JP2013232455A - Method of manufacturing epitaxial silicon wafer - Google Patents

Method of manufacturing epitaxial silicon wafer Download PDF

Info

Publication number
JP2013232455A
JP2013232455A JP2012102428A JP2012102428A JP2013232455A JP 2013232455 A JP2013232455 A JP 2013232455A JP 2012102428 A JP2012102428 A JP 2012102428A JP 2012102428 A JP2012102428 A JP 2012102428A JP 2013232455 A JP2013232455 A JP 2013232455A
Authority
JP
Japan
Prior art keywords
wafer
reaction chamber
epitaxial
transfer chamber
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012102428A
Other languages
Japanese (ja)
Other versions
JP5928133B2 (en
Inventor
Shizuka Tateishi
静香 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2012102428A priority Critical patent/JP5928133B2/en
Publication of JP2013232455A publication Critical patent/JP2013232455A/en
Application granted granted Critical
Publication of JP5928133B2 publication Critical patent/JP5928133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an epitaxial wafer without generating a blur impairing the appearance on the back side of a silicon wafer (PBS wafer) having a polycrystalline silicon film on the back side.SOLUTION: When forming a silicon epitaxial film on the front side of a PBS wafer by using an epitaxial growth device including reaction chambers 1a, 1b for growing an epitaxial film, a wafer transfer chamber 2 for conveying a wafer into the reaction chamber, and partition movable mechanisms 3a, 3b at the interconnection part of the reaction chamber and the transfer chamber, the partition movable mechanisms are opened while raising the pressure in the wafer transfer chamber above the pressure in the reaction chamber. Subsequently, the PBS wafer is placed on the wafer support member in the reaction chamber, and the movable mechanism is closed before forming an epitaxial film. Pressure difference in the wafer transfer chamber and the reaction chamber is preferably in a range of 67-267 Pa(0.5-2 torr).

Description

本発明は、エピタキシャルシリコンウェーハの製造方法に関し、詳しくは、裏面に多結晶シリコン膜を備えたシリコンウェーハの表面にシリコンをエピタキシャル成長させる場合に、多結晶シリコン膜表面のくもりの発生を防止することができるエピタキシャルシリコンウェーハの製造方法に関する。   The present invention relates to a method for manufacturing an epitaxial silicon wafer, and more particularly, when silicon is epitaxially grown on the surface of a silicon wafer having a polycrystalline silicon film on the back surface, it is possible to prevent the occurrence of cloudiness on the surface of the polycrystalline silicon film. The present invention relates to a method for manufacturing an epitaxial silicon wafer.

近年、デバイスの高集積化に伴いエピタキシャルシリコンウェーハ(以下、単に「エピタキシャルウェーハ」ともいう)が多く用いられている。エピタキシャルウェーハは、シリコン基板上にシリコンをエピタキシャル成長させることにより製造される。シリコンのエピタキシャル成長には化学的気相成長(CVD)法が主として用いられている。   In recent years, epitaxial silicon wafers (hereinafter, also simply referred to as “epitaxial wafers”) have been used in many cases as devices are highly integrated. An epitaxial wafer is manufactured by epitaxially growing silicon on a silicon substrate. A chemical vapor deposition (CVD) method is mainly used for epitaxial growth of silicon.

CVD法では、シリコン(Si)を含んだ原料ガスをキャリアガス(通常はH2)とともに反応炉内に導入し、原料ガスの熱分解または還元により生成されたSiを高温に加熱されたシリコン基板上にエピタキシャル層として析出させる。Siを含んだ原料ガス(シリコンソース)としては、主として四塩化ケイ素(SiCl4)やトリクロロシラン(SiHCl3)が使用されている。 In the CVD method, a raw material gas containing silicon (Si) is introduced into a reaction furnace together with a carrier gas (usually H 2 ), and silicon produced by thermal decomposition or reduction of the raw material gas is heated to a high temperature. Deposited as an epitaxial layer on top. As a source gas (silicon source) containing Si, silicon tetrachloride (SiCl 4 ) or trichlorosilane (SiHCl 3 ) is mainly used.

ところで、エピタキシャルウェーハを含め、一般に、シリコンウェーハは、デバイス製造工程における、鉄、銅、ニッケルなどの重金属汚染を防止するため、重金属イオンがデバイス層に到達しないように、シリコンウェーハに対してゲッタリング処理が施される。このゲッタリング処理法の一つに、ウェーハ裏面に多結晶シリコン(ポリシリコン)膜をCVD成長させることにより歪み層を形成させ、この歪み層をゲッタリングシンクとして重金属イオンを捕獲する方法がある。   By the way, in general, silicon wafers, including epitaxial wafers, are gettered against silicon wafers so that heavy metal ions do not reach the device layer in order to prevent heavy metal contamination such as iron, copper, and nickel in the device manufacturing process. Processing is performed. As one of the gettering methods, there is a method in which a strained layer is formed by CVD growth of a polycrystalline silicon (polysilicon) film on the rear surface of the wafer, and heavy metal ions are captured using the strained layer as a gettering sink.

例えば、特許文献1には、エクストリンシックゲッタリング(EG)処理の具体例として、シリコンウェーハの裏面にポリシリコン層を形成することにより歪み層を形成し、この歪み層を捕獲拠点として重金属不純物を捕獲するというゲッタリングの処理が施されたエピタキシャルウェーハが記載されている。   For example, in Patent Document 1, as a specific example of extrinsic gettering (EG) processing, a strained layer is formed by forming a polysilicon layer on the back surface of a silicon wafer, and heavy metal impurities are formed using this strained layer as a trapping base. An epitaxial wafer that has been subjected to a gettering process of capturing is described.

以下、裏面に多結晶シリコン膜を備えたシリコンウェーハ(以下、「PBS(ポリバックシール)ウェーハ」とも記す)上にシリコンをエピタキシャル成長させる場合について説明する。   Hereinafter, a case where silicon is epitaxially grown on a silicon wafer having a polycrystalline silicon film on the back surface (hereinafter also referred to as “PBS (poly back seal) wafer”) will be described.

図1は、エピタキシャルウェーハの製造に用いられるエピタキシャル成長装置の構成例を示す平面図である。図1に示すように、エピタキシャル成長装置は、シリコンウェーハ上にエピタキシャル膜を成長させる反応室(プロセスチャンバー)1a、1bと、この反応室1a、1b内にウェーハを搬送するウェーハ移載室(トランスファーチャンバー)2と、前記反応室1a、1bとウェーハ移載室2との連絡部に設けられた仕切り可動機構(ゲートバルブ)3a、3bとを備えている。ウェーハ移載室2内には、仕切り可動機構3a、3bの設置位置の近傍からウェーハ移載室2内へ向けて窒素ガス(N2)を供給できるように、また反応室1a、1b内には、水素ガス(H2)を供給できるように構成されている。 FIG. 1 is a plan view showing a configuration example of an epitaxial growth apparatus used for manufacturing an epitaxial wafer. As shown in FIG. 1, the epitaxial growth apparatus includes reaction chambers (process chambers) 1a and 1b for growing an epitaxial film on a silicon wafer, and a wafer transfer chamber (transfer chamber) for transferring the wafers into the reaction chambers 1a and 1b. ) 2, and partition movable mechanisms (gate valves) 3 a and 3 b provided at the communication portion between the reaction chambers 1 a and 1 b and the wafer transfer chamber 2. In the wafer transfer chamber 2, nitrogen gas (N 2 ) can be supplied from the vicinity of the installation position of the partition movable mechanisms 3 a, 3 b toward the wafer transfer chamber 2, and in the reaction chambers 1 a, 1 b. Is configured to supply hydrogen gas (H 2 ).

図1に示した装置を用いて裏面に多結晶シリコン膜を備えたPBSウェーハの表面にシリコンをエピタキシャル成長させるには、先ず、窒素ガス、水素ガスを供給してウェーハ移載室2内および反応室1a、1b内をそれぞれ窒素雰囲気および水素雰囲気にしておく。続いて、ウェーハ移載室2内にPBSウェーハを搬入し、仕切り可動機構3a、3bを開いて、反応室1a、1b内に配置したウェーハ支持部材(サセプタ)上に前記ウェーハを載置する。次いで、仕切り可動機構3a、3bを閉止して反応室1内を所定温度まで昇温し、水素ガス雰囲気下でベーク処理を行う。その後反応室1a、1b内に水素ガスをキャリアガスとしてトリクロロシラン(SiHCl3)等の原料ガスを供給し、所定の温度、時間でエピタキシャル成長処理をする。エピタキシャル層が所定厚さに達した後、原料ガスの供給を停止し、キャリアガスのみの供給に切り替える。 In order to epitaxially grow silicon on the surface of a PBS wafer having a polycrystalline silicon film on the back surface using the apparatus shown in FIG. 1, first, nitrogen gas and hydrogen gas are supplied to the inside of the wafer transfer chamber 2 and the reaction chamber. The insides of 1a and 1b are made a nitrogen atmosphere and a hydrogen atmosphere, respectively. Subsequently, a PBS wafer is carried into the wafer transfer chamber 2, the partition movable mechanisms 3a and 3b are opened, and the wafer is placed on a wafer support member (susceptor) disposed in the reaction chambers 1a and 1b. Next, the partition movable mechanisms 3a and 3b are closed, the temperature in the reaction chamber 1 is raised to a predetermined temperature, and a baking process is performed in a hydrogen gas atmosphere. Thereafter, a source gas such as trichlorosilane (SiHCl 3 ) is supplied into the reaction chambers 1a and 1b using hydrogen gas as a carrier gas, and an epitaxial growth process is performed at a predetermined temperature and time. After the epitaxial layer reaches a predetermined thickness, the supply of the source gas is stopped and the supply is switched to the supply of the carrier gas only.

エピタキシャル成長処理が終了した後、仕切り可動機構3a、3bを開き、ウェーハ支持部材上に載置されたPBSウェーハを反応室1a、1b内からウェーハ移載室2内へ搬出する。続いて、ロードロック室(図示せず)を経てウェーハ移載室2から装置外へ搬出することにより、裏面に多結晶シリコン膜を備えたエピタキシャルウェーハが得られる。   After the epitaxial growth process is completed, the partition movable mechanisms 3a and 3b are opened, and the PBS wafer placed on the wafer support member is carried out from the reaction chambers 1a and 1b into the wafer transfer chamber 2. Subsequently, the wafer is transferred out of the apparatus from the wafer transfer chamber 2 through a load lock chamber (not shown), thereby obtaining an epitaxial wafer having a polycrystalline silicon film on the back surface.

ところで、本発明者が行った実験によれば、PBSウェーハ用いてエピタキシャル成長処理を施すと、PBSウェーハの裏面が白く曇ったような外観を呈する場合がある(以下、「裏面くもり」という)ことが判明した。裏面くもりが生じると、裏面外観不良となり、製品歩留りが低下してしまうことになる。   By the way, according to an experiment conducted by the present inventor, when an epitaxial growth process is performed using a PBS wafer, the back surface of the PBS wafer may appear white and cloudy (hereinafter referred to as “back surface cloudy”). found. If back surface clouding occurs, the back surface appearance will be poor and the product yield will be reduced.

これまで、裏面に多結晶シリコン膜を備えていない、通常のシリコンウェーハを用いたエピタキシャル成長処理においては、エピタキシャル成長処理後にウェーハ裏面にくもりが発生することが知られているが、多結晶シリコン膜表面にくもりが発生することについての報告はない。   Until now, in the epitaxial growth process using a normal silicon wafer that does not have a polycrystalline silicon film on the back surface, it is known that clouding occurs on the back surface of the wafer after the epitaxial growth process. There are no reports of cloudiness.

特開2003−188176号公報JP 2003-188176 A

本発明は、このような状況に鑑みてなされたものであり、裏面に多結晶シリコン膜を備えたシリコンウェーハ(PBSウェーハ)の上面にシリコンをエピタキシャル成長させる場合に、当該PBSウェーハにおける裏面くもりの発生を防止することができるエピタキシャルウェーハの製造方法の提供を目的とする。   The present invention has been made in view of such a situation, and when silicon is epitaxially grown on the upper surface of a silicon wafer (PBS wafer) having a polycrystalline silicon film on the back surface, the occurrence of backside clouding in the PBS wafer is generated. An object of the present invention is to provide an epitaxial wafer manufacturing method capable of preventing the above.

上記の課題を解決するため、本発明者は、エピタキシャル成長処理後のPBSウェーハの裏面くもりについて詳細に調査した。その結果、裏面くもりが発生しているエピタキシャルウェーハにおいては、ウェーハ裏面の外周に沿って帯状に面の粗い部分(ここでは、「裏面Halo」、または単に「Halo」と記す)が生じており、裏面くもりが強いウェーハでは、このHaloの幅が広く、ウェーハの内側まで入り込んでいることが観察された。   In order to solve the above-mentioned problems, the present inventor has investigated in detail the backside clouding of the PBS wafer after the epitaxial growth process. As a result, in the epitaxial wafer in which the backside clouding occurs, a rough portion of the surface (herein referred to as “backside Halo” or simply “Halo”) is formed along the outer periphery of the backside of the wafer, It was observed that the Halo width was wide in the wafer with a strong backside cloudiness and penetrated to the inside of the wafer.

図2は、裏面くもりが発生しているPBSウェーハについてのTMS(Texture Measurement System)評価結果の一例をスケッチした図である。PBSウェーハ4(裏面)の外周部近傍(同図中に符合aを付した部分)からウェーハ4の内側(符合b、cを付した部分)へ向けて裏面Haloが発生しており(面の粗さの程度は、a、b、cの順に弱まる)、これらの部分を中心に裏面くもりとして観察される。帯状に発生している裏面Haloの最も幅の広い部分(同図中に符合Hwを付した部分)をここではHalo幅という。なお、符合dを付した部分では概ね正常な状態が維持されている。   FIG. 2 is a diagram sketching an example of a TMS (Texture Measurement System) evaluation result for a PBS wafer on which backside clouding has occurred. A back surface Halo is generated from the vicinity of the outer peripheral portion of the PBS wafer 4 (back surface) (portion marked with a in the figure) toward the inside of the wafer 4 (portions marked with b and c) (the surface The degree of roughness becomes weaker in the order of a, b, and c), and these parts are observed as cloudy back surfaces. The widest portion of the back surface Halo that occurs in a strip shape (the portion marked with the symbol Hw in the figure) is referred to herein as the Halo width. In addition, in the part which attached | subjected the code | symbol d, the substantially normal state is maintained.

さらに、Halo発生部分を走査型電子顕微鏡(SEM)で観察したところ、後述する実施例に示すように、多結晶シリコンが粒成長していることが判明した。また、PBSウェーハの表面にエピタキシャル層を形成する前に実施する水素ベーク処理後にPBSウェーハの裏面(多結晶シリコン膜表面)を観察すると、裏面Haloが発生していることが確認された。   Furthermore, when the halo generation part was observed with the scanning electron microscope (SEM), it turned out that the polycrystalline silicon is growing as shown in the Example mentioned later. Moreover, when the back surface (polycrystalline silicon film surface) of the PBS wafer was observed after the hydrogen baking process performed before forming the epitaxial layer on the surface of the PBS wafer, it was confirmed that the back surface Halo was generated.

これらの調査結果から、裏面Haloの発生原因は、PBSウェーハ裏面の多結晶シリコンが、ウェーハの裏面に回り込んだ雰囲気ガス(H2)に晒された状態で熱処理されることにより、粒成長したことによるものと考えられる。 From these investigation results, the cause of the occurrence of the back surface Halo was that the polycrystalline silicon on the back surface of the PBS wafer was grain-grown by being heat-treated while being exposed to the atmospheric gas (H 2 ) that wraps around the back surface of the wafer This is probably due to this.

そこで、前記図1に示した構成を有するエピタキシャル成長装置を用いてPBSウェーハの表面側にシリコンエピタキシャル膜を形成する際に、ウェーハ移載室内のPBSウェーハを反応室内に搬送する直前における移載室内の圧力を反応室内の圧力よりも高めた状態で仕切り可動機構を開き、ウェーハ移載室内のシリコンウェーハを反応室内に搬送して、ウェーハ支持部材上にPBSウェーハを載置し、エピタキシャル処理を行ったところ、後述する実施例に示すように、PBSウェーハにおける裏面くもりの発生を防止することができた。さらに、反応室内の圧力とウェーハ移載室内の圧力の差(差圧)が67Pa〜266Pa(0.5torr〜2torr)の範囲内のとき、特に良好な結果が得られることを確認した。   Therefore, when the silicon epitaxial film is formed on the surface side of the PBS wafer using the epitaxial growth apparatus having the configuration shown in FIG. 1, the transfer chamber in the transfer chamber immediately before the PBS wafer in the wafer transfer chamber is transferred into the reaction chamber. The partition movable mechanism was opened in a state where the pressure was higher than the pressure in the reaction chamber, the silicon wafer in the wafer transfer chamber was transferred into the reaction chamber, the PBS wafer was placed on the wafer support member, and the epitaxial process was performed. However, as shown in Examples described later, it was possible to prevent the occurrence of backside clouding in the PBS wafer. Furthermore, it was confirmed that particularly good results were obtained when the difference between the pressure in the reaction chamber and the pressure in the wafer transfer chamber (differential pressure) was in the range of 67 Pa to 266 Pa (0.5 to 2 torr).

本発明は、前記の新たな知見に基づきなされたもので、下記のエピタキシャルシリコンウェーハの製造方法を要旨とする。   The present invention has been made on the basis of the above-mentioned new findings, and the gist thereof is the following method for manufacturing an epitaxial silicon wafer.

すなわち、エピタキシャル膜を成長させる反応室と、前記反応室と連通し前記反応室内にウェーハを搬送するウェーハ移載室と、前記反応室と前記移載室との連通部に設けられ反応室と移載室とのガスの流通を開放・閉止する仕切り可動機構とを備えたエピタキシャル成長装置を用い、裏面に多結晶シリコン膜を備えたシリコンウェーハの表面側にシリコンエピタキシャル膜を形成するエピタキシャルシリコンウェーハの製造方法であって、窒素ガス雰囲気とした前記移載室内の圧力を水素ガス雰囲気とした前記反応室内の圧力よりも高めた状態で前記可動機構を開放し、前記移載室内のシリコンウェーハを前記反応室内に搬送すると共に、前記移載室内の圧力と前記反応室内の圧力の差を利用して前記移載室内の窒素ガスを反応室内に供給し、反応室内に設けたウェーハ支持部材に対してシリコンウェーハの多結晶シリコン膜側が支持されるように前記シリコンウェーハを載置し、前記可動機構を閉止して前記反応室内への窒素ガスの供給を停止した後、シリコンウェーハ表面にシリコンエピタキシャル膜を形成することを特徴とするエピタキシャルシリコンウェーハの製造方法である。   Specifically, a reaction chamber for growing an epitaxial film, a wafer transfer chamber that communicates with the reaction chamber and transports a wafer into the reaction chamber, and a communication section between the reaction chamber and the transfer chamber are provided. Manufacture of epitaxial silicon wafers using a epitaxial growth apparatus equipped with a partition movable mechanism that opens and closes gas flow to and from the mounting chamber, and forms a silicon epitaxial film on the front side of a silicon wafer having a polycrystalline silicon film on the back surface In the method, the movable mechanism is opened in a state where the pressure in the transfer chamber in a nitrogen gas atmosphere is higher than the pressure in the reaction chamber in a hydrogen gas atmosphere, and the silicon wafer in the transfer chamber is reacted with the reaction In addition to being transported into the chamber, nitrogen gas in the transfer chamber is supplied into the reaction chamber using the difference between the pressure in the transfer chamber and the pressure in the reaction chamber. The silicon wafer is placed so that the polycrystalline silicon film side of the silicon wafer is supported on the wafer support member provided in the reaction chamber, and the movable mechanism is closed to supply nitrogen gas into the reaction chamber. An epitaxial silicon wafer manufacturing method characterized by forming a silicon epitaxial film on a silicon wafer surface after stopping.

本発明のエピタキシャルウェーハの製造方法において、前記反応室の圧力値に対する前記移載室の圧力値の差圧を67Pa〜267Pa(0.5torr〜2torr)の範囲内に調整することが望ましい。   In the method for producing an epitaxial wafer according to the present invention, it is desirable to adjust a differential pressure between the pressure value in the transfer chamber and the pressure value in the reaction chamber within a range of 67 Pa to 267 Pa (0.5 to 2 torr).

また、本発明のエピタキシャルウェーハの製造方法(前記の実施形態を含む)において、前記ウェーハ支持部材により前記シリコンウェーハの裏面側外周部をリング状に線接触支持またはリング状に面接触支持することが望ましい。   Further, in the epitaxial wafer manufacturing method of the present invention (including the above-described embodiment), the outer peripheral portion of the back surface of the silicon wafer may be supported in a ring-shaped line contact or in a ring-shaped surface contact manner by the wafer support member. desirable.

本発明のエピタキシャルウェーハの製造方法によれば、裏面に多結晶シリコン膜を備えたシリコンウェーハ(PBSウェーハ)の表面上にエピタキシャル層を形成したエピタキシャルウェーハを製造するに際し、当該PBSウェーハにおける裏面くもりの発生を防止することができる。   According to the epitaxial wafer manufacturing method of the present invention, when manufacturing an epitaxial wafer in which an epitaxial layer is formed on the surface of a silicon wafer (PBS wafer) having a polycrystalline silicon film on the back surface, Occurrence can be prevented.

エピタキシャルウェーハの製造に用いられるエピタキシャル成長装置の構成例を示す平面図である。It is a top view which shows the structural example of the epitaxial growth apparatus used for manufacture of an epitaxial wafer. 裏面くもりが発生しているPBSウェーハについてのTMS評価結果の一例をスケッチした図である。It is the figure which sketched an example of the TMS evaluation result about the PBS wafer which back surface cloudy has generate | occur | produced. 本発明のエピタキシャルシリコンウェーハの製造方法で使用するウェーハ支持部材の断面形状および使用方法を例示する図で、(a)はウェーハ載置前の状態を、(b)はウェーハ載置後の状態を表している。It is a figure which illustrates the cross-sectional shape and usage method of the wafer support member used with the manufacturing method of the epitaxial silicon wafer of this invention, (a) is the state before wafer mounting, (b) is the state after wafer mounting. Represents. 多結晶シリコン膜表面のSEMによる観察結果で、(a)はHalo発生部、(b)はウェーハセンター部である。The result of SEM observation of the surface of the polycrystalline silicon film, (a) shows the halo generation part, and (b) shows the wafer center part.

本発明のエピタキシャルシリコンウェーハの製造方法は、前記のとおり、エピタキシャル膜を成長させる反応室と、前記反応室内にウェーハを搬送するウェーハ移載室と、前記反応室と前記移載室との連通部に設けられた仕切り可動機構とを備えたエピタキシャル成長装置を用い、裏面に多結晶シリコン膜を備えたシリコンウェーハ(PBSウェーハ)の表面側にシリコンエピタキシャル膜を形成するエピタキシャルシリコンウェーハを製造することを前提としている。   As described above, the method for producing an epitaxial silicon wafer of the present invention includes a reaction chamber for growing an epitaxial film, a wafer transfer chamber for transporting the wafer into the reaction chamber, and a communication portion between the reaction chamber and the transfer chamber. It is assumed that an epitaxial silicon wafer that forms a silicon epitaxial film on the front side of a silicon wafer (PBS wafer) having a polycrystalline silicon film on the back surface is manufactured using an epitaxial growth apparatus equipped with a movable partition mechanism provided in It is said.

本発明の製造方法は、このエピタキシャルウェーハの製造方法を実施するに際し、窒素ガス雰囲気とした前記移載室内の圧力を水素ガス雰囲気とした前記反応室内の圧力よりも高めた状態で前記可動機構を開放し、前記移載室内のシリコンウェーハを前記反応室内に搬送すると共に、前記移載室内の圧力と前記反応室内の圧力の差を利用して前記移載室内の窒素ガスを反応室内に供給し、反応室内に設けたウェーハ支持部材に対してシリコンウェーハの多結晶シリコン膜側が支持されるように前記シリコンウェーハを載置し、前記可動機構を閉止して前記反応室内への窒素ガスの供給を停止した後、シリコンウェーハ表面にシリコンエピタキシャル膜を形成する方法である。   In the manufacturing method of the present invention, when the manufacturing method of the epitaxial wafer is carried out, the movable mechanism is operated in a state where the pressure in the transfer chamber in a nitrogen gas atmosphere is higher than the pressure in the reaction chamber in a hydrogen gas atmosphere. Open, transfer the silicon wafer in the transfer chamber into the reaction chamber, and supply nitrogen gas in the transfer chamber into the reaction chamber by utilizing the difference between the pressure in the transfer chamber and the pressure in the reaction chamber. The silicon wafer is placed so that the polycrystalline silicon film side of the silicon wafer is supported on the wafer support member provided in the reaction chamber, and the movable mechanism is closed to supply nitrogen gas into the reaction chamber. In this method, after stopping, a silicon epitaxial film is formed on the surface of the silicon wafer.

前記の図1を参照して本発明の製造方法を説明する。
本発明の製造方法において、窒素ガス雰囲気としたウェーハ移載室2内の圧力を水素ガス雰囲気とした反応室1a、1b内の圧力よりも高めた状態で仕切り可動機構3a、3bを開放するのは、可動機構3a、3bを開放したときに、移載室内の圧力と反応室内の圧力の差を利用してウェーハ移載室2内の窒素ガスを反応室1a、1b内に流入させることによって、反応室内に搬送したPBSウェーハ裏面への反応室内雰囲気ガス(H2)の回り込みを抑制し、ウェーハ裏面の多結晶シリコンの粒成長を抑えるためである。反応室1a、1b内に流れ込んだ窒素ガスが、ウェーハを支持部材に載せることによりウェーハと支持部材間に残留し、この残留窒素ガスが反応室内雰囲気ガス(H2)のPBSウェーハ裏面への回り込みを抑え、多結晶シリコンの粒成長を抑制していると推測される。
The manufacturing method of the present invention will be described with reference to FIG.
In the manufacturing method of the present invention, the partition movable mechanisms 3a and 3b are opened in a state where the pressure in the wafer transfer chamber 2 in the nitrogen gas atmosphere is higher than the pressure in the reaction chambers 1a and 1b in the hydrogen gas atmosphere. When the movable mechanisms 3a and 3b are opened, the nitrogen gas in the wafer transfer chamber 2 is caused to flow into the reaction chambers 1a and 1b by utilizing the difference between the pressure in the transfer chamber and the pressure in the reaction chamber. This is because the atmosphere gas (H 2 ) in the reaction chamber is prevented from flowing into the back surface of the PBS wafer conveyed into the reaction chamber, and the grain growth of polycrystalline silicon on the back surface of the wafer is suppressed. The nitrogen gas flowing into the reaction chambers 1a and 1b remains between the wafer and the support member by placing the wafer on the support member, and this residual nitrogen gas wraps around the reaction chamber atmosphere gas (H 2 ) to the backside of the PBS wafer It is estimated that the grain growth of polycrystalline silicon is suppressed.

ウェーハ移載室の圧力および反応室の圧力は、それぞれの室内に取り付けられた圧力センサー(図示せず)で測定することができる。   The pressure in the wafer transfer chamber and the pressure in the reaction chamber can be measured by a pressure sensor (not shown) attached to each chamber.

ウェーハ移載室と反応室の圧力差は後述する実施例に示すように、ウェーハ移載室内の圧力が反応室内の圧力より僅かでも高ければ、その分裏面くもりは改善される。   As shown in the examples described later, if the pressure in the wafer transfer chamber is slightly higher than the pressure in the reaction chamber, the back surface cloudiness is improved accordingly.

続いて、ウェーハ移載室2内のシリコンウェーハを前記反応室1a、1b内に搬送し、反応室内に設けたウェーハ支持部材に対してシリコンウェーハの多結晶シリコン膜側が支持されるように前記シリコンウェーハを載置した後、仕切り可動機構3a、3bを閉止して反応室内への窒素ガスの供給を停止する。このようにウェーハを載置することにより、後に反応室1a、1b内に原料ガスおよびドーパントガスを供給したとき、ウェーハ表面で反応が進行し、シリコンエピタキシャル膜が形成される。仕切り可動機構3a、3bを閉止するのは、ウェーハ移載室2からの窒素ガスの流入を遮断してウェーハ表面における窒化物の形成を防止するためである。   Subsequently, the silicon wafer in the wafer transfer chamber 2 is transferred into the reaction chambers 1a and 1b, and the silicon silicon side of the silicon wafer is supported by a wafer support member provided in the reaction chamber. After placing the wafer, the partition movable mechanisms 3a and 3b are closed to stop the supply of nitrogen gas into the reaction chamber. By placing the wafer in this manner, when the source gas and the dopant gas are supplied later into the reaction chambers 1a and 1b, the reaction proceeds on the wafer surface, and a silicon epitaxial film is formed. The reason why the movable partition mechanisms 3a and 3b are closed is to prevent the formation of nitride on the wafer surface by blocking the inflow of nitrogen gas from the wafer transfer chamber 2.

その後、シリコンウェーハ表面にシリコンエピタキシャル膜を形成する。この工程は、反応室内にキャリアガスと共に原料ガスおよびドーパントガスを供給し、通常行われている方法に準じて行えばよい。   Thereafter, a silicon epitaxial film is formed on the surface of the silicon wafer. This step may be performed according to a commonly performed method by supplying a source gas and a dopant gas together with a carrier gas into the reaction chamber.

本発明の製造方法においては、後述する実施例に示すように、前記反応室の圧力値に対する前記ウェーハ移載室の圧力値の差圧を67Pa〜266Pa(0.5torr〜2torr)の範囲内に調整することが望ましい。前記差圧が67Pa(0.5torr)より小さければ、ウェーハ移載室内の窒素ガスの反応室内への流入が弱く、前述の反応室内雰囲気ガス(H2)のPBSウェーハ裏面への回り込みを十分に抑制できない場合があり、裏面くもりが発生し易くなる。一方、差圧が266Pa(2torr)より大きいと、反応炉内での反応生成物の巻き上げによりパーティクルが発生し易く、ウェーハ表面のLPD個数が著しく増加する恐れがある。 In the production method of the present invention, as shown in the examples described later, the pressure difference between the pressure value in the wafer transfer chamber and the pressure value in the reaction chamber is within the range of 67 Pa to 266 Pa (0.5 to 2 torr). It is desirable to adjust. If the differential pressure is less than 67 Pa (0.5 torr), the flow of nitrogen gas into the reaction chamber in the wafer transfer chamber is weak, and the above-mentioned reaction chamber atmosphere gas (H 2 ) can sufficiently wrap around the backside of the PBS wafer. In some cases, it cannot be suppressed and clouding on the back surface is likely to occur. On the other hand, if the differential pressure is greater than 266 Pa (2 torr), particles are likely to be generated due to the reaction product being rolled up in the reaction furnace, and the number of LPDs on the wafer surface may be significantly increased.

本発明の製造方法において、ウェーハ支持部材によりシリコンウェーハの裏面側外周部をリング状に線接触支持またはリング状に面接触支持することとすれば、ウェーハと支持部材間に残留している窒素ガスをより長くとどめ、それにより雰囲気ガス(H2)のPBSウェーハ裏面への回り込みを抑えることができるので、PBSウェーハにおける裏面くもりの発生をより効果的に防止することができる。 In the manufacturing method of the present invention, if the outer peripheral portion of the back surface side of the silicon wafer is supported in a ring-shaped line contact support or a ring-shaped surface contact support by the wafer support member, the nitrogen gas remaining between the wafer and the support member Can be kept longer, thereby preventing the atmospheric gas (H 2 ) from wrapping around the back surface of the PBS wafer, so that it is possible to more effectively prevent the back surface clouding of the PBS wafer.

図3は、本発明のエピタキシャルシリコンウェーハの製造方法で使用するウェーハ支持部材(サセプタ)の断面形状および使用方法を例示する図で、(a)はウェーハ載置前の状態を、(b)はウェーハ載置後の状態を表している。図3に示すように、ウェーハ支持部材5の本体5aは円盤状で中央部の広範囲にわたって窪みを有している。支持部材5の本体5aには、支持部材5上に載置するPBSウェーハの高さ方向位置を調節するための複数の治具5bが上下動可能に取り付けられている。PBSウェーハ4は、ウェーハ支持部材5に対してシリコンウェーハ4a側を上方に向け、多結晶シリコン膜4b側で支持されるように載置される。   FIG. 3 is a view illustrating a cross-sectional shape of a wafer support member (susceptor) used in the method for manufacturing an epitaxial silicon wafer of the present invention and a method for using the wafer. FIG. The state after wafer mounting is shown. As shown in FIG. 3, the main body 5a of the wafer support member 5 has a disc shape and has a depression over a wide range in the center. A plurality of jigs 5b for adjusting the height direction position of the PBS wafer placed on the support member 5 is attached to the main body 5a of the support member 5 so as to be movable up and down. The PBS wafer 4 is placed so that the silicon wafer 4a side faces upward with respect to the wafer support member 5 and is supported on the polycrystalline silicon film 4b side.

図3(a)はPBSウェーハ4を支持部材5に載置する直前の状態で、PBSウェーハ4とウェーハ支持部材5の本体5aとの間には、ウェーハ移載室から反応室内に窒素ガス(N2)が流れ込み、反応室内の雰囲気ガス(H2)と混在した状態になっている。図3(b)はウェーハ支持部材5の治具5bが下降してPBSウェーハ4の外周部下側を支持部材5でリング状に線接触支持した状態を表している。PBSウェーハ4とウェーハ支持部材5の本体5aとの間には、窒素ガス(N2)と反応室内の雰囲気ガス(H2)とが閉じこめられた状態になっており、その外側からの雰囲気ガス(H2)の侵入が妨げられ、PBSウェーハにおける裏面くもりの発生をより効果的に防止することができるものと推測される。 FIG. 3A shows a state immediately before the PBS wafer 4 is placed on the support member 5. Between the PBS wafer 4 and the main body 5 a of the wafer support member 5, nitrogen gas ( N 2 ) flows in and is mixed with the atmospheric gas (H 2 ) in the reaction chamber. FIG. 3B shows a state in which the jig 5 b of the wafer support member 5 is lowered and the lower side of the outer peripheral portion of the PBS wafer 4 is line-contacted and supported in a ring shape by the support member 5. Between the PBS wafer 4 and the main body 5a of the wafer support member 5, nitrogen gas (N 2 ) and atmospheric gas (H 2 ) in the reaction chamber are confined, and atmospheric gas from the outside It is presumed that the penetration of (H 2 ) is hindered and the occurrence of backside clouding in the PBS wafer can be more effectively prevented.

図示した例では、PBSウェーハ4の外周部下側を支持部材5でリング状に線接触支持しているが、これに限らず、狭い幅をもたせたリング状の面でウェーハ外周部を面支持できるようなウェーハ支持部材を用いてもよい。   In the illustrated example, the lower side of the outer peripheral portion of the PBS wafer 4 is linearly supported by the support member 5 in a ring shape. Such a wafer support member may be used.

本発明のエピタキシャルシリコンウェーハの製造方法は上記のように特徴づけられるが、工程順に記述すると以下のとおりである。
(1)水素ガス雰囲気の反応室内に窒素ガスを供給する。
前述した本発明の製造方法では、移載室内の圧力と反応室内の圧力の差を利用して反応室内に窒素ガスを供給する。前述のように、窒素ガスの供給は、ウェーハを支持部材上に載置する前に行うことが必要である。
(2)裏面に多結晶シリコン膜付きのシリコンウェーハをウェーハ支持部材上に載置する。ウェーハ支持部材は、前記図3に例示した形状のものが望ましい。穴などの開口部のある支持部材では、ウェーハと支持部材間に雰囲気ガス(H2)が侵入し易いため残留窒素ガスが留まりにくく、裏面くもり防止効果が低下する。
(3)ウェーハを支持部材上に載置した後、窒素ガスの供給を停止し、水素ガスのみを供給する。
(4)水素ベーク処理をしてシリコンウェーハ表面の自然酸化膜を除去する。
(5)エピタキシャル成長処理を行い、シリコンウェーハ表面にエピタキシャル膜を形成させる。
The method for producing an epitaxial silicon wafer of the present invention is characterized as described above, and is described as follows in the order of processes.
(1) Supply nitrogen gas into a reaction chamber in a hydrogen gas atmosphere.
In the manufacturing method of the present invention described above, nitrogen gas is supplied into the reaction chamber using the difference between the pressure in the transfer chamber and the pressure in the reaction chamber. As described above, it is necessary to supply the nitrogen gas before placing the wafer on the support member.
(2) A silicon wafer with a polycrystalline silicon film on the back surface is placed on the wafer support member. The wafer support member preferably has the shape illustrated in FIG. In a support member having an opening such as a hole, atmospheric gas (H 2 ) easily enters between the wafer and the support member, so that residual nitrogen gas is difficult to stay and the effect of preventing back-up clouding is reduced.
(3) After placing the wafer on the support member, the supply of nitrogen gas is stopped and only hydrogen gas is supplied.
(4) Hydrogen bake treatment is performed to remove the natural oxide film on the silicon wafer surface.
(5) An epitaxial growth process is performed to form an epitaxial film on the silicon wafer surface.

前記図1に示した構成を有するエピタキシャル成長装置を用い、反応室内の圧力に対するウェーハ移載室内の圧力の差(差圧)を−133Pa〜532Torr(−1Torr〜4Toll)の範囲内で変更する実験を行った。なお、反応室内のウェーハ支持部材には、前記図3に示した支持部材(サセプタ)を使用した。   Using the epitaxial growth apparatus having the configuration shown in FIG. 1, an experiment for changing the pressure difference (differential pressure) in the wafer transfer chamber with respect to the pressure in the reaction chamber within the range of −133 Pa to 532 Torr (−1 Torr to 4 Torr). went. The support member (susceptor) shown in FIG. 3 was used as the wafer support member in the reaction chamber.

本実験で使用したシリコンウェーハの仕様およびエピタキシャル成長処理条件を以下に示す。
シリコンウェーハ仕様
直径:200mm、極性:p型、結晶方位:(100)
ウェーハ裏面仕様:PBS(Poly Back Seal)
多結晶シリコン厚み:0.8μm
エピタキシャル成長条件
水素ベーク温度 :1160℃
エピタキシャル成長温度 :1120℃
キャリアガス :水素ガス(H2
Si原料ガス :トリクロロシラン(SiHCl3
ドーパントガス :ジボラン(B26
エピタキシャル膜厚 :5μm
エピタキシャル膜抵抗率 :10Ωcm
The specifications of the silicon wafer used in this experiment and the epitaxial growth processing conditions are shown below.
Silicon wafer specifications
Diameter: 200 mm, polarity: p-type, crystal orientation: (100)
Wafer backside specification: PBS (Poly Back Seal)
Polycrystalline silicon thickness: 0.8μm
Epitaxial growth conditions
Hydrogen bake temperature: 1160 ° C
Epitaxial growth temperature: 1120 ° C
Carrier gas: Hydrogen gas (H 2 )
Si source gas: Trichlorosilane (SiHCl 3 )
Dopant gas: diborane (B 2 H 6 )
Epitaxial film thickness: 5 μm
Epitaxial film resistivity: 10 Ωcm

得られた各エピタキシャルシリコンウェーハについて、ウェーハ裏面(多結晶シリコン膜表面)で観察されるHalo幅、裏面くもりおよびウェーハ表面のLPD個数を調査した。   About each obtained epitaxial silicon wafer, the Halo width | variety observed by a wafer back surface (polycrystalline silicon film surface), back surface cloudiness, and the number of LPD of a wafer surface were investigated.

調査結果を表1に示す。各条件とも5枚のウェーハについての評価の結果である。なお、表1において、「差圧」とは、「移載室内の圧力」−「反応室内の圧力」であり、差圧を表す数値に付した「−」は、反応室内の圧力の方がウェーハ移載室内の圧力よりも高いことを意味する。   The survey results are shown in Table 1. Each condition is a result of evaluation on five wafers. In Table 1, “differential pressure” means “pressure in the transfer chamber” − “pressure in the reaction chamber”, and “−” added to a numerical value representing the differential pressure indicates that the pressure in the reaction chamber It means that it is higher than the pressure in the wafer transfer chamber.

表1に示した「Halo幅」、「裏面くもり」および「LPD個数」についての評価の基準を表2に示す。Halo幅および裏面くもりについては、蛍光灯の照明下で目視観察により調査した。LPD個数については、LPD測定器(Tencor社製、Surfscan 6220)により測定した。また、得られたウェーハの一部については、走査型電子顕微鏡(SEM)により多結晶シリコン膜表面の観察を行った。   Table 2 shows the evaluation criteria for “Halo width”, “back surface cloudiness” and “LPD number” shown in Table 1. The Halo width and backside clouding were examined by visual observation under the illumination of a fluorescent lamp. The number of LPDs was measured with an LPD measuring device (Surfscan 6220, manufactured by Tencor). Further, the surface of the polycrystalline silicon film was observed with a scanning electron microscope (SEM) for a part of the obtained wafer.

表1に示したように、反応室内の圧力の方がウェーハ移載室内の圧力よりも高いか(条件1)、または同じである(条件2)場合にくらべて、ウェーハ移載室内の圧力の方が反応室内の圧力よりも高い(条件3〜条件10)場合は、Halo幅および裏面くもりの改善が認められた。ただし、差圧が大きすぎると、LPD個数が増加した。   As shown in Table 1, when the pressure in the reaction chamber is higher than the pressure in the wafer transfer chamber (condition 1) or the same (condition 2), the pressure in the wafer transfer chamber When the pressure was higher than the pressure in the reaction chamber (Condition 3 to Condition 10), improvement in Halo width and backside clouding was observed. However, when the differential pressure was too large, the number of LPDs increased.

特に、差圧が67Pa(0.5Torr)〜266Pa(2Torr)(条件4〜条件7)の場合、Halo幅が狭く、裏面くもりは認められず、LPD個数も少なかった。   In particular, when the differential pressure was 67 Pa (0.5 Torr) to 266 Pa (2 Torr) (Condition 4 to Condition 7), the Halo width was narrow, no back surface clouding was observed, and the number of LPDs was small.

図4は、多結晶シリコン膜表面のSEMによる観察結果で、(a)はHalo発生部、(b)はウェーハセンター部である。この観察結果によると、裏面くもりのないウェーハセンター部では粒成長はみられないが、Halo発生部では粒成長していることがわかる。   FIGS. 4A and 4B are observation results of the surface of the polycrystalline silicon film by SEM. FIG. 4A shows a halo generation part and FIG. 4B shows a wafer center part. According to this observation result, it can be seen that grain growth is not observed in the wafer center portion where there is no clouding on the back surface, but grain growth is occurring in the halo generation portion.

本発明のエピタキシャルシリコンウェーハの製造方法によれば、裏面に多結晶シリコン膜を備えたシリコンウェーハ(PBSウェーハ)の表面上にエピタキシャル層を形成したエピタキシャルシリコンウェーハの製造における裏面くもりの発生を防止することができる。   According to the method for manufacturing an epitaxial silicon wafer of the present invention, it is possible to prevent the occurrence of backside clouding in the manufacture of an epitaxial silicon wafer in which an epitaxial layer is formed on the surface of a silicon wafer (PBS wafer) having a polycrystalline silicon film on the back surface. be able to.

1a、1b:反応室(プロセスチャンバー)、
2:ウェーハ移載室(トランスファーチャンバー)、
3a、3b:仕切り可動機構(ゲートバルブ)、
4:PBSウェーハ、 4a:シリコンウェーハ、 4b:多結晶シリコン膜
5:ウェーハ支持部材、 5a:本体、 5b:治具
1a, 1b: reaction chamber (process chamber),
2: Wafer transfer chamber (transfer chamber),
3a, 3b: partition movable mechanism (gate valve),
4: PBS wafer, 4a: silicon wafer, 4b: polycrystalline silicon film 5: wafer support member, 5a: main body, 5b: jig

Claims (3)

エピタキシャル膜を成長させる反応室と、前記反応室と連通し前記反応室内にウェーハを搬送するウェーハ移載室と、前記反応室と前記移載室との連通部に設けられ反応室と移載室とのガスの流通を開放・閉止する仕切り可動機構とを備えたエピタキシャル成長装置を用い、裏面に多結晶シリコン膜を備えたシリコンウェーハの表面側にシリコンエピタキシャル膜を形成するエピタキシャルシリコンウェーハの製造方法であって、
窒素ガス雰囲気とした前記移載室内の圧力を水素ガス雰囲気とした前記反応室内の圧力よりも高めた状態で前記可動機構を開放し、
前記移載室内のシリコンウェーハを前記反応室内に搬送すると共に、前記移載室内の圧力と前記反応室内の圧力の差を利用して前記移載室内の窒素ガスを反応室内に供給し、
反応室内に設けたウェーハ支持部材に対してシリコンウェーハの多結晶シリコン膜側が支持されるように前記シリコンウェーハを載置し、
前記可動機構を閉止して前記反応室内への窒素ガスの供給を停止した後、
シリコンウェーハ表面にシリコンエピタキシャル膜を形成することを特徴とするエピタキシャルシリコンウェーハの製造方法。
A reaction chamber for growing an epitaxial film; a wafer transfer chamber for communicating with the reaction chamber; and a wafer transfer chamber for transferring a wafer into the reaction chamber; and a reaction chamber and a transfer chamber provided in a communication portion between the reaction chamber and the transfer chamber. An epitaxial silicon wafer manufacturing method using an epitaxial growth apparatus equipped with a partition movable mechanism that opens and closes gas flow to and from a silicon wafer having a polycrystalline silicon film on the back surface. There,
Opening the movable mechanism in a state where the pressure in the transfer chamber in a nitrogen gas atmosphere is higher than the pressure in the reaction chamber in a hydrogen gas atmosphere;
Conveying the silicon wafer in the transfer chamber into the reaction chamber, and using the difference between the pressure in the transfer chamber and the pressure in the reaction chamber to supply nitrogen gas in the transfer chamber into the reaction chamber,
The silicon wafer is placed so that the polycrystalline silicon film side of the silicon wafer is supported with respect to the wafer support member provided in the reaction chamber,
After closing the movable mechanism and stopping the supply of nitrogen gas into the reaction chamber,
An epitaxial silicon wafer manufacturing method comprising forming a silicon epitaxial film on a silicon wafer surface.
前記反応室の圧力値に対する前記移載室の圧力値の差圧を67Pa〜267Pa(0.5torr〜2torr)の範囲内に調整することを特徴とする請求項1に記載のエピタキシャルシリコンウェーハの製造方法。   2. The epitaxial silicon wafer according to claim 1, wherein a differential pressure between the pressure value in the transfer chamber and the pressure value in the reaction chamber is adjusted within a range of 67 Pa to 267 Pa (0.5 to 2 torr). Method. 前記ウェーハ支持部材により前記シリコンウェーハの裏面側外周部をリング状に線接触支持またはリング状に面接触支持することを特徴とする請求項1または請求項2記載のエピタキシャルシリコンウェーハの製造方法。   3. The method for producing an epitaxial silicon wafer according to claim 1, wherein the outer peripheral portion of the back surface side of the silicon wafer is supported by line contact in a ring shape or surface contact supported in a ring shape by the wafer support member.
JP2012102428A 2012-04-27 2012-04-27 Epitaxial silicon wafer manufacturing method Active JP5928133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012102428A JP5928133B2 (en) 2012-04-27 2012-04-27 Epitaxial silicon wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012102428A JP5928133B2 (en) 2012-04-27 2012-04-27 Epitaxial silicon wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2013232455A true JP2013232455A (en) 2013-11-14
JP5928133B2 JP5928133B2 (en) 2016-06-01

Family

ID=49678674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012102428A Active JP5928133B2 (en) 2012-04-27 2012-04-27 Epitaxial silicon wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP5928133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093195A1 (en) * 2014-12-08 2016-06-16 株式会社Sumco Method for manufacturing epitaxial silicon wafer and vapor phase growth device
JP6485536B1 (en) * 2017-12-28 2019-03-20 株式会社Sumco Epitaxial wafer manufacturing apparatus and manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148539A (en) * 1994-11-25 1996-06-07 Sharp Corp Semiconductor production system
JPH08330248A (en) * 1995-03-10 1996-12-13 Toshiba Corp Manufacture of semiconductor device
JPH1074817A (en) * 1996-08-30 1998-03-17 Kokusai Electric Co Ltd Method of processing wafer
JP2003257874A (en) * 2002-03-05 2003-09-12 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
WO2005001916A1 (en) * 2003-06-26 2005-01-06 Shin-Etsu Handotai Co., Ltd. Method for producing silicon epitaxial wafer and silicon epitaxial wafer
JP2006120865A (en) * 2004-10-21 2006-05-11 Sumco Corp Method of manufacturing semiconductor substrate, and semiconductor substrate
JP2009302397A (en) * 2008-06-16 2009-12-24 Nuflare Technology Inc Vapor growth method, and vapor growth device
JP2010135598A (en) * 2008-12-05 2010-06-17 Sumco Corp Method of manufacturing epitaxial wafer
JP2011009613A (en) * 2009-06-29 2011-01-13 Sumco Corp Epitaxial silicon wafer, and method of manufacturing the same
JP2011146506A (en) * 2010-01-14 2011-07-28 Sumco Corp Susceptor for vapor phase growth device, and vapor phase growth device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148539A (en) * 1994-11-25 1996-06-07 Sharp Corp Semiconductor production system
JPH08330248A (en) * 1995-03-10 1996-12-13 Toshiba Corp Manufacture of semiconductor device
JPH1074817A (en) * 1996-08-30 1998-03-17 Kokusai Electric Co Ltd Method of processing wafer
JP2003257874A (en) * 2002-03-05 2003-09-12 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
WO2005001916A1 (en) * 2003-06-26 2005-01-06 Shin-Etsu Handotai Co., Ltd. Method for producing silicon epitaxial wafer and silicon epitaxial wafer
US20060201413A1 (en) * 2003-06-26 2006-09-14 Tsuyoshi Nishizawa Method for producing silicon epitaxial wafer and silicon epitaxial wafer
JP2006120865A (en) * 2004-10-21 2006-05-11 Sumco Corp Method of manufacturing semiconductor substrate, and semiconductor substrate
JP2009302397A (en) * 2008-06-16 2009-12-24 Nuflare Technology Inc Vapor growth method, and vapor growth device
JP2010135598A (en) * 2008-12-05 2010-06-17 Sumco Corp Method of manufacturing epitaxial wafer
JP2011009613A (en) * 2009-06-29 2011-01-13 Sumco Corp Epitaxial silicon wafer, and method of manufacturing the same
JP2011146506A (en) * 2010-01-14 2011-07-28 Sumco Corp Susceptor for vapor phase growth device, and vapor phase growth device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627796A (en) * 2014-12-08 2020-09-04 胜高股份有限公司 Method for manufacturing epitaxial silicon wafer and vapor deposition apparatus
JP2016111226A (en) * 2014-12-08 2016-06-20 株式会社Sumco Manufacturing method of epitaxial silicon wafer, and vapor growth device
CN107251194A (en) * 2014-12-08 2017-10-13 胜高股份有限公司 The manufacture method and vapor phase growing apparatus of epitaxial silicon wafer
KR101907482B1 (en) 2014-12-08 2018-12-05 가부시키가이샤 사무코 Method for manufacturing epitaxial silicon wafer and vapor phase growth device
CN111627796B (en) * 2014-12-08 2023-09-26 胜高股份有限公司 Epitaxial silicon wafer manufacturing method and vapor deposition apparatus
DE112015005508B4 (en) 2014-12-08 2023-06-01 Sumco Corporation Method of manufacturing a silicon epitaxial wafer and a vapor phase growth device
WO2016093195A1 (en) * 2014-12-08 2016-06-16 株式会社Sumco Method for manufacturing epitaxial silicon wafer and vapor phase growth device
US10600651B2 (en) 2014-12-08 2020-03-24 Sumco Corporation Method for manufacturing epitaxial silicon wafer and vapor phase growth device
CN107251194B (en) * 2014-12-08 2020-06-05 胜高股份有限公司 Method for manufacturing epitaxial silicon wafer and vapor deposition apparatus
JP2019121642A (en) * 2017-12-28 2019-07-22 株式会社Sumco Manufacturing installation and manufacturing method of epitaxial wafer
KR20200066679A (en) 2017-12-28 2020-06-10 가부시키가이샤 사무코 Apparatus and manufacturing method of epitaxial wafer
US11414780B2 (en) 2017-12-28 2022-08-16 Sumco Corporation Apparatus and method for manufacturing epitaxial wafer
WO2019130826A1 (en) * 2017-12-28 2019-07-04 株式会社Sumco Apparatus and method for manufacturing epitaxial wafer
JP6485536B1 (en) * 2017-12-28 2019-03-20 株式会社Sumco Epitaxial wafer manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP5928133B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2018120731A1 (en) Manufacturing method for silicon epitaxial wafer
US8878244B2 (en) Semiconductor device having strained silicon film
US10978294B2 (en) Semi-insulating crystal, N-type semiconductor crystal and P-type semiconductor crystal
JP6824829B2 (en) Nitride semiconductor laminate manufacturing method, nitride semiconductor self-supporting substrate manufacturing method, and semiconductor device manufacturing method
TW201540861A (en) Method of growing Group-III nitride semiconductor and method of forming nitride crystal on substrate
TWI600076B (en) III-nitride substrate processing method and epitaxial substrate manufacturing method
TWI738207B (en) Methods and apparatus for metal silicide deposition
US20160020086A1 (en) Doping control methods and related systems
JP5928133B2 (en) Epitaxial silicon wafer manufacturing method
CN110383425B (en) Method for manufacturing epitaxial silicon wafer
JP5045955B2 (en) Group III nitride semiconductor free-standing substrate
US20070140828A1 (en) Silicon wafer and method for production of silicon wafer
JP6489321B2 (en) Epitaxial wafer manufacturing method
JP4699420B2 (en) Method for manufacturing nitride film
CN110010445B (en) Method for manufacturing support substrate for bonded wafer and method for manufacturing bonded wafer
TWI726344B (en) Method for manufacturing epitaxial silicon wafer and epitaxial silicon wafer
JP2013051348A (en) Epitaxial wafer and method for producing the same
JP2848404B2 (en) Method for forming group III-V compound semiconductor layer
JP2020023427A (en) Nitride crystal
US20230245885A1 (en) Semiconductor laminate and method for manufacturing semiconductor laminate
JP4696037B2 (en) Semiconductor device manufacturing method and semiconductor device
US11008671B2 (en) Nitride crystal
KR20100025728A (en) Method of manufacturing an epitaxial wafer and the epitaxial wafer applying the same and semiconductor device
JP2022124009A (en) Nitride crystal, semiconductor laminate, and method and apparatus for manufacturing the same
JP2020019699A (en) GaN crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250