JP2010199242A - Method for manufacturing integrated thin-film solar cell - Google Patents

Method for manufacturing integrated thin-film solar cell Download PDF

Info

Publication number
JP2010199242A
JP2010199242A JP2009041272A JP2009041272A JP2010199242A JP 2010199242 A JP2010199242 A JP 2010199242A JP 2009041272 A JP2009041272 A JP 2009041272A JP 2009041272 A JP2009041272 A JP 2009041272A JP 2010199242 A JP2010199242 A JP 2010199242A
Authority
JP
Japan
Prior art keywords
solar cell
electrode layer
manufacturing
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009041272A
Other languages
Japanese (ja)
Inventor
Keitaro Okamoto
慶太郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2009041272A priority Critical patent/JP2010199242A/en
Priority to PCT/JP2010/052705 priority patent/WO2010098307A1/en
Priority to TW099105335A priority patent/TW201101525A/en
Publication of JP2010199242A publication Critical patent/JP2010199242A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/002Precutting and tensioning or breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0017Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing using moving tools
    • B28D5/0023Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing using moving tools rectilinearly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Forests & Forestry (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a solar cell capable of efficiently manufacturing an integrated thin-film solar cell. <P>SOLUTION: The method for manufacturing the integrated thin film solar cell includes: providing a solar cell substrate on which at least a lower electrode layer, a light absorption layer, and an upper electrode layer are formed, on an insulating substrate (1); patterning to form a plurality of grooves on the upper electrode layer surface in the depth from the upper electrode layer side to the lower electrode layer surface in a region to be a functional region of individual solar cell mutually divided in a post process of the solar cell substrate (2); wide-patterning to expose the lower electrode layer by removing each layer from the upper electrode side to the lower electrode layer surface of the both sides of the region expanding in parallel with the plurality of grooves and to be the functional region of the individual solar cell (3); scribing a brittle substrate (4); and breaking (5). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、集積型薄膜太陽電池の製造方法に関し、特にカルコパイライト化合物系集積型薄膜太陽電池の製造方法に関する。ここで、カルコパイライト化合物には、CIGS[Cu(In,Ga)Se]、CIGSS[Cu(In,Ga)(Se,S)]、CIS[CuInS]等の化合物半導体が含まれる。 The present invention relates to a method for manufacturing an integrated thin film solar cell, and particularly to a method for manufacturing a chalcopyrite compound integrated thin film solar cell. Here, the chalcopyrite compound includes compound semiconductors such as CIGS [Cu (In, Ga) Se 2 ], CIGSS [Cu (In, Ga) (Se, S) 2 ], CIS [CuInS 2 ] and the like.

カルコパイライト化合物等の化合物半導体を光吸収層として用いる薄膜太陽電池においては、絶縁基板上に、下部電極層、光吸収層、高抵抗バッファ層、必要に応じて絶縁層及び上部電極層を順次形成した薄膜積層体において、下部電極層を分離する溝[下部電極分離用溝]、光吸収層及び高抵抗バッファ層(及び絶縁層)を分離して下部電極層と上部電極層とを接続するための溝[電極間コンタクト用溝]、上部電極層、(絶縁層及び)高抵抗バッファ層及び光吸収層を分離する溝[上部電極分離用溝]をそれぞれ形成することにより、複数のユニットセルが直列接続された集積型構造とすることが一般的である。   In thin-film solar cells that use a compound semiconductor such as a chalcopyrite compound as the light absorption layer, a lower electrode layer, a light absorption layer, a high-resistance buffer layer, and an insulation layer and an upper electrode layer as necessary are sequentially formed on the insulating substrate. In the thin film laminate, in order to connect the lower electrode layer and the upper electrode layer by separating the groove for separating the lower electrode layer [lower electrode separation groove], the light absorption layer and the high-resistance buffer layer (and the insulating layer) Forming a plurality of unit cells by forming a groove [interelectrode contact groove], an upper electrode layer, a (insulating layer) and a high resistance buffer layer, and a groove [upper electrode separation groove] separating the light absorption layer. It is common to have integrated structures connected in series.

従来のカルコパイライト化合物系集積型薄膜太陽電池の製造方法について説明する(特許文献1〜3)。図6は、CIGS薄膜太陽電池の製造工程を示す模式図である。まず、図6(a)に示すように、ソーダライムガラス(SLG)等からなる絶縁基板1上に、プラス側の下部電極となるMo電極層2をスパッタリング法によって形成した後、光吸収層形成前の太陽電池基板に対するスクライブ加工により下部電極分離用の溝Sを形成する。   A conventional method for producing a chalcopyrite compound-based integrated thin film solar cell will be described (Patent Documents 1 to 3). FIG. 6 is a schematic diagram showing a manufacturing process of a CIGS thin film solar cell. First, as shown in FIG. 6A, a Mo electrode layer 2 serving as a plus-side lower electrode is formed on an insulating substrate 1 made of soda lime glass (SLG) or the like by sputtering, and then a light absorption layer is formed. A groove S for lower electrode separation is formed by scribing the previous solar cell substrate.

その後、図6(b)に示すように、Mo電極層2上に、CIGS薄膜からなる光吸収層3を蒸着法、スパッタリング法等によって形成し、その上に、ヘテロ接合のためのZnS薄膜等からなるバッファ層4をCBD法(ケミカルバスデポジション法)により形成し、その上に、ZnO薄膜からなる絶縁層5を形成する。そして、上部電極層形成前の薄膜太陽電池基板に対して、下部電極分離用の溝Sから横方向に所定距離はなれた位置に、スクライブ加工によりMo電極層2にまで到達する電極間コンタクト用の溝M1を形成する。   Thereafter, as shown in FIG. 6B, a light absorption layer 3 made of a CIGS thin film is formed on the Mo electrode layer 2 by vapor deposition, sputtering, or the like, and a ZnS thin film or the like for heterojunction is formed thereon. The buffer layer 4 made of is formed by the CBD method (chemical bath deposition method), and the insulating layer 5 made of a ZnO thin film is formed thereon. And, for the inter-electrode contact that reaches the Mo electrode layer 2 by scribing at a position that is a predetermined distance in the lateral direction from the groove S for separating the lower electrode with respect to the thin film solar cell substrate before forming the upper electrode layer A groove M1 is formed.

続いて、図6(c)に示すように、絶縁層5の上からZnO:Al薄膜からなる上部電極としての透明電極層6を形成し、光電変換を利用した発電に必要な各機能層を備えた太陽電池基板とし、スクライブ加工により下部のMo電極層2にまで到達する上部電極分離用の溝M2を形成する。   Subsequently, as shown in FIG. 6C, a transparent electrode layer 6 as an upper electrode made of a ZnO: Al thin film is formed on the insulating layer 5, and each functional layer necessary for power generation using photoelectric conversion is formed. An upper electrode separation groove M2 that reaches the lower Mo electrode layer 2 is formed by scribing, using the solar cell substrate provided.

特開平11ー312815号公報Japanese Patent Laid-Open No. 11-31815 特開2002−94089号公報JP 2002-94089 A 特開2004−115356号公報JP 2004-115356 A

しかし、集積型薄膜太陽電池を製造するためには、絶縁基板上に少なくとも4種類の薄膜を形成する工程と、各薄膜に溝を形成する少なくとも3つの工程とを、交互に行う必要があり、製造効率を向上させることに限界があった。   However, in order to manufacture an integrated thin film solar cell, it is necessary to alternately perform a process of forming at least four types of thin films on an insulating substrate and at least three processes of forming grooves in each thin film, There was a limit to improving manufacturing efficiency.

本発明は、最終的に相互に分割される個別の太陽電池の機能領域となる複数の領域を含む太陽電池基板(マザー基板)を製造し、薄膜形成及び溝形成を一括して行うことにより、薄膜太陽電池の製造効率を向上させることを目的とする。   The present invention manufactures a solar cell substrate (mother substrate) that includes a plurality of regions that ultimately become individual solar cell functional regions, and collectively performs thin film formation and groove formation, It aims at improving the manufacturing efficiency of a thin film solar cell.

特に、全ての機能層(薄膜)を形成してから個別の太陽電池を得るまでの工程の効率化を図ることにより、太陽電池の製造工程全体としての効率の向上を図ることを目的とする。   In particular, an object is to improve the efficiency of the entire solar cell manufacturing process by increasing the efficiency of the process from formation of all functional layers (thin films) to obtaining individual solar cells.

上記課題を解決するためになされた本発明の集積型薄膜太陽電池の製造方法は、
(1)絶縁基板上に、少なくとも下部電極層、光吸収層及び上部電極層が形成された太陽電池基板を提供する工程、
(2)前記太陽電池基板の後工程で相互に分割されて個別の太陽電池の機能領域となる領域のそれぞれに、上部電極層側から下部電極層面に至る深さで、上部電極層面上で一方向に相互に平行に伸びる複数の溝を形成するパターニング工程、
(3)前記パターニング工程で形成された複数の溝と平行に広がる領域であって、個別の太陽電池の機能領域となる領域の両側に位置する領域の上部電極側から下部電極層面に至る各層を除去して下部電極層を露出させるワイドパターニング工程、
(4)前記ワイドパターニング工程で下部電極層が露出した領域にスクライブラインを形成するスクライブ工程及び
(5)前記スクライブラインに沿ってブレークするブレーク工程
を含む。
The manufacturing method of the integrated thin film solar cell of the present invention made to solve the above problems
(1) providing a solar cell substrate in which at least a lower electrode layer, a light absorption layer and an upper electrode layer are formed on an insulating substrate;
(2) Each of the regions that are divided from each other in the subsequent step of the solar cell substrate to become a functional region of each individual solar cell has a depth from the upper electrode layer side to the lower electrode layer surface, and is the same on the upper electrode layer surface. A patterning step of forming a plurality of grooves extending parallel to each other in the direction;
(3) Each layer extending in parallel with the plurality of grooves formed in the patterning step and extending from the upper electrode side to the lower electrode layer surface of the region located on both sides of the region serving as the functional region of the individual solar cell. Wide patterning process to remove and expose the lower electrode layer,
(4) a scribe step of forming a scribe line in a region where the lower electrode layer is exposed in the wide patterning step; and (5) a break step of breaking along the scribe line.

本発明の薄膜太陽電池の製造方法は、必要に応じて、前記パターニング工程の前に前記太陽電池基板にアライメントマークを形成するマーキング工程を含むことができる。前記アライメントマークはレーザーマーキングにより形成することができる。 The manufacturing method of the thin film solar cell of this invention can include the marking process of forming an alignment mark in the said solar cell substrate before the said patterning process as needed. The alignment mark can be formed by laser marking.

本発明の薄膜太陽電池の製造方法は、前記ワイドパターニング工程の後で且つ前記スクライブ工程の前に、又は前記ブレーク工程の後に、前記パターニング工程で形成された複数の溝の両端側の溝と直交する方向の領域に絶縁加工を行う絶縁工程を含むことができる。前記絶縁加工は、被絶縁部にレーザ照射又はメカニカルスクライブすることにより機能層を除去することにより行うことができる。 The method for manufacturing a thin film solar cell of the present invention is orthogonal to the grooves on both ends of the plurality of grooves formed in the patterning step after the wide patterning step and before the scribe step or after the break step. An insulating process for performing an insulating process may be included in the region in the direction of the current. The insulating process can be performed by removing the functional layer by laser irradiation or mechanical scribing on the part to be insulated.

本発明の薄膜太陽電池の製造方法は、前記絶縁工程の後に絶縁加工された領域の外側に前記上部電極層(表面側)から前記絶縁基板(裏面側)まで貫通する貫通孔を形成する貫通孔形成工程を含むことができる。前記貫通孔の形成には、グリーンレーザ加工装置を使用することができる。 The thin-film solar cell manufacturing method of the present invention is a through-hole that forms a through-hole penetrating from the upper electrode layer (front surface side) to the insulating substrate (back surface side) outside the region that is insulated after the insulating step. A forming step can be included. A green laser processing apparatus can be used to form the through hole.

前記太陽電池基板は、前記光吸収層と上部電極層との間に高抵抗バッファ層が形成された太陽電池基板であることができ、さらに、高抵抗バッファ層と上部電極層との間に絶縁層が形成された太陽電池基板であることができる。前記光吸収層は、CIGS、CIGSS及びCISから成る群から選択されたカルコパイライト化合物であることができ、前記下部電極層は、Mo層であることができ、前記上部電極層は、透明導電膜層であることができ、前記絶縁基板は、ガラス基板であることができる。前記パターニング工程においては、少なくとも先端が板状又は棒状の溝加工ツールの先端を、上部電極層上面の溝形成部に押圧しながら、前記溝加工ツールと前記太陽電池基板とを溝形成方向に相対移動させることにより、前記上部電極層から前記下部電極層面に至る溝を形成することができる。 The solar cell substrate may be a solar cell substrate in which a high-resistance buffer layer is formed between the light absorption layer and the upper electrode layer, and further insulated between the high-resistance buffer layer and the upper electrode layer. It can be a solar cell substrate on which a layer is formed. The light absorbing layer may be a chalcopyrite compound selected from the group consisting of CIGS, CIGSS, and CIS, the lower electrode layer may be a Mo layer, and the upper electrode layer may be a transparent conductive film. The insulating substrate may be a glass substrate. In the patterning step, the groove processing tool and the solar cell substrate are relatively opposed to each other in the groove forming direction while pressing the tip of the groove processing tool having at least a tip or a plate shape against the groove forming portion on the upper surface of the upper electrode layer. By moving, a groove extending from the upper electrode layer to the lower electrode layer surface can be formed.

前記パターニング工程において、棒状のボディと、ボディの先端に形成された刃先領域とからなり、刃先領域は細長く延びる長方形の底面と、底面の短手方向の端辺から立ち上がる前面及び後面と、底面の長手方向の端辺から直角に立ち上がって互いに平行な一対の面をなす左、右側面とからなり、少なくとも前後面のいずれか片面と底面とによって形成される角部が刃先となるようにしてある溝加工ツールを使用することができる。 In the patterning step, a rod-shaped body and a cutting edge region formed at the tip of the body, the cutting edge region is an elongated rectangular bottom surface, front and rear surfaces rising from the edge of the bottom surface in the short direction, and a bottom surface It consists of a left and right side surface that rises at a right angle from the end in the longitudinal direction and forms a pair of parallel surfaces, and a corner formed by at least one of the front and rear surfaces and the bottom surface is the cutting edge. A grooving tool can be used.

本発明の薄膜太陽電池の製造方法によれば、相互に分割されて個別の太陽電池の機能領域となる複数の領域を含む太陽電池基板を製造した後、個別の太陽電池に分離するので、各機能層(薄膜)及び溝の形成を効率よく行うことができる。   According to the method for manufacturing a thin-film solar cell of the present invention, after manufacturing a solar cell substrate including a plurality of regions that are divided from each other and become functional regions of individual solar cells, the solar cell substrate is separated into individual solar cells. The functional layer (thin film) and the groove can be formed efficiently.

(その他の課題を解決するための手段及び効果)
絶縁基板表裏面間配線用の貫通孔を最終段階で形成する場合には、薄膜形成前に貫通孔を形成する場合に懸念される薄膜形成工程における加熱・冷却により、貫通孔形成時に形成されるマイクロクラックからクラックが伸展して絶縁基板の強度等に悪影響を与えるという問題の発生を回避することができる。特にグリーンレーザ加工装置で貫通孔を形成する場合には、水を使用するメカニカルドリルや、水を使用しないメカニカルスクライブの場合に問題となるパーティクルの発生による機能領域への悪影響がない。
(Means and effects for solving other problems)
When the through-hole for wiring between the insulating substrate front and back surfaces is formed in the final stage, it is formed at the time of forming the through-hole by heating and cooling in the thin film formation process, which is a concern when forming the through-hole before forming the thin film. It is possible to avoid the occurrence of a problem that the crack extends from the microcrack and adversely affects the strength of the insulating substrate. In particular, when the through-hole is formed by the green laser processing apparatus, there is no adverse effect on the functional region due to generation of particles that becomes a problem in the case of a mechanical drill using water or a mechanical scribe not using water.

本発明にかかる集積型薄膜太陽電池の製造方法の一実施形態を示す工程図。Process drawing which shows one Embodiment of the manufacturing method of the integrated thin film solar cell concerning this invention. 本発明におけるパターニング工程において使用されるパターニング手段の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the patterning means used in the patterning process in this invention. 本発明におけるパターニング工程において使用される溝加工ツールの一実施形態を示す斜視図。The perspective view which shows one Embodiment of the groove processing tool used in the patterning process in this invention. 図3の溝加工ツールの底面拡大図。FIG. 4 is an enlarged bottom view of the grooving tool in FIG. 3. 図3の溝加工ツールの取り付け傾斜角度と、それに対応する太陽電池基板のスクライブラインの加工状態を示す模式図。The schematic diagram which shows the attachment inclination angle of the groove processing tool of FIG. 3, and the processing state of the scribe line of the solar cell board | substrate corresponding to it. 一般的なCIGS系の薄膜太陽電池の製造工程を示す模式図。The schematic diagram which shows the manufacturing process of a general CIGS type thin film solar cell.

以下において、本発明の詳細を、その実施の形態を示す図面に基づいて詳細に説明する。
図1は本発明にかかる集積型薄膜太陽電池の製造方法の一実施形態の工程図である。
Hereinafter, details of the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a process diagram of an embodiment of a method for producing an integrated thin film solar cell according to the present invention.

(1)太陽電池基板
絶縁基板上に下部電極層、光吸収層、高抵抗バッファ層、必要に応じて絶縁層及び上部電極層が形成された太陽電池基板を提供する。この太陽電池基板は、下部電極層に下部電極分離用の溝が形成され、光吸収層、高抵抗バッファ層及び絶縁層に、下部電極層と上部電極層とを接続するための溝が形成されているが、上部電極層分離用の溝は形成されていない。
特に限定されるものではないが、絶縁基板としては、例えば、ガラス、セラミックス等の絶縁性の脆性材料基板を使用することができる。下部電極層としては、通常、Mo電極層を例示できる。光吸収層としては、カルコゲナイト化合物等の各種の化合物半導体からなる層、例えば、CIGS層、CIGSS層、CIS層等を例示できる。高抵抗バッファ層としては、例えば、ZnS層等を例示できる。絶縁層としては、例えば、ZnO層を例示できる。
(1) Solar cell substrate Provided is a solar cell substrate in which a lower electrode layer, a light absorption layer, a high-resistance buffer layer, and if necessary, an insulating layer and an upper electrode layer are formed on an insulating substrate. In this solar cell substrate, a lower electrode separation groove is formed in the lower electrode layer, and a groove for connecting the lower electrode layer and the upper electrode layer is formed in the light absorption layer, the high-resistance buffer layer, and the insulating layer. However, the groove for separating the upper electrode layer is not formed.
Although not particularly limited, an insulating brittle material substrate such as glass or ceramics can be used as the insulating substrate. As the lower electrode layer, a Mo electrode layer can be usually exemplified. As a light absorption layer, the layer which consists of various compound semiconductors, such as a chalcogenite compound, for example, a CIGS layer, a CIGSS layer, a CIS layer, etc. can be illustrated. Examples of the high resistance buffer layer include a ZnS layer. An example of the insulating layer is a ZnO layer.

(2)マーキング工程
マーキング工程において、前記太陽電池基板に、後続の工程で太陽電池基板の位置決めをし、溝形成等の加工を施す際の基準となるアライメントマークを形成する。アライメントマークの形成には、レーザーマーキング装置を使用することができる。このレーザーマーキング装置としては、後工程(貫通孔形成工程)で貫通孔の形成に使用されるグリーンレーザ加工装置を兼用することができる。
(2) Marking step In the marking step, the solar cell substrate is positioned on the solar cell substrate in a subsequent step, and an alignment mark serving as a reference when performing processing such as groove formation is formed. A laser marking device can be used to form the alignment mark. As this laser marking device, a green laser processing device used for forming a through hole in a subsequent step (through hole forming step) can also be used.

(3)パターニング工程
次にパターニング工程において、上部電極分離用の複数の溝を形成する。上部電極分離用の溝は上部電極層から下部電極層表面に至る深さで形成する。上部電極分離用の溝は、通常、直線状であり、一方向に相互に平行に形成される。前記溝は、少なくとも先端が板状又は棒状の溝加工ツールの先端を、上部電極層上面の溝形成部に押圧しながら、前記溝加工ツールと前記太陽電池基板とを溝形成方向に相対移動させることにより、形成することができる。
(3) Patterning Step Next, in the patterning step, a plurality of grooves for separating the upper electrode are formed. The groove for separating the upper electrode is formed with a depth from the upper electrode layer to the surface of the lower electrode layer. The grooves for separating the upper electrode are usually linear and are formed parallel to each other in one direction. The groove moves the groove processing tool and the solar cell substrate relative to each other in the groove forming direction while pressing the tip of a groove processing tool having at least a plate-like or rod-like tip against the groove forming portion on the upper surface of the upper electrode layer. Thus, it can be formed.

図2は、パターニング工程に使用できる装置構成(パターニング手段)の一実施形態を示す斜視図である。パターニング手段は、水平方向(Y方向)に移動可能で、かつ、水平面内で90度及び角度θ回転可能なテーブル18を備えており、テーブル18は実質的に太陽電池基板の保持手段を形成する。 FIG. 2 is a perspective view showing an embodiment of an apparatus configuration (patterning means) that can be used in the patterning step. The patterning means includes a table 18 that is movable in the horizontal direction (Y direction) and that can rotate 90 degrees and angle θ in a horizontal plane, and the table 18 substantially forms a means for holding the solar cell substrate. .

テーブル18を挟んで設けてある両側の支持柱20,20と、X方向に延びるガイドバー21とで構成されるブリッジ19は、テーブル18上を跨ぐように設けてある。ホルダ支持体23は、ガイドバー21に形成したガイド22に沿って移動可能に取り付けられ、モータ24の回転によりX方向に移動する。 A bridge 19 composed of support pillars 20, 20 on both sides of the table 18 and guide bars 21 extending in the X direction is provided so as to straddle the table 18. The holder support 23 is attached to be movable along a guide 22 formed on the guide bar 21, and moves in the X direction by the rotation of the motor 24.

ホルダ支持体23には、スクライブヘッド7が設けられており、スクライブヘッド7の下部には、テーブル18上に載置される太陽電池基板Wの薄膜表面をスクライブ加工する溝加工ツール8を保持するホルダ9が設けられている。ホルダ9はスクライブヘッド7への取り付け角度を調整することができるようにしてあり、この取り付け角度を調整することで、溝加工ツール8と太陽電池基板Wとの角度を調整できるようにしてある。 A scribe head 7 is provided on the holder support 23, and a groove processing tool 8 for scribing the thin film surface of the solar cell substrate W placed on the table 18 is held below the scribe head 7. A holder 9 is provided. The holder 9 can adjust the angle of attachment to the scribe head 7, and the angle between the groove processing tool 8 and the solar cell substrate W can be adjusted by adjusting the angle of attachment.

また、X方向及びY方向に移動することが可能な台座12,13にカメラ10、11が夫々設けられている。台座12、13は支持台13上でX方向に延設されたガイド15に沿って移動する。カメラ10、11は、手動操作で上下動することができ、撮像の焦点を調整することができる。カメラ10、11で撮影された画像はモニタ16、17に表示される。テーブル18上に載置された太陽電池基板Wの表面に形成されたアライメントマークを、カメラ10、11により撮像することにより、太陽電池基板Wの位置を調整する。具体的には、テーブル18に支持された太陽電池基板W表面のアライメントマークを、カメラ10、11により撮像してアライメントマークの位置を特定する。特定されたアライメントマークの位置に基づいて、太陽電池基板W表面の載置時の方向ズレを検出し、テーブル18を所定角度回転させることでズレを修正する。 Cameras 10 and 11 are provided on pedestals 12 and 13 that can move in the X and Y directions, respectively. The pedestals 12 and 13 move on the support base 13 along a guide 15 extending in the X direction. The cameras 10 and 11 can be moved up and down by manual operation, and the focus of imaging can be adjusted. Images taken by the cameras 10 and 11 are displayed on the monitors 16 and 17. The position of the solar cell substrate W is adjusted by imaging the alignment marks formed on the surface of the solar cell substrate W placed on the table 18 with the cameras 10 and 11. Specifically, the alignment marks on the surface of the solar cell substrate W supported by the table 18 are imaged by the cameras 10 and 11, and the position of the alignment mark is specified. Based on the position of the specified alignment mark, a deviation in direction when the surface of the solar cell substrate W is placed is detected, and the deviation is corrected by rotating the table 18 by a predetermined angle.

そして、テーブル18をY方向に所定ピッチで移動するごとに、スクライブヘッド7を下降させて溝加工ツール8の刃先を太陽電池基板Wの表面に押しつけた状態でX方向に移動させ、太陽電池基板Wの表面をX方向に沿ってスクライブ加工する。太陽電池基板Wの表面をY方向に沿ってスクライブ加工する場合は、テーブル18を90度回転させて、上記と同様の動作を行う。 Each time the table 18 is moved at a predetermined pitch in the Y direction, the scribe head 7 is lowered to move in the X direction with the cutting edge of the groove processing tool 8 pressed against the surface of the solar cell substrate W. The surface of W is scribed along the X direction. When the surface of the solar cell substrate W is scribed along the Y direction, the table 18 is rotated 90 degrees and the same operation as described above is performed.

図3及び図4は、パターニング工程において用いる溝加工ツール8を示す。図3は下方から見た斜視図であり、図4は溝加工ツール8の底面を拡大した図である。この溝加工ツールは、棒状のボディと、ボディの先端部に形成された刃先領域とからなり、刃先領域は細長く延びる長方形の底面と、底面の短手方向の端辺から立ち上がる前面並びに後面と、底面の長手方向の端辺から直角に立ち上がって互いに平行な一対の面をなす左、右側面とからなり、前後面のいずれか片面と底面とによって形成される角部が刃先をなし、長方形をなす底面の長軸方向が前記移動方向に沿って配置され、刃先領域の前面若しくは後面が太陽電池の被加工面との間になす角度が50〜80度、特には65度〜75度の範囲内で進行方向側に傾斜させて溝加工を行うようにしている。   3 and 4 show the groove processing tool 8 used in the patterning process. FIG. 3 is a perspective view seen from below, and FIG. 4 is an enlarged view of the bottom surface of the grooving tool 8. This grooving tool is composed of a rod-shaped body and a cutting edge region formed at the tip of the body, the cutting edge region is an elongated rectangular bottom surface, a front surface and a rear surface rising from the edge in the short direction of the bottom surface, It consists of left and right side surfaces that form a pair of parallel surfaces that rise perpendicularly from the longitudinal edges of the bottom surface, and the corner formed by either one of the front and rear surfaces and the bottom surface forms a cutting edge, forming a rectangle The major axis direction of the bottom surface formed is arranged along the moving direction, and the angle formed between the front surface or the rear surface of the blade edge region and the work surface of the solar cell is in the range of 50 to 80 degrees, particularly 65 to 75 degrees. The groove processing is performed by inclining in the traveling direction side.

すなわち、この溝加工ツール8は実質的にスクライブヘッド7への取付部となる円柱状のボディ81と、その先端部に放電加工等により一体的に形成された刃先領域82とからなり、超硬合金又はダイヤモンド等の硬質材料で造られている。刃先領域82は、長方形の底面83と、底面83の短手方向の端辺から直角に立ち上がった前面84及び後面85と、底面83の長手方向の端辺から直角に立ち上がって互いに並行をなす左、右側面88、89とからなる。底面83と前、後面88、89とによって形成される角部がそれぞれ刃先86、87となる。   That is, the grooving tool 8 is composed of a cylindrical body 81 that is substantially a mounting portion to the scribe head 7 and a cutting edge region 82 that is integrally formed at the tip portion by electric discharge machining or the like. Made of hard material such as alloy or diamond. The blade edge region 82 includes a rectangular bottom surface 83, a front surface 84 and a rear surface 85 rising at right angles from the short side edge of the bottom surface 83, and a left rising from the long edge of the bottom surface 83 at right angles and parallel to each other. , Right side surfaces 88 and 89. Corner portions formed by the bottom surface 83 and the front and rear surfaces 88 and 89 are cutting edges 86 and 87, respectively.

底面83の左右幅L1は50〜60μmが好ましいが、要求されるスクライブの溝幅に合わせて25〜80μmとすることができる。また、刃先領域82の有効高さ、即ち刃先領域の左右側面87、88並びに前後面84、85の高さL2は0.5mm程度が好ましい。さらに、円柱状のボディ81の直径は2〜3mm程度がよい。なお、溝加工ツール8のボディ81は円柱状に限らず、断面四角形や多角形で形成することも可能である。   The left-right width L1 of the bottom surface 83 is preferably 50 to 60 μm, but can be set to 25 to 80 μm according to the required groove width of the scribe. The effective height of the cutting edge region 82, that is, the height L2 of the left and right side surfaces 87, 88 and the front and rear surfaces 84, 85 of the cutting edge region is preferably about 0.5 mm. Furthermore, the diameter of the cylindrical body 81 is preferably about 2 to 3 mm. Note that the body 81 of the grooving tool 8 is not limited to a columnar shape, but may be formed in a quadrangular cross section or a polygonal shape.

上述した溝加工ツール8を用いて加工を行う場合は、刃先領域82の底面83の長軸方向をツールの移動方向に沿った状態で、かつ、太陽電池基板Wに対して刃先部分82の前面84又は後面85を所定角度だけ傾斜させた状態でスクライブヘッド7に取り付ける。この場合の傾斜角度は50〜80度、特には65度〜75度の範囲が好ましい。   When processing using the groove processing tool 8 described above, the front surface of the cutting edge portion 82 with respect to the solar cell substrate W with the major axis direction of the bottom surface 83 of the cutting edge region 82 along the moving direction of the tool. 84 or the rear surface 85 is attached to the scribe head 7 in a state where it is inclined by a predetermined angle. In this case, the inclination angle is preferably 50 to 80 degrees, particularly 65 to 75 degrees.

なお、上記実施形態では、スクライブヘッド7をX方向に移動させることでスクライブ加工を実行したが、スクライブヘッド7と、太陽電池基板Wとが相対的に移動できれば足りることから、太陽電池基板Wが固定された状態でスクライブヘッド7をX方向およびY方向に移動させてもよいし、スクライブヘッド7を移動させることなく、太陽電池基板WのみをX方向及びY方向に移動させてもよい。   In the above embodiment, the scribing process is performed by moving the scribe head 7 in the X direction. However, since it is sufficient that the scribe head 7 and the solar cell substrate W can move relative to each other, the solar cell substrate W The scribe head 7 may be moved in the X direction and the Y direction in a fixed state, or only the solar cell substrate W may be moved in the X direction and the Y direction without moving the scribe head 7.

(4)ワイドパターニング工程
さらに、ワイドパターニング工程において、上部電極分離用の溝に平行に広がる領域であって、後工程で相互に分離される個別の太陽電池の機能領域となる領域の両側に位置する領域の上部電極層から下部電極層面に至る各層を除去して下部電極層を露出させる。各層の除去(ワイドパターニング)には、各種冶具(例えば、ニードル、ノミ状部材、棒状部材、板状部材、刃状部材、スクレーパ等)を使用することができる。
(4) Wide patterning step Further, in the wide patterning step, the region extends in parallel with the groove for separating the upper electrode, and is located on both sides of the region that becomes the functional region of individual solar cells separated from each other in the subsequent step. The layers from the upper electrode layer to the lower electrode layer surface in the region to be removed are removed to expose the lower electrode layer. Various jigs (for example, a needle, a flea-like member, a rod-like member, a plate-like member, a blade-like member, a scraper, etc.) can be used for removing each layer (wide patterning).

(5)スクライブ工程
そして、スクライブ工程において、各機能領域の間で、ワイドパターニング工程において下部電極層面を露出した領域に絶縁基板分断用のスクライブラインを形成する。スクライブラインの形成には、レーザスクライブを使用することもできるが、通常は、スクライビングホイールを使用すること(メカニカルスクライブ)が好ましい。スクライブラインは、上面(下部電極層面)側から形成してもよいし、裏面(絶縁基板側)側から形成してもよい。
(5) Scribe process Then, in the scribe process, a scribe line for dividing the insulating substrate is formed between the functional areas in the area where the lower electrode layer surface is exposed in the wide patterning process. Laser scribing can be used to form the scribe line, but it is usually preferable to use a scribing wheel (mechanical scribe). The scribe line may be formed from the upper surface (lower electrode layer surface) side or from the back surface (insulating substrate side) side.

(6)ブレーク工程
次にブレーク工程において、スクライブラインに沿って、裏面から押圧したり、裏面から衝撃を加えたり、振動を加えたり、スクライブラインを軸としてスクライブラインに沿って形成されたクラックを開く向きに曲げモーメントをかけたりすることによって、太陽電池基板(マザー基板)を個別の太陽電池に分離する。
(6) Break process Next, in the break process, the crack formed along the scribe line with the scribe line as an axis is pressed along the scribe line, pressed from the back surface, applied with an impact from the back surface, or subjected to vibration. The solar cell substrate (mother substrate) is separated into individual solar cells by applying a bending moment in the opening direction.

(7)絶縁工程
上部電極分離用の溝の両端部側で溝と直交する方向に各機能層を除去することによって絶縁部を形成する。絶縁部の形成は、レーザ照射や、メカニカルスクライブによって行うことができる。絶縁工程は、ブレーク工程の後(個別の太陽電池に分離した後)に実施してもよいが、ワイドパターニング工程の後でスクライブ工程の前(個別の太陽電池に分離する前)に実施してもよい。
(7) Insulating process An insulating part is formed by removing each functional layer in the direction orthogonal to a groove | channel on the both ends of the groove | channel for upper electrode isolation | separation. The insulating part can be formed by laser irradiation or mechanical scribing. The insulation process may be performed after the break process (after separation into individual solar cells), but after the wide patterning process and before the scribe process (before separation into individual solar cells). Also good.

(8)貫通孔形成工程
最後に、貫通孔形成工程において、絶縁部の外側(機能領域の外側)の領域に貫通孔を形成する。貫通孔は、絶縁基板の表面側(機能領域側)の上下電極からの配線を絶縁基板の裏面側に配線するために利用される。従来は、事前に貫通孔を形成した絶縁基板に対して各機能層の形成と各溝の形成とを行っていたが、各機能層形成時の加熱・冷却等の影響で、貫通孔を形成する際に形成されるマイクロクラックからクラックが伸展し、絶縁基板の強度等に対して悪影響を与えるという問題があった。貫通孔を最終段階で形成することにより、各機能層形成時の加熱・冷却等によるクラックの伸展による絶縁基板の強度低下等の問題の発生を回避することができる。
(8) Through-hole forming step Finally, in the through-hole forming step, a through-hole is formed in a region outside the insulating portion (outside the functional region). The through-hole is used for wiring wiring from the upper and lower electrodes on the front surface side (functional region side) of the insulating substrate to the back surface side of the insulating substrate. Previously, each functional layer and each groove were formed on an insulating substrate on which a through hole had been formed in advance, but the through hole was formed due to the effects of heating and cooling during the formation of each functional layer. There is a problem that the cracks extend from the microcracks formed during the process, and have an adverse effect on the strength and the like of the insulating substrate. By forming the through holes in the final stage, it is possible to avoid the occurrence of problems such as a decrease in strength of the insulating substrate due to the extension of cracks due to heating / cooling during the formation of each functional layer.

本発明によれば、後工程で相互に分割されて個別の太陽電池となる複数の領域を有する太陽電池基板(マザー基板)をパターニング工程及びワイドパターニング工程に供した後、スクライブ工程及びブレーク工程により、個別の太陽電池に分離するので、個別の太陽電池をそれぞれ個別にパターニング工程及びワイドパターニング工程に供する場合と比較して、効率よく太陽電池を製造することができる。   According to the present invention, a solar cell substrate (mother substrate) having a plurality of regions that are divided into individual solar cells in a post process is subjected to a patterning process and a wide patterning process, and then subjected to a scribe process and a break process. Since the solar cells are separated into individual solar cells, the solar cells can be efficiently manufactured as compared with the case where the individual solar cells are individually subjected to the patterning step and the wide patterning step.

また、パターニング工程の前にアライメントマークを形成することにより、その後の工程(パターニング工程、ワイドパターニング工程、スクライブ工程、ブレーク工程等)を効率よく、精確に実施することができる。   Further, by forming the alignment mark before the patterning step, subsequent steps (patterning step, wide patterning step, scribe step, break step, etc.) can be performed efficiently and accurately.

さらに、上部電極層形成後に貫通孔を形成することにより、各機能層形成前に貫通孔を形成する場合に発生する貫通孔形成時に形成されるマイクロクラックから各機能層形成時の加熱・冷却等によりクラックが伸展して絶縁基板の強度に悪影響を与えるという問題の発生を回避することができる。   Furthermore, by forming through holes after forming the upper electrode layer, heating / cooling at the time of forming each functional layer from microcracks formed at the time of forming the through holes generated when forming the through holes before forming each functional layer, etc. Therefore, it is possible to avoid the occurrence of the problem that the crack extends and adversely affects the strength of the insulating substrate.

前記パターニング工程において、少なくとも先端が板状又は棒状の溝加工ツールを使用することにより、パターニングをスムースに行うことができる。特に、図5に示すように、溝加工ツール8の刃先領域の前面84又は後面85と太陽電池基板Wの上面(上部電極層)に対する角度が、50〜80度、特には65度〜75度の範囲内で進行方向側に傾斜させることにより、除去した膜屑に乗り上げてバウンドすることによるスクライブラインの断絶や、押圧荷重が高くなることによる不規則な薄膜の剥離の発生を無くして、直線状で再現性のある幅のスクライブラインを形成することができる。   In the patterning step, patterning can be performed smoothly by using a groove processing tool having at least a tip or a plate at the tip. In particular, as shown in FIG. 5, the angle of the cutting edge region of the grooving tool 8 with respect to the front surface 84 or the rear surface 85 and the upper surface (upper electrode layer) of the solar cell substrate W is 50 to 80 degrees, particularly 65 to 75 degrees. By tilting in the direction of travel within the range of, the scribing line breaks off by getting on the removed film debris and bouncing, and the occurrence of irregular thin film peeling due to high pressing load is eliminated. A scribe line having a reproducible width can be formed.

さらに、溝加工ツール8の刃先86、87は、前後の角部に2カ所形成されているので、一方が摩耗又は破損すれば、溝加工ツール8の取り付け方向を変えることにより他方の刃先を新品として使用できる。しかも、いずれの刃先も摩耗した場合には、底面83並びに必要に応じて前後面84,85を研磨することによって刃先を補修することができる。   Furthermore, since the cutting edges 86 and 87 of the grooving tool 8 are formed in two places at the front and rear corners, if one of them is worn or damaged, the other cutting edge is replaced with a new one by changing the mounting direction of the grooving tool 8. Can be used as In addition, when any of the cutting edges is worn, the cutting edge can be repaired by polishing the bottom face 83 and the front and rear faces 84 and 85 as necessary.

以上、本発明で使用する溝加工ツールの代表的な実施例について説明したが、本発明で使用する溝加工ツールは必ずしも上記の実施例の構造のみに特定されるものではない。例えば、底面と前後面とによって形成される刃先の角度は上記実施例で述べたように略直角が好ましいが、多少鈍角に形成しても差し支えがない。   As mentioned above, although the typical Example of the grooving tool used by this invention was described, the grooving tool used by this invention is not necessarily specified only by the structure of said Example. For example, the angle of the cutting edge formed by the bottom surface and the front and back surfaces is preferably substantially perpendicular as described in the above embodiment, but may be formed to be somewhat obtuse.

その他本発明では、その目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正、変更することが可能である。 Others The present invention can be appropriately modified and changed within the scope of achieving the object and without departing from the scope of the claims.

本発明は、カルコパイライト化合物系半導体膜を用いた集積型薄膜太陽電池の製造方法、及び、これに用いることのできる溝加工ツールに適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a method for manufacturing an integrated thin film solar cell using a chalcopyrite compound semiconductor film, and a groove processing tool that can be used therefor.

W 太陽電池基板
7 スクライブヘッド
8 溝加工ツール
81 ボディ
82 刃先領域
83 刃先領域の底面
84 刃先領域の前面
85 刃先領域の後面
86 刃先
87 刃先
88 刃先領域の側面
89 刃先領域の側面
W Solar cell substrate 7 Scribe head 8 Grooving tool 81 Body 82 Cutting edge region 83 Bottom surface of cutting edge region 84 Front surface of cutting edge region 85 Rear surface of cutting edge region 86 Cutting edge 87 Cutting edge 88 Side surface of cutting edge region 89 Side surface of cutting edge region

Claims (14)

(1)絶縁基板上に、少なくとも下部電極層、光吸収層及び上部電極層が形成された太陽電池基板を提供する工程、
(2)前記太陽電池基板の後工程で相互に分割されて個別の太陽電池の機能領域となる領域のそれぞれに、上部電極層側から下部電極層面に至る深さで、上部電極層面上で一方向に相互に平行に伸びる複数の溝を形成するパターニング工程、
(3)前記パターニング工程で形成された複数の溝と平行に広がる領域であって、個別の太陽電池の機能領域となる領域の両側に位置する領域の上部電極側から下部電極層面に至る各層を除去して下部電極層を露出させるワイドパターニング工程、
(4)前記ワイドパターニング工程で下部電極層が露出した領域にスクライブラインを形成するスクライブ工程及び
(5)前記スクライブラインに沿ってブレークするブレーク工程
を含むことを特徴とする集積型薄膜太陽電池の製造方法。
(1) providing a solar cell substrate in which at least a lower electrode layer, a light absorption layer and an upper electrode layer are formed on an insulating substrate;
(2) Each of the regions that are divided from each other in the subsequent step of the solar cell substrate to become a functional region of each individual solar cell has a depth from the upper electrode layer side to the lower electrode layer surface, and is the same on the upper electrode layer surface. A patterning step of forming a plurality of grooves extending parallel to each other in the direction;
(3) Each layer extending in parallel with the plurality of grooves formed in the patterning step and extending from the upper electrode side to the lower electrode layer surface of the region located on both sides of the region serving as the functional region of the individual solar cell. Wide patterning process to remove and expose the lower electrode layer,
(4) A scribe process for forming a scribe line in a region where the lower electrode layer is exposed in the wide patterning process; and (5) a break process for breaking along the scribe line. Production method.
前記パターニング工程の前に前記太陽電池基板にアライメントマークを形成するマーキング工程を含む請求項1記載の薄膜太陽電池の製造方法。 The manufacturing method of the thin film solar cell of Claim 1 including the marking process of forming an alignment mark in the said solar cell board | substrate before the said patterning process. 前記アライメントマークをレーザーマーキングにより形成する請求項2記載の薄膜太陽電池の製造方法。 The method for manufacturing a thin film solar cell according to claim 2, wherein the alignment mark is formed by laser marking. 前記ワイドパターニング工程の後で且つ前記スクライブ工程の前に、又は前記ブレーク工程の後に、前記パターニング工程で形成された複数の溝の両端側の溝と直交する方向の領域に絶縁加工を行う絶縁工程を含む請求項1記載の薄膜太陽電池の製造方法。 An insulating process for performing an insulating process in a region perpendicular to the grooves on both ends of the plurality of grooves formed in the patterning process after the wide patterning process and before the scribe process or after the break process. The manufacturing method of the thin film solar cell of Claim 1 containing. 前記絶縁加工を被絶縁部にレーザ照射又はメカニカルスクライブすることにより行う請求項4記載の薄膜太陽電池の製造方法。 The manufacturing method of the thin film solar cell of Claim 4 which performs the said insulation process by laser irradiation or mechanical scribing to an to-be-insulated part. 前記絶縁工程の後に絶縁加工された領域の外側に前記上部電極から前記基板まで貫通する貫通孔を形成する貫通孔形成工程を含む請求項4記載の薄膜太陽電池の製造方法。 The manufacturing method of the thin film solar cell of Claim 4 including the through-hole formation process of forming the through-hole which penetrates from the said upper electrode to the said board | substrate outside the area | region insulated after the said insulation process. 前記貫通孔の形成にグリーンレーザ加工装置を使用する請求項6記載の薄膜太陽電池の製造方法。 The manufacturing method of the thin film solar cell of Claim 6 which uses a green laser processing apparatus for formation of the said through-hole. 前記太陽電池基板が、前記光吸収層と上部電極との間に高抵抗バッファ層が形成された太陽電池基板である請求項1記載の薄膜太陽電池の製造方法。 The method of manufacturing a thin film solar cell according to claim 1, wherein the solar cell substrate is a solar cell substrate in which a high-resistance buffer layer is formed between the light absorption layer and the upper electrode. 前記太陽電池基板が、前記高抵抗バッファ層と上部電極との間に絶縁層が形成された太陽電池基板である請求項8記載の薄膜太陽電池の製造方法。 The method for manufacturing a thin-film solar cell according to claim 8, wherein the solar cell substrate is a solar cell substrate in which an insulating layer is formed between the high-resistance buffer layer and the upper electrode. 前記光吸収層が、Cu(In,Ga)Se、Cu(In,Ga)(Se,S)及び(CuInS)から成る群から選択されたカルコパイライト化合物からなる請求項1記載の薄膜太陽電池の製造方法。 The light absorbing layer is, Cu (In, Ga) Se 2, Cu (In, Ga) (Se, S) 2 and the thin film according to claim 1, wherein comprising a chalcopyrite compound selected from the group consisting of (CuInS 2) A method for manufacturing a solar cell. 前記下部電極層がMo層である請求項1記載の薄膜太陽電池の製造方法。 The method for manufacturing a thin-film solar cell according to claim 1, wherein the lower electrode layer is a Mo layer. 前記上部電極層が透明導電膜層である請求項1記載の薄膜太陽電池の製造方法。 The method for manufacturing a thin-film solar cell according to claim 1, wherein the upper electrode layer is a transparent conductive film layer. 前記絶縁基板がガラス基板である請求項1記載の薄膜太陽電池の製造方法。 The method for manufacturing a thin film solar cell according to claim 1, wherein the insulating substrate is a glass substrate. 前記パターニング工程において、少なくとも先端が板状又は棒状の溝加工ツールの先端を、上部電極層上面の溝形成部に押圧しながら、前記溝加工ツールと前記太陽電池基板とを溝形成方向に相対移動させることにより、前記上部電極から前記下部電極面に至る溝を形成する請求項1記載の太陽電池の製造方法。 In the patterning step, the groove processing tool and the solar cell substrate are relatively moved in the groove forming direction while pressing the tip of a groove processing tool having at least a plate-like or rod-like tip against the groove forming portion on the upper surface of the upper electrode layer. The method for manufacturing a solar cell according to claim 1, wherein a groove extending from the upper electrode to the lower electrode surface is formed.
JP2009041272A 2009-02-24 2009-02-24 Method for manufacturing integrated thin-film solar cell Pending JP2010199242A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009041272A JP2010199242A (en) 2009-02-24 2009-02-24 Method for manufacturing integrated thin-film solar cell
PCT/JP2010/052705 WO2010098307A1 (en) 2009-02-24 2010-02-23 Method for manufacturing integrated thin film solar cell
TW099105335A TW201101525A (en) 2009-02-24 2010-02-24 Method for manufacturing integrated thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041272A JP2010199242A (en) 2009-02-24 2009-02-24 Method for manufacturing integrated thin-film solar cell

Publications (1)

Publication Number Publication Date
JP2010199242A true JP2010199242A (en) 2010-09-09

Family

ID=42665514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041272A Pending JP2010199242A (en) 2009-02-24 2009-02-24 Method for manufacturing integrated thin-film solar cell

Country Status (3)

Country Link
JP (1) JP2010199242A (en)
TW (1) TW201101525A (en)
WO (1) WO2010098307A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245124A (en) * 2009-04-01 2010-10-28 Mitsuboshi Diamond Industrial Co Ltd Manufacturing unit for integrated thin-film solar cells
JP2013211465A (en) * 2012-03-30 2013-10-10 Mitsuboshi Diamond Industrial Co Ltd Groove processing tool, groove processing method of thin-film solar cell using the same, and groove processing device
JP2014065291A (en) * 2013-03-28 2014-04-17 Mitsuboshi Diamond Industrial Co Ltd Tool for processing groove of metal film laminated ceramic substrate
CN104518039A (en) * 2014-12-31 2015-04-15 江苏武进汉能光伏有限公司 Vacuum thin-film solar cell module and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120108724A (en) * 2011-03-25 2012-10-05 삼성전기주식회사 Method and apparatus for producing solar cell
CN105355685A (en) * 2015-10-19 2016-02-24 北京航空航天大学 Rigid-flexible integrated solar cell considering heat insulation and development method thereof
CN113894432A (en) * 2021-12-06 2022-01-07 中国华能集团清洁能源技术研究院有限公司 Laser scribing method and solar cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101687A (en) * 1978-01-27 1979-08-10 Sharp Corp Solar battery unit
JPS60123073A (en) * 1983-12-08 1985-07-01 Fuji Electric Corp Res & Dev Ltd Thin-film solar cell
CA2024662A1 (en) * 1989-09-08 1991-03-09 Robert Oswald Monolithic series and parallel connected photovoltaic module
JP3604550B2 (en) * 1997-12-16 2004-12-22 日亜化学工業株式会社 Method for manufacturing nitride semiconductor device
JP2000315809A (en) * 1999-03-04 2000-11-14 Matsushita Electric Ind Co Ltd Fabrication of integrated thin film solar cell and patterning system
JP4369259B2 (en) * 2004-02-19 2009-11-18 シャープ株式会社 Method for manufacturing solar battery cell
JP4713100B2 (en) * 2004-07-29 2011-06-29 株式会社カネカ Method for manufacturing photoelectric conversion device and photoelectric conversion device
JP2006216608A (en) * 2005-02-01 2006-08-17 Honda Motor Co Ltd Solar battery module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245124A (en) * 2009-04-01 2010-10-28 Mitsuboshi Diamond Industrial Co Ltd Manufacturing unit for integrated thin-film solar cells
JP2013211465A (en) * 2012-03-30 2013-10-10 Mitsuboshi Diamond Industrial Co Ltd Groove processing tool, groove processing method of thin-film solar cell using the same, and groove processing device
JP2014065291A (en) * 2013-03-28 2014-04-17 Mitsuboshi Diamond Industrial Co Ltd Tool for processing groove of metal film laminated ceramic substrate
CN104518039A (en) * 2014-12-31 2015-04-15 江苏武进汉能光伏有限公司 Vacuum thin-film solar cell module and manufacturing method thereof

Also Published As

Publication number Publication date
TW201101525A (en) 2011-01-01
WO2010098307A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5469722B2 (en) Grooving tool and thin film solar cell scribing apparatus using the same
WO2010098307A1 (en) Method for manufacturing integrated thin film solar cell
JP5308892B2 (en) Integrated thin film solar cell manufacturing equipment
JP5369099B2 (en) Thin-film solar cell scribing device
WO2010103947A1 (en) Grooving tool for thin film solar cell
JP5357580B2 (en) Grooving tool and method of grooving thin film solar cell using the same
TW201519303A (en) Cutting method and cutting apparatus for wafer laminated body
JP5804999B2 (en) Groove machining tool, groove machining method and groove machining apparatus for thin-film solar cell using the same
JP2009187982A (en) Edge cutting device for solar cell panel
JP5369011B2 (en) Grooving tool and method for grooving thin film solar cell using the same
JP2020107799A (en) Grooving tool, and thin film solar cell grooving method and grooving device using the same
JP2020107797A (en) Grooving tool, and thin film solar cell grooving method and grooving device using the same
JP2020107796A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107795A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107800A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107798A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2015126205A (en) Grooving tool and scribe device with grooving tool attached thereto
JP2015192112A (en) Groove processing tool and scribe apparatus with the groove processing tool
JP2015126204A (en) Grooving tool and scribe device with grooving tool attached thereto
JP2015192114A (en) Groove processing tool and scribe apparatus with the groove processing tool