JP2013224899A - 表面形状測定装置及び方法 - Google Patents

表面形状測定装置及び方法 Download PDF

Info

Publication number
JP2013224899A
JP2013224899A JP2012098000A JP2012098000A JP2013224899A JP 2013224899 A JP2013224899 A JP 2013224899A JP 2012098000 A JP2012098000 A JP 2012098000A JP 2012098000 A JP2012098000 A JP 2012098000A JP 2013224899 A JP2013224899 A JP 2013224899A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
interference
wavelength
intensity signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012098000A
Other languages
English (en)
Other versions
JP5849231B2 (ja
Inventor
Koji Fukui
厚司 福井
Hirotoshi Oikaze
寛歳 追風
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012098000A priority Critical patent/JP5849231B2/ja
Priority to US13/794,884 priority patent/US8947674B2/en
Publication of JP2013224899A publication Critical patent/JP2013224899A/ja
Application granted granted Critical
Publication of JP5849231B2 publication Critical patent/JP5849231B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

【課題】高速測定を可能とする表面形状測定装置及び方法を提供する。
【解決手段】本発明は、光源1からの射出光L1を参照光L2と測定光L3とに分割する分割部と、参照光L2を回折させる第1回折格子4と、第1回折格子4で回折した参照光L2を反射して第1回折格子4に再度入射させる反射部と、第1回折格子4に再度入射して再度回折した参照光L2Aと被検面8aで反射した測定光L3Aとが光干渉した干渉光L4を受光すると共に、干渉光L4における波長毎の干渉強度信号を検出する検出部(CCD11)と、第1回折格子4をその格子溝の方向と直交する方向に移動させる移動部(ピエゾステージ5)と、移動部による第1回折格子4の移動量に応じて変化する波長毎の干渉強度信号に基づいて干渉光L4における波長毎の干渉強度信号の位相を算出する算出部と、算出した波長毎の干渉強度信号の位相に基づいて被検面8aの高さを測定する測定部と、を備える。
【選択図】図1A

Description

本発明は、多波長位相シフトによる表面形状測定装置及び方法に関するものである。
従来の位相シフト法による表面形状測定を説明する模式図を図12に示す。
図12の光源100は可干渉性の高い単色の光である。光源100からの光は、ハーフミラー101で2分割され、被検面104と参照面102とにそれぞれ照射される。被検面104及び参照面102からのそれぞれの戻り光が、ハーフミラー101を介して重ね合わせされる。2つの戻り光が重ね合わされて生じた光干渉の干渉強度信号をCCD105で検出する。干渉強度信号は、参照面102側と被検面104側との光路長の差に応じて、正弦波状に変化する。1波長分の光路長の差で、1周期の正弦波となる。位相シフト法では、この正弦波の初期位相を検出することで、被検面104の高さを測定する。
位相シフト法における正弦波の初期位相の検出は以下のようにして行う。まず、ピエゾステージ103により参照面102をx軸方向に微動させる。この参照面102の微動により参照面102側の光路長を変化させ、そのときに得られる干渉信号強度の変化をCCD105で検出する。このようにすることで、初期位相を検出する。たとえば、参照面102を、光源100からの光の波長の1/8ずつ、4ステップで移動させる。このときのCCD105で検出される干渉信号強度をそれぞれI,I,I,Iとすると、初期位相φはtanφ=(I−I)/(I−I)で求められる。
被検面104及び参照面102からのそれぞれの戻り光の光路長差sは、得られた初期位相φからs=φ/2π×λで求められる。そして、被検面104の高さは光路長差sの半分となる。ただし、位相は0〜2π(rad)の範囲で折り返しが生じるため、測定可能な高さは、1/2波長分となり、高さ方向に非常に狭い範囲しか測定できない。測定範囲を広げるため、たとえば、複数の波長に切り替えて、各波長において位相シフト法を実施する多波長位相シフト法がある(特許文献1参照)。1つの波長では、1/2波長分の高さしか求められないが、複数の波長を切り替えることで、高さ方向に広い範囲を測定する。
米国特許第4832489号明細書
しかしながら、従来の方法では、多波長位相シフト法を実施する際の参照面102の走査量を波長に合わせて変える必要がある。このため、用いる波長の数に応じて異なる走査量の走査を繰り返す必要がある。従って、高さ方向に広い測定範囲を得るために多くの波長を採用すると、測定時間が増加するという課題がある。
本発明は、上記課題を解決するもので、高さ方向に広い測定範囲を得るために多くの波長を用いても、高速な測定が可能な表面形状測定装置及び方法を提供することを目的とする。
前記目的を達成するために、本発明は以下のように構成する。
本発明の表面形状測定装置は、複数の波長を有する射出光を射出する光源と、
前記射出光を参照光と測定光とに分割する分割部と、
入射した前記参照光を回折させる第1回折格子と、
前記第1回折格子で回折した前記参照光を反射して前記第1回折格子に再度入射させる反射部と、
前記第1回折格子に再度入射して再度回折した前記参照光と被検物の被検面に照射されて反射した前記測定光とが光干渉した干渉光を受光すると共に、前記干渉光における波長毎の干渉強度信号を検出する検出部と、
前記第1回折格子をその格子溝の方向と直交する方向に移動させる移動部と、
前記第1回折格子の移動量に応じて変化した前記波長毎の干渉強度信号に基づいて前記干渉光における波長毎の干渉強度信号の位相を算出する算出部と、
前記算出部で算出した前記波長毎の干渉強度信号の位相に基づいて前記被検面の高さを測定する測定部と、を備える。
また、本発明の表面形状測定装置は、複数の波長を有する射出光を射出する光源と、
前記射出光を参照光と測定光とに分割する分割部と、
入射した前記参照光を回折させる第1回折格子と、
前記第1回折格子で回折した前記参照光を回折させて前記第1回折格子に再度入射させる第2回折格子と、
前記第1回折格子に再度入射して再度回折した前記参照光と被検物の被検面に照射されて反射した前記測定光とが光干渉した干渉光を受光すると共に、前記干渉光における波長毎の干渉強度信号を検出する検出部と、
前記第2回折格子をその格子溝の方向と直交する方向に移動させる移動部と、
前記第2回折格子の移動量に応じて変化した前記波長毎の干渉強度信号に基づいて前記干渉光における波長毎の干渉強度信号の位相を算出する算出部と、
前記算出部で算出した前記波長毎の干渉強度信号の位相に基づいて前記被検面の高さを測定する測定部と、を備える。
また、本発明の表面形状測定方法は、複数の波長を有する射出光を射出し、
前記射出光を参照光と測定光とに分割し、
第1回折格子に入射した前記参照光を回折させ、
前記第1回折格子で回折した前記参照光を反射部で反射させて前記第1回折格子に再度入射させて再度回折させ、
前記第1回折格子で再度回折した前記参照光と被検物の被検面に照射されて反射した前記測定光とを光干渉させた干渉光を検出部で受光することで前記干渉光における波長毎の干渉強度信号を検出し、
前記第1回折格子をその格子溝の方向と直交する方向に移動させ、
前記第1回折格子の移動量に応じて変化した前記波長毎の干渉強度信号に基づいて前記干渉光における波長毎の干渉強度信号の位相を算出し、
算出した前記波長毎の干渉強度信号の位相に基づいて前記被検面の高さを測定する。
また、本発明の表面形状測定方法は、複数の波長を有する射出光を射出し、
前記射出光を参照光と測定光とに分割し、
第1回折格子に入射した前記参照光を回折させ、
前記第1回折格子で回折した前記参照光を第2回折格子で回折させて前記第1回折格子に再度入射させて再度回折させ、
前記第1回折格子で再度回折した前記参照光と被検面に照射されて反射した前記測定光とを光干渉させた干渉光を検出部で受光することで前記干渉光における波長毎の干渉強度信号を検出し、
前記第2回折格子をその格子溝の方向と直交する方向に移動させ、
前記第2回折格子の移動量に応じて変化した前記波長毎の干渉強度信号に基づいて前記干渉光における波長毎の干渉強度信号の位相を算出し、
算出した前記波長毎の干渉強度信号の位相に基づいて前記被検面の高さを測定する。
以上のように、本発明の表面形状測定装置及び方法によれば、高さ方向に広い測定範囲を得るために多くの波長を用いても、高速に測定を実施することができる。
本発明の第1実施形態に係る表面形状測定装置の模式図 第1実施形態に係る表面形状測定装置のCCD部の拡大模式図 第1実施形態の変形例に係る表面形状測定装置の模式図 第1実施形態に係る回折角の説明図 第1実施形態に係る回折格子での位相変調の説明図 第1実施形態に係る検出される位相のグラフを示す図 第1実施形態に係る位相結合後のグラフを示す図 第1実施形態に係る波長の逆数を横軸にとったグラフを示す図 第1実施形態に係る反射部の変形例を示す図 第2実施形態に係る表面形状測定装置の模式図 第2実施形態に係る検出部の説明図 第2実施形態の変形例に係る表面形状測定装置の模式図 第2実施形態の他の変形例に係る表面形状測定装置の模式図 従来の位相シフト干渉測定装置の構成を示す図
以下、本発明の実施形態について、図面を参照しながら説明する。
(第1実施形態)
図1Aは、第1実施形態における表面形状測定装置の模式図である。
第1実施形態における表面形状測定装置は、光源1と、ビームスプリッタ3と、第1回折格子4と、第2回折格子6と、CCD11とを備える。
光源1は、複数の波長を有する射出光L1を射出する。
ビームスプリッタ3は、分割部の一例として機能し、射出光L1を参照光L2と測定光L3とに分割する。
第1回折格子4は、入射した参照光L2を回折させる。
第2回折格子6は、反射部の一例として機能し、第1回折格子4で回折した参照光L2を反射して第1回折格子4に再度入射させる。再度入射して第1回折格子4で再度回折した参照光L2Aと被検物8の被検面8aに照射されて反射した測定光L3Aとは、ビームスプリッタ3を介して、光干渉して干渉光L4を形成する。
CCD11は、検出部の一例として機能し、干渉光L4における波長毎の干渉強度信号を検出する。
更に、第1実施形態における表面形状測定装置は、ピエゾステージ5と、位相検出部42と、被検面高さ算出部43とを備える。
ピエゾステージ5は、移動部の一例として機能し、第1回折格子4と連結されて、第1回折格子4をその格子溝の方向と直交する方向に移動させる。ピエゾステージ5による第1回折格子4の移動に応じて干渉光L4における波長毎の干渉強度信号が変化する。ステージ駆動部41は、ピエゾステージ5を駆動する駆動信号をピエゾステージ5に入力して、ピエゾステージ5を駆動させる。
位相検出部42は、算出部の一例として機能し、干渉光L4における波長毎の干渉強度信号の位相を算出する。より具体的には、位相検出部42は、ステージ駆動部41と同期してCCD11からの干渉強度信号を波長毎に取得し、波長毎に取得した干渉強度信号からそれぞれ位相を算出する。
被検面高さ算出部43は、測定部の一例として機能し、位相検出部42で算出した波長毎の干渉強度信号の位相に基づいて、被検物8の被検面8aの高さを測定する。
以下、第1実施形態における表面形状測定装置の各構成について、より詳細に説明する。
図1Aにおいて、光源1は、ハロゲンランプ、キセノンランプ、白色LED、又は、極短パルスレーザなどの広い帯域の波長の光を放射する白色光源である。光源1からは、点光源とみなせるように、十分に小さな開口より光束30が射出光L1として射出される。
レンズ2は、光源1とビームスプリッタ3との間に配置され、光源1の光束30を集光する光学部材である。
ビームスプリッタ3は、射出光L1の光束30を、参照光L2の光束31と測定光L3の光束35との2つに分割する分割部である。ビームスプリッタ3は、干渉強度を向上させるために、光束31と光束35の光強度がほぼ1対1となることが好ましい。この場合、ビームスプリッタ3として、分割比が1対1のハーフミラーを採用する。
レンズ23は、ビームスプリッタ3と第1回折格子4との間に配置される。レンズ23は、ビームスプリッタ3で反射した光束31(参照光L2)を平行光にするとともに、第1回折格子4からの光束34(参照光L2A)を集光する光学部材である。
第1回折格子4は、透過型の回折格子で、図1Aのz軸方向に直線状の格子溝を有するブレーズド回折格子であり、xy面内で光を一方向にのみ回折させる。ビームスプリッタ3で分割された一方の光束31が入射するように、かつ、格子溝の形成された面が光束31の光軸OA1に対してほぼ垂直となるように、第1回折格子4を配置する。第1回折格子4の表面は、反射防止膜が形成され表面反射を極力小さくする。たとえば、MgFなどの単層反射膜、又は、多層の反射防止膜、又は、波長以下の微細構造による反射防止膜を第1回折格子4の表面に形成する。なお、x軸、y軸、z軸は互いに直交する。また、xy面はx軸とy軸とで定義される平面、yz面はy軸とz軸とで定義される平面、zx面はz軸とx軸とで定義される平面を示す。そして、xy面、yz面、zx面は互いに直交する。
ピエゾステージ5は、ステージ駆動部41からの駆動信号により、第1回折格子4を、その格子溝の方向と直交する方向に微動させる。この微動により、光束31および第2回折格子6で反射した光束33に位相変調を加える。第1回折格子4の微動方向は、図1Aではy軸方向となる。
第2回折格子6は、反射型の回折格子で、図1Aのz軸方向に平行な直線状の格子溝を有するブレーズド回折格子である。第2回折格子6は、xy面内で光を一方向にのみ回折させる。第1回折格子4からの光束32は、第2回折格子6で回折し、光束33となる。光束33の光路は、光束32と同じで、進行方向が逆になる。
第1回折格子4と第2回折格子6とは、両者の格子溝方向は互いに平行、かつ、格子溝の形成された面が互いに平行となるように配置される。第1回折格子4の格子溝のピッチをpとすると、第2回折格子6の格子溝のピッチはp/2である。このような第1回折格子4と第2回折格子6との配置により、光束31に含まれるすべての波長において、光束32と光束33との光路は同じで、進行方向だけが逆になる。第1回折格子4と第2回折格子6との格子溝のピッチの関係については後述する。
レンズ7は、ビームスプリッタ3と被検面8aとの間に配置され、ビームスプリッタ3を透過した光束35(測定光L3)を平行光にして被検面8aに照射する。また、レンズ7は、被検面8aからの反射光(測定光L3A)を集光する。
被検物8の被検面8aは、レンズ7で平行光にされた光束35の光軸OA2に対して、ほぼ垂直に配置される。被検物8は、たとえば、パターンが形成された半導体素子、太陽電池、LED、又は、MEMSなどである。
CCD11は、2次元上に素子が配置された撮像カメラであり、光源1からの射出光L1の波長帯域に感度を有する。レンズ12がビームスプリッタ3とCCD11との間に配置されている。被検面8aとCCD11とは、レンズ7およびレンズ12により結像関係となるように配置される。CCD11は、光強度を波長毎に検出できるユニットを複数備える。CCD11の複数のユニットのうちの1つのユニット24は、例えば、図1Bに示すように、複数の波長フィルタ24a、24b、24c、24dをそれぞれの画素に配置して構成される。CCDの1つのユニット24で被検面8aの1つの場所を検出する。複数波長の検出を同時に行うためには、測定に用いる波長毎に波長フィルタを用いる必要がある。1つのユニット24には少なくとも2個以上のフィルタを配置する。なお、CCD11は、CMOSでもよい。
図1Aのレンズ12の焦点面は、ビームスプリッタ3を介して、レンズ2、レンズ23およびレンズ7の焦点面と重なり合う位置に配置される。
ピエゾステージ5は、第1回折格子4をその格子溝の方向と直交する方向へ移動させることで、透過する光束31の位相を変調させる。透過した光束32は、第2回折格子6で反射して光束33となって同じ光路を戻り、再び、第1回折格子4で位相変調される。
制御及び演算ユニット40は、表面形状測定装置を統合的に制御及び演算する装置である。制御及び演算ユニット40は、ステージ駆動部41と、位相検出部42と、被検面高さ算出部43とを備える。
以上のように構成された表面形状測定装置の動作を、以下に説明する。
光源1から射出光L1として射出された光束30は、レンズ2で集光されて、ビームスプリッタ3に入る。ビームスプリッタ3は、射出光L1の光束30を、参照光L2の光束31と測定光L3の光束35とに分ける。
測定光L3の光束35は、レンズ7で平行光にされて、被検面8aに照射される。被検面8aで反射した測定光L3Aである光束36は、レンズ7で集光され、ビームスプリッタ3で反射し、レンズ12を経てCCD11に入射する。
参照光L2の光束31は、レンズ23で平行光にされ第1回折格子4に入射する。第1回折格子4はブレーズド回折格子であるので、光束31をほぼ1方向に回折する。第1回折格子4で回折した光束31は、光束32として第2回折格子6に入射する。第2回折格子6に入射した光束32は、第2回折格子6で反射回折して、光束33として、再び、第1回折格子4に入射する。その後、光束33は、第1回折格子4で再度回折して、レンズ23に入射して、光束34としてレンズ23で集光される。
レンズ23とレンズ12とは互いの焦点面がビームスプリッタ3上で一致するように配置されているため、光束33がレンズ23で集光されて形成された光束34は、ビームスプリッタ3を透過して、レンズ12により平行光となる。また、レンズ23とレンズ7とも互いの焦点面が一致するように配置されているため、測定光L3Aの光束36と参照光L2Aの光束34とがビームスプリッタ3上で光干渉して干渉光L4を形成する。CCD11は、光束34と光束36との干渉光L4を受光する。CCD11の1つのユニット24(図1B参照)には、複数の特定の波長を通す波長フィルタが配置されている。このため、被検面8aの場所ごとに、干渉光L4における波長毎の干渉強度信号をCCD11で得る。また、レンズ7とレンズ12とにより、被検面8aとCCD11とは結像関係にあるので、CCD11上に被検面8aが投影される。このため、CCD11は、被検面8aの各位置における干渉光L4の波長毎の干渉強度信号を、各1つのユニット24にて検出する。
ここで、第1回折格子4と第2回折格子6とのそれぞれの構造、および、配置について説明する。
図2に示すように回折格子への入射角をθ、回折角をφ、波長をλ、回折格子ピッチをpとすると、回折方程式は、式1で表される。
sinθ+sinφ=n×λ/p ・・・(式1)
第1実施形態において、使用する回折次数nは1であるので、式1にn=1を代入すると、式2となる。
sinθ+sinφ=λ/p ・・・(式2)
ここで、図1Aの第1回折格子4の格子のピッチはp、入射角θは0(rad)、すなわち垂直入射なので、第2回折格子6での回折角φは、式3となる。
sinφ=λ/p ・・・(式3)
第2回折格子6の格子のピッチは、第1回折格子4のピッチpの半分、すなわちp/2である。また、第2回折格子6への入射角θはφであるので、第2回折格子6での回折角φは、式4で表される。
sinφ+sinφ=λ/(p/2) ・・・(式4)
式4に式3を代入すると、式5となる。
sinφ=λ/p ・・・(式5)
式3と式5とにより、φ=φとなるので、図1Aの第1回折格子4と第2回折格子6とにおいて、波長毎に回折角は異なるが、第2回折格子6の反射回折光(光束33)は、第2回折格子6への入射光(光束32)と同方向となり、波長毎に同じ光路を戻る。従って、第1回折格子4と第2回折格子6とで構成される参照面側からの反射光(光束34)を、入射光(光束31)と同一の光路で、平行光として図1Aのビームスプリッタ3に戻すことが可能である。
ここで、第1実施形態において、被検面8aの高さ測定の高速化に寄与するピエゾステージ5の作用について説明する。
第1回折格子4は、ステージ駆動部41の指令により、ピエゾステージ5によって格子溝の方向に直交する方向(y軸方向)に微動する。図3に示すように、第1回折格子4の移動量wにより、第1回折格子4を出る光束32の位相は、ηだけ変化する。このηを位相変調量とする。第1回折格子4の移動量wを1ピッチ分、すなわちpとすると、光束32の位相は2π(rad)変化する。よって、第1回折格子4の移動量wと位相変調量ηとは、η=2πw/pで表される。このように、位相変調量ηは波長に依存しない。また、4ステップの位相シフト法では、参照面側にπ/4(rad)毎の4つの位相変調を与え、そのときに得られる4つの強度値から高さ測定を実施する。たとえば、第1回折格子4を、p/8ピッチごとに、4ステップ、すなわち、p/8、2×p/8、3×p/8、4×p/8でそれぞれ移動させる場合を考える。ピエゾステージ5の移動量をw=p/8、2×p/8、3×p/8、4×p/8とすると、位相変調量はη=2π/8、2π×2/8、2π×3/8、2π×4/8(rad)となる。ただし、図1Aの第1回折格子4を出射した光束32は、第2回折格子6で反射して光束33として同じ光路を戻り、再び、第1回折格子4で位相変調されるため、光束34の位相変調量は2ηとなる。位相変調量ηは波長に依存しないため、波長それぞれにおいて第1回折格子4の移動量wに比例した正確な位相変調を行うことができる。
ここで、ピエゾステージ5と第1回折格子4とを用いて位相変調を実施することによる効果について説明する。
たとえば、白色光のような広帯域の射出光L1に対して、従来のように光路長を変化させて位相変調を行おうとする。すると、波長毎に光路長の変化量が異なるため、波長毎に個別に位相変調を実施する必要がある。このため、位相変調に時間がかかる。さらに、光路長を変化させて位相変調を行う場合、光路長の変化量を1波長程度に制御する必要があり、正確な調節が困難である。このため、波長毎に異なる光路長を付与して、個別に位相変調を実施すると、多くの時間を要する上に、波長毎の位相変調量にばらつきが生じる場合がある。
一方、第1実施形態のように、第1回折格子4を格子溝の方向に直交する方向に変位させることで、白色光のような広帯域の射出光L1に対して、同時に、全ての波長について同じ量の位相変調を実施できる。これを同時に行うことで、波長毎の位相変調量のばらつきを低減できる。また、第1回折格子4の移動量は、第1回折格子4のピッチ程度、たとえば、数十波長以上にできる。一般的に、ピエゾステージ5は、ヒステリシスがあるため、移動誤差が生じる場合がある。これに対して、第1実施形態では、従来の位相シフト干法のように参照面を1波長程度移動させるよりも、移動量を大きくとることができる。この結果、ピエゾステージ5の移動誤差を相対的に小さくすることができる。このため、従来よりも、波長毎の位相変調量のばらつきを低減できる。
次に、被検面高さ算出部43において、CCD11で得られた干渉強度信号の干渉信号強度から被検面8aの高さの検出を行う動作について、説明する。
ステージ駆動部41の指令によりピエゾステージ5を駆動させ、そのときのCCD11からの干渉強度信号をピエゾステージ5の駆動と同期して位相検出部42で取得する。そして、位相検出部42で取得した干渉強度信号に基づき、位相検出部42にて、位相検出を行う。
位相検出をする際に、第1回折格子4の移動量wを、w=p/8、2×p/8、3×p/8、4×p/8と、4ステップ動かすとする。このときの、それぞれの移動量wでの波長λでの干渉強度信号をI、I2、3、とする。すると、波長λにおける干渉強度信号の位相φλは、式6で得られる。
φλ=atan(I−I)/(I−I) ・・・(式6)
これを波長毎に算出し、波長λと位相φとの関係を得る。ただし、位相φは0〜2π(rad)で折り返すので、得られる位相φの位相データは、図4に示すように、横軸に波長(nm)を取り、縦軸に位相φ(rad)を取ると、0〜2π(rad)で折り返すグラフとなる。図4では、位相0〜2π(rad)で折り返されているが、容易に繋ぎ合わせることができる。図4の位相データにおいて位相のつなぎ合わせを行うと、図5のグラフとなる。位相の繋ぎ合わせは、たとえば、図4のグラフの右側から左側へ、隣接するデータ間で、πrad以上の位相差があるとき、−2πradを加え、−πrad以下の位相差があるときに+2πradを加える操作を図1Aの位相検出部42で行う。図5は、横軸が波長(nm)であり、縦軸が位相φ(rad)であって、図4のグラフにおいて、位相を繋ぎ合わせたグラフである。
次に、図1Aの位相検出部42で得られた位相から、被検面8aの高さを被検面高さ算出部43で計算する。
干渉強度信号は、ビームスプリッタ3から出射して第2回折格子6で反射した後にビームスプリッタ3に戻る光の光路長と、ビームスプリッタ3から出射して被検面8aでの反射した後にビームスプリッタ3に戻る光の光路長との差により変化する。1波長分の光路長差で、干渉強度信号の位相が2πradだけ変化することとなる。波長λでの干渉信号位相をφλとすると、光路長差hは、式7で得られる。
h=φλ×λ/2π ・・・(式7)
式7から、φλ/2π=h/λ であるので、横軸を波長λの逆数とし、縦軸を位相φ/2πとして図5を変形させる。すると、図6に示すように、直線状のグラフとなる。図6のグラフの傾きを示す係数(傾き係数)が光路長差hとなるので、図6のデータに対して、たとえば、最小二乗法で傾き係数を図1Aの被検面高さ算出部43で求める。このようにして傾き係数を算出することで、光路長差hが得られる。反射光路であるから、被検面8aの高さは、光路長差hの1/2として被検面高さ算出部43で求めることができる。
ここで、第1実施形態に係る表面形状測定装置による測定時間について、従来と比較して説明する。
従来の測定では、波長を切り替える毎に参照面を高精度に走査する必要がある。図12のピエゾステージ103で、安定走査を行うためには、走査開始部分での非線形な動きを除く動作や、また、ピエゾステージ103の戻り操作が必要であり、測定時間が大幅に増加することとなる。たとえば、走査開始時での動作が安定するまでの時間を100msecとし、1ステップの移動と画像取得とに要する時間を30msecとする。そして、ピエゾステージ103の戻り時間を30msecとし、波長切り替えを4回とする。この場合、最終のピエゾステージ戻り時間を除いて、1回の測定に(100+30×4)×4+30×3=970msec必要となる。
一方、第1実施形態に係る表面形状測定装置による測定では、波長を切り替える必要が無いため、測定時間は(100+30×4)=220msecとなる。このように、第1実施形態に係る表面形状測定装置により測定時間を大幅に短縮することが可能である。
以上のように、第1実施形態の表面形状測定装置によれば、高さ方向に広い測定範囲を得るために多くの波長を用いても、高速に表面形状測定を実施することができる。
なお、第1実施形態では、図1Aの第1回折格子4で回折した光を元の光路に戻すために、反射型の第2回折格子6を用いている。一方で、第2回折格子6の代わりに、図7に示すように、第1回折格子4の直後に配置されたレンズ20と、レンズ20の焦点面に配置されたミラー21とを用いても良い。
図7のように構成すれば、第1回折格子4で回折した光束31は、レンズ20によって焦点面に集光する。この焦点面にミラー21の表面が配置されているので、光束31は、ミラー21の表面で反射して光束34となり、レンズ20に再び入射する。このとき、レンズ20の焦点面上に反射点があるので、レンズ20に入射する光束31とレンズ20から射出する光束34とは同じ光路を通る。このため、第1回折格子4に入射する光束31と、第1回折格子4から出射する光束34とは、共に光軸OA1に沿って同じ光路を通る。
このように、図1Aの第2回折格子6の代わりに図7のレンズ20とミラー21とを用いると、高次回折光による迷光がでない。ただし、光束34を元の光路(光束31の通った光路)に精度良く戻すのは、レンズ20とミラー21とを用いる場合よりも、図1Aの第2回折格子6を用いる場合の方が容易である。
(第2実施形態)
第2実施形態に係る表面形状測定装置について、図8を用いて説明する。第1実施形態に係る表面形状装置と共通する構成については、同じ符号を付して説明を省略する。
第2実施形態が第1実施形態と異なる点は、円筒レンズ22とレンズ7aとが、ビームスプリッタ3と被検面8aとの間に配置されている点、CCD11aが採用される点、及び、第3回折格子9と円筒レンズ10aとがレンズ12とCCD11aとの間に配置されている点である。これにより、図8では、被検面8aの測定を直線状に制限して、直線方向の測定の分解能を向上させる。
以下、各構成について説明する。
円筒レンズ22は、第1円筒レンズの一例として機能し、その円筒軸は、x軸方向に平行である。xy面内において、円筒レンズ22はレンズ作用を持たず、円筒レンズ22を通過する光束35は、レンズ7aによって被検面8a上に集光する。yz面内においては、円筒レンズ22はレンズ作用を持つ。これにより、yz面内においては、円筒レンズ22と、レンズ7aとにより、光束35は平行光として被検面8aにほぼ垂直に照射される。このように円筒レンズ22を配置することで、光束35は、被検面8a上に、z軸方向と平行な直線状に配列された集光スポットを形成する。この場合、被検面8aからの測定光L3A(光束36)は、レンズ7aと円筒レンズ22とを介して、ビームスプリッタ3上に集光し、その後、ビームスプリッタ3で反射して、レンズ12に入射する。レンズ12の焦点面がビームスプリッタ3上の光束36の集光位置と一致するように、レンズ12を配置する。これにより、レンズ12に入射した光束36は、平行光となって、レンズ12から出射する。このとき、光束36と光束34とは、ビームスプリッタ3で合波されて、干渉光L4となる。この干渉光L4が、レンズ12を介して第3回折格子9に入射する。
第3回折格子9は透過型の回折格子であり、ビームスプリッタ3とCCD11aとの間における干渉光L4の光路上に配置される。第3回折格子9の格子溝方向はz軸方向と平行である。xy面内において、第3回折格子9は、レンズ12からの干渉光L4を回折させる。なお、zx面内において、第3回折格子9は、干渉光L4に対して回折作用を奏さない。
円筒レンズ10aは、第2円筒レンズの一例として機能し、f−θレンズ機能を持つ円筒レンズであり、その円筒軸はz軸方向に平行である。この円筒レンズ10aは、xy面内において、第3回折格子9で回折して分光した干渉光L4を集光して、CCD11aに入射させる。円筒レンズ10aは、zx面内においてはレンズ作用を持たないため、レンズ12を出射した干渉光L4は平行光のままCCD11aに入射する。干渉光L4の集光スポットは、円筒レンズ10aの作用により、CCD11a上にz軸方向(第1方向)と平行に直線状に配列されるように形成される。この場合、干渉光L4を受光するためのCCD11aは、円筒レンズ10aの焦点面に配置される。このCCD11aは、図1BのCCD11のような波長フィルタを持つユニット構造ではなく、通常の2次元の画素のCCDである。なお、CCD11aは、CCDではなくCMOSでもよい。
図9に、波長λの干渉光L4におけるCCD11aへのxy面内での集光状態を示す。第3回折格子9で回折した干渉光L4は、波長毎に異なる角度で円筒レンズ10aに入射する。波長毎に異なる角度で入射した干渉光L4は、円筒レンズ10aのレンズ作用により、波長毎にCCD11a上の異なる位置に集光する。これにより、CCD11a上には、複数の直線状のスポットが形成される。これら複数の直線状の集光スポットの強度はCCD11aにてそれぞれ検出される。こうして、干渉光L4の波長毎の干渉強度信号はCCD11aにより検出される。なお、干渉光L4によるCCD11a上のスポットの位置は、円筒レンズ10aの焦点距離をf、第3回折格子9の格子のピッチをpとすると、光軸OA1からf×λ/pの位置となる。
仮に、円筒レンズ10aを用いずに、第3回折格子9のみを配置した場合、第3回折格子9で波長毎に分光した干渉光L4は、互いのスポットが重なってCCD11a上に結像されてしまう。CCD11a上で集光スポットが重なると、波長毎の干渉強度信号を分離して検出できない。このため、円筒レンズ10aを用いて直線状に配列された集光スポットを形成することで、CCD11a上において、干渉光L4における波長毎の集光スポットが重ならないようにする。
ただし、円筒レンズ10aと第3回折格子9とを上述のように配置した場合、CCD11a上には直線状に配列された集光スポットが形成される。仮に、円筒レンズ22を配置しなければ、被検面8aの面の情報を直線の情報として扱ってしまう。このため、被検面8a内での分解能が著しく低下する。これを防止するために、第2実施形態では円筒レンズ22を設けて、被検面8a上にも直線状に配列された集光スポットを形成し、分解能の低下を防止している。
第1実施形態(図1A及び図1Bの構成)では、被検面8aを面で測定できるため、一度に被検面8aの多くの領域を測定できる。ただし、図1Bに示すようにCCD11の複数の画素を1つのユニットとして波長別の検出を実施するため、分解能を高くすることができない場合がある。
一方、第2実施形態(図8の構成)では、被検面8aを直線状に測定することで、第1実施形態に比べて、高い分解能で測定を実施できる。さらに、第3回折格子9と円筒レンズ10aとを用いることで、第1実施形態のようにフィルタを用いる場合よりも、効率よく干渉光L4を波長毎に分けることができる。このため、第1実施形態よりも光効率が良くなり、図8のCCD11aでの検出精度が良くなる。
なお、第1、第2実施形態において、ビームスプリッタ3の厚みによる収差を補正するため、ビームスプリッタ3の反射面が被検物8側にあるときは、ビームスプリッタ3と被検物8との間に、ビームスプリッタ3と同じ厚みの厚み補正板を入れてもよい。また、同様に、ビームスプリッタ3の反射面が第1回折格子4側にあるときは、ビームスプリッタ3と第1回折格子4との間に、ビームスプリッタ3と同じ厚みの厚み補正板を入れてもよい。
なお、図1A及び図8では、ビームスプリッタ3での反射角を90°として図示している。しかしながら、干渉光L4等の光束およびレンズ12等の光学素子が互いに干渉しない範囲で、角度を変えても良い。
なお、図1A及び図8では、第1回折格子4を透過型とし、第2回折格子6を反射型としている。しかしながら、これらの代わりに、光路上でビームスプリッタ3から近い方から、反射型の第1回折格子と反射型の第2回折格子としてもよい。この場合、第1、第2回折格子の格子溝方向を平行に配置し、第2回折格子の格子溝のピッチを第1回折格子の格子溝のピッチの1/2とする。第1回折格子の格子溝のピッチに対して第2回折格子の格子溝のピッチを1/2とすることで、式4、式5より、第2回折格子で回折した光を再度第1回折格子に入射させることができる。
また、図1A及び図8の第2回折格子6を透過型とした場合に、第1、第2回折格子の格子溝方向を平行に配置し、第1回折格子と第2回折格子との格子溝のピッチを等しくし、更に、第2回折格子を透過回折した光を垂直反射するミラーを設けてもよい。この場合も、第2回折格子で回折した光を再度第1回折格子に入射させることができる。
なお、第1回折格子4と第2回折格子6の間に複数の回折格子を配置し、複数回回折させてもよい。ただし、回折格子は2枚の場合が、回折による光ロスを最も少なくできる。
なお、第1回折格子4及び第2回折格子6の断面形状を、のこぎり型(ブレーズド)型とすることで、必要な方向のみの回折光が得られ、光量のロスと、不要回折光による迷光とが最も少なくなる。回折格子の断面形状は、正弦型、あるは、矩形型でもよいが、正弦型、あるは、矩形型の場合は、不要回折光が生じるので、撮像部(CCD11又は11a)に不要回折光が入らないようにする部材を設ける必要がある。
なお、ビームスプリッタ3の反射を考慮したときに、第1回折格子4あるいは第2回折格子6と被検面8aとが互いで平行でないときは、被検面8aに傾斜があるように測定される。被検面8aに傾斜があると、高さ方向の走査範囲を広く取る必要があるので、被検面8aあるいは、第1回折格子4と第2回折格子6とを傾斜調整することで互いに平行となるようにして測定を行うのが望ましい。
なお、第1回折格子4の走査ステップとして4ステップを用いているが、3ステップ以上であれば、初期位相を検出できることが知られている。
また、第1回折格子4の移動部としてピエゾステージ5を採用しているが、高精度のサーボモータあるいは、コギングを低減したパルスモータによる微動ステージを移動部に用いても良い。
なお、第1実施形態及び第2実施形態では、位相変調を行うため、第1回折格子4をピエゾステージ5で微動させ、第2回折格子6を固定としている。しかしながら、回折格子間の相対的な変位量で位相変調は可能なため、それぞれの変形例として図1C及び図10にそれぞれ示すように、第1回折格子4を固定とし、ステージ駆動部41からの指示により第2回折格子6を移動部の一例であるピエゾステージ5で微動させるようにしてもよい。
なお、第2実施形態では、図8に示すようにレンズ7aと第1円筒レンズの一例としての円筒レンズ22とを用いて被検面8a上にz軸と平行な直線状の集光スポットを形成している。その代わりに、図11に示す第2実施形態の変形例のように、第1円筒レンズの他の例としての円筒レンズ22aと図1Aのレンズ7とを採用しても良い。図11の円筒レンズ22aは、その円筒軸が、z軸方向に平行である。xy面内において円筒レンズ22aはレンズ作用を持ち、レンズ7からの平行光は、円筒レンズ22aによって被検面8a上に集光される。一方、yz面内において円筒レンズ22aはレンズ作用を持たず、レンズ7からの平行光はそのまま被検面8a上に照射される。このように、円筒レンズ22aとレンズ7とを用いて、被検面8a上にz軸と平行な直線状の集光スポットを形成できる。
なお、図8の円筒レンズ10aに関しても、CCD11a上に直線状の集光スポットを形成できる光学部材であればよい。被検面8a上の直線状のスポット(図8の第1集光スポットS1)の長手方向(第1方向)と、第3回折格子9の格子溝の長手方向(第1方向)と、CCD11a上の直線状のスポット(図8の第2集光スポットS2)の長手方向(第1方向)と平行となるように、これらの光学部材を構成すればよい。
なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明は、半導体素子、太陽電池、LED、および、MEMSなどの表面形状計測定、又は、検査などに適用できる。
1 光源
2、7、7a、12、23 レンズ
3 ビームスプリッタ
5 ピエゾステージ
4 第1回折格子
6 第2回折格子
9 第3回折格子
8 被検物
8a 被検面
10a、22、22a 円筒レンズ
11、11a CCD
20 レンズ
21 ミラー
24 1つのユニット
30、31、32、33、34、35、36 光束
40 制御及び演算ユニット
41 ステージ駆動部
42 位相検出部
43 被検面高さ算出部
L1 射出光
L2、L2A 参照光
L3、L3A 測定光
L4 干渉光
S1 第1集光スポット
S2 第2集光スポット
OA1、OA2 光軸

Claims (8)

  1. 複数の波長を有する射出光を射出する光源と、
    前記射出光を参照光と測定光とに分割する分割部と、
    入射した前記参照光を回折させる第1回折格子と、
    前記第1回折格子で回折した前記参照光を反射して前記第1回折格子に再度入射させる反射部と、
    前記第1回折格子に再度入射して再度回折した前記参照光と被検物の被検面に照射されて反射した前記測定光とが光干渉した干渉光を受光すると共に、前記干渉光における波長毎の干渉強度信号を検出する検出部と、
    前記第1回折格子をその格子溝の方向と直交する方向に移動させる移動部と、
    前記第1回折格子の移動量に応じて変化した前記波長毎の干渉強度信号に基づいて前記干渉光における波長毎の干渉強度信号の位相を算出する算出部と、
    前記算出部で算出した前記波長毎の干渉強度信号の位相に基づいて前記被検面の高さを測定する測定部と、
    を備える表面形状測定装置。
  2. 複数の波長を有する射出光を射出する光源と、
    前記射出光を参照光と測定光とに分割する分割部と、
    入射した前記参照光を回折させる第1回折格子と、
    前記第1回折格子で回折した前記参照光を回折させて前記第1回折格子に再度入射させる第2回折格子と、
    前記第1回折格子に再度入射して再度回折した前記参照光と被検物の被検面に照射されて反射した前記測定光とが光干渉した干渉光を受光すると共に、前記干渉光における波長毎の干渉強度信号を検出する検出部と、
    前記第2回折格子をその格子溝の方向と直交する方向に移動させる移動部と、
    前記第2回折格子の移動量に応じて変化した前記波長毎の干渉強度信号に基づいて前記干渉光における波長毎の干渉強度信号の位相を算出する算出部と、
    前記算出部で算出した前記波長毎の干渉強度信号の位相に基づいて前記被検面の高さを測定する測定部と、
    を備える表面形状測定装置。
  3. 前記測定光を集光して前記被検面に第1方向と平行な直線状の第1集光スポットを形成する第1円筒レンズと、
    前記ビームスプリッタと前記検出部との間における前記干渉光の光路上に配置されると共に前記第1方向と平行な格子溝を有する第3回折格子と、
    前記第3回折格子で回折した前記干渉光を集光して前記検出部に前記第1方向と平行な直線状の第2集光スポットを形成する第2円筒レンズと、
    を更に備える請求項1又は2に記載の表面形状測定装置。
  4. 前記第1方向は、前記第1集光スポットの長手方向である、
    請求項3に記載の表面形状測定装置。
  5. 複数の波長を有する射出光を射出し、
    前記射出光を参照光と測定光とに分割し、
    第1回折格子に入射した前記参照光を回折させ、
    前記第1回折格子で回折した前記参照光を反射部で反射させて前記第1回折格子に再度入射させて再度回折させ、
    前記第1回折格子で再度回折した前記参照光と被検物の被検面に照射されて反射した前記測定光とを光干渉させた干渉光を検出部で受光することで前記干渉光における波長毎の干渉強度信号を検出し、
    前記第1回折格子をその格子溝の方向と直交する方向に移動させ、
    前記第1回折格子の移動量に応じて変化した前記波長毎の干渉強度信号に基づいて前記干渉光における波長毎の干渉強度信号の位相を算出し、
    算出した前記波長毎の干渉強度信号の位相に基づいて前記被検面の高さを測定する、表面形状測定方法。
  6. 複数の波長を有する射出光を射出し、
    前記射出光を参照光と測定光とに分割し、
    第1回折格子に入射した前記参照光を回折させ、
    前記第1回折格子で回折した前記参照光を第2回折格子で回折させて前記第1回折格子に再度入射させて再度回折させ、
    前記第1回折格子で再度回折した前記参照光と被検面に照射されて反射した前記測定光とを光干渉させた干渉光を検出部で受光することで前記干渉光における波長毎の干渉強度信号を検出し、
    前記第2回折格子をその格子溝の方向と直交する方向に移動させ、
    前記第2回折格子の移動量に応じて変化した前記波長毎の干渉強度信号に基づいて前記干渉光における波長毎の干渉強度信号の位相を算出し、
    算出した前記波長毎の干渉強度信号の位相に基づいて前記被検面の高さを測定する、表面形状測定方法。
  7. 前記被検面に照射される前記測定光は、第1円筒レンズにより第1方向と平行な直線状の第1集光スポットに集光されて前記被検面に照射され、
    前記干渉光は、前記第1方向と平行な格子溝を有する第3回折格子で回折した後に、第2円筒レンズにより前記第1方向と平行な直線状の第2集光スポットに集光されて前記検出部に入射する、請求項5又は6に記載の表面形状測定方法。
  8. 前記第1方向は、前記第1集光スポットの長手方向である、
    請求項7に記載の表面形状測定方法。
JP2012098000A 2012-04-23 2012-04-23 表面形状測定装置及び方法 Expired - Fee Related JP5849231B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012098000A JP5849231B2 (ja) 2012-04-23 2012-04-23 表面形状測定装置及び方法
US13/794,884 US8947674B2 (en) 2012-04-23 2013-03-12 Surface profile measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098000A JP5849231B2 (ja) 2012-04-23 2012-04-23 表面形状測定装置及び方法

Publications (2)

Publication Number Publication Date
JP2013224899A true JP2013224899A (ja) 2013-10-31
JP5849231B2 JP5849231B2 (ja) 2016-01-27

Family

ID=49379842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098000A Expired - Fee Related JP5849231B2 (ja) 2012-04-23 2012-04-23 表面形状測定装置及び方法

Country Status (2)

Country Link
US (1) US8947674B2 (ja)
JP (1) JP5849231B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075513A (ja) * 2014-10-03 2016-05-12 日本電信電話株式会社 光計測装置
TWI660164B (zh) * 2016-10-14 2019-05-21 荷蘭商Asml荷蘭公司 檢測基板之方法、度量衡設備及微影系統
JP7434303B2 (ja) 2018-10-12 2024-02-20 マジック リープ, インコーポレイテッド 運動追跡システムの正確度を検証するためのステージングシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6859098B2 (ja) * 2016-12-28 2021-04-14 株式会社キーエンス 光走査高さ測定装置
TWI792150B (zh) * 2018-06-29 2023-02-11 美商伊路米納有限公司 用於預測結構照明參數之方法、系統和非暫時性電腦可讀取媒體
CN110132125A (zh) * 2019-04-15 2019-08-16 中国科学院上海光学精密机械研究所 光栅剪切干涉光学元件缺陷检测装置与检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527659A (ja) * 1997-05-16 2001-12-25 マサチューセッツ インスティチュート オブ テクノロジー 格子ベース位相制御光学遅延線
JP2003315013A (ja) * 2002-04-25 2003-11-06 Fuji Electric Co Ltd 表面実装型電子部品の実装異常の検出方法
US20040042014A1 (en) * 2002-08-29 2004-03-04 Applied Materials Israel Ltd. Laser scanner with amplitude and phase detection
JP2010261776A (ja) * 2009-05-01 2010-11-18 Canon Inc 光波干渉計測装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832489A (en) 1986-03-19 1989-05-23 Wyko Corporation Two-wavelength phase-shifting interferometer and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527659A (ja) * 1997-05-16 2001-12-25 マサチューセッツ インスティチュート オブ テクノロジー 格子ベース位相制御光学遅延線
JP2003315013A (ja) * 2002-04-25 2003-11-06 Fuji Electric Co Ltd 表面実装型電子部品の実装異常の検出方法
US20040042014A1 (en) * 2002-08-29 2004-03-04 Applied Materials Israel Ltd. Laser scanner with amplitude and phase detection
JP2010261776A (ja) * 2009-05-01 2010-11-18 Canon Inc 光波干渉計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安野 嘉晃 Y. YASUNO: "回折格子による軸方向位相シフターを用いた位相シフト型低コヒーレンス干渉計 Phase-shifting low coheren", 2003年(平成15年)秋季 第64回応用物理学会学術講演会講演予稿集 第3分冊 EXTENDED ABSTRACTS, vol. 第3巻, JPN6015016672, 30 August 2003 (2003-08-30), JP, pages 891, ISSN: 0003108925 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075513A (ja) * 2014-10-03 2016-05-12 日本電信電話株式会社 光計測装置
TWI660164B (zh) * 2016-10-14 2019-05-21 荷蘭商Asml荷蘭公司 檢測基板之方法、度量衡設備及微影系統
JP7434303B2 (ja) 2018-10-12 2024-02-20 マジック リープ, インコーポレイテッド 運動追跡システムの正確度を検証するためのステージングシステム

Also Published As

Publication number Publication date
JP5849231B2 (ja) 2016-01-27
US20130278938A1 (en) 2013-10-24
US8947674B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
KR101819006B1 (ko) 광학 측정 장치
JP5849231B2 (ja) 表面形状測定装置及び方法
JP5394317B2 (ja) 回転対称非球面形状測定装置
JP4897572B2 (ja) 斜入射干渉計
TWI507760B (zh) 位移偵測裝置
JP5607392B2 (ja) 光干渉測定装置
JP6076589B2 (ja) 変位検出装置
JP4729423B2 (ja) 光学干渉計
KR20120099504A (ko) 표면 형상 측정 방법 및 표면 형상 측정 장치
JP5648961B2 (ja) 分光特性測定装置及びその校正方法
JP2009162539A (ja) 光波干渉測定装置
KR100531458B1 (ko) 광학식 변위측정장치
JP4852651B2 (ja) 多重化スペクトル干渉光コヒーレンストモグラフィー
JP5514641B2 (ja) レーザー干渉バンプ測定器
JP4721685B2 (ja) 形状測定方法及び形状測定装置
JP2013002934A (ja) 形状測定装置並びに深さ測定装置及び膜厚測定装置
JP5235554B2 (ja) 光学式変位測定装置
JP4880519B2 (ja) 干渉測定装置
JP2009293925A (ja) 光学検査装置の誤差補正装置
JP2009053148A (ja) 多波長干渉計
JP2007093288A (ja) 光計測装置及び光計測方法
JP5668566B2 (ja) 顕微鏡装置および観察方法
JP2006349382A (ja) 位相シフト干渉計
KR100531693B1 (ko) 광학식 변위측정장치
JP6161870B2 (ja) 位置検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150710

R151 Written notification of patent or utility model registration

Ref document number: 5849231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees