JP2013235680A - 蓄電池用集電体 - Google Patents

蓄電池用集電体 Download PDF

Info

Publication number
JP2013235680A
JP2013235680A JP2012106192A JP2012106192A JP2013235680A JP 2013235680 A JP2013235680 A JP 2013235680A JP 2012106192 A JP2012106192 A JP 2012106192A JP 2012106192 A JP2012106192 A JP 2012106192A JP 2013235680 A JP2013235680 A JP 2013235680A
Authority
JP
Japan
Prior art keywords
current collector
storage battery
conductive
electrodeposition
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012106192A
Other languages
English (en)
Inventor
Noritoshi Tsuchiya
權壽 土屋
Yasushi Miki
康史 三木
Takashi Matsuo
孝 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Shinwa Industry Co Ltd
Original Assignee
Daiso Co Ltd
Shinwa Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd, Shinwa Industry Co Ltd filed Critical Daiso Co Ltd
Priority to JP2012106192A priority Critical patent/JP2013235680A/ja
Publication of JP2013235680A publication Critical patent/JP2013235680A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】集電体と電極材料との密着性が改善された電極を作製することで内部抵抗が小さく、急速充放電時に劣化の少ない、充放電サイクル寿命が長い蓄電池を提供する。
【解決手段】少なくとも一方の蓄電池用集電体表面にカチオン系樹脂またはアニオン系樹脂、導電剤、水、必要に応じて溶剤や界面活性剤などの添加剤からなる導電性電着塗料を用いて、電着塗装法により蓄電池用集電体表面に導電性被膜を形成させた集電体を作製し、蓄電池用集電体に採用する。
【選択図】図1

Description

本発明は、リチウムイオン電池などの二次電池、並びに電気二重層キャパシタやリチウムイオンキャパシタなどのキャパシタのような蓄電池の集電体に関するものであり、集電体と電極材料との密着性が改善され、内部抵抗が小さく、急速充放電時に劣化の少ない、充放電サイクル寿命が長い蓄電池を提供できる集電体材料に関する。
リチウムイオン電池はエネルギー密度が高く、高電圧であるため、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池としての応用も進んできている。
電気二重層キャパシタは、比較的大きな容量をもち、長寿命かつ急速な充放電が可能なので、セルモータ起動用電源やパーソナルコンピュータのメモリーバックアップ電源、二次電池の補充または代替に用いられ、また、電気自動車に適用することが考えられている。
リチウムイオンキャパシタはリチウムイオンをプレドープして正負極間の電位差を大きくすることにより急速充放電性を維持したまま、エネルギー密度を高くすることができるため、瞬停対策機器やハイブリッド建機などへの採用が始まっている。
リチウムイオン電池は一般的に正極、負極、セパレータ、電解液、集電体で構成される。正極は層状のコバルト酸リチウムやスピネル型マンガン酸リチウムなどの正極活物質とカーボンブラックなどの導電助剤、ポリフッ化ビニリデンやポリ四フッ化エチレンなどの結着剤を混合し、N-メチルピロリドンのような極性溶媒に分散させた塗工液をアルミニウム箔に代表される集電体箔上に塗布、乾燥して製造される。負極はリチウムイオンの挿入脱離が可能なグラファイトやハードカーボンなどの負極活物質と導電助剤、結着剤、溶媒からなる塗工液を集電体となる銅箔の上に正極と同様に塗布、乾燥して得られる。セパレータはポリエチレンやポリプロピレンに多孔化処理を施したものや不織布が用いられる。電解液は六フッ化リン酸リチウムなどの電解質をエチレンカーボネートなどの環状カーボネートやジエチルエーテルなどの直鎖エーテルなどに溶解させたものが用いられる。
電気二重層キャパシタはリチウムイオン電池と同様に正極、負極、セパレータ、電解液、集電体から構成される。比表面積の大きな活性炭、導電助剤、結着剤、溶媒からなる塗工液をアルミニウム箔上に塗布、乾燥したものを正極および負極として用いる。電解液にはテトラエチルアンモニウムテトラフルオロボレートなどの四級オニウム塩を有機溶媒に溶解させたものが採用されている。
リチウムイオンキャパシタの構成は電気二重層キャパシタと類似しているが、負極活物質にグラファイトやポリアセンなどの導電性高分子を用い、負極上に貼りつけた金属リチウム箔からリチウムイオンをプレドープするために負極集電体である銅箔はリチウムイオンを通過させる有孔構造を有している。
これらの蓄電池の課題としてあげられるのが正極および負極と集電体との密着が十分でないために電極と集電体界面の抵抗に基づく蓄電池の経時的に内部抵抗の上昇と蓄電容量の低下が起こることである。これは特に充放電により正極材料及び負極材料の体積変化率が大きなリチウムイオン電池に顕著な傾向があるが、蓄電池に対してより長期間の信頼性が要求される車載用または電力貯蔵用などの用途については蓄電池共通の課題である。
蓄電池は蓄えられるエネルギーを最大化するためおよび生産性を高めて製造コストを低減するために、正負極活物質量をできるだけ多くした正極および負極組成物を集電体上に一度に厚膜塗布して乾燥させる工程が採用されている。このために導電助剤および結着剤が十分でないと、充放電繰り返しや使用環境の影響により密着不良が増大して集電体との界面における抵抗が大きくなって接触抵抗の増大や電子伝導経路が欠落して、蓄電池性能の劣化が生じるものと考えられている。また、集電体表面に生ずる酸化被膜も密着不良の一つの要因とされている。水酸化ナトリウムやエタノールアミンなどのアルカリ性液または塩酸などの酸液に浸漬することによる集電体表面の前処理は有効な手段であるが、処理終了後比較的短時間で被膜が再形成されるため、処理した集電体の保存ができないという欠点がある。正負極活物質量を低減し、結着剤や電子伝導材料の量を増加させれば本課題の解消につながるが、エネルギー密度が小さくなり、蓄電池としての機能は低下する。
上記課題を解決するために特許文献1から3にはキチンやキトサンなどの多糖性ポリマーやそれらのヒドロキシアルキル誘導体をバインダーとし導電性カーボンを混合分散させた塗工液を集電体箔に塗工することが提案されている。しかし、ダイコーター法やキャスティング法では導電性被膜を均一な厚みの薄膜に制御することが難しく、電極と集電体との間の電子授受が均等でなくなるという課題が残る。さらに有孔箔や3次元構造を有する発泡金属や焼結金属からなる集電体内部に塗工することは困難である。
特開2009−277660 特開2012−23050 WО2008/015828
本発明は上記事情に鑑みなされたものであり、集電体と電極材料との密着性が改善され、内部抵抗が小さく、急速充放電時に劣化の少ない、充放電サイクル寿命が長い蓄電池を提供することを目的とする。
本発明者らは、上記目的を達成するために検討を重ねた結果、蓄電池集電体表面に電着塗装法により導電性被膜を形成させることにより上記課題が解決できることを見出し、本発明をなすに至った。すなわち本発明は以下に関する。
(1)電着塗装法により導電性被膜を集電体基体に形成させてなることを特徴とする蓄電池用集電体。
(2)カチオン系高分子樹脂またはアニオン系高分子樹脂、およびカーボン粒子導電剤を含有する導電性電着塗料を用いた(1)記載の蓄電池用集電体。
(3)集電体基体が金属または合金からなり、導電性被膜の厚みが0.1〜15μmの(1)または(2)記載の蓄電池用集電体。
(4)カーボン粒子導電剤の直径が3μm以下であることを特徴とする(2)または(3)に記載の蓄電池用集電体。
(5)集電体基体が有孔金属箔または発泡金属からなる(1)〜(4)のいずれかに記載の蓄電池用集電体。
(6)(1)〜(5)のいずれかに記載の蓄電池用集電体の製造方法。
(7)(1)〜(5)のいずれかに記載の蓄電池用集電体に電極活物質を含む塗工液を塗布することにより製造される蓄電池用電極および蓄電池用電極を用いる蓄電池。
本発明に係る集電体を用いる蓄電池は電極と集電体との密着性に優れ、抵抗が小さいため、急速充放電下においても容量維持率が高く、内部抵抗が小さくなるため、長期間の寿命を有し高出入力特性に優れた蓄電池に好適である。
実施形態に示す電着塗装工程の概略構成図である。
以下、本発明をさらに詳細に説明する。本発明における蓄電池用集電体は電着塗装法により導電性被膜を集電体基体上に形成させたことを特徴とする。本発明における導電性被膜とは、電気的に集電体基体表面に導電性を有する導電剤(樹脂や各種添加剤を含む)を付着せしめて得た膜であって、集電体基体表面を均一な厚みで覆い被せた膜である。
(1)電着塗装法
電着塗装法とは正または負の電荷を有する樹脂を電気的に導電性の被塗物上に被膜形成させる手段であり、塗料が水性であるために防爆設備が不要となり塗装設備が安価なこと、電流または電圧を制御することにより容易に均一な膜厚を得ることができる塗装方法である。また通常のドクターブレード法、ディップ法、転写法、印刷などの塗布方法では不可能な孔や3次元構造を有する複雑な形状の被塗物に対しても全ての部位を均一な厚みで被覆できるという特徴を有している。即ちリチウムイオンキャパシタの集電体として用いられる孔あき集電箔の孔の端面やアルカリ液二次電池の集電体である粉体を固着させた焼結金属や発泡樹脂表面をニッケルなどで覆った発泡集電体内部にも均一な膜厚で導電性被膜を形成することができる。本発明における導電性被膜はアニオン電着塗装、カチオン電着塗装により得られたものである。
(2)電着塗料
本発明で用いられる電着塗装用の電着塗料には帯電させる電荷の正負によってカチオン電着塗料とアニオン電着塗料に大別される。電着塗料に使用される高分子樹脂は中和剤で中和された形で使用され、それぞれ導電剤、必要に応じて架橋剤や溶剤や界面活性剤などの添加剤とともに水系媒体中に希釈分散され、正または負に荷電した塗料成分となる。これら樹脂の水中に存在する形状や大きさにより、水溶性型、コロイド型、ディスパージョン型、エマルション型となってもよい。また、電気化学的に安定であって、電解液に溶出せず、電解液による膨潤が小さいものであればよい。
カチオン電着塗料の高分子樹脂としては、例えば、樹脂中にアミノ基、アンモニウム塩基、スルホニウム塩基、ホスホニウム塩基などの官能基を有し、水媒体中でカチオン化可能な樹脂を用いることができる。そのような樹脂としては分子量が1,000〜50,000程度のカチオン系高分子樹脂であるオニウム型アクリル樹脂系、エポキシ樹脂系、ポリアミド樹脂系、ポリエステル樹脂系、ポリブタジエン樹脂系、アルキド樹脂系などが一般的であり、これらを1種類、または2種類以上混合して用いる。また、樹脂にジメチルエタノールなどのアミン類を反応させて樹脂の構造中に導入してもよい。被膜の強度を高めたり、電解液に対する溶解性や膨潤性を低下させるために、ポリウレタン樹脂系などの架橋性高分子樹脂やイソシアネート基などの架橋構造を導入できる架橋剤と併用することもできる。これらの樹脂は酢酸、氷酢酸、ギ酸、乳酸、プロピオン酸などの酸性物質である中和剤で中和された形で使用される。
エポキシ樹脂にアミンを導入した樹脂の例としては、ビスフェノールAジグリシジルエーテルにジメチルエタノールアミン反応させたアミンエポキシ付加物など例示できる。
アニオン電着塗料の高分子樹脂としては、樹脂中にカルボキシル基などの官能基を有し、水媒体中でアニオン化可能な樹脂を用いることができる。そのような樹脂としては分子量300〜30,000程度のアニオン系高分子樹脂であるアクリル樹脂系、ポリエステル樹脂系、マレイン化油樹脂系、エポキシ樹脂系、ポリブタジエン樹脂系などであり、これらを1種類または2種類以上混合して用いる。また、被膜の強度を高めたり、電解液に対する溶解性や膨潤性を低下させるために、フェノール樹脂、ジアリルフタレート樹脂、メラミン樹脂などの架橋性高分子樹脂と併用することもできる。これらの樹脂は水酸化カリウム、トリエチルアミン、ジエチルアミン、ジメチルメタノールアミン、ジイソパノールアミンなどのアミン類やアンモニアなどのアルカリ性物質である中和剤で中和されて使用される。
本発明に用いることができる導電剤としてはグラファイト、ハードカーボン、アセチレンブラック、ケッチェンブラック、気相法炭素繊維、カーボンナノチューブ、カーボンナノホーンなどのカーボン粒子が好適であるが、特に制約はなく、これらを組み合わせて用いることができる。導電剤の形状としては電子伝導性が高く、接触面積が大きく、比表面積の大きな球状のものより針状や棒状などの異方性を有するものの方が望ましい。
このような異方性を有する導電剤の長さ方向のサイズは導電性被膜の膜厚よりも小さいことが好ましく、カーボン粒子としては直径5μm以下、好ましくは3μm以下、更に好ましくは1μm以下のものが望ましい。
本発明に用いることができる架橋剤としてはメラミン、イソシアネート、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ウレタン樹脂、ジアリルフタレート樹脂などの架橋性樹脂が例示できる。好ましい架橋剤としてはメラミン、イソシアネート、ポリエステル樹脂、メラミン樹脂が例示できる。架橋を誘発させる触媒として錫系の化合物、例えば、ジブチル錫ラウレートなどを加えて加熱してもよい。架橋を促進させるために架橋剤の粘度を低下させることが有効であり、その場合、2−エチルヘキサノールなどの溶剤を添加してもよい。
電着塗料の主要溶媒は水であるが、純水や脱イオン水が好まれる。また、均一な電着性向上のために溶剤を使用しても良い。溶剤としては、特に制限されないが、水に可溶性のものを用いるのが好ましい。このような溶剤としては、例えばエチルアルコールやイソプロピルアルコールなどの低級アルコールやプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル、エチレングリコールモノ(2ーエチルヘキシル)エーテル、エチレングリコールモノヘキシルエーテルなどグリコールエーテル系溶剤、ベンジルアルコール、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。これらは、1種又は2種以上併用できる。これらの中でも、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、メチルエチルケトン、メチルイソブチルケトン等が好ましい。
本発明で用いられる界面活性剤としてはソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、アルキル硫酸エステル塩、ポリオキシエチレンアルコールエーテルなどが例示できる。
本発明で用いられる電着塗料の作製方法としては、樹脂、導電剤、必要に応じて架橋剤、溶剤、添加剤などと併せて水に溶解あるいは分散させればよい。これら成分からなる組成物を溶解あるいは分散させる方法としては、樹脂、導電剤、必要に応じて架橋剤を、通常の攪拌機、分散機、混練機、遊星型ボールミル、三本ロール、ホモジナイザーなどを使用して混合したのちに、イオン交換水や純水などで希釈すれば効率よく混合できる。また、溶解あるいは分散の効率を上げるために材料に影響を与えない範囲で加温してもよい。
(3)集電体基体
本発明で用いることができる集電体基体としては、特に限定されたものではないが、導電性を有する、蓄電池内の電気化学反応に不活性であることが要求され、アルミニウム、銅、ニッケル、鉄、クロム等の金属およびこれらの合金をあげることができる。リチウムイオン電池やリチウムイオンキャパシタの場合には正極がアルミニウム、負極が銅、電気二重層キャパシタの場合には正負極ともアルミニウムが一般的に用いられる。リチウムイオンキャパシタ用の銅箔は負極上に貼りつけた金属リチウム箔からリチウムイオンをプレドープするためにリチウムイオンを通過させる有孔構造を有したものが用いられる。このことから好ましい集電体基体としては、アルミニウム箔や銅箔があげられる。銅箔は圧延銅箔や電解銅箔が好んで用いられる。
集電体基体の形状としては上記金属または合金の箔、その箔を化学的または電気化学的な手法により表面を粗化したものの他、有孔金属箔として箔に直径50〜500μmの孔を有する有孔箔や金属粉粒体を焼結固化した多孔性焼結金属、発泡ウレタン表面に無電解めっき法、電解めっき法によりニッケルや銅、錫被膜形成させた後、還元雰囲気下で加熱して得られる発泡金属なども例示することができる。発泡金属からなる発泡シートの厚さは100μm〜2mm、好ましくは100μm〜1mmである。
集電体基体の厚さは5μm〜100μmが好ましい。厚さが5μm未満であると、強度不足で電着塗装工程で箔の破断が生じる恐れがあり、100μmを越えると蓄電池に占める集電体基体の体積および重量が大きくなり、体積当りおよび重量当りの蓄電池の容量が低下を招くため好ましくない。
集電体基体は電着塗装前に5%水酸化ナトリウム水溶液やエタノールアミンなどのアルカリ性液または塩酸などの酸液で脱脂、表面被膜を除去しておくことが好ましい。特に、厚み方向や三次元方向に細孔を有する有孔金属箔の内部の表面にまで導電性被膜を均一かつ密着性よく形成させる場合には必要である。
(4)蓄電池用集電体の製造方法
本発明による集電体基体表面に電着塗装法により導電性被膜を形成させる方法として、図1に連続箔を集電体基体とした場合の電着塗装方法について説明する。導電性を有する集電体基体2は巻出しロール1により給電ロール3に送られ、正または負の電荷を与えられる。集電体基体2は電着塗料5で満たされた電着塗装槽4に導かれ、直流を印加することにより集電体基体2とは反対の電荷の対極6との間の電気泳動作用によって塗料中の樹脂および充填物が集電体表面に析出する。対極は中性隔膜またはイオン交換膜で電着塗料と分離することが望ましいが、分離しなくても構わない。カチオン電着塗装の場合には集電体基体がマイナス極であり、対極がプラス極となる。アニオン電着塗装の場合にはその逆となる。その後、回収槽7、水洗槽8、乾燥槽9を経て巻取ロール10に巻取られる。回収槽7で回収された電着塗料は電着塗料回収ライン12を経由して電着塗料受槽11に送られ、濃度調整された後ポンプ13、電着塗料供給ライン14から電着塗装槽4に戻される。
一般的には電着塗料の液温は10〜40℃、印加電圧は10〜200V、電流は0.5〜30A/dmの条件下で被膜を得る。
導電性被膜の厚みは0.1〜15μmが好ましく、特に0.2〜10μmが好ましい。膜厚が0.1μm未満であれば集電体と電極材料の密着性が十分でなく、15μmを越えると蓄電池のエネルギー密度が低下するため好ましくない。
(5)電極の製造方法
本発明の導電性被膜層を備えた蓄電池用集電体を用いた電極の作製方法は特に限定されず一般的な方法が用いられる。リチウムイオン電池用電極の場合は正極活物質あるいは負極活物質、導電助剤、結着剤、溶剤などからなるペースト(塗工液)をドクターブレード法やシルクスクリーン法などにより集電体表面上に適切な厚さに均一に塗布することより行われる。電極は塗布後、余分な溶剤を除去するため、例えば、100℃の熱風や80℃の真空状態などで乾燥する。乾燥後の電極は必要に応じてプレス装置によってプレス成型して電極を製造する。
このような正極活物質としてはAMO、AM、AMO、AMXOのいずれかの組成からなるアルカリ金属含有複合酸化物粉末である。ここで式中のAは、アルカリ金属であり、好ましくはLiを用いる。Mは主として遷移金属からなり、Co、Mn、Ni、Cr、Fe、Tiの少なくとも一種を含んでいる。Mは遷移金属からなるが、遷移金属以外にもAl、Ga、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどが添加されていてもよい。XはP、Siの少なくとも1種を含んでいる。なお正極活物質の粒子径には50μm以下、好ましくは20μm以下のものである。これらの活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。
正極活物質の具体例としては、AMO型ではコバルト酸リチウム、ニッケル酸リチウム、ニッケル/マンガン/コバルト酸リチウム(3元系)、AM型ではスピネル型マンガン酸リチウム、AMBO型ではリン酸鉄リチウムなどが挙げられる。
負極活物質としてはリチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属からなる粉末である。粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。
導電助剤としては、具体的には、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、または金属粉末などを用いることができるが、これに限定されない。
結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム、ポリエーテル、又はスチレンブタジエンゴムを用いることができるが、これらに限定されない。
電気二重層キャパシタ用電極の場合はリチウムイオン電池の場合と同様であるが、正極活物質あるいは負極活物質はともに炭素の同素体が用いられ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。
炭素の同素体の具体例としては、活性炭、ポリアセン(PAS)、カーボンウィスカー及びグラファイトなどが挙げられ、これらの粉末または繊維を使用することができる。この中でも、活性炭が好ましい。活性炭は、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻などを原料とする活性炭を挙げることができる。また、炭素の同素体を組み合わせて使用する場合は、平均粒径または粒径分布の異なる二種以上の炭素の同素体を組み合わせて使用してもよい。また、正極に用いる電極活物質として、上記物質の他に、芳香族系縮合ポリマーの熱処理物であって、水素原子/炭素原子の原子比が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)も好適に使用できる。
リチウムイオンキャパシタ用電極の場合は電気二重層キャパシタと類似しているが、負極活物質にグラファイトやポリアセンなどの導電性高分子が用いられる。
溶剤は正極活物質あるいは負極活物質、導電助剤、結着剤を均一に分散できるものであれば良く、例えば、N-メチル−2−ピロリドンや水などが使用できる。
(6)蓄電池の製造方法
本発明の電極を用いた蓄電池の製造方法は特に限定されず、正極、負極、セパレータ、電解液、集電体で構成され、公知の方法にて製造される。例えば、円筒缶の蓄電池の場合、正極、セパレータ、負極、及び第二のセパレータをコイル状に捲回して外装缶に挿入する。これに電解液を入れ含浸する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシメることで蓄電池が得られる。
セパレータとしては正極と負極が直接接触して蓄電池内でショートすることを防止するものであり、公知の材料を用いることができる。具体的には、ポリオレフィンなどの多孔質高分子フィルムあるいは紙などからなっている。この多孔質高分子フィルムとしては、ポリエチレン、ポリプロピレンなどのフィルムが電解液によって影響を受けないため好ましい。
電解液は電解質塩化合物および非プロトン性有機溶剤からなる混合物である。電解質塩化合物としては金属陽イオン、アンモニウムイオン、アミジニウムイオン、及びグアニジウムイオンから選ばれた陽イオンと、塩素イオン、臭素イオン、ヨウ素イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF 、PF 、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8−テトラシアノ−p−キノジメタンイオン、XSO 、[(XSO)(XSO)N]、[(XSO)(XSO)(XSO)C]、及び[(XSO)(XSO)YC]から選ばれた陰イオンとからなる化合物が挙げられる。但し、X、X、X、およびYは電子吸引基である。好ましくはX、X、及びXは各々独立して炭素数が1〜6のパーフルオロアルキル基又は炭素数が6〜18のパーフルオロアリール基であり、Yはニトロ基、ニトロソ基、カルボニル基、カルボキシル基又はシアノ基である。X、X及びXは各々同一であっても、異なっていてもよい。
金属陽イオンとしては遷移金属の陽イオンを用いる事ができる。好ましくはMn、Fe、Co、Ni、Cu、Zn及びAg金属から選ばれた金属の陽イオンが用いられる。又、Li、Na、K、Rb、Cs、Mg、Ca及びBa金属から選ばれた金属の陽イオンを用いても好ましい結果が得られる。電解質塩化合物として前述の化合物を2種類以上併用することは自由である。リチウムイオン電池においては電解質塩化合物としては、リチウム塩化合物が好ましく用いられる。
リチウム塩化合物としては、リチウムイオン電池、リチウムイオンキャパシタに一般的に利用されているような、広い電位窓を有するリチウム塩化合物が用いられる。たとえば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22,LiN(C25SO22,LiN[CF3SC(C25SO23]2などを挙げられるが、これらに限定されるものではない。これらは、単独で用いても、2種類以上を混合して用いても良い。
非プロトン性有機溶剤としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル、ジエチルエーテルなどの直鎖エーテルを使用することができ、2種類以上混合して使用してもよい。
また、電解質塩化合物や電解質用の溶液として、常温溶融塩を用いることができる。常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は−40℃程度、場合によっては−20℃程度である。
常温溶融塩はイオン性液体とも呼ばれており、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。
なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
また、アルキルピリジウムイオンとしては、N−メチルピリジウムイオン、N−エチルピリジニウムイオン、N−プロピルピリジニウムイオン、N−ブチルピリジニウムイオン、1−エチルー2メチルピリジニウムイオン、1−ブチル−4−メチルピリジニウムイオン、1−ブチル−2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
イミダゾリウムカチオンとしては、1,3−ジメチルイミダゾリウムイオン、1−エチル−3−メチルイミダゾリウムイオン、1−メチル−3−エチルイミダゾリウムイオン、1−メチル−3−ブチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムイオン、1,2,3−トリメチルイミダゾリウムイオン、1,2−ジメチル−3−エチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2,3−ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
なお、これらのカチオンを有する常温溶融塩は、単独で用いてもよく、または2種以上を混合して用いても良い。
以下、実施例および比較例をあげて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。
[電着塗料の調製例]
カチオン電着塗料の調製例
液温80℃のビスフェノールAジグリシジルエーテル(エポキシ当量800)100重量部に対してエチレングリコールモノエチルエーテル50重量部を溶解し、100℃に昇温した後にジメチルエタノールアミンを8重量部加え、3時間反応させてアミンエポキシ付加物(A)を調製した。
また、不揮発分75重量%のイソシアネート系架橋剤(日本ポリウレタン(株)製 コロネートL)100重量部にジブチル錫ラウレート0.005重量部を加え、更に2−エチルヘキサノール40重量部を添加して130℃で3時間反応させた反応生成物(B)を得た。
上記のアミンエポキシ付加物(A)100重量部と反応生成物(B)35重量部からなる混合物にエチレングリコールモノブチルエーテル5重量部を加えた後、氷酢酸3重量部で中和し、イオン交換水50重量部で希釈して不揮発分50重量%の電着液を調製した。
上記電着液100重量部に対して平均一次粒子径が35nmのライオン(株)製ケッチェンブラック20重量部、繊維径が150nm昭和電工(株)製カーボンナノチューブ5重量部を添加して遊星型ボールミルで24時間分散した後、イオン交換水で希釈して不揮発分25重量%のカチオン電着塗料を得た。
アニオン電着塗料の調製例
不揮発分75%のポリエステル樹脂(神東塗料(株)製)100重量部、メラミン樹脂(三井サイアナミッド(株)製)25重量部、ジメチルメタノールアミン8重量部およびイオン交換水80重量部をホモジナイザーで1時間混合分散して不揮発分50重量%の電着液を調製した。
上記電着液100重量部に対して平均粒子径35nmのアセチレンブラック(電気化学工業(株)製)22重量部、昭和電工(株)製カーボンナノチューブ3重量部を3本ロールで混練分散した後、イオン交換水で希釈して不揮発分20重量%のアニオン電着塗料を得た。
[導電膜付集電体の調製例]
集電体の調製例1
液温25℃のカチオン電着塗料の調製例で得たカチオン電着塗料に直前に5%−水酸化ナトリウム水溶液で脱脂、表面被膜を除去した厚さ50μm、幅300mm、長さ200mの東洋アルミニウム(株)製アルミニウム箔(A1085材)集電体基体を浸漬して陰極に接続し、電圧40Vで1分間の通電条件で電着塗装を行い、次いでスプレーによる水洗、130℃における乾燥を行った後、導電性被膜の膜厚5μmの導電膜付集電体を得た。
集電体の調製例2
電着塗料をアニオン電着塗料の調製例で得たアニオン電着塗料とし、アルミニウムを陽極に接続とした以外は集電体の調製例1と同様な手段で導電性被膜の膜厚5μmの導電膜付集電体を得た。
集電体の調製例3
アルミニウム箔の替わりに日本製箔(株)製の厚さ12μm、幅300mm、長さ200mの銅箔を用い、通電時間を30秒とした以外は集電体の調整例1と同様の手段で導電性被膜の膜厚2μmの導電膜付集電体を得た。
集電体の調製例4
調製例1で用いたアルミニウム箔集電体基体をフォトリソグラフィー法により平均孔径100μm、開口率50%の有孔アルミニウム箔とした以外は集電体の調製例2と同様な手段で導電性被膜の膜厚5μmの導電膜付有孔集電体を得た。
集電体の調製例5
ニッケル水素電池の正極用集電体原料に用いられている3次元構造の連続孔を有する幅300mmの発泡ウレタンシートに無電解めっきによりニッケル導電層を形成した後に電解硫酸銅めっきにより銅層を形成させた。このシートを1時間、600℃の酸化雰囲気下で焼成してウレタンを分解した後、アンモニア分解ガスの還元雰囲気下1,000℃で30分間加熱処理することにより発泡銅シートを得た。シートの厚みは0.8mm、平均孔径は70μm、銅の目付量は250g/mであった。このシートをカチオン電着塗料の調製例で得たカチオン電着塗料に浸漬して陰極に接続し、電圧40Vで通電時間40秒の条件で電着塗装を行い、次いでスプレーによる水洗、130℃における乾燥を行った後、導電性被膜の膜厚3μmの導電膜付集電体を得た。
[電極/集電体の作製例]
正極/集電体の作製例
正極材ペーストは活物質としてコバルト酸リチウムを用い、導電助剤としてアセチレンブラック、結着剤にはポリフッ化ビニリデンを使用し、遊星型ミルを用いてN−メチル−2−ピロリドン溶媒に混合分散して得た。各成分の比率は正極活物質:導電助剤:結着剤:溶媒=85:2:3:10(重量比)とした。このペーストを集電体の調製例で得た集電体にダイコーターで塗布し、130℃で3時間乾燥したのち、ロールプレス機にてプレスを行い正極/集電体を得た。
負極/集電体の作製例
負極材ペーストは天然黒鉛を活物質とし、それ以外は上記正極ペーストと同様の配合、処方にて調製した。正極同様にペーストを各集電体にダイコーターで塗布し、130℃で3時間乾燥したのち、ロールプレス機にてプレスを行い負極/集電体を得た。
但し、集電体の調製例5で得た集電体に対しては負極剤ペーストをN−メチル−2−ピロリドンで2倍に希釈して塗布し、130℃で3時間の乾燥を2回繰り返して負極/集電体を得た。
電極と集電体の密着性の評価
電極層と集電体の密着はJIS K−5600−5−6に準じて25マスの格子パターン(カット間隔2mm)のクロスカット法試験を行い、蓄電池組立直後と4.2V〜3.0V間の10C充放電(充電時間、放電時間ともに6分間)100サイクル後の密着状態を0から5の6段階で評価した。数字が小さいほど密着性が良好なことを示す。
[蓄電池の作製例]
上記正極及び負極材ペーストを集電体の調製例で得た集電体に塗布し、厚み25μmのポリプロピレン/ポリエチレン/ポリプロピレン多孔質膜を介して捲回して円筒型密閉容器に収納した後、1モルの6フッ化リン酸リチウムのエチレンカーボネートとメチルエチルカーボネート溶液(体積比1:1)を含浸して、セル電圧3.7ボルト、容量1,200mAhの蓄電池を得た。
容量維持率の評価
蓄電池を4.2V〜3.0V間の20C充放電(充電時間、放電時間ともに3分間)を100サイクル行った後の容量と初期容量の比で評価した。
内部抵抗の評価
それぞれの方法で作製した蓄電池について蓄電池組立直後と4.2V〜3.0V間の10C充放電(充電時間、放電時間ともに6分間)100サイクル後の内部抵抗を測定し。サイクル後の抵抗増加率で評価した。測定法は交流四端子法で、周波数1kHz、10mAで測定した。
[作製した電極および蓄電池の評価]
[実施例]
電着塗装により得られた上記調整例1〜5の集電体を用いて作製した電極および蓄電池の実施例の評価結果を表1にまとめて示した。
[比較例]
電着塗装による処理をしていない集電体(未処理集電体)を用いて作製した電極および蓄電池の比較例の評価結果を表1に示した。
Figure 2013235680
本発明の蓄電池用集電体は、急速充放電時に劣化の少ない優れたサイクル特性と低抵抗化が求められる蓄電池の集電体用途に好適に利用可能である。
1・・・巻出しロール
2・・・集電体基体
3・・・給電ロール
4・・・電着塗装槽
5・・・電着塗料
6・・・隔膜付対極
7・・・回収槽
8・・・水洗槽
9・・・乾燥槽
10・・・巻取ロール
11・・・電着塗料受槽
12・・・電着塗料回収ライン
13・・・ポンプ
14・・・電着塗料供給ライン

Claims (7)

  1. 電着塗装法により導電性被膜を集電体基体に形成させてなることを特徴とする蓄電池用集電体。
  2. カチオン系高分子樹脂またはアニオン系高分子樹脂、およびカーボン粒子導電剤を含有する導電性電着塗料を用いた請求項1記載の蓄電池用集電体。
  3. 集電体基体が金属または合金からなり、導電性被膜の厚みが0.1〜15μmの請求項1または2記載の蓄電池用集電体。
  4. カーボン粒子導電剤の直径が3μm以下であることを特徴とする請求項2または3に記載の蓄電池用集電体。
  5. 集電体基体が有孔金属箔または発泡金属からなる請求項1〜4のいずれかに記載の蓄電池用集電体。
  6. 請求項1〜5のいずれかに記載の蓄電池用集電体の製造方法。
  7. 請求項1〜5のいずれかに記載の蓄電池用集電体に電極活物質を含む塗工液を塗布することにより製造される蓄電池用電極および蓄電池用電極を用いる蓄電池。
JP2012106192A 2012-05-07 2012-05-07 蓄電池用集電体 Pending JP2013235680A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106192A JP2013235680A (ja) 2012-05-07 2012-05-07 蓄電池用集電体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106192A JP2013235680A (ja) 2012-05-07 2012-05-07 蓄電池用集電体

Publications (1)

Publication Number Publication Date
JP2013235680A true JP2013235680A (ja) 2013-11-21

Family

ID=49761657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106192A Pending JP2013235680A (ja) 2012-05-07 2012-05-07 蓄電池用集電体

Country Status (1)

Country Link
JP (1) JP2013235680A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711390A (zh) * 2019-03-25 2021-11-26 赛莫必乐公司 金属泡沫电容器和超级电容器
CN114551879A (zh) * 2020-11-19 2022-05-27 泰星能源解决方案有限公司 非水电解质二次电池
CN114538569A (zh) * 2022-02-25 2022-05-27 中国科学技术大学 负载有壳聚糖衍生碳壳包裹的Fe0/FeOx颗粒的电芬顿阴极及其制备与应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711390A (zh) * 2019-03-25 2021-11-26 赛莫必乐公司 金属泡沫电容器和超级电容器
CN114551879A (zh) * 2020-11-19 2022-05-27 泰星能源解决方案有限公司 非水电解质二次电池
US11973228B2 (en) 2020-11-19 2024-04-30 Prime Planet Energy & Solutions, Inc. Non-aqueous electrolyte secondary battery
CN114538569A (zh) * 2022-02-25 2022-05-27 中国科学技术大学 负载有壳聚糖衍生碳壳包裹的Fe0/FeOx颗粒的电芬顿阴极及其制备与应用
CN114538569B (zh) * 2022-02-25 2023-03-10 中国科学技术大学 负载有壳聚糖衍生碳壳包裹的Fe0/FeOX颗粒的电芬顿阴极及其制备与应用

Similar Documents

Publication Publication Date Title
JP5363818B2 (ja) 塗布電極及び有機電解質キャパシタ
KR101766738B1 (ko) 3차원 그물 형상 알루미늄 다공체를 이용한 집전체 및 당해 집전체를 이용한 전극, 당해 전극을 이용한 비수 전해질 전지, 비수 전해액을 이용한 커패시터 및 리튬 이온 커패시터, 그리고 전극의 제조 방법
WO2012111738A1 (ja) 電気化学素子
US20110075323A1 (en) Capacitor
CN104205467A (zh) 全固态锂二次电池
KR101833285B1 (ko) 3차원 그물 형상 알루미늄 다공체 및 당해 알루미늄 다공체를 이용한 전극 그리고 당해 전극을 이용한 비수 전해질 전지, 비수 전해액을 이용한 커패시터 및 리튬 이온 커패시터
KR20140003548A (ko) 집전체용 3차원 그물 형상 알루미늄 다공체, 당해 알루미늄 다공체를 이용한 집전체 및 당해 집전체를 이용한 전극, 그리고 당해 전극을 이용한 비수 전해질 전지, 커패시터 및 리튬 이온 커패시터
JP2009200302A (ja) 蓄電デバイスの製造方法および蓄電デバイス
KR20130143050A (ko) 3차원 그물 형상 알루미늄 다공체, 당해 알루미늄 다공체를 이용한 전극, 당해 전극을 이용한 비수 전해질 전지, 비수 전해액을 이용한 커패시터 및 리튬 이온 커패시터
JP2009238924A (ja) 電極の製造方法
DE112012000878T5 (de) Elektrode für elektrochemische Vorrichtung und Verfahren zu deren Herstellung
KR101809066B1 (ko) 3차원 그물 형상 알루미늄 다공체 및 당해 알루미늄 다공체를 이용한 전극 그리고 당해 전극을 이용한 비수 전해질 전지, 비수 전해액을 이용한 커패시터 및 리튬 이온 커패시터
KR20100065112A (ko) 리튬 이온 축전 디바이스용 정극 활물질 및 그것을 사용한 리튬 이온 축전 디바이스
WO2012111707A1 (ja) 電気化学素子用電極とその製造方法
CN108292568A (zh) 电化学设备及其制造方法
WO2012111747A1 (ja) 電気化学素子用電極の製造方法
KR20140012060A (ko) 집전체용 3차원 그물 형상 알루미늄 다공체, 당해 알루미늄 다공체를 이용한 전극, 비수 전해질 전지, 커패시터 및 리튬 이온 커패시터
KR20160022376A (ko) 코발트 옥시하이드록사이드를 포함하는 전기화학 소자 전극
KR101809519B1 (ko) 3차원 그물 형상 알루미늄 다공체, 당해 알루미늄 다공체를 이용한 집전체 및 전극 그리고 당해 전극의 제조 방법, 당해 전극을 이용한 비수 전해질 전지, 비수 전해액을 이용한 커패시터 및 리튬 이온 커패시터
JP2012004491A (ja) 蓄電デバイス
CN109273721B (zh) 负极集电体、负极和水系锂离子二次电池
KR20140003535A (ko) 집전체용 3차원 그물 형상 알루미늄 다공체 및 당해 알루미늄 다공체를 이용한 전극 그리고 당해 전극을 이용한 비수 전해질 전지, 비수 전해액 커패시터 및 리튬 이온 커패시터
WO2012111736A1 (ja) 電気化学素子用電極の製造方法
EP2683008B1 (en) Three dimensional positive electrode for LiCFx technology primary electrochemical generator
JP2013235680A (ja) 蓄電池用集電体