JP2013211465A - Groove processing tool, groove processing method of thin-film solar cell using the same, and groove processing device - Google Patents

Groove processing tool, groove processing method of thin-film solar cell using the same, and groove processing device Download PDF

Info

Publication number
JP2013211465A
JP2013211465A JP2012081865A JP2012081865A JP2013211465A JP 2013211465 A JP2013211465 A JP 2013211465A JP 2012081865 A JP2012081865 A JP 2012081865A JP 2012081865 A JP2012081865 A JP 2012081865A JP 2013211465 A JP2013211465 A JP 2013211465A
Authority
JP
Japan
Prior art keywords
groove processing
solar cell
thin film
film solar
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012081865A
Other languages
Japanese (ja)
Other versions
JP5804999B2 (en
Inventor
Mitsuru Yamada
充 山田
Masanobu Soyama
正信 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2012081865A priority Critical patent/JP5804999B2/en
Priority to TW102108199A priority patent/TWI498295B/en
Priority to KR1020130030249A priority patent/KR101512705B1/en
Priority to CN201310105510.0A priority patent/CN103367535B/en
Publication of JP2013211465A publication Critical patent/JP2013211465A/en
Application granted granted Critical
Publication of JP5804999B2 publication Critical patent/JP5804999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/28Grooving workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a groove processing tool capable of manufacturing an integrated thin-film solar cell in high yield.SOLUTION: Groove processing is performed to a thin film of a thin-film solar cell by using a groove processing tool that is composed of a rod-like body 81 and a truncated-cone shaped cutting edge region 82 formed at a tip of the body 81, wherein the cutting edge region 82 includes a bottom face 83 and a side face 84 extending from the bottom face 83 toward the body 81, a corner formed by the bottom face 83 and the side face 84 makes a cutting edge 85, and the processing tool is formed so as to be getting thinner from the bottom face 83 toward the body 84.

Description

本発明は、薄膜太陽電池を製造する際に用いる溝加工ツールおよび溝加工ツールを用いた溝加工方法ならびに溝加工装置に関する。   The present invention relates to a grooving tool, a grooving method using the grooving tool, and a grooving apparatus used when manufacturing a thin-film solar cell.

薄膜太陽電池においては、基板上に複数のユニットセルを直列接続した集積型構造が一般的である。薄膜太陽電池の一例として、カルコパイライト化合物半導体を光吸収層として用いるカルコパイライト化合物系薄膜太陽電池の製造方法について説明する。なお、カルコパイライト化合物とは、CIGS(Cu(In,Ga)Se2)の他に、CIGSS(Cu(In,Ga)(Se,S)2)、CIS(CuInS2)等が含まれる。   In a thin film solar cell, an integrated structure in which a plurality of unit cells are connected in series on a substrate is generally used. As an example of the thin film solar cell, a method for producing a chalcopyrite compound thin film solar cell using a chalcopyrite compound semiconductor as a light absorption layer will be described. The chalcopyrite compound includes CIGS (Cu (In, Ga) (Se, S) 2), CIS (CuInS2) and the like in addition to CIGS (Cu (In, Ga) Se2).

図7は、CIGS薄膜太陽電池の製造工程を示す模式図である。まず、図7(a)に示すように、ソーダライムガラス(SLG)等からなる絶縁基板1上に、プラス側の下部電極となるMo電極層2をスパッタリング法によって形成した後、光吸収層形成前の薄膜太陽電池基板に対してスクライブ加工により下部電極分離用の溝Sを形成する。   FIG. 7 is a schematic diagram showing a manufacturing process of a CIGS thin film solar cell. First, as shown in FIG. 7A, a Mo electrode layer 2 serving as a plus-side lower electrode is formed on an insulating substrate 1 made of soda lime glass (SLG) or the like by sputtering, and then a light absorption layer is formed. A groove S for lower electrode separation is formed on the previous thin film solar cell substrate by scribing.

その後、図7(b)に示すように、Mo電極層2上に、化合物半導体(CIGS)薄膜
からなる光吸収層3を蒸着法、スパッタリング法等によって形成し、その上に、ヘテロ接
合のためのZnS薄膜等からなるバッファ層4をCBD法(ケミカルバスデポジション法
)により形成し、その上に、ZnO薄膜からなる絶縁層5を形成する。そして、透明電極
層形成前の薄膜太陽電池基板に対して、下部電極分離用の溝Sから横方向に所定距離はな
れた位置に、スクライブ加工によりMo電極層2にまで到達する電極間コンタクト用の溝
M1を形成する。
After that, as shown in FIG. 7B, a light absorption layer 3 made of a compound semiconductor (CIGS) thin film is formed on the Mo electrode layer 2 by vapor deposition, sputtering, or the like, and on that, for heterojunction. A buffer layer 4 made of a ZnS thin film is formed by a CBD method (chemical bath deposition method), and an insulating layer 5 made of a ZnO thin film is formed thereon. And for the inter-electrode contact that reaches the Mo electrode layer 2 by scribing at a position that is a predetermined distance in the lateral direction from the groove S for separating the lower electrode with respect to the thin film solar cell substrate before forming the transparent electrode layer A groove M1 is formed.

続いて、図7(c)に示すように、絶縁層5の上からZnO:Al薄膜からなる上部電
極としての透明電極層6を形成し、光電変換を利用した発電に必要な各機能層を備えた太
陽電池基板とし、スクライブ加工により下部のMo電極層2にまで到達する電極分離用の
溝M2を形成する。
Subsequently, as shown in FIG. 7C, a transparent electrode layer 6 as an upper electrode made of a ZnO: Al thin film is formed on the insulating layer 5, and each functional layer necessary for power generation using photoelectric conversion is formed. An electrode separation groove M2 reaching the lower Mo electrode layer 2 is formed by scribing, using the solar cell substrate provided.

上述した集積型薄膜太陽電池を製造する工程において、電極分離用の溝M1およびM2
をスクライブにより溝加工する技術として、レーザスクライブ法とメカニカルスクライブ
法が用いられてきた。
In the process of manufacturing the integrated thin film solar cell described above, grooves M1 and M2 for electrode separation are used.
Laser scribing and mechanical scribing methods have been used as a technique for grooving a metal by scribing.

レーザスクライブ法は、例えば特許文献1で開示されているように、アークランプ等の
連続放電ランプによってNd:YAG結晶を励起して発信したレーザ光を照射することに
より電極分離用の溝を形成する。この方法は、光吸収層形成後の薄膜太陽電池基板に対し
て溝を形成する場合、スクライブ時にレーザ光の熱によって光吸収層3の光電変換特性が
劣化するおそれがあった。
In the laser scribing method, as disclosed in, for example, Patent Document 1, a groove for electrode separation is formed by irradiating laser light emitted by exciting an Nd: YAG crystal with a continuous discharge lamp such as an arc lamp. . In this method, when a groove is formed on the thin-film solar cell substrate after the light absorption layer is formed, the photoelectric conversion characteristics of the light absorption layer 3 may be deteriorated by the heat of the laser light during scribing.

メカニカルスクライブ法は、例えば特許文献2および3で開示されているように、先端
が先細り状となった金属針(ニードル)等の溝加工ツールの刃先を、所定の圧力をかけて
基板に押しつけながら移動させることによって、電極分離用の溝を加工する技術である。
For example, as disclosed in Patent Documents 2 and 3, the mechanical scribing method is performed by pressing a cutting edge of a groove processing tool such as a metal needle (needle) having a tapered tip against a substrate while applying a predetermined pressure. This is a technique for processing a groove for electrode separation by moving the electrode.

特開平11−312815号公報JP-A-11-31815 特開2002−94089号公報JP 2002-94089 A 特開2004−115356号公報JP 2004-115356 A

特許文献2および3に開示されているようなメカニカルスクライブ法では、溝加工ツー
ルの刃先の形状を先細りの針状にしてあるが、厳密には、薄膜太陽電池に圧接される部分
は接触面積を広くするために平らとなるように先端が略水平にカットされている。すなわ
ち、図8に示すように、先端部分が先細りの円錐台形状にしてある。このような形状の溝加工ツール8’を、薄膜太陽電池基板の溝を形成すべき薄膜(上下両電極や光吸収層等の各種機能層)に押しつけながら、スクライブ予定ラインに沿ってY方向へ相対的に移動させることで、溝加工を行うようにしている。
先端部分が先細りの円錐台形状の溝加工ツールを用いることにより、比較的安定して溝加工を行うことができる。その一方で、薄膜が不規則に大きく剥がれてしまい、除去する必要のない部分まで除去してしまうことがあり、太陽電池の性能および歩留まりが低下するといった問題点があった。
In the mechanical scribing method as disclosed in Patent Documents 2 and 3, the shape of the cutting edge of the grooving tool is tapered, but strictly speaking, the portion to be pressed against the thin film solar cell has a contact area. The tip is cut substantially horizontally so that it is flat for widening. That is, as shown in FIG. 8, the tip portion has a tapered truncated cone shape. While pressing the groove processing tool 8 ′ having such a shape against the thin film (various functional layers such as the upper and lower electrodes and the light absorption layer) on which the groove of the thin film solar cell substrate is to be formed, the Y direction along the planned scribe line Groove processing is performed by relatively moving.
By using a frustoconical grooving tool with a tapered tip, grooving can be performed relatively stably. On the other hand, there is a problem that the thin film is peeled off irregularly and even parts that do not need to be removed may be removed, resulting in a decrease in the performance and yield of the solar cell.

そこで、本発明は、薄膜太陽電池基板における光吸収層や電極膜等の各種機能層に溝を加工する際に、歩留まりよく、また、光電変換効率等の製品としての性能を低下を抑制して加工することのできる薄膜太陽電池の溝加工ツールおよびこの溝加工ツールを用いた溝加工方法ならびに溝加工装置を提供することを目的とする。   Therefore, the present invention has a good yield when processing grooves in various functional layers such as a light absorption layer and an electrode film in a thin film solar cell substrate, and suppresses a decrease in performance as a product such as photoelectric conversion efficiency. An object of the present invention is to provide a groove processing tool for a thin film solar cell that can be processed, a groove processing method and a groove processing apparatus using the groove processing tool.

上記課題を解決するためになされた本発明の薄膜太陽電池用の溝加工ツールは、
棒状のボディと、ボディの先端に形成された円錐台状の刃先領域とからなり、刃先領域は、底面と底面からボディに向かって延びる側面とを有し、底面と側面とによって形成される角部が刃先をなし、底面からボディに向かって細くなるように形成されている。
また、上記課題を解決するためになされた本発明にかかる薄膜太陽電池の溝加工方法は、薄膜太陽電池基板のスクライブ予定ラインに沿って、溝加工ツールの刃先で押圧しながら、太陽電池基板と溝加工ツールを相対的に移動させて太陽電池基板の薄膜にスクライブラインを形成する集積型薄膜太陽電池の溝加工方法であって、本発明の溝加工ツールを用いて、溝加工ツールの底面を薄膜太陽電池基板の表面に押圧して溝加工を行う。
さらに、上記課題を解決するためになされた本発明にかかる薄膜太陽電池の溝加工装置は、本発明の溝加工ツールと、太陽電池基板が載置されるテーブルと、溝加工ツールの底面を前記太陽電池基板の表面に押圧した状態でスクライブさせるスクライブヘッドを備える。
The groove processing tool for a thin-film solar cell of the present invention made to solve the above problems is
It consists of a rod-shaped body and a frustoconical cutting edge region formed at the tip of the body, the cutting edge region having a bottom surface and a side surface extending from the bottom surface toward the body, and an angle formed by the bottom surface and the side surface The part has a cutting edge and is formed so as to become narrower from the bottom toward the body.
Moreover, the groove processing method of the thin film solar cell according to the present invention made to solve the above-mentioned problems is performed by pressing the cutting edge of the groove processing tool along the scribe line of the thin film solar cell substrate with the solar cell substrate. A groove processing method for an integrated thin-film solar cell in which a scribe line is formed on a thin film of a solar cell substrate by relatively moving a groove processing tool, and the bottom surface of the groove processing tool is formed using the groove processing tool of the present invention. Groove processing is performed by pressing the surface of the thin film solar cell substrate.
Furthermore, the groove processing apparatus for a thin-film solar cell according to the present invention, which has been made to solve the above problems, includes the groove processing tool of the present invention, a table on which a solar cell substrate is placed, and the bottom surface of the groove processing tool. A scribing head is provided that scribes the solar cell substrate while being pressed against the surface.

本発明の溝加工ツールによれば、刃先領域は、薄膜太陽電池基板に押圧される底面からボディに向かって細くなるように形成されているので、基板から除去された薄膜がボディ側にスムーズに排出されるため、除去された薄膜による影響を受けることなく、膜はがれの少ないスクライブラインを形成することができる。   According to the grooving tool of the present invention, the cutting edge region is formed so as to become narrower from the bottom surface pressed against the thin film solar cell substrate toward the body, so that the thin film removed from the substrate is smoothly moved to the body side. Since it is discharged, a scribe line with little film peeling can be formed without being affected by the removed thin film.

(その他の課題を解決するための手段及び効果)
溝加工ツールは、底面の幅が底面の幅が30μm以上、100μm以下であるようにするのが好ましい。
(Means and effects for solving other problems)
It is preferable that the groove processing tool has a bottom surface width of 30 μm or more and 100 μm or less.

溝加工ツールは、底面と前後面とによって形成される刃先の角度が65°以上、85°以下であるようにするのが好ましい。   In the grooving tool, it is preferable that the angle of the cutting edge formed by the bottom surface and the front and back surfaces is 65 ° or more and 85 ° or less.

溝加工ツールが、超硬合金、または、ダイヤモンドで形成されているのが好ましい。
これにより、ツールの寿命が長く、変形も少ないことから、長期間にわたって精度よく
スクライブ加工することができる。
The grooving tool is preferably made of cemented carbide or diamond.
As a result, since the tool has a long life and little deformation, it can be accurately scribed over a long period of time.

本発明にかかる集積型薄膜太陽電池の溝加工装置の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the groove processing apparatus of the integrated type thin film solar cell concerning this invention. 本発明にかかる溝加工ツールの斜視図。The perspective view of the groove processing tool concerning this invention. 上記溝加工ツールの底面拡大図。The bottom enlarged view of the said groove processing tool. 本発明にかかる溝加工ツールの刃先領域の拡大図。The enlarged view of the blade area | region of the groove processing tool concerning this invention. 従来の加工ツールによる加工状態の例を示す図。The figure which shows the example of the processing state by the conventional processing tool. 本発明にかかる溝加工ツールによる加工状態の例を示す図。The figure which shows the example of the processing state by the groove processing tool concerning this invention. 一般的なCIGS系の薄膜太陽電池の製造工程を示す模式図。The schematic diagram which shows the manufacturing process of a general CIGS type thin film solar cell. 従来の溝加工ツールの一例を示す斜視図。The perspective view which shows an example of the conventional groove processing tool.

以下において、本発明の詳細を、その実施の形態を示す図面に基づいて詳細に説明する

図1は本発明にかかる溝加工ツールを用いた集積型薄膜太陽電池用スクライブ装置の実
施形態を示す斜視図である。スクライブ装置は、水平方向(Y方向)に移動可能で、かつ
、水平面内で90度および角度θ回転可能なテーブル18を備えており、テーブル18は
実質的に太陽電池基板Wの保持手段を形成する。
Hereinafter, details of the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a perspective view showing an embodiment of an integrated thin film solar cell scribing apparatus using a groove processing tool according to the present invention. The scribing device includes a table 18 that can move in the horizontal direction (Y direction) and that can rotate 90 degrees and an angle θ in a horizontal plane. The table 18 substantially forms a holding means for the solar cell substrate W. To do.

テーブル18を挟んで設けてある両側の支持柱20,20と、X方向に延びるガイドバ
ー21とで構成されるブリッジ19は、テーブル18上を跨ぐように設けてある。ホルダ
支持体23は、ガイドバー21に形成したガイド22に沿って移動可能に取り付けられ、
モータ24の回転によりX方向に移動する。
A bridge 19 composed of support pillars 20, 20 on both sides of the table 18 and guide bars 21 extending in the X direction is provided so as to straddle the table 18. The holder support 23 is movably attached along the guide 22 formed on the guide bar 21,
It moves in the X direction by the rotation of the motor 24.

ホルダ支持体23には、スクライブヘッド7が設けられており、スクライブヘッド7の
下部には、テーブル18上に載置される太陽電池基板Wの薄膜表面をスクライブ加工する
溝加工ツール8を保持するホルダ9が設けられている。
A scribe head 7 is provided on the holder support 23, and a groove processing tool 8 for scribing the thin film surface of the solar cell substrate W placed on the table 18 is held below the scribe head 7. A holder 9 is provided.

また、X方向およびY方向に移動することが可能な台座12,13にカメラ10、11
がそれぞれ設けられている。台座12、13は支持台13上でX方向に延設されたガイド
15に沿って移動する。カメラ10、11は、手動操作で上下動することができ、撮像の
焦点を調整することができる。カメラ10、11で撮影された画像はモニタ16、17に
表示される。
Further, the cameras 10 and 11 are mounted on the pedestals 12 and 13 that can move in the X and Y directions.
Are provided. The pedestals 12 and 13 move on the support base 13 along a guide 15 extending in the X direction. The cameras 10 and 11 can be moved up and down by manual operation, and the focus of imaging can be adjusted. Images taken by the cameras 10 and 11 are displayed on the monitors 16 and 17.

テーブル18上に載置された太陽電池基板Wの表面には、位置を特定するためのアライ
メントマークが設けられており、カメラ10、11によりアライメントマークを撮像する
ことにより、太陽電池基板Wの位置を調整する。具体的には、テーブル18に支持された
太陽電池基板W表面のアライメントマークを、カメラ10、11により撮像してアライメ
ントマークの位置を特定する。特定されたアライメントマークの位置に基づいて、太陽電
池基板W表面の載置時の方向ズレを検出し、テーブル18を所定角度回転させることでズ
レを修正する。
An alignment mark for specifying the position is provided on the surface of the solar cell substrate W placed on the table 18, and the position of the solar cell substrate W is obtained by imaging the alignment mark with the cameras 10 and 11. Adjust. Specifically, the alignment marks on the surface of the solar cell substrate W supported by the table 18 are imaged by the cameras 10 and 11, and the position of the alignment mark is specified. Based on the position of the specified alignment mark, a deviation in direction when the surface of the solar cell substrate W is placed is detected, and the deviation is corrected by rotating the table 18 by a predetermined angle.

そして、テーブル18をY方向に所定ピッチで移動するごとに、スクライブヘッド7を
下降させて溝形成ツール8の刃先を太陽電池基板Wの表面に押しつけた状態でX方向に移
動させ、太陽電池基板Wの表面をX方向に沿ってスクライブ加工する。太陽電池基板Wの
表面をY方向に沿ってスクライブ加工する場合は、テーブル18を90度回転させて、上
記と同様の動作を行う。
Each time the table 18 is moved at a predetermined pitch in the Y direction, the scribe head 7 is lowered and moved in the X direction with the cutting edge of the groove forming tool 8 pressed against the surface of the solar cell substrate W. The surface of W is scribed along the X direction. When the surface of the solar cell substrate W is scribed along the Y direction, the table 18 is rotated 90 degrees and the same operation as described above is performed.

図2、図3および図4は、本発明において用いる溝加工ツール8を示す模式図である。図2は下方から見た斜視図であり、図3は溝加工ツール8の底面を底面側から見た拡大図であり、図4は溝加工ツール8の刃先領域を側面側から見た拡大図である。この溝形成ツール8は、実質的にスクライブヘッド7への取付部となる円柱状のボディ81と、その先端部に一体的に形成された刃先領域82とからなり、超硬合金またはダイヤモンド等の硬質材料で造られている。刃先領域82は、円形の底面83と、底面83の外縁からボディ81に向かって立ち上がった側面84とからなる。底面83と側面84とによって形成される角部が刃先85となる。   2, 3 and 4 are schematic views showing a grooving tool 8 used in the present invention. 2 is a perspective view seen from below, FIG. 3 is an enlarged view of the bottom surface of the grooving tool 8 seen from the bottom side, and FIG. 4 is an enlarged view of the cutting edge region of the grooving tool 8 seen from the side. It is. The groove forming tool 8 is composed of a cylindrical body 81 that is substantially a mounting portion to the scribe head 7 and a cutting edge region 82 that is integrally formed at the tip thereof, and is made of cemented carbide or diamond. Made of hard material. The blade edge region 82 includes a circular bottom surface 83 and a side surface 84 rising from the outer edge of the bottom surface 83 toward the body 81. A corner formed by the bottom surface 83 and the side surface 84 is the blade edge 85.

底面83の幅Wは50〜80μmが好ましいが、要求されるスクライブの溝幅に合わせて30〜100μmとすることができる。また、刃先領域82の有効高さ、すなわ刃先領域の側面84の高さHは10μm〜230μm程度が好ましい。また、底面83と側面84とによって形成される角部の角度は、65°〜85°が好ましい。さらに、円柱状のボディ81の直径は2〜4mm程度がよい。なお、溝形成ツール8のボディ81は円柱状に限らず、断面四角形や多角形で形成することも可能である。   The width W of the bottom surface 83 is preferably 50 to 80 μm, but can be 30 to 100 μm according to the required groove width of the scribe. Further, the effective height of the cutting edge region 82, that is, the height H of the side surface 84 of the cutting edge region is preferably about 10 μm to 230 μm. The angle of the corner formed by the bottom surface 83 and the side surface 84 is preferably 65 ° to 85 °. Furthermore, the diameter of the cylindrical body 81 is preferably about 2 to 4 mm. Note that the body 81 of the groove forming tool 8 is not limited to a columnar shape, and may be formed with a square or polygonal cross section.

上述した溝加工ツール8を用いて加工を行う場合は、刃先領域82の底面83をツールの移動方向に沿った状態で、かつ、太陽電池基板Wの表面に対して平行な状態でスクライブヘッド7に取り付ける。   When machining using the above-described grooving tool 8, the scribe head 7 in a state where the bottom surface 83 of the cutting edge region 82 is along the moving direction of the tool and parallel to the surface of the solar cell substrate W. Attach to.

本発明によれば、刃先領域82は、薄膜太陽電池基板Wに押圧される底面83からボディ81に向かって細くなるように形成されているので、基板から除去された薄膜がボディ側にスムーズに排出されるため、除去された薄膜による影響を受けることなく、膜はがれの少ないスクライブラインを形成することができる。   According to the present invention, the cutting edge region 82 is formed so as to become narrower from the bottom surface 83 pressed against the thin film solar cell substrate W toward the body 81, so that the thin film removed from the substrate smoothly moves toward the body side. Since it is discharged, a scribe line with little film peeling can be formed without being affected by the removed thin film.

図5は従来からの加工ツールにより形成されたスクライブラインと、本発明の溝加工ツ
ールにより形成されたスクライブラインとを比較した画像データである。図5(a)は従来の溝加工ツールを用いて形成したスクライブラインを示し、図5(b)は本発明の溝加工ツールを用いて形成したスクライブラインを示す。本発明の溝加工ツールを用いて形成したスクライブした場合には、従来例に比べて、明らかに一定の幅できれいなスクライブラインを形成することができた。
FIG. 5 shows image data comparing a scribe line formed by a conventional processing tool and a scribe line formed by the groove processing tool of the present invention. FIG. 5A shows a scribe line formed using a conventional groove processing tool, and FIG. 5B shows a scribe line formed using the groove processing tool of the present invention. In the case of scribing using the groove processing tool of the present invention, a clear scribe line having a clearly constant width could be formed as compared with the conventional example.

なお、上記実施例では、スクライブヘッド7をX方向に移動させることでスクライブ加
工を実行したが、スクライブヘッド7と、太陽電池基板Wとが相対的に移動できれば足り
ることから、太陽電池基板Wが固定された状態でスクライブヘッド7をX方向またはY方
向に移動させてもよいし、スクライブヘッド7を移動させることなく、太陽電池基板Wの
みをX方向またはY方向に移動させてもよい。
In addition, in the said Example, although the scribe process was performed by moving the scribe head 7 to a X direction, since it is sufficient if the scribe head 7 and the solar cell substrate W can move relatively, the solar cell substrate W is sufficient. The scribe head 7 may be moved in the X direction or Y direction in a fixed state, or only the solar cell substrate W may be moved in the X direction or Y direction without moving the scribe head 7.

以上、本発明の代表的な実施例について説明したが、本発明は必ずしも上記の実施例の
構造のみに特定されるものではない。その目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正
、変更することが可能である。
As mentioned above, although the typical Example of this invention was described, this invention is not necessarily limited only to the structure of said Example. The object can be achieved and modified as appropriate within the scope of the claims.

本発明は、薄膜太陽電池の製造に用いることのできる溝加工ツール、溝加工方法および溝加工装置に適用することができる。   The present invention can be applied to a grooving tool, a grooving method, and a grooving apparatus that can be used for manufacturing a thin film solar cell.

W 太陽電池基板
7 スクライブヘッド
8 溝加工ツール
81 ボディ
82 刃先領域
83 刃先領域の底面
84 刃先領域の側面
85 刃先
W Solar cell substrate 7 Scribe head 8 Grooving tool 81 Body 82 Cutting edge region 83 Bottom surface of cutting edge region 84 Side surface 85 of cutting edge region Cutting edge

Claims (6)

棒状のボディと、ボディの先端に形成された円錐台状の刃先領域とからなり、
刃先領域は、底面と底面からボディに向かって延びる側面とを有し、
底面と側面とによって形成される角部が刃先をなし、
底面からボディに向かって細くなるように形成されている薄膜太陽電池の溝加工ツール。
It consists of a rod-shaped body and a frustoconical cutting edge region formed at the tip of the body,
The cutting edge region has a bottom surface and a side surface extending from the bottom surface toward the body,
The corner formed by the bottom and side surfaces forms a cutting edge,
A thin film solar cell grooving tool that is formed so as to become thinner from the bottom toward the body.
底面の幅が30μm以上、100μm以下である請求項1に記載の溝加工ツール。   The groove processing tool according to claim 1, wherein the width of the bottom surface is 30 μm or more and 100 μm or less. 底面と側面とによって形成される刃先の角度が65°以上85°未満である請求項1に記載の溝加工ツール。   The grooving tool according to claim 1, wherein an angle of a cutting edge formed by the bottom surface and the side surface is 65 ° or more and less than 85 °. 前記溝加工ツールが、超硬合金またはダイヤモンドで形成されている請求項1に記載の
溝加工ツール。
The grooving tool according to claim 1, wherein the grooving tool is formed of cemented carbide or diamond.
薄膜太陽電池のスクライブ予定ラインに沿って、溝加工ツールの刃先で押圧しながら、前記薄膜太陽電池と溝加工ツールを相対的に移動させて前記薄膜太陽電池の薄膜にスクライブラインを形成する薄膜太陽電池の溝加工方法であって、
請求項1〜4のいずれかに記載の溝加工ツールの底面を前記薄膜太陽電池の薄膜の表面に押圧して、前記溝加工を行うことを特徴とする薄膜太陽電池の溝加工方法。
A thin film solar that forms a scribe line in the thin film of the thin film solar cell by moving the thin film solar cell and the groove processing tool relative to each other while pressing with a cutting edge of the groove processing tool along a scribe line of the thin film solar cell A groove processing method for a battery,
A groove processing method for a thin film solar cell, wherein the groove processing is performed by pressing the bottom surface of the groove processing tool according to any one of claims 1 to 4 against the surface of the thin film of the thin film solar cell.
請求項1〜4のいずれかに記載の溝加工ツールと、薄膜太陽電池が載置されるテーブルと、前記溝加工ツールの底面を前記太陽電池の薄膜の表面に押圧した状態で溝加工を行うスクライブヘッドを備えた溝加工装置。   The groove processing tool according to any one of claims 1 to 4, a table on which the thin film solar cell is placed, and a groove processing is performed in a state where the bottom surface of the groove processing tool is pressed against the surface of the thin film of the solar cell. Grooving device with scribe head.
JP2012081865A 2012-03-30 2012-03-30 Groove machining tool, groove machining method and groove machining apparatus for thin-film solar cell using the same Expired - Fee Related JP5804999B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012081865A JP5804999B2 (en) 2012-03-30 2012-03-30 Groove machining tool, groove machining method and groove machining apparatus for thin-film solar cell using the same
TW102108199A TWI498295B (en) 2012-03-30 2013-03-08 A trench processing tool and a method for processing a trough of a thin-film solar cell and a trench processing apparatus
KR1020130030249A KR101512705B1 (en) 2012-03-30 2013-03-21 Groove processing tool, and groove processing method and groove processing apparatus for thin film solar cell using the same
CN201310105510.0A CN103367535B (en) 2012-03-30 2013-03-28 Groove machining tool, method and the grooving apparatus of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081865A JP5804999B2 (en) 2012-03-30 2012-03-30 Groove machining tool, groove machining method and groove machining apparatus for thin-film solar cell using the same

Publications (2)

Publication Number Publication Date
JP2013211465A true JP2013211465A (en) 2013-10-10
JP5804999B2 JP5804999B2 (en) 2015-11-04

Family

ID=49368481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081865A Expired - Fee Related JP5804999B2 (en) 2012-03-30 2012-03-30 Groove machining tool, groove machining method and groove machining apparatus for thin-film solar cell using the same

Country Status (4)

Country Link
JP (1) JP5804999B2 (en)
KR (1) KR101512705B1 (en)
CN (1) CN103367535B (en)
TW (1) TWI498295B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195347A (en) * 2014-03-28 2015-11-05 三星ダイヤモンド工業株式会社 Groove processing tool and scribe apparatus with the groove processing tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952971B (en) * 2014-03-28 2017-09-19 三星钻石工业股份有限公司 Groove processing instrument and the scoring device for being provided with the groove processing instrument
JP6332618B2 (en) * 2014-04-24 2018-05-30 三星ダイヤモンド工業株式会社 Scribing cutter wheel and scribing device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083390A (en) * 1972-09-22 1978-04-11 R.E. Ingham & Co., Limited Grooving of sheet material
JPH03161209A (en) * 1989-11-17 1991-07-11 Fujitsu Ltd Working of taper hole and working device thereof
JP2004115356A (en) * 2002-09-26 2004-04-15 Honda Motor Co Ltd Mechanical scribing apparatus
JP2007130737A (en) * 2005-11-14 2007-05-31 Honda Motor Co Ltd Reamer, drill and machining method
JP2007245278A (en) * 2006-03-15 2007-09-27 Mitsubishi Materials Kobe Tools Corp End mill
JP2009119543A (en) * 2007-11-13 2009-06-04 Toshiba Corp Fine machining tool, manufacturing method of the fine machining tool, precision device, and manufacturing method of the precision device
JP2009255189A (en) * 2008-04-14 2009-11-05 Sodick Co Ltd Tool changing system of machining center
JP2010199242A (en) * 2009-02-24 2010-09-09 Mitsuboshi Diamond Industrial Co Ltd Method for manufacturing integrated thin-film solar cell
JP2010245255A (en) * 2009-04-06 2010-10-28 Shiraitekku:Kk Film deposition scribing device for solar cell panel
WO2011001962A1 (en) * 2009-06-29 2011-01-06 京セラ株式会社 Method for manufacturing photoelectric conversion elements, device for manufacturing photoelectric conversion elements, and photoelectric conversion element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315809A (en) * 1999-03-04 2000-11-14 Matsushita Electric Ind Co Ltd Fabrication of integrated thin film solar cell and patterning system
JP2002033498A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Manufacturing method for integrated thin-film solar cell and patterning apparatus
KR100633488B1 (en) * 2001-11-08 2006-10-13 샤프 가부시키가이샤 Method and device for parting glass substrate, and liquid crystal panel manufacturing device
KR20050115793A (en) * 2004-06-05 2005-12-08 주식회사 대흥케미칼 Multi-cutting bite for machine tool
JP5308892B2 (en) * 2009-04-01 2013-10-09 三星ダイヤモンド工業株式会社 Integrated thin film solar cell manufacturing equipment
TWI451587B (en) * 2010-01-08 2014-09-01 Mitsuboshi Diamond Ind Co Ltd Groove machining tool for use with a thin-film solar cell
JP5369011B2 (en) * 2010-01-27 2013-12-18 三星ダイヤモンド工業株式会社 Grooving tool and method for grooving thin film solar cell using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083390A (en) * 1972-09-22 1978-04-11 R.E. Ingham & Co., Limited Grooving of sheet material
JPH03161209A (en) * 1989-11-17 1991-07-11 Fujitsu Ltd Working of taper hole and working device thereof
JP2004115356A (en) * 2002-09-26 2004-04-15 Honda Motor Co Ltd Mechanical scribing apparatus
JP2007130737A (en) * 2005-11-14 2007-05-31 Honda Motor Co Ltd Reamer, drill and machining method
JP2007245278A (en) * 2006-03-15 2007-09-27 Mitsubishi Materials Kobe Tools Corp End mill
JP2009119543A (en) * 2007-11-13 2009-06-04 Toshiba Corp Fine machining tool, manufacturing method of the fine machining tool, precision device, and manufacturing method of the precision device
JP2009255189A (en) * 2008-04-14 2009-11-05 Sodick Co Ltd Tool changing system of machining center
JP2010199242A (en) * 2009-02-24 2010-09-09 Mitsuboshi Diamond Industrial Co Ltd Method for manufacturing integrated thin-film solar cell
JP2010245255A (en) * 2009-04-06 2010-10-28 Shiraitekku:Kk Film deposition scribing device for solar cell panel
WO2011001962A1 (en) * 2009-06-29 2011-01-06 京セラ株式会社 Method for manufacturing photoelectric conversion elements, device for manufacturing photoelectric conversion elements, and photoelectric conversion element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195347A (en) * 2014-03-28 2015-11-05 三星ダイヤモンド工業株式会社 Groove processing tool and scribe apparatus with the groove processing tool

Also Published As

Publication number Publication date
CN103367535A (en) 2013-10-23
TW201339114A (en) 2013-10-01
TWI498295B (en) 2015-09-01
KR101512705B1 (en) 2015-04-16
CN103367535B (en) 2016-05-25
KR20130111328A (en) 2013-10-10
JP5804999B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
TWI501415B (en) A trench processing tool, a trench processing method and a cutting device using a thin film solar cell
JP5369099B2 (en) Thin-film solar cell scribing device
TWI472050B (en) Production of integrated thin film solar cells
TW201101525A (en) Method for manufacturing integrated thin-film solar cell
WO2010103947A1 (en) Grooving tool for thin film solar cell
JP5357580B2 (en) Grooving tool and method of grooving thin film solar cell using the same
JP5804999B2 (en) Groove machining tool, groove machining method and groove machining apparatus for thin-film solar cell using the same
JP5369011B2 (en) Grooving tool and method for grooving thin film solar cell using the same
JP2020107795A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107800A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107799A (en) Grooving tool, and thin film solar cell grooving method and grooving device using the same
JP2020107796A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107797A (en) Grooving tool, and thin film solar cell grooving method and grooving device using the same
JP2020107798A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2015126205A (en) Grooving tool and scribe device with grooving tool attached thereto
JP2015192112A (en) Groove processing tool and scribe apparatus with the groove processing tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R150 Certificate of patent or registration of utility model

Ref document number: 5804999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees