JP2013211487A - 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュール - Google Patents

二次レンズ、太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュール Download PDF

Info

Publication number
JP2013211487A
JP2013211487A JP2012082048A JP2012082048A JP2013211487A JP 2013211487 A JP2013211487 A JP 2013211487A JP 2012082048 A JP2012082048 A JP 2012082048A JP 2012082048 A JP2012082048 A JP 2012082048A JP 2013211487 A JP2013211487 A JP 2013211487A
Authority
JP
Japan
Prior art keywords
secondary lens
light
lens
solar battery
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012082048A
Other languages
English (en)
Other versions
JP2013211487A5 (ja
Inventor
Kosuke Ueda
浩介 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012082048A priority Critical patent/JP2013211487A/ja
Priority to PCT/JP2013/059224 priority patent/WO2013147008A1/ja
Priority to CN201380017510.3A priority patent/CN104205620A/zh
Priority to US14/389,618 priority patent/US20150083193A1/en
Priority to TW102111574A priority patent/TWI523245B/zh
Publication of JP2013211487A publication Critical patent/JP2013211487A/ja
Publication of JP2013211487A5 publication Critical patent/JP2013211487A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

【課題】入射光を太陽電池セルの表面に効率よくかつ過度の集中を抑制した状態で導くことで、高い集光効率を実現する。
【解決手段】集光レンズからの集光束が入射される第1面11と、に対向して集光レンズからの集光束を太陽電池セルに向けて出射する第2面12とを有し、第1面11に設けられた光学屈折面H2によって入射光を太陽電池セルに導く二次レンズ10Aであって、第1面11の集光束の光軸21に垂直な方向の断面積が、集光レンズ側から太陽電池セル側に近づくに従って単調増加するとともに、第1面11の光軸に垂直な方向の面に対する傾斜角θが、集光レンズ側から太陽電池セル側に近づくに従って単調増加し、かつ、傾斜角θが単調増加する中で、傾斜角θが減少する変曲点14aを少なくとも1つ有する。
【選択図】図2A

Description

本発明は、集光レンズで集光した光を太陽電池セルに照射する集光型太陽光発電モジュールに用いられる二次レンズ、及びこの二次レンズを搭載した太陽電池実装体、集光型太陽光発電ユニット並びに集光型太陽光発電モジュールに関する。
太陽エネルギーを電力に変換する太陽光発電装置が実用化されているが、低コスト化を実現し、変換効率(発電効率)をさらに改善して大電力を得るために、集光レンズで集光した太陽光を集光レンズの受光面積より小さい太陽電池セルに照射して電力を取り出すタイプの集光型太陽光発電装置が実用化されている。
集光型太陽光発電装置は、太陽光を集光レンズで集光することから、太陽電池セルとしては、光学系で集光された太陽光を受光できる小さい受光面積を備えれば良い。つまり、集光レンズの受光面積より小さいサイズの太陽電池セルで良いことから、太陽電池セルのサイズを縮小することができ、太陽光発電装置において最も高価な構成物である太陽電池セルの占有量(使用量)を減らすことによりコストを低減することが可能となる。このような利点から、集光型太陽光発電装置は、広大な面積を利用して発電することが可能な地域などで、電力供給用に利用されつつある。
図9A及び図9Bは、従来例としての集光型太陽光発電モジュールの一例を示す説明図であり、図9Aは太陽光の入射面から見た概要を示す平面図、図9Bは図9AのC−C線断面図である。
従来例(例えば特許文献1参照)としての集光型太陽光発電装置100では、1次集光光学系としてのフレネル型の集光レンズ102で太陽光(入射光)Lcを屈折させ、その集光束を太陽電池セル103に照射しており、太陽電池セル103を保持するレシーバ基板104、レシーバ基板104を載置する保持プレート105、保持プレート105と集光レンズ102との間に配され、集光レンズ102を保持するモジュールフレーム106、太陽電池セル103を湿度等の環境から保護するための光透過性表面保護層107を備えている。
図9A及び図9Bに示される従来例の集光型太陽光発電モジュール100では、集光レンズ102で集光された光が光透過性表面保護層107を通して太陽電池セル103に直接照射される。この集光レンズ102で屈折される光はその波長成分によって、屈折される角度が異なるので、効率よく集光することが難しく、また集光効率を高めようとして集光レンズ102を単焦点レンズとした場合には、光が太陽電池セル103上に過度に集中することによって、太陽電池セル103や光透過性表面保護層107の長期信頼性や、太陽電池セル103の電気的特性のうち曲線因子(FF(Fill Factor))の低下を招くという問題があった。また集光レンズ102からの光を直接、太陽電池セル103で受光するため、太陽光の入射角のずれや、集光レンズ102と太陽電池セル103との相対的な位置ずれが生じた場合には、太陽電池セル103の出力が低下しやすいという課題もあった。さらに、集光レンズ102はガラス成型で作成することも可能であるが、一般的には、加工性を考慮して、PMMA(ポリメタクリル酸メチル)やシリコーン樹脂、ポリカーボネートなどの透光性樹脂材料が用いられるために温度によって屈折率が変化するので、周囲環境温度の変動によって太陽電池セル103に到達する光の量が変動し、出力が低下しやすいという課題もあった。
このような問題への解決策を提示している従来例として例えば特許文献2に示されている、二次ガラス付集光型太陽光発電装置が挙げられる。
図10は別の従来例の二次ガラス付集光型太陽光発電モジュール110の一例を図示したものである。図10に示された二次ガラス付集光型太陽光発電モジュール110は、図9A及び図9Bに示された従来例の集光型太陽光発電モジュール100に加え、ロッド型二次ガラス109を有している。これは、集光レンズ102で集光した光をロッド型二次ガラス109の上面で受けた後、ロッド型二次ガラス109の側面での全反射により光を導き、ロッド型二次ガラス109の下面を通して、太陽電池セル103に照射しようとするものである(図11参照)。
このような場合、ロッド型二次ガラス109内を集光束が通過するに伴い、光のミキシング効果が得られるので色収差や強度ムラの少ない光がロッド型二次ガラス109から出射され、結果としてFFの向上が期待できる。また、ロッド型二次ガラス109の入射面は出射面よりも広くとられているので、太陽光の入射角のずれや、集光レンズ102とロッド型二次ガラス109との位置ずれなどに対する許容度が向上する効果も得られる。
特開2003−174183号公報 特開2006−313809号公報
しかしながら、上記効果を得るためには、ロッド型二次ガラス109は相応の光路、すなわち高さを必要とし、例えば、特許文献2では、高さ40mmのロッド型二次ガラス109が例示されている。その結果、ロッド型二次ガラス109は、部材コストが高くなるという課題があった。また、ロッド型二次ガラス109の中心と太陽電池セル103の中心とを正確に位置合わせした上で、光軸が中心を通るように、太陽電池セル103上にロッド型二次ガラス109を立てなければならず、そのために、保持用部材を必要としたり、製造時に過度の工数を必要としたりするなど、コスト面で複数の課題があった。さらに加えて、ロッド型二次ガラス109の透過率や全反射時の損失や、光学的な出射面と太陽電池セル103との間隙における損失、などが起因して太陽電池セル103の出力電流が低下するという課題もあった。
本発明はこのような状況に鑑みてなされたものであり、入射光を太陽電池セルの表面(セル面)に効率よくかつ過度の集中を抑制した状態で導くことができ、高い集光効率を実現することのできる二次レンズ、この二次レンズを搭載した太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュールを提供することを目的とする。
上記目的を達成するため、本発明に係る二次レンズは、集光レンズで集光した光を太陽電池セルに照射する集光型太陽光発電モジュールに用いられ、前記集光レンズに対向して前記集光レンズからの集光束が入射される第1面と、前記太陽電池セルに対向して前記集光レンズからの集光束を出射する第2面とを有し、前記第1面に設けられた屈折面によって入射光を前記太陽電池セルに導く二次レンズであって、前記第1面の光軸に垂直な方向の断面積が、前記集光レンズ側から前記太陽電池セル側に近づくに従って単調増加するとともに、前記第1面の前記光軸に垂直な方向の面に対する傾斜角が、前記集光レンズ側から前記太陽電池セル側に近づくに従って単調増加し、かつ、前記傾斜角が単調増加する中で、前記傾斜角が減少する変曲点を少なくとも1つ有することを特徴としている。
上記構成によれば、ドーム形状の二次レンズの途中に傾斜が緩まる段差を設けることで、太陽電池セル表面に集光される光の集中を緩和することができる。すなわち、太陽電池セル表面に一様に光を照射することで、太陽電池セルの発電効率(変換効率)を向上させることができる。
また、本発明の二次レンズは、前記光軸方向から見た平面視において、前記変曲点を通る線が前記太陽電池セルの外側に位置していることを特徴としている。
変曲点を通る線(変曲線)を平面視において太陽電池セルの外側に位置させることで、太陽電池セル表面に集光される光の集中を緩和することができる。すなわち、太陽電池セル表面に一様に光を照射することで、太陽電池セルの発電効率(変換効率)を向上させることができる。
また、本発明の二次レンズは、前記第1面のうち前記集光レンズに対向する頂部から前記変曲点を通る線までの領域の前記光学屈折面の前記光軸に垂直な方向の断面形状が、前記集光レンズの光学屈折面の前記光軸に垂直な方向の断面形状と相似であることを特徴としている。
このように、第1面のうち集光レンズに対向する頂部から変曲点を通る線までの領域の光学屈折面の光軸に垂直な方向の断面形状を、集光レンズの光学屈折面の光軸に垂直な方向の断面形状と相似とすることで、集光レンズから出射された光を光軸方向に集中させるとともに、太陽電池セル表面に集光される光の集中を緩和することができる。すなわち、太陽電池セル表面に一様に光を照射することで、太陽電池セルの発電効率(変換効率)を向上させることができる。
また、本発明の二次レンズは、前記第1面のうち前記変曲点を通る線から前記第2面までの一部の領域の前記光学屈折面の前記光軸に垂直な方向の断面形状が、前記集光レンズの光学屈折面の前記光軸に垂直な方向の断面形状と非相似であることを特徴としている。
このように、第1面のうち変曲点を通る線から第2面までの一部の領域の光学屈折面の光軸に垂直な方向の断面形状を、集光レンズの光学屈折面の光軸に垂直な方向の断面形状と非相似とすることで、非相似部分の領域に入射した光を、平面視において光軸(光軸点)から離れる横方向に屈折させることができる。これにより、太陽電池セル表面に入射する光の分散と集中緩和の効果を得ることができるため、太陽電池セル表面に太陽光をより一様に照射することが可能となる。
また、本発明の二次レンズは、前記太陽電池セルは多接合型の太陽電池セルであり、前記第1面のうち前記変曲点を通る線から前記第2面までの領域が、短波長側に感度領域を有する太陽電池セルに対応する波長領域の光が入射しない構成とされている。ここで、「光が入射しない構成」とは、設計上そのような構成となっていることを意味しており、実際の使用環境によっては、周囲温度の変化や製造誤差等によって若干入射する場合もあるが、その程度の入射は許容範囲内と言える。すなわち、設計上、短波長域の光が入射する範囲よりも外側の位置に変曲点を形成している。これにより、短波長側に感度領域を有する太陽電池セルに対応する波長領域の光は、第1光学屈折面H2aに入射し、第2光学屈折面H2bには入射しない(厳密に言えば、ほとんど入射しない)。従って、短波長側に感度領域を有する太陽電池セル表面に入射される波長領域の光を効率良く集光し、太陽電池セルに光を照射することができる。
また、本発明の二次レンズは、多接合型の太陽電池セルであって、前記集光レンズの端から出射して前記変曲点の上部近傍に入射した特定波長の光が前記光軸と交差した後に前記太陽電池セルに到達し、かつ、前記集光レンズの端から出射して前記変曲点の下部近傍に入射した特定波長の光が前記光軸と交差する前に前記太陽電池セルに到達するように、前記変曲点の高さ位置が設定されている。
このように、特定波長の光については、変曲点の高さ方向の前後で入射後の光の進行方向を、光軸を横切る方向と横切らない方向とに分散することで、太陽電池セル表面の中心部への光の集中を緩和するとともに、太陽電池セル表面に一様に光を照射することができるので、発電効率(変換効率)を向上させることができる。
また、本発明の二次レンズは、前記特定波長が、650〜900nmであることを特徴としている。この構成によれば、中波長域の光を、中波長域に感度領域を有する太陽電池セル表面への中心部への光の集中を緩和し、中波長域に感度領域を有する太陽電池セル表面に一様に光を照射することができるので、発電効率(変換効率)を向上させることができる。
また、本発明の二次レンズは、前記変曲点から前記太陽電池セルまでの距離が、前記第1面の頂点から前記太陽電池セルまでの距離の半分以上であることを特徴としている。
このように、変曲点から太陽電池セルまでの距離を、第1面の頂点から太陽電池セルまでの距離の半分以上とすることで、集光効率が低下する手前側(頂点側)に変曲点を設けることができる。これにより、変曲点から第2面までの領域に入射される光の集中を緩和でき、太陽電池セルの面上に一様に光を照射することができるので、発電効率(変換効率)を向上させることができる。
また、本発明の二次レンズは、前記第1面と前記第2面との間に、前記入射光を前記太陽電池セルに導く上で光学的に寄与しない中間領域部を有する構成としてもよい。
このように、二次レンズの第1面(入射部)と第2面(出射部)との間に、光学的に寄与しない中間領域部を設けることで、太陽電池セル及びレシーバ基板と二次レンズとを接着固定する際に、光透過性充填材が二次レンズの側面、すなわち中間領域部に付着したとしても太陽電池セルの出力特性に影響を及ぼすことがない。
また、本発明の二次レンズは、前記第1面の表面に表面反射を抑制するための反射防止膜が設けられた構成としてもよい。
この構成によって、二次レンズに入射するときの表面反射による損失を低減できるので、太陽電池セルの出力を向上させることができる。
また、本発明の太陽電池実装体は、集光レンズによって集光された光が入射される二次レンズと、前記二次レンズに対向して配置され前記二次レンズから出射された光を光電変換する太陽電池セルと、前記太陽電池セルが実装されたレシーバ基板とを備える太陽電池実装体であって、前記二次レンズは、上記構成の二次レンズであり、前記二次レンズと前記太陽電池セルとの間に透光性樹脂材料が充填された充填部を備えることを特徴としている。
本発明に係る太陽電池実装体は、二次レンズと太陽電池セルとの間に透光性樹脂材料が充填されて充填部とされ、二次レンズと太陽電池セルとの間での空気層を排除することから、二次レンズと空気層との界面での光の反射を抑制できるので、二次レンズから出射する光を効率良く太陽電池セルへ導くことで、集光効率を高め、結果として発電効率(変換効率)を向上させることができる。
また、本発明の集光型太陽光発電ユニットは、光を集光する集光レンズと、前記集光レンズから入射された光を出射する二次レンズと、前記二次レンズから出射された光を光電変換する太陽電池セルとを備えた集光型太陽光発電ユニットであって、前記二次レンズは、上記構成の二次レンズであることを特徴としている。
本発明に係る集光型太陽光発電ユニットによれば、光軸付近で二次レンズに入射する光を効率良く集光し、また、光の過度の集中を緩和することができるので、太陽電池セルの集光効率(変換効率)を向上させることができる。
また、本発明の集光型太陽光発電モジュールは、上記構成の集光型太陽光発電ユニットを複数組み合わせて形成された集光型太陽光発電モジュールであって、前記集光型太陽光発電ユニットは、上記構成の集光型太陽光発電ユニットであることを特徴としている。
本発明の集光型太陽光発電モジュールによれば、太陽電池セルの発電効率(変換効率)を向上させることができる。
本発明の二次レンズによれば、二次レンズの途中に傾斜が緩まる段差を設けることで、太陽電池セル表面に集光される光の集中を緩和することができる。すなわち、太陽電池セル表面に一様に光を照射することで、太陽電池セルの発電効率(変換効率)を向上させることができる。
本発明の太陽電池実装体によれば、二次レンズと太陽電池セルとの間に透光性樹脂材料が充填されて充填部とされ、二次レンズと太陽電池との間での空気層を排除することから、二次レンズと空気層との界面での光の反射を抑制できるので、二次レンズから出射する光を効率良く太陽電池セルへ導くことで、集光効率を高め、結果として発電効率(変換効率)を向上させることができる。
本発明の集光型太陽光発電ユニットによれば、光軸付近で二次レンズに入射する光を効率良く集光し、また、光の過度の集中を緩和することができるので、太陽電池セルの発電光効率(変換効率)を向上させることができる。
本発明の集光型太陽光発電モジュールによれば、太陽電池セルの発電効率(変換効率)を向上させることができる。
本発明の集光型太陽光発電モジュールの構成を説明する概要図であり、太陽光の入射面から見た平面図である。 図1AのB−B線断面図である。 具体例1の二次レンズの形状を示す側面図である。 具体例1の二次レンズの形状を示す斜視図である。 集光レンズにより集光された太陽光が二次レンズに入射したときの太陽光の集光経路を示す説明図である。 比較例として、二次レンズを単純な略半球体の形状(ドーム形状)とした場合の太陽光の集光経路を示す説明図である。 太陽電池セル表面の光強度分布を3次元的に示す説明図である。 太陽電池セル表面の光強度分布を3次元的に示す説明図である。 トップセルに対応する短波長域の光が二次レンズに入射したときの光の集光経路を示す説明図である。 ミドルセルに対応する中波長域の光が二次レンズに入射したときの光の集光経路を示す説明図である。 距離D1を距離D2の半分以上とした場合と、半分以下とした場合との集光効率のシミュレーション結果を示す図表である。 具体例2の二次レンズの形状を示す斜視図である。 具体例2の二次レンズの形状を示す平面図である。 具体例2の二次レンズを矢符X1方向から見た形状を示す側面図である。 具体例2の二次レンズを矢符X2方向から見た形状を示す側面図である。 具体例1の二次レンズの第2光学屈折面に入射する太陽光の進行方向を示す説明図である。 具体例2の二次レンズの第2光学屈折面に入射する太陽光の進行方向を示す説明図である。 従来例としての集光型太陽光発電モジュールの一例を示す説明図であり、太陽光の入射面から見た概要を示す平面図である。 図9AのC−C線断面図である。 別の従来例の二次ガラス付集光型太陽光発電モジュールの一例を示す断面図である。 図10に示すロッド型二次ガラスによる集光及び屈折の状態を説明するための説明図である。
以下、本発明の実施の形態について、図面を参照して説明する。
図1A及び図1Bは、本発明の集光型太陽光発電モジュールの構成を説明する概要図であり、図1Aは太陽光Lcの入射面から見た平面図、図1Bは図1AのB−B線断面図である。また、図2A及び図2Bは、具体例1に係る二次レンズの形状を示し、図2Aは側面図、図2Bは斜視図である。ただし、図2Aの斜線は、後述する入射部の光学屈折面の領域を示している。
集光型太陽光発電モジュール1は、一次光学系である集光レンズ2、二次光学系である具体例1の二次レンズ10A、及び太陽電池セル3を一組として配置した集光型太陽光発電ユニット(以下、単にユニットともいう。)が、複数組配列されて構成されており、必要な電流と電圧を得るために、個々の太陽電池セルが適当な数だけ電気的に接続されている。1つのユニットは数十mmから数百mmの大きさである。
太陽電池セル3は、レシーバ基板4に搭載されている。保持プレート5は、レシーバ基板4を保持し、集光レンズ2と対向している。モジュールフレーム6は、集光レンズ2の光軸(集光型太陽光発電モジュール1の受光面である集光レンズ2に垂直な方向すなわち光学系の光軸)21上に太陽電池セル3が配置されるように、集光レンズ2と保持プレート5とを保持している。
二次レンズ10Aは、太陽電池セル3の中央上部に搭載され、集光レンズ2で集光された太陽光Lcを屈折させて太陽電池セル3に照射させる。
光透過性充填材7は、太陽電池セル3と二次レンズ10Aとの間に充填され、太陽電池セル3と、レシーバ基板4と、二次レンズ10Aとを固着する充填部とされている。すなわち、二次レンズ10Aと、太陽電池セル3と、レシーバ基板4と、透光性樹脂材料7とによって太陽電池実装体を構成している。
出力ケーブル8は、太陽電池セル3の出力を取り出すものである。
遮光板9は、太陽光Lcが集光レンズ2で集光されその集光された太陽光(集光束)Lcが出力ケーブル8やレシーバ基板4など、不要な場所に照射されないように遮光するものである。
太陽光Lcは、光軸21と平行な方向から入射し、集光レンズ2により屈折されて、太陽電池セル3の方向へと集光される。
集光レンズ2は、太陽光Lcを光軸21に向けて集光するように屈折する面が光学屈折面H1となる。また、集光レンズ2は、薄肉化による軽量化及び材料コストの低減、集光倍率の向上、ならびに成型の加工性を考慮して、本実施形態では同心円状のフレネルレンズとしている。この集光レンズ2を四角形に形成するとともにその4個を縦横に並べてモジュールフレーム6に保持させている。
集光レンズ2の材料としては、例えば、シリコーン樹脂が用いられる。ただし、集光レンズ2の材料には様々な透光性材料を用いることが可能であり、具体的には、PMMA(ポリメタクリル酸メチル樹脂)などのアクリル樹脂や、ポリカーボネート、ガラスなどを用いることができる。
太陽電池セル3としては、Si、GaAs、CuInGaSe、CdTe等からなる無機太陽電池セルや、色素増感型太陽電池セル等の有機太陽電池セルが用いられる。また、太陽電池セルの構造は、単一接合型セルや、モノリシック多接合型セルや、感度領域の異なる種々太陽電池セルを繋げたメカニカルスタックセル等が用いられる。ただし、集光型太陽光発電モジュールとしては、高効率性が特に求められることから、多接合型の太陽電池セル(例えば、InGaP/GaAs/Ge3接合型太陽電池セル)や、メカニカルスタックセルの使用が好ましい。本実施形態では、3接合型太陽電池セルを使用している。また、太陽電池セル3の外形サイズは、集光モジュールのひとつの目的である使用太陽電池材料の削減の観点から、できるだけ小さくする必要があり、数mmから20mm程度のものが使用される。
二次レンズ10Aは、集光レンズ2に対向して集光レンズ2からの集光束が入射光として入射する第1面を有する入射部11と、太陽電池セル3に対向して集光レンズ2から入射した集光束の入射光を出射させる第2面を有する出射部12(図2A参照)とを備え、入射部11への入射光を出射部12より出射させて太陽電池セル3に導く。このときの入射光の入射部11に入る面が光学屈折面H2(図2A参照)である。この二次レンズ10Aは、上記したように、太陽電池セル3の上面に光透過性充填材7を介して、太陽電池セル3及びレシーバ基板4と一体に接着固定されている。
二次レンズ10Aの入射部11と出射部12との間には、光学的に寄与しない中間領域部13が設けられているので、太陽電池セル3及びレシーバ基板4と二次レンズ10Aとを接着固定する際に、光透過性充填材7が二次レンズ10Aの側面、すなわち中間領域部13に付着したとしても太陽電池セル3の出力特性には何ら影響しない。また同様に、二次レンズ10Aを太陽電池セル3や光軸21に対して正確に位置合わせを行うために、ここではその具体的な構造については例示しないが、冶具やその他適当な部材を用いる場合にも、それらを中間領域部13に当接させて使用すればよい。これにより集光型太陽光発電モジュールの製造工程を簡略化することができ、より安価かつ確実に集光型太陽光発電モジュールの組付けを行うことができる。
なお、二次レンズ10Aの材料としては、太陽電池セル3の感度波長領域において高い透過率を有し、耐候性を有するものが良く、例えば、ガラスや、アクリル、ポリカーボネート等が挙げられるが、これらに限定されるものではなく、これら材料の複数層からなるものでもよい。また、これら材料の中には、集光型太陽光発電モジュール内部の材料の紫外線劣化や、二次レンズ10Aの紫外線劣化を防ぐ目的で、適当な紫外線吸収剤を添加することも可能である。また、太陽電池セル3の感度波長領域での光反射率の低減のために、適当な反射防止膜等を設けることができる。これにより、二次レンズ10Aの表面での反射損失を低減することができるので、太陽電池セル3の出力を向上させることができる。このように反射防止膜によって表面反射を十分低減できる場合には、二次レンズ10Aの材料として高屈折率材料を用いることができる。さらに、太陽電池セル3の感度波長領域以外の波長の光を反射するUV反射膜や、赤外線反射膜等を設けることも可能である。
ここで、具体例1の二次レンズ10Aについて、図2A及び図2Bを参照してさらに詳しく説明する。
具体例1の二次レンズ10Aは、は、入射部11の光軸21に垂直な方向の断面積が、集光レンズ2側(図2A及び図2Bにおいて上側)から太陽電池セル3側(図2A及び図2Bにおいて下側)に近づくに従って単調増加するとともに、光軸21に垂直な方向の面Fに対する入射部11の光学屈折面H2の傾斜角θが、集光レンズ2側から太陽電池セル3側に近づくに従って単調増加し、かつ、傾斜角θが単調増加する中で、傾斜角θが減少する(緩やかになる)変曲点14a(すなわち、光軸21方向から見た平面視において、変曲点14aを通る変曲線14)を少なくとも1つ有する構成とされている。具体例1では、変曲点14a(変曲線14)は1つとしている。すなわち、具体例1では、入射部11は、略半球体を上下に2段重ねした形状(若しくは、略半球体の高さ方向の途中を1段内側に絞り込んだ形状)としている。ここで、以下の説明において、変曲線14より上側(集光レンズ2側)の入射部11の光学屈折面を第1光学屈折面H2a、変曲線14より下側(太陽電池セル3側)の入射部11の光学屈折面を第2光学屈折面H2bとする。
この構成によれば、第1光学屈折面H2a及び第2光学屈折面H2bは、光軸21に垂直な方向の断面形状が円形状となり、集光レンズ2の光軸21に垂直な方向の断面形状と相似形を成している。
このように、第1光学屈折面H2a及び第2光学屈折面H2bの光軸21に垂直な方向の断面形状を、集光レンズ2の光学屈折面H1の光軸21に垂直な方向の断面形状と相似とすることで、太陽電池セル3表面の集光効率を向上させることができる。
図3Aは、集光レンズ2により集光された太陽光Lcが二次レンズ10Aに入射したときの太陽光の集光経路を示している。また、図3Bは、比較のために、二次レンズを単純な略半球体の形状(ドーム形状)とした場合(以下、比較例の二次レンズという。)の太陽光の集光経路を示している。
具体例1の二次レンズ10Aでは、図3Aに示すように、第1光学屈折面H2aに入射した太陽光Lcは、そのほぼ全てが太陽電池セル3の表面に到達する一方、第2光学屈折面H2bに入射した太陽光Lcは、変曲線14の近傍で光学屈折面の傾斜が緩やかになっている分、より太陽電池セル3の中心部側に屈折されるため、第2光学屈折面H2bの比較的外側に入射した太陽光Lc1も、太陽電池セル3の端に到達している。その結果、太陽電池セル3の表面(セル面)内の光強度分布を3次元的に示す図4Aに示すように、太陽電池セル3の表面内に到達する太陽光Lc、太陽電池セル3の表面内において集中が緩和され、ほぼ一様に到達している。この例では、具体例1の二次レンズ10Aを用いた場合の光強度分布の最大値は20を若干超えた程度となっている。
これに対し、比較例の二次レンズでは、図3Bに示すように、具体例1の第2光学屈折面H2bに相当するレンズ下部側に入射した太陽光Lc1は、入射面の高さが足りないために光路長が確保できず、太陽電池セル3には到達しない。一方、変曲線14が無い分、変曲線14の下部近傍に相当するレンズ面に入射する太陽光Lc2も、光軸中心の近傍に向かう傾向にある。その結果、太陽電池セル3の表面内の光強度分布を3次元的に示す図4Bに示すように、太陽電池セル3の表面内に到達する太陽光Lcの光強度分布は、太陽電池セル3の中央部が高くなっている。この例では、比較例の二次レンズを用いた場合の光強度分布の最大値は30を若干超えた程度となっている。この傾向は、太陽電池セル3として多接合型(例えば、3接合型)の太陽電池セルを用いた場合の中〜長波長域の光を集光した場合により顕著に現れる。つまり、具体例1の二次レンズ10Aを用いることによって、太陽電池セル3の表面内の光強度分布の最大値を、比較例の二次レンズを用いた場合の約3分の2に低減できるとともに、太陽電池セル3の表面内に到達する太陽光Lcを表面内においてほぼ一様に分布していることが分かる。
すなわち、具体例1では、二次レンズ10Aの全体をドーム形状とし、このドーム形状の高さ方向の途中に傾斜が緩まる段差(変曲点14a)を設けることで、太陽電池セル3の表面に集光される光の集中を緩和(分散)し、太陽電池セル3の表面に一様に光を照射することができる。すなわち、本発明の二次レンズ10Aを集光型太陽光発電モジュール1に使用することで、太陽電池セル3の発電効率(変換効率)を向上させることができる。
また、具体例1の二次レンズ10Aでは、変曲点14aを通る変曲線14は、光軸方向から見た平面視において、対向する太陽電池セル3の外側に位置するように形成することが望ましい。
このように、変曲点14aを通る変曲線14を平面視において太陽電池セル3の外側に位置させることで、上記したように、第2光学屈折面H2bの比較的外側に入射した太陽光Lc1を、太陽電池セル3の表面の端に到達させることができるので、太陽電池セル3の表面に一様に光を照射することができる。
また、具体例1の二次レンズ10Aでは、二次レンズの頂部11aから変曲点14a(変曲線14)までの領域である第1光学屈折面H2aの光軸に垂直な方向の断面形状が、集光レンズ2の光学屈折面H1の光軸に垂直な方向の断面形状と相似としている。すなわち、本実施形態では、集光レンズ2を同心円状のフレネルレンズとしていることから、集光レンズ2の光学屈折面H1の光軸に垂直な方向の断面形状は円形状であり、二次レンズ10Aも、第1光学屈折面H2aの光軸に垂直な方向の断面形状を円形状としている。
このように、第1光学屈折面H2aの光軸21に垂直な方向の断面形状を、集光レンズ2の光学屈折面H1の光軸21に垂直な方向の断面形状と相似の形状とすることにより、集光レンズ2から出射された太陽光Lcを光軸21方向に集中させる(すなわち、太陽電池セル3の表面に集中させる)一方で、光学屈折面H2の傾斜が緩まる変曲点14a(変曲線14)を設けることにより、太陽電池セル3の表面に集光される太陽光Lcの集中を緩和する(すなわち、一旦、集中させた光を、太陽電池セル3の表面内において光軸中心から半径方向にずらせて分散させる)ことができる。すなわち、光の集中と分散とによって、より多くの太陽光Lcを太陽電池セル3の表面に一様に照射することが可能となり、太陽電池セル3の発電効率(変換効率)を向上させることができる。
本実施形態では、太陽電池セル3として、3接合型太陽電池セル(例えば、InGaP(トップセル)/GaAs(ミドルセル)/Ge(ボトムセル)の3接合型太陽電池セル)を使用している。この場合、3接合型太陽電池セルのうち短波長側に感度領域を有する太陽電池セル(トップセル)に対応する波長領域の光が、第2光学屈折面H2bに入射しないように、変曲点14a(変曲線14)の形成位置を設定する。ここで、「トップセルに対応する波長領域の光が、第2光学屈折面H2bに入射しないように」とは、設計上そのように構成していることを意味しており、実際の使用環境によっては、周囲温度の変化や製造誤差等によって若干入射する場合もあるが、その程度の入射は許容範囲内と言える。すなわち、設計上、短波長域の光が入射する範囲よりも外側の位置に変曲点14a(変曲線14)を形成している。これにより、トップセルに対応する波長領域の光は、第1光学屈折面H2aに入射し、第2光学屈折面H2bには入射しない(厳密に言えば、ほとんど入射しない)。従って、トップセル表面に入射される波長領域の光を効率良く集光し、トップセルに光を照射することができる。
図5Aは、トップセルに対応する短波長域の光Lcsが二次レンズ10Aに入射したときの光の集光経路を示している。
トップセルに対応する短波長域の光Lcsは、波長分散が大きく広い範囲に光が当たるため、集光効率(光学効率)を維持するためには、二次レンズ10の中心部狙いで光を集めて集光する必要がある。この場合、図5Aに示すように、光軸21から一定の範囲内に集光束が収まっていれば、トップセルの表面に入射される短波長域の光Lcsの集中を緩和して、トップセルの表面に一様に光を照射することができるので、トップセルに対応する短波長域の光Lcsの集光効率(変換効率)を向上させることができる。
また、具体例1の二次レンズ10Aでは、変曲点14a(変曲線14)の上部近傍(境界付近)の第1光学屈折面H2aに入射した特定波長の光が光軸21と交差した後に太陽電池セル3に到達し、かつ、変曲点14a(変曲線14)の下部近傍(境界付近)の第2光学屈折面H2bに入射した特定波長の光が光軸21と交差する前に太陽電池セル3に到達するように、第1光学屈折面H2a及び第2光学屈折面H2bの傾斜角度と、変曲点14a(変曲線14)の高さ位置とが設定されている。
ここで、前記特定波長は、例えばミドルセルに対応した650〜900nmの中波長域とすることができる。
図5Bは、ミドルセルに対応する中波長域の光Lcmが二次レンズ10Aに入射したときの光の集光経路を示している。
図5Bに示すように、中波長域の光Lcmは比較的狭い範囲に照射される。また、集光レンズ2での屈折角が短波長域の光より小さいため、短波長域よりも外側に集光される。そのため、変曲点14a(変曲線14)を設けて、変曲線14よりも外側の光学屈折面(すなわち、第2光学屈折面H2b)の傾斜角度を緩やかにしておくことで、二次レンズ10Aの光軸21よりも遠い外側に入射する中波長域の光Lcmを、効率よくミドルセル表面に集光させることができる。この場合、中波長域の光Lcmについては、変曲点14a(変曲線14)の高さ方向の前後で入射後の光の進行方向を、光軸21を横切る方向(光Lcm1)と横切らない方向(光Lcm2)とに分散することで、中波長域の光がミドルセル表面に一様に照射されるため、ミドルセルの変換効率(出力電力)を向上させることができる。
また、具体例1の二次レンズ10Aでは、変曲点14a(変曲線14)から太陽電池セル3までの距離D1が、二次レンズ10Aの頂点から太陽電池セル3の表面までの距離D2の半分以上となるように設定している。
このように、変曲点14aから太陽電池セル3の表面までの距離D1を、二次レンズ10Aの頂点から太陽電池セル3の表面までの距離D2の半分以上とすることで、集光効率が低下する手前側(頂点側)に変曲点14a(変曲線14)を設けることができる。
図6は、距離D1を距離D2の半分以上とした場合と、半分以下とした場合との集光効率のシミュレーション結果を示す図表である。
結果1は、距離D1を距離D2の半分以上とした場合(この例では、距離D1を距離D2の63%とした場合)、結果2は、距離D1を距離D2の半分以下とした場合(この例では、距離D1を距離D2の49%とした場合)のシミュレーション結果を示している。
なお、このシミュレーションでは、集光レンズ2のレンズ径:170mm角、二次レンズ10Aの高さ:11.4mm、二次レンズ10Aの出射部12の直径:14.4mmφ、太陽電池セルの径:4.5mm角とした。
結果1によれば、トップセル表面では、光強度分布が20程度でほぼ一様に分布し、ミドルセル表面では、光強度分布が25程度でほぼ一様に分布し、ボトムセル表面では、光強度分布が30程度でほぼ一様に分布している。
これに対し、結果2によれば、トップセル表面では、光強度分布が20程度でほぼ一様に分布しているが、ミドルセル表面では、光強度分布が25程度で結果1よりも凹凸があり、かつ、若干中央部に集中する傾向が見られる。また、ボトムセル表面では、光強度分布が40程度で結果1よりも凹凸があり、かつ、さらに中央部に集中する傾向が見られる。
この結果、トップセルでは、結果1に比べて結果2の方が集光効率98.4%(ただし、結果1の集光効率を100%とした場合、以下同じ)と若干低下し、ミドルセルでは、結果1に比べて結果2の方が集光効率95.6%とさらに若干低下し、ボトムセルでは、結果1に比べて結果2の方が集光効率91.1%とさらに低下している。逆に言えば、結果1の二次レンズは、結果2の二次レンズに比べて全てのセルで集光効率が上昇している。実際の使用状況を鑑みると、結果2の集光効率でも実用ベースで本願発明の二次レンズの効果が一応得られていると言える。
これらの結果から、距離D1を距離D2の半分以上とすることで、集光効率の向上が実用ベースで十分に得られることが分かる。すなわち、二次レンズ10Aに形成する変曲点14a(変曲線14)の高さ位置は、変曲点14aから太陽電池セル3の表面までの距離D1が、二次レンズ10Aの頂点から太陽電池セル3の表面までの距離D2の半分以上となるような高さ位置に形成するのがよい。
次に、二次レンズの具体例2について説明する。
図7Aないし図7Dは、具体例2の二次レンズ10Bの形状を示し、図7Aは斜視図、図7Bは平面図、図7Cは、図7A中矢符X1方向から見た側面図、図7Dは、図7A中矢符X2方向から見た側面図である。
具体例2の二次レンズ10Bと、具体例1の二次レンズ10Aとの違いは、具体例2の二次レンズ10Bでは、第2光学屈折面H2bの周囲4箇所にさらに面取り部16を形成した点である。そのため、具体例2の二次レンズ10Bでは、二次レンズ10Bの第2光学屈折面H2bの光軸に垂直な方向の断面形状が、集光レンズ2の光学屈折面H1の光軸に垂直な方向の断面形状と非相似となっている。すなわち、本実施形態では、集光レンズ2を同心円状のフレネルレンズとしていることから、集光レンズ2の光学屈折面H1の光軸に垂直な方向の断面形状は円形状であるのに対し、二次レンズ10Bの第2光学屈折面H2bは、周囲4箇所に面取り部16を形成した結果、その断面形状は、円弧と直線とが順次連続する多角形状(略8角形状)となっている。
そのため、具体例1では、図8Aに示すように、第2光学屈折面H2bに入射する太陽光Lcは、平面視において光学中心Pに向かって直進していたが、具体例2では、図8Bに示すように、面取り部16に入射する太陽光Lcは、平面視において光軸中心Pから離れるように屈折し、光軸中心Pから広がるように分散して入射することになる。その結果、これらの太陽光Lcは、太陽電池セル3表面にも分散して到達することになる。
すなわち、具体例2の二次レンズ10Bでは、具体例1の二次レンズ10Aの有する上記作用効果(すなわち、変曲点14a(変曲線14)を設けることで、第2光学屈折面H2bに入射する太陽光Lcが太陽電池セル3の中心に到達するのを避けることによる、太陽電池セル3表面に入射する太陽光Lcの分散と集中緩和の効果)に加え、非相似部分である面取り部16に入射した太陽光Lcを平面視において水平方向に屈折させることによる、太陽電池セル3表面に入射する太陽光Lcの分散と集中緩和の効果をさらに得ることができるため、これらの相乗効果により、太陽電池セル表面に太陽光Lcをより一様に照射することが可能となる。その結果、太陽電池セル3の発電効率(変換効率)をさらに向上させることができる。
なお、二次レンズの第2光学屈折面の光軸に垂直な方向の断面形状と、集光レンズの光学屈折面の光軸に垂直な方向の断面形状とを非相似とする二次レンズの形状は、具体例2の二次レンズ10Bのような形状(周囲4箇所を単純に面取りする形状)に限定されるものではなく、集光レンズ2の断面形状との兼ね合いにおいて、種々の形状とすることができる。例えば、集光レンズの光学屈折面の断面形状が四角形である場合には、二次レンズの断面形状は具体例1と同様の円形状であってもよい。
また、本発明に係る集光型太陽光発電モジュール1では、太陽電池実装体は、二次レンズ10と太陽電池セル3との間に透光性樹脂材料7を充填することで、二次レンズ10A,10Bと太陽電池セル3との間の空気層を排除している。これにより、二次レンズ10A,10Bと空気層との界面での光の反射を抑制できるので、二次レンズ10A,10Bから出射する光を効率良く太陽電池セル3へ導くことができ、集光効率を高めて、発電効率(変換効率)をさらに向上させることができる。
なお、今回開示した実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
1 集光型太陽光発電モジュール
2 集光レンズ
3 太陽電池セル
4 レシーバ基板
5 保持プレート
6 モジュールフレーム
7 光透過性充填材
8 出力ケーブル
10A,10B 二次レンズ
11 入射部
11a 頂部
12 出射部
13 中間領域部
14 変曲線
14a 変曲点
21 光軸
H1 集光レンズの光学屈折面
H2 二次レンズの光学屈折面
H2a 第1光学屈折面
H2b 第2光学屈折面

Claims (13)

  1. 集光レンズで集光した光を太陽電池セルに照射する集光型太陽光発電モジュールに用いられ、前記集光レンズに対向して前記集光レンズからの集光束が入射される第1面と、前記太陽電池セルに対向して前記集光レンズからの集光束を出射する第2面とを有し、前記第1面に設けられた光学屈折面によって入射光を前記太陽電池セルに導く二次レンズであって、
    前記第1面の前記集光束の光軸に垂直な方向の断面積が、前記集光レンズ側から前記太陽電池セル側に近づくに従って単調増加するとともに、
    前記第1面の前記光軸に垂直な方向の面に対する傾斜角が、前記集光レンズ側から前記太陽電池セル側に近づくに従って単調増加し、かつ、前記傾斜角が単調増加する中で、前記傾斜角が減少する変曲点を少なくとも1つ有することを特徴とする二次レンズ。
  2. 請求項1に記載の二次レンズであって、
    前記光軸方向から見た平面視において、前記変曲点を通る線は前記太陽電池セルの外側に位置していることを特徴とする二次レンズ。
  3. 請求項1または請求項2に記載の二次レンズであって、
    前記第1面のうち前記集光レンズに対向する頂部から前記変曲点を通る線までの領域の前記光学屈折面の前記光軸に垂直な方向の断面形状が、前記集光レンズの光学屈折面の前記光軸に垂直な方向の断面形状と相似であることを特徴とする二次レンズ。
  4. 請求項1または請求項2に記載の二次レンズであって、
    前記第1面のうち前記変曲点を通る線から前記第2面までの一部の領域の前記光学屈折面の前記光軸に垂直な方向の断面形状が、前記集光レンズの光学屈折面の前記光軸に垂直な方向の断面形状と非相似であることを特徴とする二次レンズ。
  5. 請求項1から請求項4までのいずれか1項に記載の二次レンズであって、
    前記太陽電池セルは多接合型の化合物セルであり、
    前記第1面のうち前記変曲点を通る線から前記第2面までの領域は、最も短波長側に感度領域を有する太陽電池セルに対応する波長領域の光が入射しない構成とされていることを特徴とする二次レンズ。
  6. 請求項5に記載の二次レンズであって、
    前記集光レンズの端から出射して前記変曲点の上部近傍に入射した特定波長の光が前記光軸と交差した後に前記太陽電池セルに到達し、かつ、前記集光レンズの端から出射して前記変曲点の下部近傍に入射した特定波長の光が前記光軸と交差する前に前記太陽電池セルに到達するように、前記変曲点の高さ位置が設定されていることを特徴とする二次レンズ。
  7. 請求項6に記載の二次レンズであって、
    前記特定波長が、650〜900nmであることを特徴とする二次レンズ。
  8. 請求項5から請求項7までのいずれか1項に記載の二次レンズであって、
    前記変曲点から前記太陽電池セルまでの距離は、前記第1面の頂点から前記太陽電池セルまでの距離の半分以上であることを特徴とする二次レンズ。
  9. 請求項1から請求項8までのいずれか1項に記載の二次レンズであって、
    前記第1面と前記第2面との間には、前記入射光を前記太陽電池セルに導く上で光学的に寄与しない中間領域部を有することを特徴とする二次レンズ。
  10. 請求項1から請求項9までのいずれか1項に記載の二次レンズであって、
    前記第1面の表面には表面反射を抑制するための反射防止膜が設けられていることを特徴とする二次レンズ。
  11. 集光レンズによって集光された光が入射される二次レンズと、前記二次レンズに対向して配置され前記二次レンズから出射された光を光電変換する太陽電池セルと、前記太陽電池セルが実装されたレシーバ基板とを備える太陽電池実装体であって、
    前記二次レンズは、請求項1から請求項10までのいずれか1項に記載の二次レンズであり、
    前記二次レンズと前記太陽電池セルとの間に透光性樹脂材料が充填された充填部を備えたことを特徴とする太陽電池実装体。
  12. 光を集光する集光レンズと、前記集光レンズから入射された光を出射する二次レンズと、前記二次レンズから出射された光を光電変換する太陽電池セルとを備えた集光型太陽光発電ユニットであって、
    前記二次レンズは、請求項1から請求項10までのいずれか1項に記載の二次レンズであることを特徴とする集光型太陽光発電ユニット。
  13. 集光型太陽光発電ユニットを複数組み合わせて形成された集光型太陽光発電モジュールであって、
    前記集光型太陽光発電ユニットは、請求項12に記載の集光型太陽光発電ユニットであることを特徴とする集光型太陽光発電モジュール。
JP2012082048A 2012-03-30 2012-03-30 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュール Pending JP2013211487A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012082048A JP2013211487A (ja) 2012-03-30 2012-03-30 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュール
PCT/JP2013/059224 WO2013147008A1 (ja) 2012-03-30 2013-03-28 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット、および集光型太陽光発電装置、並びに集光型太陽光発電モジュール
CN201380017510.3A CN104205620A (zh) 2012-03-30 2013-03-28 二次透镜、太阳能电池安装体、聚光型太阳能发电单元、聚光型太阳能发电装置以及聚光型太阳能发电模块
US14/389,618 US20150083193A1 (en) 2012-03-30 2013-03-28 Secondary lens, photovoltaic cell mounting body, concentrating photovoltaic power generation unit, and concentrating photovoltaic power generation module
TW102111574A TWI523245B (zh) 2012-03-30 2013-03-29 Secondary lens and collector type solar power generation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082048A JP2013211487A (ja) 2012-03-30 2012-03-30 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュール

Publications (2)

Publication Number Publication Date
JP2013211487A true JP2013211487A (ja) 2013-10-10
JP2013211487A5 JP2013211487A5 (ja) 2015-03-26

Family

ID=49529057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082048A Pending JP2013211487A (ja) 2012-03-30 2012-03-30 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュール

Country Status (1)

Country Link
JP (1) JP2013211487A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159184A (ja) * 2014-02-24 2015-09-03 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
JP2017034106A (ja) * 2015-08-03 2017-02-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
CN106452341A (zh) * 2016-11-30 2017-02-22 戚明海 太阳能光伏发电系统
KR20180023216A (ko) * 2016-08-25 2018-03-07 씨이티홀딩스 주식회사 가이드렌즈를 구비하는 태양광발전모듈
WO2019159554A1 (ja) * 2018-02-13 2019-08-22 住友電気工業株式会社 集光型太陽光発電モジュール及び集光型太陽光発電装置
WO2020129773A1 (ja) * 2018-12-20 2020-06-25 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル、集光型太陽光発電装置、及び集光型太陽光発電ユニットの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131242A (ja) * 1974-09-10 1976-03-17 Suwa Seikosha Kk Renzu
JPS54176391U (ja) * 1978-06-01 1979-12-13
JP2003270526A (ja) * 2002-03-19 2003-09-25 Olympus Optical Co Ltd 撮像光学系
JP2007122055A (ja) * 2005-10-27 2007-05-17 Samsung Electro-Mechanics Co Ltd 多重曲率レンズを具備する光学システム及びその形成方法
JP2009117795A (ja) * 2007-11-02 2009-05-28 Taida Electronic Ind Co Ltd 太陽電池モジュール
JP2009529791A (ja) * 2006-03-08 2009-08-20 ライト プレスクリプションズ イノベーターズ エルエルシー 太陽集光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131242A (ja) * 1974-09-10 1976-03-17 Suwa Seikosha Kk Renzu
JPS54176391U (ja) * 1978-06-01 1979-12-13
JP2003270526A (ja) * 2002-03-19 2003-09-25 Olympus Optical Co Ltd 撮像光学系
JP2007122055A (ja) * 2005-10-27 2007-05-17 Samsung Electro-Mechanics Co Ltd 多重曲率レンズを具備する光学システム及びその形成方法
JP2009529791A (ja) * 2006-03-08 2009-08-20 ライト プレスクリプションズ イノベーターズ エルエルシー 太陽集光器
JP2009117795A (ja) * 2007-11-02 2009-05-28 Taida Electronic Ind Co Ltd 太陽電池モジュール

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159184A (ja) * 2014-02-24 2015-09-03 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
JP2017034106A (ja) * 2015-08-03 2017-02-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
WO2017022325A1 (ja) * 2015-08-03 2017-02-09 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
US20180204969A1 (en) * 2015-08-03 2018-07-19 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device
US11139409B2 (en) 2015-08-03 2021-10-05 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device
KR20180023216A (ko) * 2016-08-25 2018-03-07 씨이티홀딩스 주식회사 가이드렌즈를 구비하는 태양광발전모듈
CN106452341A (zh) * 2016-11-30 2017-02-22 戚明海 太阳能光伏发电系统
WO2019159554A1 (ja) * 2018-02-13 2019-08-22 住友電気工業株式会社 集光型太陽光発電モジュール及び集光型太陽光発電装置
WO2020129773A1 (ja) * 2018-12-20 2020-06-25 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル、集光型太陽光発電装置、及び集光型太陽光発電ユニットの製造方法

Similar Documents

Publication Publication Date Title
WO2013147008A1 (ja) 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット、および集光型太陽光発電装置、並びに集光型太陽光発電モジュール
JP6319318B2 (ja) 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
JP6416333B2 (ja) 太陽電池モジュール
JP2013211487A (ja) 二次レンズ、太陽電池実装体、集光型太陽光発電ユニット及び集光型太陽光発電モジュール
JP2006313810A (ja) 集光型太陽光発電装置
US8791355B2 (en) Homogenizing light-pipe for solar concentrators
JP6507915B2 (ja) 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
KR100933213B1 (ko) 태양광 발전용 집광 렌즈
JP2006332113A (ja) 集光型太陽光発電モジュール及び集光型太陽光発電装置
WO2012160994A1 (ja) 集光型太陽電池及びその製造方法
KR101289341B1 (ko) 집광형 태양전지모듈
RU2436192C1 (ru) Фотоэлектрический модуль с наноструктурным фотоэлементом
JP2014010251A (ja) 二次レンズ、太陽電池実装体、集光型太陽光発電装置、および集光型太陽光発電モジュール
JP2014022471A (ja) 太陽電池モジュール及び太陽電池モジュール集合体
JP2016138911A (ja) フレネルレンズ、集光型太陽光発電モジュール、及び集光型太陽光発電装置
US20210367554A1 (en) Fresnel lens for concentrator photovoltaic apparatus, concentrator photovoltaic system, and method of manufacturing fresnel lens for concentrator photovoltaic apparatus
KR20100048276A (ko) 태양광 발전 장치 및 집광장치
WO2012026572A1 (ja) 集光装置、光発電装置及び光熱変換装置
US20120180847A1 (en) Method for improving solar energy condensation efficiency in solar energy condensation electric power facility
EP2487728A2 (en) Light-collecting device and light-collecting method thereof
KR101534756B1 (ko) 박막형 태양전지, 박막형 태양전지의 제조 방법 및 박막형 태양전지의 효율 증대 방법
RU2436193C1 (ru) Фотовольтаический концентраторный модуль
KR102584910B1 (ko) 투광형 태양전지 단위 모듈, 투광형 태양전지 어레이 및 이를 포함하는 투광형 태양전지 모듈
US20150030283A1 (en) Concentrating Thin Film Absorber Device and Method of Manufacture
JP2015207570A (ja) 集光型太陽光発電装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510