JP2013223289A5 - - Google Patents

Download PDF

Info

Publication number
JP2013223289A5
JP2013223289A5 JP2012092050A JP2012092050A JP2013223289A5 JP 2013223289 A5 JP2013223289 A5 JP 2013223289A5 JP 2012092050 A JP2012092050 A JP 2012092050A JP 2012092050 A JP2012092050 A JP 2012092050A JP 2013223289 A5 JP2013223289 A5 JP 2013223289A5
Authority
JP
Japan
Prior art keywords
phase
armature
linear motor
permanent magnet
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012092050A
Other languages
English (en)
Other versions
JP2013223289A (ja
JP5991841B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2012092050A priority Critical patent/JP5991841B2/ja
Priority claimed from JP2012092050A external-priority patent/JP5991841B2/ja
Publication of JP2013223289A publication Critical patent/JP2013223289A/ja
Publication of JP2013223289A5 publication Critical patent/JP2013223289A5/ja
Application granted granted Critical
Publication of JP5991841B2 publication Critical patent/JP5991841B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

円筒型リニアモータ
この発明は、リニアモータに関し、特に円筒型リニアモータに関する。
近年電子部品実装装置においては、実装速度向上と高精度化のため、ノズル駆動用のアクチュエータとして従来用いられてきたボールねじと回転型サーボモータの組合せから円筒型リニアモータへの置き換えが進んでいる。
円筒型リニアモータの構成としては、例えば特許文献1のように、可動子がパイプに複数の永久磁石を挿設して構成されたものがある。
また、例えば特許文献2のように、可動子に永久磁石を用いない構成のリニアモータがある。このものは、円筒型リニアパルスモータと呼ばれ、可動子表面は複数の細かいティースが形成されており、固定子内側にも同ピッチの細かいティースが形成されている。
特開2008−79358号公報 特開平7−39135号公報
上記特許文献1のものは、長いストロークが必要な場合、可動子を延ばす必要があり、それに伴い永久磁石の必要個数を増加させなければならずコストアップになるという問題点があった。
また、特許文献2のものでは、ステッピングモータの構成となり、可動子の位置決め精度はティースピッチに依存するために高精度化するためにはティースピッチを細かくする必要がある。そして、ステッピングモータの先端部にノズルを取付けた実装装置の場合、生産性を考慮すると、複数台密集して並べて配置する必要があり、このためにはリニアモータの断面(可動子の軸線に対して垂直方向に沿って切断したときの断面)形状が小さいことが重要である。
しかしながら、可動子表面に複数の細かいティースが形成された特許文献2のものでは、小型化しつつ高精度化することは困難であるという問題点があった。
この発明は、かかる問題点を解決することを課題とするものであって、長ストロークでも、安価で小型化が可能で、かつ高精度化が可能な円筒型リニアモータを提供することを目的とする。
この発明に係る円筒型リニアモータは、円筒形状の電機子と、この電機子の中心軸線上に電機子との相互作用により電機子に対して相対的に中心軸線に沿って往復動可能に設けられた界磁子とを備え、
前記電機子は、軸線方向に沿って間隔を空けて複数配置されたリング状の相コイルと、 各前記相コイル間に設けられたリング状の永久磁石からなる永久磁石部とを有し、
前記界磁子は、シャフトと、このシャフトの軸線に沿って間隔を空けて複数配置された磁性体からなるリング状の突極とを有し、
前記突極は、その総数がnを1以上の整数としたときに5nとし、前記突極と対向する前記相コイルは、その総数が6nとし、
三相の前記相コイルを、前記軸線方向に沿って、U+相、U−相、V+相、V−相、W+相、W−相の順序で少なくとも一巡配置されている
この発明に係る円筒型リニアモータによれば、電機子に相コイルと永久磁石部の両方を配置することにより、長ストローク化する場合には、界磁子の突極数を増加させればよく、永久磁石部の個数を増加させる必要がないので、コストが安価となる。
また、制御はステッピングモータ方式ではなく一般的なリニアサーボモータと同様の制御が可能であり、界磁子の位置決め精度は突極ピッチによらないために、小型化した場合でも高精度化が可能である。
この発明の実施の形態1における円筒型リニアモータを示す側断面図である。 図1の可動子を示す分解斜視図である。 図1の円筒型リニアモータのコイル磁束波形である。 この発明の実施の形態1における円筒型リニアモータの他のコイル磁束波形である。 この発明の実施の形態1における円筒型リニアモータのY結線の巻線図である。 この発明の実施の形態1における円筒型リニアモータの他のY結線の巻線図である。 この発明の実施の形態1における円筒型リニアモータのΔ結線の巻線図である。 この発明の実施の形態1における円筒型リニアモータの他のΔ結線の巻線図である。 この発明の実施の形態1における円筒型リニアモータの変形例を示す側断面図である。 この発明の実施の形態1における円筒型リニアモータの他の変形例を示す側断面図である。 この発明の実施の形態2における円筒型リニアモータを示す側断面図である。 この発明の実施の形態2における円筒型リニアモータの変形例を示す側断面図である。 この発明の実施の形態3における円筒型リニアモータを示す側断面図である。 この発明の実施の形態3における永久磁石部及びコイルを示す斜視図である。 この発明の実施の形態4における円筒型リニアモータを示す側断面図である。 この発明の実施の形態4における円筒型リニアモータの変形例を示す側断面図である。 この発明の実施の形態4における他の変形例を示す円筒型リニアモータを示す側断面図である。 この発明の実施の形態5における円筒型リニアモータを示す側断面図である。 この発明の実施の形態5における円筒型リニアモータの変形例を示す側断面図である。 この発明の実施の形態6における円筒型リニアモータを示す側断面図である。 この発明の実施の形態6における円筒型リニアモータの変形例を示す側断面図である。 この発明の実施の形態7における円筒型リニアモータを示す側断面図である。 図22の可動子を示す斜視図である。
以下、この発明の各実施の形態について図に基づいて説明するが、各図において、同一または相当部材、部位については、同一符号を付して説明する。
実施の形態1.
図1は、この発明の実施の形態1における円筒型リニアモータ(以下、リニアモータと略称する。)を示す側断面図である。
この実施の形態のリニアモータは、円筒形状のフレーム1と、このフレームの内壁面に固定された円筒形状の電機子である固定子2と、この固定子2の中心軸線上に配置され中心軸線上を往復動する界磁子である可動子3とを備えている。
固定子2は、軸線方向に沿って複数配置されたリング状の相コイル4と、この相コイル4の可動子3との対向面側を除いた三面を覆った電機子コアである固定子コア5と、隣接した固定子コア5間、及び両側にそれぞれ配置された複数のリング状の永久磁石からなる永久磁石部6とを備えている。
固定子コア5は、例えば鉄や電磁鋼板、圧粉鉄心などの磁性体で構成される。隣接する永久磁石部6は、互いに異極となるように軸線方向に着磁されている。
永久磁石部6は、永久磁石として推力特性を向上させるためにはネオジム磁石を使用するのがよく、低コストに構成するためにはフェライト磁石を使用するのがよい。
相コイル4は、冶具に巻きつけてワニスやモールドなどで一体化した後に冶具から外すことで製作してもよいし、ボビン状のインシュレータに銅線を巻きつけて製作してもよい。
固定子コア5の軸線方向の端部については、コギング力を低減するために他の形状であってもよい。
可動子3は、磁性体からなるシャフト9と、このシャフト9に軸線方向に間隔をあけて配置されたリング状の複数の突極10とから構成されている。
この可動子3は、図2に示すように、複数のリング状の磁性体である突極10を加工し、その中にシャフト9を通して接着もしくは溶接等で固定すればよい。
他には円柱形状の磁性体である素材から旋盤加工で製作してもよい。
シャフト9の先端部は、ノズルを取り付け電子部品の吸着等を行うために、磁気的に問題が発生しないように、非磁性体としてもよい。
円筒形状の固定子2は、焼きばめや接着等でフレーム1内に固定されている。
可動子3は、フレーム1の両端部に固定されたリニアブッシュ等の軸受11で直動自在に支持されている。
フレーム1は、永久磁石部6からの磁束がフレーム1へ漏れて特性が悪化するために、アルミニウムやSUSなどの非磁性体で構成した方がよい。
フレーム1の軸線方向の長さは、可動子3の直動方向の移動を確保するためには、固定子2の軸線方向長さに、可動子3のストローク長さS(図1参照)の2倍を加えた値以上が必要である。
次に、相コイル4と突極10との関係について説明する。
図1に示すように、例えば5個の突極10に対して6個の相コイル4が対向し、かつ各相の相コイル4の配置を固定子2の軸線に沿ってU+相U−相、V+相V−相、W+相W−相とした場合には、図3に示すコイル磁束波形が得られる。なお、各相の+相、−相は、銅線の巻回が逆方向を示す。
このとき、電気角360°は突極ピッチに相当する。電気角360°で三相巻線の磁束がバランスし、かつ120°位相がずれているため、一般的なリニアサーボモータと同様の制御で駆動できる。
また、突極10及び相コイル4のそれぞれの数は、突極10が5個に対して相コイル4が6個で上記と同等で、三相巻線の各相コイル4の配置を固定子2の軸線に沿ってU+相、V+相、W+相、U+相、V+相、W+相とした場合には、図4に示すコイル磁束波形が得られる。
三相巻線の磁束がバランスし、かつ120°位相がずれているので、この相コイル4の配置の場合も、同様に制御可能であるが、図3のものと比較してピーク値が増大しており、図4のものの相コイル4の配置の方が同じ電流でより大きな推力が得られる。
なお、何れの各相コイル4の配置も結線方法は、Y結線でもΔ結線でもよい。
相コイル4の配置がU+相U−相、V+相V−相、W+相W−相でY結線の場合の三相巻線の巻線図を図5に、相コイル4の配置がU+相、V+相、W+相、U+相、V+相、W+相でY結線の場合の三相巻線の巻線図を図6に示す。
さらに、相コイル4の配置がU+相U−相、V+相V−相、W+相W−相でΔ結線の場合の三相巻線の巻線図を図7に、相コイル4の相配置がU+相、V+相、W+相、U+相、V+相、W+相でΔ結線の場合の三相巻線の巻線図を図8に示す。
図7のものの場合、巻回方向が相コイル4毎に順次交互に変えて銅線の連続巻を行い、相コイル4間にリード線を接続すればよいので、結線数が低減する利点がある。
図8のものの場合は、6つの相コイル4を全て同じ方向に銅線の連続巻を行ない、相コイル4間にリード線を接続して結線するために銅線の結線作業が簡素化される。
上記構成のリニアモータによれば、固定子2に相コイル4及び永久磁石部6の両方が配置されており、長ストローク化する場合でも可動子3の突極10の数を増加させればよいのであって、永久磁石部6の個数は増加する必要性がなく、従ってリニアモータのコストが低減される。
また、制御は一般的なリニアサーボモータと同様であり、可動子3の位置決め精度は突極10のピッチによらないために小型化した場合でも高精度化が可能である。
また、パイプに複数の永久磁石部を挿設した従来の可動子であって、フレームから永久磁石部が出入りする構造とした場合には、隣接するリニアモータと磁気的に干渉する問題があるが、この実施の形態では可動子3に永久磁石部6を用いず、フレーム1から永久磁石部が出入りしないために隣接するリニアモータとの磁気的干渉が低減される。
なお、図9は、実施の形態1におけるリニアモータの変形例を示す側断面図である。
この例では、各固定子コア5は、コアバック部7と、リング状のティース部8とに分割されている。
また、図10は、実施の形態1におけるリニアモータの他の変形例を示す側断面図である。
この例でも、図9のものと同様に、各固定子コア5は、コアバック部7と、リング状のティース部8とに分割されているものの、ティース部8の外周面がフレーム1に面接触しており、図9のものと比較して、ティース部8の径方向の寸法が大きく、またコアバック部7の軸線方向の長さが短い。
何れにせよ、図1に示された固定子コア5は、内径側に凹部が形成されたリング形状であり、加工が困難であるが、図9及び図10に示した固定子コア5では、コアバック部7と、リング状のティース部8とが分割されており、固定子コア5の作製が簡単である。
実施の形態2.
図11は、この発明の実施の形態2におけるリニアモータを示す側断面図である。
このリニアモータでは、固定子コア5は、ティース部8のみで構成され、コアバック部7は無い。
また、図12は図11の変形例であり、この例では固定子コア5をコアバック部7のみで構成され、ティース部8は無い。各相コイル4間に永久磁石部6が介在しており、各相コイル4間は、永久磁石部6で画成されている。
他の構成は、実施の形態1のリニアモータと同じである。
実施の形態1の固定子コア5は、相コイル4の3面を囲んでおり、そのうち図1の固定子コア4の場合は加工が困難であり、図9及び図10のものでは、固定子コア5をコアバック部7とティース部8とに分割しており、部品点数が多い。
これに対して、この実施の形態では、固定子コア5のコアバック部7またはティース部8が削除され、部品点数が削減されて組立コストが低減し、またその削除した部位が相コイル4で占めることで、相コイル4の断面積を増大させることができる。
実施の形態3.
図13は、この発明の実施の形態3におけるリニアモータを示す側断面図、図14は、図13の固定子2の分解斜視図である。
このリニアモータでは、固定子2は、リング状の相コイル4とリング状の永久磁石部6とが交互に配列されて構成されており、実施の形態1及び2に示した固定子コア5は無い。
他の構成は、実施の形態1のリニアモータと同じである。
この実施の形態の固定子2では、固定子コア5が無いので、実施の形態2のものと比較してさらに部品点数が削減されて組立コストが低減し、また固定子コア5を削除した部位も相コイル4で占めることで、相コイル4の断面積を大幅に増大させることができる。
実施の形態4.
図15は、この発明の実施の形態4におけるリニアモータを示す側断面図である。
このリニアモータでは、固定子コア5は、コアバック部のみで構成されている。
相コイル4の軸線方向の両側には、互いに異極となるように軸線方向に着磁された永久磁石部6が配置され、相コイル4の径方向の外側には、径方向に着磁された永久磁石で構成された固定子コア5が配置されている。しかも、相コイル4の三面を囲む、永久磁石部6及び固定子コア5の各着磁方向は、各相コイル4に対して、全て集中、またはその逆方向(拡散)になるように軸線方向に沿って交互に配置されている。
他の構成は、実施の形態1のリニアモータと同じである。
実施の形態3のリニアモータでは、固定子コア5が無いので、固定子コア5が配置された場合と比較して永久磁石部6のパーミアンスが低下し、推力特性が低下する。
これに対して、この実施の形態では、固定子コア5は、リング状の軸線方向に着磁された永久磁石からなるコアバック部で構成され、磁性体からなる固定子コア5を用いたリニアモータと比較して総磁束量が増加し、推力特性が向上する。
図16は、実施の形態4のリニアモータの変形例を示す側断面図である。
この変形例では、コアバック部のみで構成された固定子コア5は、互いに異極となるように軸線方向に着磁された永久磁石である第1の永久磁石子12と、永久磁石である第2の永久磁石子13とから構成されている。第1の永久磁石子12、第2の永久磁石子13は、それぞれ隣接した永久磁石部6と同極になるように、着磁されている。
図17は、実施の形態4のリニアモータの他の変形例を示す側断面図である。
この変形例では、コアバック部のみで構成された固定子コア5は、互いに異極となるように軸線方向に着磁された永久磁石で構成されている。この固定子コア5の内側には、互いに外径が等しい、永久磁石部6と相コイル4とが交互に配置されている。固定子コア5とその内側に配置された永久磁石部6とは、互いに同極に着磁されている。
実施の形態5.
図18は、この発明の実施の形態5におけるリニアモータの側断面図である。
このリニアモータでは、軸線方向に着磁された永久磁石部6が固定子コア5の内周壁面に接触しており、永久磁石部6がフレーム1の内周壁面に接触された図15に示された実施の形態4のものと永久磁石部6の接触対象が異なる。
また、フレーム1が磁性材で構成されており、フレーム1が非磁性材で構成された図15のものと異なる。
この実施の形態では、図15に示したリニアモータと同様に、相コイル4に、径方向に着磁された、コアバック部のみで構成された固定子コア5の磁束、及び軸線方向に着磁された永久磁石部6の着磁方向が全て集中、もしくは全て逆方向(拡散)となるように軸線方向に沿って交互に配置されている。
このようなリニアモータでは、固定子コア5の外周部から出た磁束線は、隣接した固定子コア5へ戻るような磁気回路となる。
実施の形態1〜4のリニアモータでは、フレーム1は非磁性材で構成されており、フレーム1を通過してその外周部から出た磁束線は、再びフレーム1を通過して隣接した固定子コア5へ戻るような磁気回路となる。
一方、この実施の形態では、フレーム1が磁性材で構成されており、フレーム1の外周部から外部への磁束の漏れが低減されつつ、磁気回路のパーミアンスも向上し、推力特性を高潮させることが可能となる。
図19は、実施の形態5のリニアモータの変形例を示す側断面図である。
この変形例は、図18に示した、軸線方向に着磁された永久磁石部6が除かれており、各径方向に着磁された永久磁石からなり、コアバック部のみで構成された固定子コア5に対応して内側に相コイル4が配置されており、この例でも図18のものと同様の効果を得ることができる。
実施の形態6.
図20は、この発明の実施の形態6のリニアモータを示す側断面図である。
この実施の形態では、可動子3は、シャフト9と、シャフト9に所定の間隔をあけて固定された複数の突極10と、隣接した突極10間、及びシャフト9の両端部に設けられた樹脂材で構成された非磁性体14とから構成され、軸線方向の全域において外径寸法は同一である。
固定子2に関する構成は、図1に示したリニアモータと同じである。
実施の形態1〜5では、シャフト9の外径よりも突極10の外径が大きく、シャフト9の軸線方向のストローク長さS(図1参照)を確保するために、フレーム1の全長は、「固定子2の軸線方向の長さ」+「2S」以上にする必要性である。
これに対して、この実施の形態では、可動子3は、突極10間に非磁性体14を設けて軸線方向の全域において外径寸法を同一とすることで、フレーム1の全長は、固定子2の全長分あればよく、フレーム1の軸線方向の長さを実施の形態1〜5のものと比較して短くすることができる。
図21は、図20のリニアモータの変形例を示す側断面図である。
この例では、図20の可動子3が、非磁性管15で覆われている。
この非磁性管15を用いることで、非磁性管15は軸受11に対して円滑に摺動し、可動子3は、滑らかな直動が可能となり、また軸受11も長寿命化する。
実施の形態7.
図22は、この発明の実施の形態7のリニアモータを示す側断面図、図23は図22の可動子3を示す斜視図である。
この実施の形態では、磁性体からなるシャフト9に複数のリング状に凹部を形成し、この凹部に樹脂を溶かし込み固化して非磁性体14を形成している。非磁性体14間は、突極10を構成している。樹脂を溶かし込む方法としては、例えばレーザーやビームが挙げられる。
なお、非磁性体は、樹脂の他にアルミニウムやステンレス等で構成してもよい。
他の構成は、実施の形態6のリニアモータと同じである。
この実施の形態では、図20に示したリニアモータと同様の効果を得ることができるとともに、可動子3は、シャフト9の一部が突極10を兼ねており、部品点数を削減することができる。
なお、上記各実施の形態では、電機子である固定子2に対して界磁子である可動子3が直動する場合について説明したが、界磁子に対して電機子が直動する円筒型リニアモータであっても、この発明は適用することができる。
また、上記各実施の形態では、突極10の総数が5であり、この突極10と対向する相コイル4の総数が6の場合について説明したが、nを2以上の整数として突極10の数を5n、相コイル4の数を6nとすることで、それだけ推力を増大させるようにしてもよい。
また、上記各実施の形態では、シャフト9は磁性体で構成したが、非磁性体であってもこの発明は適用することができる。
また、実施の形態7のリニアモータの可動子3についても、図21に示した非磁性管15で可動子3の全周を覆ってもよい。
1 フレーム、2 固定子(電機子)、3 可動子(界磁子)、4 相コイル、5 固定子コア(電機子コア)、6 永久磁石部、7 コアバック部、8 ティース部、9 シャフト、10 突極、11 軸受、12 第1の永久磁石子、13 第2の永久磁石子、14 非磁性体、15 非磁性管。

Claims (10)

  1. 円筒形状の電機子と、
    この電機子の中心軸線上に電機子との相互作用により電機子に対して相対的に中心軸線に沿って往復動可能に設けられた界磁子とを備え、
    前記電機子は、軸線方向に沿って間隔を空けて複数配置されたリング状の相コイルと、 各前記相コイル間に設けられたリング状の永久磁石からなる永久磁石部とを有し、
    前記界磁子は、シャフトと、このシャフトの軸線に沿って間隔を空けて複数配置された磁性体からなるリング状の突極とを有し、
    前記突極は、その総数がnを1以上の整数としたときに5nとし、前記突極と対向する前記相コイルは、その総数が6nとし、
    三相の前記相コイルを、前記軸線方向に沿って、U+相、U−相、V+相、V−相、W+相、W−相の順序で少なくとも一巡配置されていることを特徴とする円筒型リニアモータ。
  2. 円筒形状の電機子と、
    この電機子の中心軸線上に電機子との相互作用により電機子に対して相対的に中心軸線に沿って往復動可能に設けられた界磁子とを備え、
    前記電機子は、軸線方向に沿って間隔を空けて複数配置されたリング状の相コイルと、 各前記相コイル間に設けられたリング状の永久磁石からなる永久磁石部とを有し、
    前記界磁子は、シャフトと、このシャフトの軸線に沿って間隔を空けて複数配置された磁性体からなるリング状の突極とを有し、
    前記突極は、その総数がnを1以上の整数としたときに5nとし、
    前記相コイルは、その総数が6nとし、
    三相の前記相コイルを、前記軸線方向に沿って、U+相、V+相、W+相、U+相、V+相、W+相の順序で少なくとも一巡配置されていることを特徴とする円筒型リニアモータ。
  3. 各前記永久磁石部間には、磁性体からなる電機子コアが設けられていることを特徴とする請求項1または2に記載の円筒型リニアモータ。
  4. 前記電機子コアは、前記永久磁石部に面接触した一対のティース部と、前記突極の反対側でティース部の端部同士を接続したコアバック部との少なくとも一方で構成されていることを特徴とする請求項に記載の円筒型リニアモータ。
  5. 前記電機子コアは、前記ティース部及び前記コアバック部とから構成されているとともに、前記ティース部及び前記コアバック部は分割されて構成されていることを特徴とする請求項に記載の円筒型リニアモータ。
  6. 前記電機子コアは、永久磁石からなるコアバック部のみで構成され、かつ隣接した前記電機子コア同士は、着磁方向が互いに異極となるように着磁されていることを特徴とする請求項に記載の円筒型リニアモータ。
  7. 前記界磁子は、前記突極間に非磁性体を設けて軸線方向の全域において外径寸法が同じであることを特徴とする請求項1〜の何れか1項に記載の円筒型リニアモータ。
  8. 前記界磁子は、磁性体で構成され、リング状の複数の凹部が軸線方向に沿って間隔をあけて形成されたシャフトと、この凹部に樹脂を溶かし込み固化された前記非磁性体とから構成され、前記シャフトと、前記凹部間の前記突極とは一体化されていることを特徴とする請求項に記載の円筒型リニアモータ。
  9. 前記界磁子は、全周が非磁性管で覆われていることを特徴とする請求項またはに記載の円筒型リニアモータ。
  10. 前記電機子は固定子であり、前記界磁子は可動子であることを特徴とする請求項1〜の何れか1項に記載の円筒型リニアモータ。
JP2012092050A 2012-04-13 2012-04-13 円筒型リニアモータ Active JP5991841B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092050A JP5991841B2 (ja) 2012-04-13 2012-04-13 円筒型リニアモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092050A JP5991841B2 (ja) 2012-04-13 2012-04-13 円筒型リニアモータ

Publications (3)

Publication Number Publication Date
JP2013223289A JP2013223289A (ja) 2013-10-28
JP2013223289A5 true JP2013223289A5 (ja) 2015-02-26
JP5991841B2 JP5991841B2 (ja) 2016-09-14

Family

ID=49593916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092050A Active JP5991841B2 (ja) 2012-04-13 2012-04-13 円筒型リニアモータ

Country Status (1)

Country Link
JP (1) JP5991841B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108776U (ja) * 1982-01-19 1983-07-25 群馬日本電気株式会社 リニアモ−タ
JPH0283683U (ja) * 1988-12-19 1990-06-28
JPH0739135A (ja) * 1993-07-20 1995-02-07 Oriental Motor Co Ltd 円筒形リニアパルスモータ
JP4207386B2 (ja) * 2000-12-28 2009-01-14 株式会社デンソー 磁石装備電機子をもつ誘導子型電気機械
JP2006187079A (ja) * 2004-12-27 2006-07-13 Hitachi Ltd 円筒型リニアモータ,電磁サスペンション及びそれを用いた車両
JP2008005665A (ja) * 2006-06-26 2008-01-10 Hitachi Ltd 円筒リニアモータ及びそれを用いた車両

Similar Documents

Publication Publication Date Title
US7963741B2 (en) Motor and fan device using the same
JP2000262034A (ja) シリンダ型リニア同期モータ
US9059626B2 (en) Electric machine with linear mover
TWI481160B (zh) 線性步進馬達及其製造方法
JP3862927B2 (ja) シリンダ型リニア同期モータ
WO2020079869A1 (ja) 筒型リニアモータ
US10103593B2 (en) Linear motor
JP2008263738A (ja) 回転電機
JP2011097756A (ja) ステッピングモータのステータヨークおよびステッピングモータ
JP5637458B2 (ja) リニアモータ
JP5991841B2 (ja) 円筒型リニアモータ
JP2012157182A (ja) 可変界磁型回転電機
JP2010098880A (ja) 円筒形リニアモータ
JP2007068326A (ja) リニアモータユニット及びその組み合わせ方法
JP2013138592A (ja) 磁石部材を備えるリニアモータ及びこの磁石部材の製造方法
JP2005051884A (ja) 環状コイル式永久磁石型リニアモータとこれを駆動源とするシリンジポンプ駆動装置
JP6340219B2 (ja) リニアモータ
JP2013223289A5 (ja)
JP2009005562A (ja) リニアモータ
JP2006129546A (ja) ムービングコイル形リニアモータ
JP2011125127A (ja) モータ
JP6121784B2 (ja) ブラシレス直流モータ、鏡筒及び撮像装置
WO2023042639A1 (ja) ロータの製造装置
JP2006074882A (ja) シリンダ形リニアモータの移動子
JP2017093171A (ja) コアレスリニアモータ、コアレスリニアモータ電機子およびその製造方法