ基を有するポリマー)
エポキシ基含有アクリルポリマーA(商品名「マープルーフG−2050」、日油社製)
エポキシ基含有アクリルポリマーB(商品名「マープルーフG−017581」、日油社製)
(Thermosetting compound)
Dicyclopentadiene type epoxy resin (Epiclon "HP-7200HH", manufactured by DIC Corporation)
Resorcinol type epoxy resin (Denacol "EX201P", manufactured by Nagase ChemteX Corporation)
Naphthalene type epoxy resin (Epicron "HP-4710", manufactured by DIC Corporation)
(Polymer having epoxy group)
Epoxy group-containing acrylic polymer A (trade name “Marproof G-2050”, manufactured by NOF Corporation)
Epoxy group-containing acrylic polymer B (Brand name "Marproof G-017581", manufactured by NOF Corporation)

(熱硬化剤)
酸無水物A(商品名「YH−307」、三菱化学社製)
酸無水物B(商品名「YH−309」、三菱化学社製)
(熱硬化促進剤)
イミダゾール化合物A(商品名「キュアゾール2MA−OK」、四国化成工業社製)
液状イミダゾール化合物B(商品名「FUJICURE 7000」、T&K TOKA社製)
(Thermosetting agent)
Acid anhydride A (trade name “YH-307”, manufactured by Mitsubishi Chemical Corporation)
Acid anhydride B (trade name “YH-309”, manufactured by Mitsubishi Chemical Corporation)
(Thermosetting accelerator)
Imidazole compound A (trade name “CURESOL 2MA-OK”, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
Liquid imidazole compound B (trade name “FUJICURE 7000”, manufactured by T & K TOKA)

(光硬化性化合物)
光硬化性アクリルポリマー(2−エチルヘキシルアクリレートと、イソボルニルアクリレートと、ヒドロキシエチルアクリレートとの共重合体に2−メタクリロイルオキシエチルイソシアネートを付加させたもの、分子量30万、二重結合当量0.9meq/g、SK−2−37、新中村化学社製)
(光重合開始剤)
商品名「Esacure 1001」、Lamberti社製
(Photocurable compound)
Photocurable acrylic polymer (2-ethylhexyl acrylate, isobornyl acrylate, hydroxyethyl acrylate copolymer added with 2-methacryloyloxyethyl isocyanate, molecular weight 300,000, double bond equivalent 0.9 meq / G, SK-2-37, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
Product name "Esacure 1001", manufactured by Lamberti

(シランカップリング剤)
イミダゾールシランカップリング剤(商品名「SP−1000」、日鉱マテリアルズ社製)
フェニルアミノシランカップリング剤(商品名「KBM−573」、信越化学工業社製)
(無機充填材)
球状シリカA(商品名「SE1050−SPE」、平均粒径0.3μm、アドマテックス社製)
球状シリカB(商品名「YA050C−MJF」、平均粒径0.05μm、アドマテックス社製)
ヒュームドシリカ(商品名「レオロシールMT10」、トクヤマ社製)
(その他)
応力緩和ゴム系高分子(商品名「AC−4030」、ガンツ化成社製)
(Silane coupling agent)
Imidazole silane coupling agent (trade name “SP-1000”, manufactured by Nikko Materials)
Phenylaminosilane coupling agent (trade name “KBM-573”, manufactured by Shin-Etsu Chemical Co., Ltd.)
(Inorganic filler)
Spherical silica A (trade name “SE1050-SPE”, average particle size 0.3 μm, manufactured by Admatechs)
Spherical silica B (trade name “YA050C-MJF”, average particle size 0.05 μm, manufactured by Admatechs)
Fumed silica (trade name “Leoro Seal MT10”, manufactured by Tokuyama Corporation)
(Other)
Stress relaxation rubber polymer (trade name “AC-4030”, manufactured by Ganz Kasei Co., Ltd.)

(実施例1)
(1)樹脂基材の製造
硬質層としての厚さ50μmのPETフィルムの片側に、アクリルポリマーA100重量部に架橋剤としてイソシアネート系架橋剤を1.6重量部配合した塗液を、コンマコーターを用いて塗布し、厚さ30μmの柔軟層を形成して、2層構造の樹脂基材を得た。硬質層、柔軟層それぞれの40℃、80℃での弾性率を表1に示した。
Example 1
(1) Manufacture of resin base material On one side of a 50 μm thick PET film as a hard layer, a coating liquid in which 1.6 parts by weight of an isocyanate-based crosslinking agent as a crosslinking agent is blended with 100 parts by weight of acrylic polymer A is used as a comma coater. And a flexible layer having a thickness of 30 μm was formed to obtain a resin base material having a two-layer structure. The elastic moduli at 40 ° C. and 80 ° C. of the hard layer and the flexible layer are shown in Table 1.

(2)接着シートの製造
表1の組成に従って、各材料をMEKと混合し、ホモディスパーを用いて攪拌混合して接着剤組成物の50重量%溶液を調製した。樹脂基材の柔軟層上に、コンマコート法により、得られた接着剤組成物の50重量%溶液を乾燥後の厚さが60μmとなるように塗工し、100℃で5分間乾燥させて接着シートを得た。使用時まで、得られた熱硬化性接着剤層の表面を離型処理したPETフィルムの離型面で保護した。熱硬化性接着剤層の最低溶融粘度を表1に示した。
(2) Production of Adhesive Sheet According to the composition of Table 1, each material was mixed with MEK and stirred and mixed using a homodisper to prepare a 50 wt% solution of the adhesive composition. On the flexible layer of the resin base material, a 50 wt% solution of the obtained adhesive composition is applied by a comma coating method so that the thickness after drying becomes 60 μm, and dried at 100 ° C. for 5 minutes. An adhesive sheet was obtained. Until use, the surface of the obtained thermosetting adhesive layer was protected with a release surface of a release-treated PET film. The minimum melt viscosity of the thermosetting adhesive layer is shown in Table 1.

(3)半導体チップの実装
直径20cm、厚み750μmであり、表面に平均高さ80μm、直径110μmの球形のAg−Snハンダボールを250μmピッチで多数有する半導体ウエハ原板を用意した。接着シートの熱硬化性接着剤層を保護するPETフィルムを剥がし、真空ラミネーター(商品名「ATM−812M」、タカトリ社製)を用いて、真空下(1torr)、70℃、10秒間の条件で半導体ウエハ原板のおもて面(ハンダボールを有する面)に貼り付けた。
次いで、これを研削装置に取りつけ、半導体ウエハ原板の裏面をウエハ厚さが約100μmになるまで研削した。このとき、研削の摩擦熱により半導体ウエハ原板の温度が上昇しないように、半導体ウエハ原板に水を散布しながら作業を行った。研削後は、CMPプロセスによりアルカリのシリカ分散水溶液による研磨を行うことにより、鏡面化加工を行った。
(3) A semiconductor wafer original plate having a semiconductor chip mounting diameter of 20 cm and a thickness of 750 μm, and a large number of spherical Ag-Sn solder balls having an average height of 80 μm and a diameter of 110 μm on the surface at a pitch of 250 μm was prepared. The PET film that protects the thermosetting adhesive layer of the adhesive sheet is peeled off, and using a vacuum laminator (trade name “ATM-812M”, manufactured by Takatori) under vacuum (1 torr) at 70 ° C. for 10 seconds. It was affixed on the front surface (surface which has a solder ball) of a semiconductor wafer original plate.
Next, this was attached to a grinding apparatus, and the back surface of the semiconductor wafer original plate was ground until the wafer thickness became about 100 μm. At this time, the operation was performed while water was sprayed on the semiconductor wafer original plate so that the temperature of the semiconductor wafer original plate did not increase due to frictional heat of grinding. After grinding, the surface was mirror-finished by polishing with an alkaline silica dispersion aqueous solution by a CMP process.

研磨装置から研削後の半導体ウエハを取り外し、半導体ウエハの接着シートが貼付されていない側の面にダイシングテープ(商品名「PEテープ♯6318−B」、積水化学工業社製)を貼り付け、ダイシングフレームにマウントした。次いで、接着シートの樹脂基材側から、超高圧水銀灯を用いて、365nm付近の紫外線を、半導体ウエハ面への照度が60mW/cmとなるよう照度を調節して20秒間照射した(積算光量1200mJ/cm)。
次いで、紫外線により半硬化した熱硬化性接着剤層から樹脂基材を剥離し、研削後の半導体ウエハ上に熱硬化性接着剤層が付着したウエハを得た。
The ground semiconductor wafer is removed from the polishing apparatus, and a dicing tape (trade name “PE tape # 6318-B”, manufactured by Sekisui Chemical Co., Ltd.) is pasted on the surface of the semiconductor wafer where the adhesive sheet is not affixed. Mounted on the frame. Next, from the resin base material side of the adhesive sheet, using an ultra-high pressure mercury lamp, irradiation with ultraviolet rays around 365 nm was performed for 20 seconds while adjusting the illuminance so that the illuminance on the semiconductor wafer surface was 60 mW / cm 2 (integrated light quantity). 1200 mJ / cm 2 ).
Subsequently, the resin base material was peeled off from the thermosetting adhesive layer semi-cured by ultraviolet rays to obtain a wafer having the thermosetting adhesive layer adhered on the ground semiconductor wafer.

ダイシング装置(商品名「DFD651」、ディスコ社製)を用いて、送り速度50mm/秒で、熱硬化性接着剤層が付着した半導体ウエハを10mm×10mmのチップサイズに分割して個片化し、熱硬化性接着剤層が付着した半導体チップを得た。
得られた熱硬化性接着剤層が付着した半導体チップを熱風乾燥炉内にて80℃で10分間乾燥後、ボンディング装置(商品名「DB−100」、澁谷工業社製)を用いて圧力0.15MPa、温度230℃で10秒間圧着して基板上に実装した。これを繰り返し5層の半導体チップを実装した後、180℃で30分間かけて硬化し、半導体チップ実装体を得た。
Using a dicing machine (trade name “DFD651”, manufactured by Disco Corporation), the semiconductor wafer with the thermosetting adhesive layer attached thereto was divided into 10 mm × 10 mm chip sizes at a feed rate of 50 mm / second, and separated into individual pieces. A semiconductor chip having a thermosetting adhesive layer attached thereto was obtained.
The obtained semiconductor chip to which the thermosetting adhesive layer is adhered is dried at 80 ° C. for 10 minutes in a hot air drying furnace, and then the pressure is 0 using a bonding apparatus (trade name “DB-100”, manufactured by Kasuya Kogyo Co., Ltd.). It was pressure-bonded at 15 MPa and a temperature of 230 ° C. for 10 seconds and mounted on the substrate. After repeating this and mounting the semiconductor chip of 5 layers, it hardened | cured over 30 minutes at 180 degreeC, and the semiconductor chip mounting body was obtained.

(実施例2)
硬質層としての厚さ50μmのPETフィルムの片側に、アクリルポリマーA100重量部に架橋剤としてイソシアネート系架橋剤を0.8重量部配合した塗液を、乾燥後の厚みが20μmとなるよう塗布し、乾燥させて、柔軟層を形成し、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、表1の組成に従って調製した接着剤組成物を用いたこと、及び、紫外線照射を行わなかったこと以外は実施例1と同様にして、接着シート及び半導体チップ実装体を得た。
(Example 2)
On one side of a PET film having a thickness of 50 μm as a hard layer, a coating solution in which 0.8 part by weight of an isocyanate-based crosslinking agent as a crosslinking agent is blended with 100 parts by weight of acrylic polymer A is applied so that the thickness after drying becomes 20 μm. And dried to form a flexible layer to obtain a resin base material having a two-layer structure.
In the same manner as in Example 1 except that the obtained resin base material was used, the adhesive composition prepared according to the composition shown in Table 1 was used, and ultraviolet irradiation was not performed, the adhesive sheet and the semiconductor were used. A chip mounting body was obtained.

(実施例3〜5)
表1の組成に従って調製した接着剤組成物を用いたこと以外は実施例2と同様にして、樹脂基材、接着シート及び半導体チップ実装体を得た。
(Examples 3 to 5)
Except having used the adhesive composition prepared according to the composition of Table 1, it carried out similarly to Example 2, and obtained the resin base material, the adhesive sheet, and the semiconductor chip mounting body.

(実施例6)
硬質層としての厚さ50μmのPETフィルムの片側に、アクリルポリマーB100重量部に架橋剤としてイソシアネート系架橋剤を0.8重量部配合した塗液を、乾燥後の厚みが30μmとなるよう塗布し、乾燥させて、柔軟層を形成し、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、表1の組成に従って調製した接着剤組成物を用いたこと、及び、紫外線照射を行わなかったこと以外は実施例1と同様にして、接着シート及び半導体チップ実装体を得た。
(Example 6)
On one side of a PET film having a thickness of 50 μm as a hard layer, a coating solution in which 0.8 part by weight of an isocyanate-based crosslinking agent as a crosslinking agent is blended with 100 parts by weight of acrylic polymer B is applied so that the thickness after drying becomes 30 μm. And dried to form a flexible layer to obtain a resin base material having a two-layer structure.
In the same manner as in Example 1 except that the obtained resin base material was used, the adhesive composition prepared according to the composition shown in Table 1 was used, and ultraviolet irradiation was not performed, the adhesive sheet and the semiconductor were used. A chip mounting body was obtained.

(比較例1)
硬質層としての厚さ25μmのPETフィルムの片側に、柔軟層として厚さ50μmのポリエチレンフィルムを積層したこと以外は実施例1と同様にして樹脂基材を得た。
得られた樹脂基材を用いたこと以外は実施例1と同様にして、接着シート及び半導体チップ実装体を得た。
(Comparative Example 1)
A resin base material was obtained in the same manner as in Example 1 except that a polyethylene film with a thickness of 50 μm was laminated as a flexible layer on one side of a PET film with a thickness of 25 μm as a hard layer.
Except having used the obtained resin base material, it carried out similarly to Example 1, and obtained the adhesive sheet and the semiconductor chip mounting body.

(比較例2及び3)
表1の組成に従って調製した接着剤組成物を用いたこと以外は実施例2と同様にして、樹脂基材、接着シート及び半導体チップ実装体を得た。
(Comparative Examples 2 and 3)
Except having used the adhesive composition prepared according to the composition of Table 1, it carried out similarly to Example 2, and obtained the resin base material, the adhesive sheet, and the semiconductor chip mounting body.

(評価1)
実施例1〜6及び比較例1〜3について、以下の評価を行った。結果を表1に示す。
(Evaluation 1)
The following evaluation was performed about Examples 1-6 and Comparative Examples 1-3. The results are shown in Table 1.

(1)突起電極の損傷有無
光学顕微鏡により、実装前の個片化した半導体チップの観察を行い、ハンダボールの状態を確認した。ハンダボールが元の形状を保っていた場合を○と、ハンダボールの先端が潰れて変形していた場合を×とした。
(1) Damaged bumps were observed with an optical microscope, and the semiconductor chips separated before mounting were observed to confirm the state of the solder balls. The case where the solder ball kept the original shape was marked with ◯, and the case where the tip of the solder ball was crushed and deformed was marked with x.

(2)ハンダ耐熱性
得られた半導体チップ実装体について、85℃、85%RHの条件下で48時間の湿潤処理を行った後、260℃、10秒間の条件でハンダリフロー処理を行った。このような一連のリフロー処理を、5回繰り返した。5回目のリフロー処理を行った後の半導体チップ実装体について、層間が剥離しているか否かについて観察を行った。なお、層間の剥離についての観察は、超音波探傷装置(商品名「SAT」、SONOSCAN社製)を用いて行った。その後、この半導体チップ実装体の熱硬化性接着剤層を混酸で除去し、半導体チップ表面の窒化シリコン保護膜に割れが生じているか否かについて観察を行った。
層間の剥離及び保護膜の割れが観察されなかった場合を○と、層間の剥離又は保護膜の割れがわずかに観察された場合を△と、層間に目立った剥離が認められるか、又は、保護膜に目立った割れが観察された場合を×とした。
(2) Solder heat resistance About the obtained semiconductor chip mounting body, after performing the wet process for 48 hours on 85 degreeC and 85% RH conditions, the solder reflow process was performed on 260 degreeC and 10 second conditions. Such a series of reflow processes was repeated 5 times. The semiconductor chip package after the fifth reflow treatment was observed as to whether or not the layers were separated. In addition, the observation about delamination between layers was performed using an ultrasonic flaw detector (trade name “SAT”, manufactured by SONOSCAN). Thereafter, the thermosetting adhesive layer of the semiconductor chip mounting body was removed with a mixed acid, and observation was made as to whether or not the silicon nitride protective film on the surface of the semiconductor chip was cracked.
When no peeling between layers or cracking of the protective film was observed, ◯ when the peeling between layers or cracking of the protective film was slightly observed, and when marked peeling was observed between the layers, or protection The case where conspicuous cracks were observed in the film was evaluated as x.

(3)TCT
得られた半導体チップ実装体について、−55℃、9分間と、125℃、9分間とを1サイクルとする温度サイクル試験(30分で1サイクル)を行い、1000サイクル後の半導体チップ実装体について、前述の超音波探傷装置を用いて層間が剥離しているか否かについて観察を行った。その後、半導体チップ実装体の熱硬化性接着剤層を混酸で除去し、半導体チップ表面の窒化シリコン保護膜に割れが生じているか否かについて観察を行った。
層間の剥離及び保護膜の割れが観察されなかった場合を○と、層間の剥離又は保護膜の割れがわずかに観察された場合を△と、層間に目立った剥離が認められるか、又は、保護膜に目立った割れが観察された場合を×とした。
(3) TCT
The obtained semiconductor chip package is subjected to a temperature cycle test (one cycle at 30 minutes) at -55 ° C. for 9 minutes and 125 ° C. for 9 minutes, and the semiconductor chip package after 1000 cycles The above-described ultrasonic flaw detector was used to observe whether or not the layers were separated. Thereafter, the thermosetting adhesive layer of the semiconductor chip mounting body was removed with a mixed acid, and an observation was made as to whether or not the silicon nitride protective film on the surface of the semiconductor chip was cracked.
When no peeling between layers or cracking of the protective film was observed, ◯ when the peeling between layers or cracking of the protective film was slightly observed, and when marked peeling was observed between the layers, or protection The case where conspicuous cracks were observed in the film was evaluated as x.

(4)ボイド
得られた半導体チップ実装体について、前述の超音波探傷装置を用いて観察した。チップ面積に対するボイド発生部分の面積が5%未満であった場合を○と、5%以上10%未満であった場合を△と、10%以上であった場合を×とした。
(4) Void The obtained semiconductor chip package was observed using the above-described ultrasonic flaw detector. The case where the area of the void generation portion with respect to the chip area was less than 5%, the case where it was 5% or more and less than 10%, and the case where it was 10% or more were rated as x.

(5)基材剥離性
熱硬化性接着剤層が付着した半導体ウエハの熱硬化性接着剤層から樹脂基材を剥離する際に、熱硬化性接着剤層と半導体ウエハとの間で界面剥離が生じなかった場合を○と、ウエハ端部のごく一部において、熱硬化性接着剤層と半導体ウエハとの間で界面剥離が生じた場合を△と、界面剥離が大きく生じた場合を×とした。
(5) Interfacial peeling between the thermosetting adhesive layer and the semiconductor wafer when the resin substrate is peeled from the thermosetting adhesive layer of the semiconductor wafer to which the base peelable thermosetting adhesive layer is adhered. ◯ when no delamination occurred, △ when the interfacial delamination occurred between the thermosetting adhesive layer and the semiconductor wafer in a very small part of the wafer edge, and x when the delamination occurred greatly It was.

Figure 2012026431
Figure 2012026431

本発明の接着シートを用いて加工及び製造した半導体チップ実装体は、ハンダ耐熱性にも温度サイクル耐熱性にも優れていた。これにより、突起電極の損傷及び変形を抑制することにより、実装後の信頼性も高められることが示された。 The semiconductor chip mounting body processed and manufactured using the adhesive sheet of the present invention was excellent in both solder heat resistance and temperature cycle heat resistance. Thereby, it was shown that reliability after mounting can be improved by suppressing damage and deformation of the protruding electrode.

(実施例7)
柔軟層の厚さを20μmとしたこと以外は実施例1と同様にして、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、及び、表2の組成に従って調製した接着剤組成物を用いたこと以外は実施例1と同様にして、接着シートを得た。
(Example 7)
A resin base material having a two-layer structure was obtained in the same manner as in Example 1 except that the thickness of the flexible layer was 20 μm.
An adhesive sheet was obtained in the same manner as in Example 1 except that the obtained resin base material was used and an adhesive composition prepared according to the composition shown in Table 2 was used.

また、接着シートを作製後、室温(25℃)で2週間保管した。作製直後の接着シート及び室温で2週間保管した後の接着シートを、一旦ベアシリコンウエハ上にラミネートした後、樹脂基材のみを剥離し、樹脂基材と熱硬化性接着剤層とを分離した。更に、樹脂基材のうち柔軟層のみを剥離して単離した。単離した柔軟層及び熱硬化性接着剤層について、1重量%のTHF溶液を調整して常温で一日静置した後、GC−MS測定により、柔軟層及び熱硬化性接着剤層中の熱硬化剤及び熱硬化促進剤の含有量を定量した。GC−MS測定の測定条件を以下に示す。
装置:商品名「JMS K−9」、日本電子社製
GCカラム:ZB−1(無極性) 径0.25mm×長さ30m×コーティング膜厚0.25μm
注入口温度:300℃
注入量:1μL
GC温度:80℃(1min)→5℃/min→200℃(0min)→20℃/min→300℃(10min)
He流量:1.0mL/min スプリット比1:50
MS測定範囲:33〜600amu(scan 550ms)
イオン化電圧:70eV
MS温度:イオン源;230℃、インターフェイス;250℃
Moreover, after producing the adhesive sheet, it was stored at room temperature (25 ° C.) for 2 weeks. The adhesive sheet immediately after preparation and the adhesive sheet stored at room temperature for 2 weeks were once laminated on a bare silicon wafer, and then only the resin base material was peeled off to separate the resin base material from the thermosetting adhesive layer. . Furthermore, only the soft layer of the resin base material was peeled and isolated. About the isolated flexible layer and thermosetting adhesive layer, a 1% by weight THF solution was prepared and allowed to stand at room temperature for one day, and then in the flexible layer and the thermosetting adhesive layer by GC-MS measurement. The contents of the thermosetting agent and the thermosetting accelerator were quantified. The measurement conditions for GC-MS measurement are shown below.
Apparatus: Trade name “JMS K-9”, JEOL Co. GC column: ZB-1 (Non-polar) Diameter 0.25 mm × Length 30 m × Coating thickness 0.25 μm
Inlet temperature: 300 ° C
Injection volume: 1 μL
GC temperature: 80 ° C. (1 min) → 5 ° C./min→200° C. (0 min) → 20 ° C./min→300° C. (10 min)
He flow rate: 1.0 mL / min Split ratio 1:50
MS measurement range: 33-600amu (scan 550ms)
Ionization voltage: 70 eV
MS temperature: ion source; 230 ° C., interface; 250 ° C.

また、作製直後の接着シート、及び、室温で2週間保管した後の接着シートについて、DSCにより熱硬化性接着剤層のガラス転移温度測定を行った。作製直後(1時間以内)の接着シート、及び、室温で2週間保管した後の接着シートを用いたこと、並びに、紫外線照射を行わなかったこと以外は実施例1と同様にして、半導体チップ実装体を得た。 Further, the glass transition temperature of the thermosetting adhesive layer was measured by DSC for the adhesive sheet immediately after production and the adhesive sheet stored for 2 weeks at room temperature. Mounting a semiconductor chip in the same manner as in Example 1 except that an adhesive sheet immediately after production (within 1 hour) and an adhesive sheet stored at room temperature for 2 weeks were used, and that no ultraviolet irradiation was performed. Got the body.

(実施例8〜11)
表2の組成に従って調製した接着剤組成物を用いたこと以外は実施例7と同様にして、接着シートを得、各層の評価を行った。また、実施例7と同様にして、半導体チップ実装体を得た。
(Examples 8 to 11)
An adhesive sheet was obtained in the same manner as in Example 7 except that the adhesive composition prepared according to the composition shown in Table 2 was used, and each layer was evaluated. Further, in the same manner as in Example 7, a semiconductor chip mounting body was obtained.

(実施例12)
硬質層としての厚さ50μmのPETフィルムの片側に、アクリルポリマーA100重量部に架橋剤としてイソシアネート系架橋剤を1.6重量部配合し、更に酸無水物B及び液状イミダゾール化合物Bをそれぞれ1重量部ずつ添加した混合物を溶剤で希釈したものを、乾燥後の厚みが20μmとなるよう塗布し、乾燥させて、柔軟層を形成して、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、及び、表2の組成に従って調製した接着剤組成物を用いたこと以外は実施例7と同様にして、接着シートを得、各層の評価を行った。また、実施例7と同様にして、半導体チップ実装体を得た。
(Example 12)
On one side of a 50 μm thick PET film as a hard layer, 100 parts by weight of acrylic polymer A is blended with 1.6 parts by weight of an isocyanate crosslinking agent as a crosslinking agent, and 1 weight each of acid anhydride B and liquid imidazole compound B are added. A mixture obtained by diluting the mixture with a solvent was applied so that the thickness after drying was 20 μm and dried to form a flexible layer to obtain a resin base material having a two-layer structure.
An adhesive sheet was obtained in the same manner as in Example 7 except that the obtained resin substrate was used and an adhesive composition prepared according to the composition shown in Table 2 was used, and each layer was evaluated. Further, in the same manner as in Example 7, a semiconductor chip mounting body was obtained.

(実施例13)
表2の組成に従って調製した接着剤組成物を用いたこと以外は実施例12と同様にして、接着シートを得、各層の評価を行った。また、実施例12と同様にして、半導体チップ実装体を得た。
(Example 13)
Except having used the adhesive composition prepared according to the composition of Table 2, it carried out similarly to Example 12, and obtained the adhesive sheet and evaluated each layer. Further, in the same manner as in Example 12, a semiconductor chip mounting body was obtained.

(評価2)
実施例7〜13で得られた半導体チップ実装体について、以下の評価を行った。結果を表2に示す。
(Evaluation 2)
The following evaluation was performed about the semiconductor chip mounting body obtained in Examples 7-13. The results are shown in Table 2.

(1)TCT
1000サイクル及び2000サイクル経過後の半導体チップ実装体について、(評価1)と同様の評価を行った。
(1) TCT
The same evaluation as (Evaluation 1) was performed on the semiconductor chip mounted body after 1000 cycles and 2000 cycles.

Figure 2012026431
Figure 2012026431

(実施例14)
実施例2と同様にして得た樹脂基材を用いたこと、表3の組成に従って調製した接着剤組成物を用いたこと、及び、紫外線照射を行わなかったこと以外は実施例1と同様にして、接着シート及び半導体チップ実装体を得た。
(Example 14)
The same procedure as in Example 1 except that the resin base material obtained in the same manner as in Example 2 was used, the adhesive composition prepared according to the composition in Table 3 was used, and no ultraviolet irradiation was performed. Thus, an adhesive sheet and a semiconductor chip mounting body were obtained.

(実施例15)
硬質層としてPETとポリエチレンとの積層フィルム(大倉工業社製)を用いたこと以外は実施例14と同様にして、樹脂基材、接着シート及び半導体チップ実装体を得た。
(Example 15)
A resin base material, an adhesive sheet, and a semiconductor chip mounting body were obtained in the same manner as in Example 14 except that a laminated film of PET and polyethylene (manufactured by Okura Kogyo Co., Ltd.) was used as the hard layer.

(比較例4)
硬質層として厚さ200μmのポリオレフィン系フィルムを用いたこと以外は実施例13と同様にして、樹脂基材、接着シート及び半導体チップ実装体を得た。
(Comparative Example 4)
A resin base material, an adhesive sheet, and a semiconductor chip mounting body were obtained in the same manner as in Example 13 except that a polyolefin film having a thickness of 200 μm was used as the hard layer.

(評価3)
実施例14、15及び比較例4で得られた接着シート及び半導体チップ実装体について、以下の評価を行った。結果を表3に示す。
(Evaluation 3)
The following evaluation was performed about the adhesive sheet and semiconductor chip mounting body which were obtained in Examples 14 and 15 and Comparative Example 4. The results are shown in Table 3.

(1)貼り合わせ性
接着シートを、真空ラミネーター(商品名「ATM−812M」、タカトリ社製)を用いて、真空下(1torr)、70℃又は100℃、10秒間の条件で半導体ウエハのハンダボールを有する面に貼り合わせた。貼り合わせ後の状態を目視で確認した。
シワ及びヨレが無く、半導体ウエハ全面に一様にラミネートされていた場合を○、シワ又はヨレが発生していた場合を×とした。
(1) Using a vacuum laminator (trade name “ATM-812M”, manufactured by Takatori Co., Ltd.), the bonding adhesive sheet is soldered to a semiconductor wafer under vacuum (1 torr) at 70 ° C. or 100 ° C. for 10 seconds. Laminated to the surface with the ball. The state after bonding was visually confirmed.
The case where there was no wrinkle and crease and was uniformly laminated on the entire surface of the semiconductor wafer was marked with ◯, and the case where wrinkle or crease occurred was marked with ×.

(2)TCT
1000サイクル経過後の半導体チップ実装体について、(評価1)と同様の評価を行った。
(2) TCT
The same evaluation as (Evaluation 1) was performed on the semiconductor chip mounted body after 1000 cycles.

Figure 2012026431
Figure 2012026431

(実施例16)
柔軟層の厚さを50μmとしたこと以外は実施例2と同様にして、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、表4の組成に従って調製した接着剤組成物を用いたこと、紫外線照射を行わなかったこと、及び、半導体チップの実装工程において、自動ボンディング装置(商品名「FC−3000」、東レエンジニアリング社製)を用いたこと以外は実施例1と同様にして、接着シート及び半導体チップ実装体を得た。
(Example 16)
A resin base material having a two-layer structure was obtained in the same manner as in Example 2 except that the thickness of the flexible layer was 50 μm.
In the use of the obtained resin base material, the use of the adhesive composition prepared according to the composition of Table 4, the absence of ultraviolet irradiation, and the semiconductor chip mounting process, an automatic bonding apparatus (trade name) An adhesive sheet and a semiconductor chip package were obtained in the same manner as in Example 1 except that “FC-3000” manufactured by Toray Engineering Co., Ltd. was used.

(比較例5)
硬質層としての厚さ50μmのPETフィルムの片側に、柔軟層として厚さ50μmの表面にシボ加工のあるオレフィンフィルムを積層し、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと以外は実施例16と同様にして、接着シート及び半導体チップ実装体を得た。
(Comparative Example 5)
On one side of a PET film having a thickness of 50 μm as a hard layer, an olefin film having a textured surface was laminated as a flexible layer on a surface having a thickness of 50 μm to obtain a resin substrate having a two-layer structure.
An adhesive sheet and a semiconductor chip package were obtained in the same manner as in Example 16 except that the obtained resin base material was used.

(評価4)
実施例16及び比較例5で得られた樹脂基材及び半導体チップ実装体について、以下の評価を行った。結果を表4に示す。
(Evaluation 4)
The following evaluation was performed about the resin base material and semiconductor chip mounting body which were obtained in Example 16 and Comparative Example 5. The results are shown in Table 4.

(1)表面粗さ
カラー3Dレーザー顕微鏡(商品名「VK−9700」、キーエンス社製)を用いて、樹脂基材の柔軟層の、熱硬化性接着剤層と接する側の表面粗さRaを測定した。
(1) Surface roughness Using a color 3D laser microscope (trade name “VK-9700”, manufactured by Keyence Corporation), the surface roughness Ra of the flexible layer of the resin substrate on the side in contact with the thermosetting adhesive layer is determined. It was measured.

(2)実装時のアライメントマーク認識
半導体チップを自動ボンディング装置を用いて基板上に実装する際、10個の半導体チップに対し実装を行ったときに、半導体チップ上のアライメントマークが10個中10個とも自動認識可能であった場合を○、7〜9個で自動認識可能であった場合を△、6個以下で自動認識可能であった場合を×として判定した。
(2) Alignment mark recognition during mounting When mounting a semiconductor chip on a substrate using an automatic bonding apparatus, when 10 semiconductor chips are mounted, 10 of 10 alignment marks on the semiconductor chip are mounted. The case where each was automatically recognizable was judged as ◯, the case where 7-9 pieces could be automatically recognized was indicated as Δ, and the case where 6 pieces or less could be automatically recognized as x.

(3)TCT
1000サイクル経過後の半導体チップ実装体について、(評価1)と同様の評価を行った。
(3) TCT
The same evaluation as (Evaluation 1) was performed on the semiconductor chip mounted body after 1000 cycles.

Figure 2012026431
Figure 2012026431

本発明によれば、突起電極の損傷及び変形を抑制することができ、信頼性に優れた半導体チップ実装体の製造に好適に用いられる接着シート、及び、該接着シートを用いた半導体チップの実装方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the damage and deformation | transformation of a protruding electrode can be suppressed, the adhesive sheet used suitably for manufacture of the semiconductor chip mounting body excellent in reliability, and the mounting of the semiconductor chip using this adhesive sheet A method can be provided.

参考例1)
(1)樹脂基材の製造
硬質層としての厚さ50μmのPETフィルムの片側に、アクリルポリマーA100重量部に架橋剤としてイソシアネート系架橋剤を1.6重量部配合した塗液を、コンマコーターを用いて塗布し、厚さ30μmの柔軟層を形成して、2層構造の樹脂基材を得た。硬質層、柔軟層それぞれの40℃、80℃での弾性率を表1に示した。
( Reference Example 1)
(1) Manufacture of resin base material On one side of a 50 μm thick PET film as a hard layer, a coating liquid in which 1.6 parts by weight of an isocyanate-based crosslinking agent as a crosslinking agent is blended with 100 parts by weight of acrylic polymer A is used as a comma coater. And a flexible layer having a thickness of 30 μm was formed to obtain a resin base material having a two-layer structure. The elastic moduli at 40 ° C. and 80 ° C. of the hard layer and the flexible layer are shown in Table 1.

参考例2)
硬質層としての厚さ50μmのPETフィルムの片側に、アクリルポリマーA100重量部に架橋剤としてイソシアネート系架橋剤を0.8重量部配合した塗液を、乾燥後の厚みが20μmとなるよう塗布し、乾燥させて、柔軟層を形成し、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、表1の組成に従って調製した接着剤組成物を用いたこと、及び、紫外線照射を行わなかったこと以外は参考例1と同様にして、接着シート及び半導体チップ実装体を得た。
( Reference Example 2)
On one side of a PET film having a thickness of 50 μm as a hard layer, a coating solution in which 0.8 part by weight of an isocyanate-based crosslinking agent as a crosslinking agent is blended with 100 parts by weight of acrylic polymer A is applied so that the thickness after drying becomes 20 μm. And dried to form a flexible layer to obtain a resin base material having a two-layer structure.
Adhesive sheet and semiconductor in the same manner as in Reference Example 1 except that the obtained resin base material was used, the adhesive composition prepared according to the composition of Table 1 was used, and ultraviolet irradiation was not performed. A chip mounting body was obtained.

参考例3〜5)
表1の組成に従って調製した接着剤組成物を用いたこと以外は参考例2と同様にして、樹脂基材、接着シート及び半導体チップ実装体を得た。
( Reference Examples 3-5)
A resin base material, an adhesive sheet, and a semiconductor chip package were obtained in the same manner as in Reference Example 2 except that the adhesive composition prepared according to the composition shown in Table 1 was used.

参考例6)
硬質層としての厚さ50μmのPETフィルムの片側に、アクリルポリマーB100重量部に架橋剤としてイソシアネート系架橋剤を0.8重量部配合した塗液を、乾燥後の厚みが30μmとなるよう塗布し、乾燥させて、柔軟層を形成し、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、表1の組成に従って調製した接着剤組成物を用いたこと、及び、紫外線照射を行わなかったこと以外は参考例1と同様にして、接着シート及び半導体チップ実装体を得た。
( Reference Example 6)
On one side of a PET film having a thickness of 50 μm as a hard layer, a coating solution in which 0.8 part by weight of an isocyanate-based crosslinking agent as a crosslinking agent is blended with 100 parts by weight of acrylic polymer B is applied so that the thickness after drying becomes 30 μm. And dried to form a flexible layer to obtain a resin base material having a two-layer structure.
Adhesive sheet and semiconductor in the same manner as in Reference Example 1 except that the obtained resin base material was used, the adhesive composition prepared according to the composition of Table 1 was used, and ultraviolet irradiation was not performed. A chip mounting body was obtained.

(比較例1)
硬質層としての厚さ25μmのPETフィルムの片側に、柔軟層として厚さ50μmのポリエチレンフィルムを積層したこと以外は参考例1と同様にして樹脂基材を得た。
得られた樹脂基材を用いたこと以外は参考例1と同様にして、接着シート及び半導体チップ実装体を得た。
(Comparative Example 1)
A resin base material was obtained in the same manner as in Reference Example 1 except that a polyethylene film having a thickness of 50 μm was laminated as a flexible layer on one side of a PET film having a thickness of 25 μm as a hard layer.
An adhesive sheet and a semiconductor chip mounting body were obtained in the same manner as in Reference Example 1 except that the obtained resin base material was used.

(比較例2及び3)
表1の組成に従って調製した接着剤組成物を用いたこと以外は参考例2と同様にして、樹脂基材、接着シート及び半導体チップ実装体を得た。
(Comparative Examples 2 and 3)
A resin base material, an adhesive sheet, and a semiconductor chip package were obtained in the same manner as in Reference Example 2 except that the adhesive composition prepared according to the composition shown in Table 1 was used.

(評価1)
参考例1〜6及び比較例1〜3について、以下の評価を行った。結果を表1に示す。
(Evaluation 1)
The following evaluation was performed about Reference Examples 1-6 and Comparative Examples 1-3. The results are shown in Table 1.

Figure 2012026431
Figure 2012026431

実施例1
柔軟層の厚さを20μmとしたこと以外は参考例1と同様にして、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、及び、表2の組成に従って調製した接着剤組成物を用いたこと以外は参考例1と同様にして、接着シートを得た。
( Example 1 )
A resin base material having a two-layer structure was obtained in the same manner as in Reference Example 1 except that the thickness of the flexible layer was 20 μm.
An adhesive sheet was obtained in the same manner as in Reference Example 1 except that the obtained resin substrate was used and an adhesive composition prepared according to the composition of Table 2 was used.

また、作製直後の接着シート、及び、室温で2週間保管した後の接着シートについて、DSCにより熱硬化性接着剤層のガラス転移温度測定を行った。作製直後(1時間以内)の接着シート、及び、室温で2週間保管した後の接着シートを用いたこと、並びに、紫外線照射を行わなかったこと以外は参考例1と同様にして、半導体チップ実装体を得た。 Further, the glass transition temperature of the thermosetting adhesive layer was measured by DSC for the adhesive sheet immediately after production and the adhesive sheet stored for 2 weeks at room temperature. Mounting a semiconductor chip in the same manner as in Reference Example 1 except that an adhesive sheet immediately after production (within 1 hour) and an adhesive sheet stored at room temperature for 2 weeks were used, and that no ultraviolet irradiation was performed. Got the body.

(実施例2〜3及び比較例4〜5
表2の組成に従って調製した接着剤組成物を用いたこと以外は実施例と同様にして、接着シートを得、各層の評価を行った。また、実施例と同様にして、半導体チップ実装体を得た。
(Examples 2-3 and Comparative Examples 4-5 )
Except having used the adhesive composition prepared according to the composition of Table 2, it carried out similarly to Example 1 , obtained the adhesive sheet, and evaluated each layer. Further, in the same manner as in Example 1 , a semiconductor chip mounting body was obtained.

比較例6
硬質層としての厚さ50μmのPETフィルムの片側に、アクリルポリマーA100重量部に架橋剤としてイソシアネート系架橋剤を1.6重量部配合し、更に酸無水物B及び液状イミダゾール化合物Bをそれぞれ1重量部ずつ添加した混合物を溶剤で希釈したものを、乾燥後の厚みが20μmとなるよう塗布し、乾燥させて、柔軟層を形成して、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、及び、表2の組成に従って調製した接着剤組成物を用いたこと以外は実施例と同様にして、接着シートを得、各層の評価を行った。また、実施例と同様にして、半導体チップ実装体を得た。
( Comparative Example 6 )
On one side of a 50 μm thick PET film as a hard layer, 100 parts by weight of acrylic polymer A is blended with 1.6 parts by weight of an isocyanate crosslinking agent as a crosslinking agent, and 1 weight each of acid anhydride B and liquid imidazole compound B are added. A mixture obtained by diluting the mixture with a solvent was applied so that the thickness after drying was 20 μm and dried to form a flexible layer to obtain a resin base material having a two-layer structure.
An adhesive sheet was obtained in the same manner as in Example 1 except that the obtained resin base material was used and an adhesive composition prepared according to the composition shown in Table 2 was used, and each layer was evaluated. Further, in the same manner as in Example 1 , a semiconductor chip mounting body was obtained.

比較例7
表2の組成に従って調製した接着剤組成物を用いたこと以外は比較例6と同様にして、接着シートを得、各層の評価を行った。また、比較例6と同様にして、半導体チップ実装体を得た。
( Comparative Example 7 )
An adhesive sheet was obtained in the same manner as in Comparative Example 6 except that the adhesive composition prepared according to the composition shown in Table 2 was used, and each layer was evaluated. Further, in the same manner as in Comparative Example 6 , a semiconductor chip mounting body was obtained.

(評価2)
実施例1〜3及び比較例4〜7で得られた半導体チップ実装体について、以下の評価を行った。結果を表2に示す。
(Evaluation 2)
The following evaluation was performed about the semiconductor chip mounting body obtained in Examples 1-3 and Comparative Examples 4-7 . The results are shown in Table 2.

Figure 2012026431
Figure 2012026431

参考例7
参考例2と同様にして得た樹脂基材を用いたこと、表3の組成に従って調製した接着剤組成物を用いたこと、及び、紫外線照射を行わなかったこと以外は参考例1と同様にして、接着シート及び半導体チップ実装体を得た。
( Reference Example 7 )
Similar to Reference Example 1 except that the resin base material obtained in the same manner as in Reference Example 2 was used, the adhesive composition prepared according to the composition in Table 3 was used, and no ultraviolet irradiation was performed. Thus, an adhesive sheet and a semiconductor chip mounting body were obtained.

参考例8
硬質層としてPETとポリエチレンとの積層フィルム(大倉工業社製)を用いたこと以外は参考例7と同様にして、樹脂基材、接着シート及び半導体チップ実装体を得た。
( Reference Example 8 )
A resin base material, an adhesive sheet, and a semiconductor chip mounting body were obtained in the same manner as in Reference Example 7 except that a laminated film of PET and polyethylene (manufactured by Okura Kogyo Co., Ltd.) was used as the hard layer.

(比較例
硬質層として厚さ200μmのポリオレフィン系フィルムを用いたこと以外は参考例7と同様にして、樹脂基材、接着シート及び半導体チップ実装体を得た。
(Comparative Example 8 )
A resin base material, an adhesive sheet, and a semiconductor chip mounting body were obtained in the same manner as in Reference Example 7 except that a polyolefin film having a thickness of 200 μm was used as the hard layer.

(評価3)
参考例7、8及び比較例で得られた接着シート及び半導体チップ実装体について、以下の評価を行った。結果を表3に示す。
(Evaluation 3)
The following evaluation was performed about the adhesive sheet and semiconductor chip mounting body obtained in Reference Examples 7 and 8 and Comparative Example 8 . The results are shown in Table 3.

Figure 2012026431
Figure 2012026431

参考例9
柔軟層の厚さを50μmとしたこと以外は参考例2と同様にして、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと、表4の組成に従って調製した接着剤組成物を用いたこと、紫外線照射を行わなかったこと、及び、半導体チップの実装工程において、自動ボンディング装置(商品名「FC−3000」、東レエンジニアリング社製)を用いたこと以外は参考例1と同様にして、接着シート及び半導体チップ実装体を得た。
( Reference Example 9 )
A resin base material having a two-layer structure was obtained in the same manner as in Reference Example 2 except that the thickness of the flexible layer was 50 μm.
In the use of the obtained resin base material, the use of the adhesive composition prepared according to the composition of Table 4, the absence of ultraviolet irradiation, and the semiconductor chip mounting process, an automatic bonding apparatus (trade name) An adhesive sheet and a semiconductor chip mounting body were obtained in the same manner as in Reference Example 1 except that “FC-3000” manufactured by Toray Engineering Co., Ltd. was used.

(比較例
硬質層としての厚さ50μmのPETフィルムの片側に、柔軟層として厚さ50μmの表面にシボ加工のあるオレフィンフィルムを積層し、2層構造の樹脂基材を得た。
得られた樹脂基材を用いたこと以外は参考例9と同様にして、接着シート及び半導体チップ実装体を得た。
(Comparative Example 9 )
On one side of a PET film having a thickness of 50 μm as a hard layer, an olefin film having a textured surface was laminated as a flexible layer on a surface having a thickness of 50 μm to obtain a resin substrate having a two-layer structure.
An adhesive sheet and a semiconductor chip package were obtained in the same manner as in Reference Example 9 except that the obtained resin base material was used.

(評価4)
参考例9及び比較例で得られた樹脂基材及び半導体チップ実装体について、以下の評価を行った。結果を表4に示す。
(Evaluation 4)
The following evaluation was performed about the resin base material and semiconductor chip mounting body obtained in Reference Example 9 and Comparative Example 9 . The results are shown in Table 4.

Figure 2012026431
Figure 2012026431

Claims (8)

表面に突起電極を有する半導体チップを基板又は他の半導体チップに実装するために用いられる接着シートであって、
40〜80℃での引張貯蔵弾性率が0.5GPa以上である硬質層と、その少なくとも一方の面に積層され、40〜80℃での引張貯蔵弾性率が10kPa〜9MPaである架橋アクリルポリマーからなる柔軟層とを有する樹脂基材を有し、
前記柔軟層上に形成され、回転式レオメーターを用いて、昇温速度5℃/分、周波数1Hzで40〜80℃における溶融粘度を測定した場合の最低溶融粘度が3000Pa・sより大きく100000Pa・s以下である熱硬化性接着剤層を有する
ことを特徴とする接着シート。
An adhesive sheet used for mounting a semiconductor chip having a protruding electrode on a surface to a substrate or another semiconductor chip,
From a hard layer having a tensile storage modulus of 0.5 GPa or more at 40 to 80 ° C. and a cross-linked acrylic polymer having a tensile storage modulus of 10 kPa to 9 MPa at 40 to 80 ° C. A resin base material having a flexible layer,
The minimum melt viscosity when formed on the flexible layer and measured at 40 to 80 ° C. at a heating rate of 5 ° C./min and a frequency of 1 Hz using a rotary rheometer is greater than 3000 Pa · s to 100000 Pa · s. An adhesive sheet comprising a thermosetting adhesive layer that is s or less.
熱硬化性接着剤層は、エポキシ樹脂及び熱硬化剤を含有することを特徴とする請求項1記載の接着シート。 The adhesive sheet according to claim 1, wherein the thermosetting adhesive layer contains an epoxy resin and a thermosetting agent. 接着シートの作製直後と、室温で2週間保管した後における熱硬化性接着剤層のガラス転移温度(Tg)の変化量が3℃未満であることを特徴とする請求項1又は2記載の接着シート。 The adhesive according to claim 1 or 2, wherein the glass transition temperature (Tg) change of the thermosetting adhesive layer immediately after the production of the adhesive sheet and after storage for 2 weeks at room temperature is less than 3 ° C. Sheet. 柔軟層は、熱硬化性接着剤層に含まれる熱硬化剤と同一の熱硬化剤を含有することを特徴とする請求項1、2又は3記載の接着シート。 The adhesive sheet according to claim 1, 2, or 3, wherein the flexible layer contains the same thermosetting agent as the thermosetting agent contained in the thermosetting adhesive layer. 硬質層は、100℃での引張貯蔵弾性率を30℃での引張貯蔵弾性率で除した値が0.5以上であり、かつ、70℃での引張貯蔵弾性率を30℃での引張貯蔵弾性率で除した値が0.8以上であることを特徴とする請求項1、2、3又は4記載の接着シート。 The hard layer has a value obtained by dividing the tensile storage modulus at 100 ° C. by the tensile storage modulus at 30 ° C. is 0.5 or more, and the tensile storage modulus at 70 ° C. is the tensile storage at 30 ° C. The adhesive sheet according to claim 1, 2, 3, or 4, wherein the value divided by the elastic modulus is 0.8 or more. 柔軟層は、熱硬化性接着剤層と接する面のJIS B 0601による表面粗さRaが0.4μm以下であることを特徴とする請求項1、2、3、4又は5記載の接着シート。 6. The adhesive sheet according to claim 1, wherein the soft layer has a surface roughness Ra according to JIS B 0601 of a surface in contact with the thermosetting adhesive layer of 0.4 [mu] m or less. 請求項1、2、3、4、5又は6記載の接着シートを用いる半導体チップの実装方法であって、
接着シートの熱硬化性接着剤層と、回路が形成されるとともに突起電極を有する半導体ウエハ原板のおもて面とを貼り合わせる工程1と、
接着シートが貼り合わされた半導体ウエハ原板の裏面を研削する工程2と、
研削後の半導体ウエハに貼り合わせられた接着シートから、樹脂基材のみを剥離して、熱硬化性接着剤層が付着した半導体ウエハを得る工程3と、
熱硬化性接着剤層が付着した半導体ウエハをダイシングして、熱硬化性接着剤層が付着した半導体チップに個片化する工程4と、
熱硬化性接着剤層が付着した半導体チップを、熱硬化性接着剤層を介して基板又は他の半導体チップに接着して半導体チップを実装する工程5とをこの順に備える
ことを特徴とする半導体チップの実装方法。
A method of mounting a semiconductor chip using the adhesive sheet according to claim 1, 2, 3, 4, 5 or 6,
Step 1 of bonding the thermosetting adhesive layer of the adhesive sheet and the front surface of the semiconductor wafer original plate on which the circuit is formed and the protruding electrode is formed;
Step 2 of grinding the back surface of the semiconductor wafer original plate to which the adhesive sheet is bonded;
Step 3 of removing only the resin base material from the adhesive sheet bonded to the ground semiconductor wafer to obtain a semiconductor wafer having a thermosetting adhesive layer attached thereto;
A step 4 of dicing the semiconductor wafer to which the thermosetting adhesive layer is adhered, and separating the semiconductor wafer into semiconductor chips having the thermosetting adhesive layer adhered thereto;
And a step 5 of mounting the semiconductor chip by adhering the semiconductor chip to which the thermosetting adhesive layer is adhered to a substrate or another semiconductor chip via the thermosetting adhesive layer. Chip mounting method.
更に、工程5により半導体チップを実装した後、加熱することにより熱硬化性接着剤層を硬化させる工程6を有することを特徴とする請求項7記載の半導体チップの実装方法。 8. The method of mounting a semiconductor chip according to claim 7, further comprising a step of curing the thermosetting adhesive layer by heating after mounting the semiconductor chip in step 5.
JP2011537092A 2010-08-23 2011-08-22 Adhesive sheet and semiconductor chip mounting method Expired - Fee Related JP5385988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537092A JP5385988B2 (en) 2010-08-23 2011-08-22 Adhesive sheet and semiconductor chip mounting method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010186465 2010-08-23
JP2010186465 2010-08-23
JP2011109781 2011-05-16
JP2011109781 2011-05-16
PCT/JP2011/068887 WO2012026431A1 (en) 2010-08-23 2011-08-22 Bonding sheet and method for mounting semiconductor chip
JP2011537092A JP5385988B2 (en) 2010-08-23 2011-08-22 Adhesive sheet and semiconductor chip mounting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012070246A Division JP2012256849A (en) 2010-08-23 2012-03-26 Adhesive sheet and method of mounting semiconductor chip

Publications (2)

Publication Number Publication Date
JPWO2012026431A1 true JPWO2012026431A1 (en) 2013-10-28
JP5385988B2 JP5385988B2 (en) 2014-01-08

Family

ID=45723430

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011537092A Expired - Fee Related JP5385988B2 (en) 2010-08-23 2011-08-22 Adhesive sheet and semiconductor chip mounting method
JP2012070246A Withdrawn JP2012256849A (en) 2010-08-23 2012-03-26 Adhesive sheet and method of mounting semiconductor chip

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012070246A Withdrawn JP2012256849A (en) 2010-08-23 2012-03-26 Adhesive sheet and method of mounting semiconductor chip

Country Status (5)

Country Link
JP (2) JP5385988B2 (en)
KR (1) KR101920091B1 (en)
CN (1) CN103081081B (en)
TW (1) TWI488937B (en)
WO (1) WO2012026431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235974A (en) * 2012-05-09 2013-11-21 Sekisui Chem Co Ltd Method for manufacturing semiconductor device, and semiconductor bonding adhesive

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976573B2 (en) 2013-03-13 2016-08-23 日東電工株式会社 Reinforcing sheet and method for manufacturing secondary mounting semiconductor device
JP6069142B2 (en) * 2013-09-11 2017-02-01 デクセリアルズ株式会社 Underfill material and method for manufacturing semiconductor device using the same
JP6347657B2 (en) * 2014-04-22 2018-06-27 デクセリアルズ株式会社 Protective tape and method of manufacturing semiconductor device using the same
JP6328987B2 (en) * 2014-04-22 2018-05-23 デクセリアルズ株式会社 Manufacturing method of semiconductor device
JP6364314B2 (en) * 2014-10-23 2018-07-25 積水化学工業株式会社 Adhesive film for semiconductor bonding
JP6379051B2 (en) * 2015-01-23 2018-08-22 日東電工株式会社 Hollow electronic device sealing sheet
JP6599134B2 (en) 2015-06-04 2019-10-30 デクセリアルズ株式会社 Protective tape and method of manufacturing semiconductor device using the same
JP6265954B2 (en) * 2015-09-16 2018-01-24 古河電気工業株式会社 Film for semiconductor backside
JP6721963B2 (en) * 2015-10-28 2020-07-15 日東電工株式会社 Bump root reinforcement sheet
CN108966672B (en) 2016-03-31 2023-08-18 三井化学东赛璐株式会社 Film for producing component and method for producing component
JP6196751B1 (en) 2016-03-31 2017-09-13 三井化学東セロ株式会社 Film for parts production and method for producing parts
KR102563013B1 (en) * 2017-03-17 2023-08-04 헨켈 아게 운트 코. 카게아아 Improvement of work life for multi-layered articles and methods of manufacturing and using the same
JP7028264B2 (en) * 2018-01-30 2022-03-02 昭和電工マテリアルズ株式会社 Film-shaped adhesive and its manufacturing method, and semiconductor device and its manufacturing method
SG11202006592VA (en) * 2018-01-30 2020-08-28 Hitachi Chemical Co Ltd Method for manufacturing semiconductor device, film adhesive and adhesive sheet
JP2018100423A (en) * 2018-03-20 2018-06-28 リンテック株式会社 Adhesive tape and method of manufacturing semiconductor device
KR102488314B1 (en) * 2018-12-27 2023-01-13 주식회사 두산 Non-conductive adhesive film for semiconductor package and method for manufacturing semiconductor packag using the same
CN113825609B (en) * 2019-05-24 2024-04-26 Dic株式会社 Adhesive sheet, article, and method for producing article
US20230407149A1 (en) * 2020-11-09 2023-12-21 Denka Company Limited Adhesive tape and processing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911088B2 (en) * 1997-04-28 2007-05-09 日東電工株式会社 Semiconductor device
JP2000144070A (en) * 1998-11-05 2000-05-26 Nitto Denko Corp Sheet adhesive composition, electronic part device using the same, and repairing of the device
US20030064579A1 (en) * 2001-09-27 2003-04-03 Masafumi Miyakawa Surface protecting adhesive film for semiconductor wafer and protecting method for semiconductor wafer using said adhesive film
JP4170839B2 (en) * 2003-07-11 2008-10-22 日東電工株式会社 Laminated sheet
JP4536367B2 (en) * 2003-12-24 2010-09-01 東レ・ダウコーニング株式会社 Sheet for dicing die bonding and manufacturing method thereof
JP2008159755A (en) * 2006-12-22 2008-07-10 Sekisui Chem Co Ltd Manufacturing method of semiconductor device
JP5287725B2 (en) * 2007-11-08 2013-09-11 日立化成株式会社 Semiconductor adhesive sheet and dicing tape integrated semiconductor adhesive sheet
JP5525200B2 (en) * 2008-07-28 2014-06-18 積水化学工業株式会社 Manufacturing method of semiconductor chip laminated body
JP5224111B2 (en) * 2008-08-29 2013-07-03 日立化成株式会社 Adhesive film for semiconductor wafer processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235974A (en) * 2012-05-09 2013-11-21 Sekisui Chem Co Ltd Method for manufacturing semiconductor device, and semiconductor bonding adhesive

Also Published As

Publication number Publication date
KR20130106351A (en) 2013-09-27
KR101920091B1 (en) 2018-11-19
TW201213489A (en) 2012-04-01
CN103081081B (en) 2016-03-02
CN103081081A (en) 2013-05-01
TWI488937B (en) 2015-06-21
WO2012026431A1 (en) 2012-03-01
JP5385988B2 (en) 2014-01-08
JP2012256849A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5385988B2 (en) Adhesive sheet and semiconductor chip mounting method
JP5725329B2 (en) Dicing die bonding film and semiconductor device with excellent burr characteristics and reliability
JP5477144B2 (en) Adhesive sheet for connecting circuit members and method for manufacturing semiconductor device
JP6833083B2 (en) Manufacturing method for film-like adhesives, adhesive sheets and semiconductor devices
JP2009242605A (en) Adhesive composition, adhesive sheet, and production method of semiconductor device
US20130244401A1 (en) Adhesive Composition, An Adhesive Sheet and a Production Method of a Semiconductor Device
JP5792592B2 (en) Manufacturing method of semiconductor device, semiconductor device, adhesive film, and bonding method of adhesive film
JP2019096913A (en) Sheet for resin film formation and composite sheet for resin film formation
JP6423458B2 (en) Composite sheet for forming resin film and method for manufacturing chip with resin film
JP2012074623A (en) Adhesive film for processing semiconductor, and method of manufacturing semiconductor chip mounting body
JP5525200B2 (en) Manufacturing method of semiconductor chip laminated body
JP5395701B2 (en) Adhesive sheet substrate, adhesive sheet and semiconductor chip mounting method
JP4806815B2 (en) Adhesive composition, adhesive sheet and method for producing semiconductor device
WO2021193935A1 (en) Sheet for production of semiconductor device and method for producing semiconductor chip with film-form adhesive
JP2010258239A (en) Insulating adhesive sheet
JP5476033B2 (en) Mounting method of semiconductor chip
KR102236280B1 (en) Adhesive film for semiconductor device
JP2016194020A (en) Adhesive for dicing film integrated type semiconductor
WO2023145610A1 (en) Curable resin film, composite sheet, semiconductor chip, and semiconductor chip manufacturing method
TW202342601A (en) Curable resin film, composite sheet, semiconductor chip, and method for producing semiconductor chip
TW202342600A (en) Curable resin film, composite sheet, semiconductor chip, and method for producing semiconductor chip
JP2022125112A (en) Die bonding sheet and method for manufacturing semiconductor chip with film type adhesive

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R151 Written notification of patent or utility model registration

Ref document number: 5385988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees