WO2010103947A1 - Grooving tool for thin film solar cell - Google Patents

Grooving tool for thin film solar cell Download PDF

Info

Publication number
WO2010103947A1
WO2010103947A1 PCT/JP2010/053212 JP2010053212W WO2010103947A1 WO 2010103947 A1 WO2010103947 A1 WO 2010103947A1 JP 2010053212 W JP2010053212 W JP 2010053212W WO 2010103947 A1 WO2010103947 A1 WO 2010103947A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
grooving tool
blade
thin film
film solar
Prior art date
Application number
PCT/JP2010/053212
Other languages
French (fr)
Japanese (ja)
Inventor
正信 曽山
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Publication of WO2010103947A1 publication Critical patent/WO2010103947A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D13/00Tools or tool holders specially designed for planing or slotting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/28Grooving workpieces
    • B23C3/30Milling straight grooves, e.g. keyways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/08Disc-type cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/18Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools
    • B28D1/186Tools therefor, e.g. having exchangeable cutter bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/225Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising for scoring or breaking, e.g. tiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools

Definitions

  • the present invention relates to a groove processing tool for manufacturing a chalcopyrite compound integrated thin film solar cell.
  • the chalcopyrite compound includes CIGS (Cu (In, Ga) (Se, S) 2 ), CIS (CuInS 2 ) and the like in addition to CIGS (Cu (In, Ga) Se 2 ).
  • FIG. 7 is a schematic diagram showing a manufacturing process of a CIGS thin film solar cell.
  • a Mo electrode layer 2 serving as a plus-side lower electrode is formed on an insulating substrate 1 made of soda lime glass (SLG) or the like by sputtering, and then a light absorption layer is formed.
  • a groove S for lower electrode separation is formed on the previous thin film solar cell substrate by scribing.
  • a light absorption layer 3 made of a compound semiconductor (CIGS) thin film is formed on the Mo electrode layer 2 by vapor deposition, sputtering, or the like, and on that, for heterojunction.
  • a buffer layer 4 made of a ZnS thin film is formed by a CBD method (chemical bath deposition method), and an insulating layer 5 made of a ZnO thin film is formed thereon.
  • a transparent electrode layer 6 as an upper electrode made of a ZnO: Al thin film is formed on the insulating layer 5, and each functional layer necessary for power generation using photoelectric conversion is formed.
  • An electrode separation groove M2 reaching the lower Mo electrode layer 2 is formed by scribing, using the solar cell substrate provided.
  • a groove for electrode separation is formed by irradiating laser light emitted by exciting an Nd: YAG crystal with a continuous discharge lamp such as an arc lamp.
  • a continuous discharge lamp such as an arc lamp.
  • the mechanical scribing method is performed by pressing a cutting edge of a groove processing tool such as a metal needle (needle) having a tapered tip against a substrate while applying a predetermined pressure.
  • a groove processing tool such as a metal needle (needle) having a tapered tip against a substrate while applying a predetermined pressure.
  • This is a technique for processing a groove for electrode separation by moving the electrode.
  • this mechanical scribing method is often performed.
  • Grooving tools used in conventional mechanical scribing methods are configured in a shape in which one cutting edge is provided at the tip of the body.
  • the groove processing tool having such a shape is attached and fixed to the holder of the scribing device, and the groove processing tool is pressed against the thin film solar cell and moved relatively along the planned scribe line so that the groove processing is performed. ing.
  • a grooving tool formed with a single cutting edge if the cutting edge wears or spills due to use, it must be removed from the holder and polished or replaced with a new one each time. Was troublesome.
  • a first object of the present invention is to provide a solar cell grooving tool that can be easily replaced with a new cutting edge without replacing the grooving tool itself when the cutting edge is worn.
  • the shape of the cutting edge of the grooving tool is a tapered needle shape, but strictly speaking, the portion pressed against the thin film solar cell
  • the tip is cut horizontally to be flat to increase the contact area. That is, as shown in FIG. 8, the tip portion has a truncated cone shape with a tapered surface.
  • the grooving tool can be removed from the holder, polished and repaired, and reused, but if the tip has a truncated cone shape, the diameter of the cutting edge is reduced by polishing. Will change.
  • the present invention secondly provides a grooving tool for a thin-film solar cell that can be reused by maintaining a constant width of the scribe line by polishing even for a cutting edge that has already been worn. With the goal.
  • the groove processing tool for an integrated thin film solar cell of the present invention which has been made to solve the above-mentioned problems, has a plurality of blades whose blade edges are directed in the tangential direction at the outer peripheral portion of the disc-shaped body with equal intervals in the circumferential direction.
  • a plurality of the grooves, and the groove can be formed with any one of the blades.
  • the disc-shaped body is set so that the next new blade is at the grooving position.
  • the grooving tool itself can be easily replaced with a new blade without exchanging, and the complexity of the replacement work can be eliminated.
  • the blade is preferably provided with a notch having a blade surface along the radial direction on the outer peripheral surface of the body so that a corner formed by the outer peripheral surface of the body and the blade surface becomes a blade edge.
  • the cutting edge can be point-contacted with the substrate at the time of grooving, and the thin film can be peeled smoothly and smoothly, and a straight and clean scribe line can be formed.
  • the left and right side surfaces of the tip portion of the blade of the grooving tool are formed by a pair of parallel surfaces.
  • the grooving tool is made of cemented carbide or diamond (sintered diamond (PCD) or the like).
  • PCD sintered diamond
  • the perspective view which shows one Embodiment of the scribing apparatus for integrated type thin film solar cells using the groove processing tool concerning this invention The perspective view of the groove processing tool concerning this invention.
  • the front view of the said groove processing tool The side view of the said groove processing tool.
  • the perspective view which shows another Example of the groove processing tool concerning this invention The schematic diagram which shows the manufacturing process of a general CIGS type thin film solar cell.
  • FIG. 1 is a perspective view showing an embodiment of an integrated thin film solar cell scribing apparatus using a groove processing tool according to the present invention.
  • the scribing device includes a table 18 that is movable in the horizontal direction (Y direction) and that can rotate 90 degrees and an angle ⁇ in a horizontal plane.
  • the table 18 substantially forms a means for holding the solar cell substrate W. To do.
  • the bridge 19 composed of the support pillars 20 and 20 on both sides provided across the table 18 and the guide bar 21 extending in the X direction is provided so as to straddle the table 18.
  • the holder support 23 is attached to be movable along a guide 22 formed on the guide bar 21, and moves in the X direction by the rotation of the motor 24.
  • the holder support 23 is provided with a scribe head 7.
  • a grooving tool 8 for scribing the thin film surface of the solar cell substrate W placed on the table 18 is provided below the scribe head 7 (for details, see FIG.
  • a holder 9 is provided for holding (described later).
  • the holder 9 can adjust the attachment angle, and the angle between the groove processing tool 8 and the solar cell substrate W can be adjusted by adjusting the attachment angle.
  • the attached grooving tool 8 can be rotated by a certain angle (for example, 90 degrees).
  • a ratchet mechanism is employed, and the rotation direction of the attached blade is set to one direction, and the rotation is stopped at a position of a predetermined angle by the claw in the reverse direction.
  • the cameras 10 and 11 are provided on the pedestals 12 and 13 that can move in the X direction and the Y direction, respectively.
  • the pedestals 12 and 13 move along a guide 15 extending in the X direction on the support base 14.
  • the cameras 10 and 11 can be moved up and down by manual operation, and the focus of imaging can be adjusted. Images taken by the cameras 10 and 11 are displayed on the monitors 16 and 17.
  • the solar cell substrate W placed on the table 18 has a scribe line or the like that is formed in the previous process and can be observed from the surface by each process. Therefore, when scribing the solar cell substrate W in each process, the scribe line formed in the previous process is used as a mark for specifying the scribe position. For example, when forming grooves for upper and lower electrode contacts on the solar cell substrate W in which the light absorption layer 3, the buffer layer 4 and the insulating layer 5 are formed on the scribed lower electrode layer (Mo electrode layer) 2, A scribe line formed on the electrode layer 2 is used as a mark for specifying a groove forming position. That is, the position of the solar cell substrate W is adjusted by imaging the scribe line formed on the lower electrode layer 2 by the cameras 10 and 11.
  • the scribe line formed on the lower electrode layer 2 is imaged with the cameras 10 and 11 by imaging the scribe line formed on the lower electrode layer 2 that can be observed from the surface of the solar cell substrate W supported by the table 18. Identify the location. Based on the position of the scribe line formed in the specified lower electrode layer, the position (scribe position) where the upper and lower electrode contact grooves are to be formed is determined, and the position of the solar cell substrate W is adjusted to determine the scribe position. adjust.
  • the scribe head 7 is lowered to move in the X direction with the cutting edge of the groove processing tool 8 pressed against the surface of the solar cell substrate W.
  • the surface of W is scribed along the X direction.
  • the table 18 is rotated 90 degrees and the same operation as described above is performed.
  • FIG. 2 to 4 show a grooving tool 8 which is an example of the present invention.
  • 2 is a perspective view
  • FIG. 3 is a front view
  • FIG. 4 is a side view.
  • the grooving tool 8 includes a plurality of four blade regions in the present embodiment at equal intervals in the circumferential direction on the outer periphery of a disc-shaped body 81 made of a hard material such as cemented carbide or diamond. 82 is provided.
  • the blade region 82 is provided with a notch 84 that forms a blade surface 83 along the radial direction of the body 81 on the outer periphery of the body 81, and a corner formed by the body outer peripheral surface and the blade surface 83 becomes the blade edge 85. It is formed as follows. Further, an attachment hole 86 for attaching to the holder 9 of the scribing device is provided at the center of the disc-shaped body 81, and the attachment is made to the holder 9 via the attachment hole 86 so as to be rotatable and fixed.
  • the blade edge 85 is arranged toward the traveling direction side with respect to the solar cell substrate W as shown in FIG. ing.
  • the left and right width L1 of the top of the blade region 82 is preferably 50 to 60 ⁇ m, but can be 25 to 80 ⁇ m corresponding to the required groove width of the scribe.
  • the diameter of the disk-shaped body 81 is, for example, 1 to 20 mm, the thickness L2 is 20 ⁇ m to 1 mm, and the height H of the blade surface 83 is about 50 ⁇ m to 5 mm.
  • the blade edge 85 is in line contact with the substrate W (line contact in the front-rear direction of the page in FIG. ), The thin film can be smoothly peeled off, and a straight and clean scribe line can be formed. Further, when the grooving tool 8 is attached, the blade edge 85 is attached to the substrate W in a posture in which the blade surface 83 of the blade region 82 is slightly inclined with respect to the substrate W as shown in FIG. It is possible to reliably make contact with the line contact and peel off the thin film with good sharpness.
  • the disk-shaped body 81 is rotated and fixed so that the next new cutting edge becomes the groove machining part.
  • the number of blade regions 82 formed at equal intervals is four, and therefore the rotation angle when the position is changed to a new blade edge is 90 degrees.
  • FIG. 6 shows another embodiment of the grooving tool according to the present invention, in which left and right side surfaces 82a and 82b of the tip portion including the cutting edge 85 of the blade region 82 are formed by a pair of parallel surfaces.
  • left and right side surfaces 82a and 82b of the tip portion including the cutting edge 85 of the blade region 82 are formed by a pair of parallel surfaces.
  • the scribing process is performed by moving the scribe head 7 in the X direction.
  • the solar cell substrate W is fixed.
  • the scribing head 7 may be moved in the X direction and the Y direction in the state where it is applied, or only the solar cell substrate W may be moved in the X direction and the Y direction without moving the scribing head 7.
  • the present invention is not necessarily limited to the above-described embodiment structures.
  • the means for attaching the grooving tool 8 to the holder 9 may be any means as long as the grooving tool 8 can be sequentially rotated every predetermined angle and can be reliably fixed at the set position.
  • Others The present invention can be appropriately modified and changed within the scope of achieving the object and without departing from the scope of the claims.
  • the present invention can be applied to a groove processing tool used in manufacturing an integrated thin film solar cell using a chalcopyrite compound semiconductor film.

Abstract

Provided is a grooving tool for a thin film solar cell in which when a cutting edge is worn, it can be easily replaced with a new cutting edge without exchanging the grooving tool itself, and integrated thin film solar cells can be manufactured at a high yield. A plurality of cutter blade areas having cutting edges that are directed substantially in the tangential directions are spaced from one another at equal distances in the circumferential direction on the outer peripheral portion of a disc-like body (81) which is rotatably and fixably attached to a holder (9) of a scriber, wherein one of the cutting edges is used to form a groove.

Description

薄膜太陽電池用の溝加工ツールGrooving tool for thin film solar cells
 本発明は、カルコパイライト化合物系集積型薄膜太陽電池を製造する際の溝加工ツールに関する。
 ここで、カルコパイライト化合物とは、CIGS(Cu(In,Ga)Se)の他に、CIGSS(Cu(In,Ga)(Se,S))、CIS(CuInS)等が含まれる。
The present invention relates to a groove processing tool for manufacturing a chalcopyrite compound integrated thin film solar cell.
Here, the chalcopyrite compound includes CIGS (Cu (In, Ga) (Se, S) 2 ), CIS (CuInS 2 ) and the like in addition to CIGS (Cu (In, Ga) Se 2 ).
 カルコパイライト化合物半導体を光吸収層として用いる薄膜太陽電池においては、基板上に複数のユニットセルを直列接続した集積型構造が一般的である。 In a thin film solar cell using a chalcopyrite compound semiconductor as a light absorption layer, an integrated structure in which a plurality of unit cells are connected in series on a substrate is common.
 従来のカルコパイライト化合物系集積型薄膜太陽電池の製造方法について説明する。図7は、CIGS薄膜太陽電池の製造工程を示す模式図である。まず、図7(a)に示すように、ソーダライムガラス(SLG)等からなる絶縁基板1上に、プラス側の下部電極となるMo電極層2をスパッタリング法によって形成した後、光吸収層形成前の薄膜太陽電池基板に対してスクライブ加工により下部電極分離用の溝Sを形成する。 A conventional method for producing a chalcopyrite compound-based integrated thin film solar cell will be described. FIG. 7 is a schematic diagram showing a manufacturing process of a CIGS thin film solar cell. First, as shown in FIG. 7A, a Mo electrode layer 2 serving as a plus-side lower electrode is formed on an insulating substrate 1 made of soda lime glass (SLG) or the like by sputtering, and then a light absorption layer is formed. A groove S for lower electrode separation is formed on the previous thin film solar cell substrate by scribing.
 その後、図7(b)に示すように、Mo電極層2上に、化合物半導体(CIGS)薄膜からなる光吸収層3を蒸着法、スパッタリング法等によって形成し、その上に、ヘテロ接合のためのZnS薄膜等からなるバッファ層4をCBD法(ケミカルバスデポジション法)により形成し、その上に、ZnO薄膜からなる絶縁層5を形成する。そして、透明電極層形成前の薄膜太陽電池に対して、下部電極分離用の溝Sから横方向に所定距離はなれた位置に、スクライブ加工によりMo電極層2にまで到達する電極間コンタクト用の溝M1を形成する。 After that, as shown in FIG. 7B, a light absorption layer 3 made of a compound semiconductor (CIGS) thin film is formed on the Mo electrode layer 2 by vapor deposition, sputtering, or the like, and on that, for heterojunction. A buffer layer 4 made of a ZnS thin film is formed by a CBD method (chemical bath deposition method), and an insulating layer 5 made of a ZnO thin film is formed thereon. Then, with respect to the thin-film solar cell before forming the transparent electrode layer, the interelectrode contact groove that reaches the Mo electrode layer 2 by scribing at a position spaced apart from the lower electrode separation groove S in the lateral direction. M1 is formed.
 続いて、図7(c)に示すように、絶縁層5の上からZnO:Al薄膜からなる上部電極としての透明電極層6を形成し、光電変換を利用した発電に必要な各機能層を備えた太陽電池基板とし、スクライブ加工により下部のMo電極層2にまで到達する電極分離用の溝M2を形成する。 Subsequently, as shown in FIG. 7C, a transparent electrode layer 6 as an upper electrode made of a ZnO: Al thin film is formed on the insulating layer 5, and each functional layer necessary for power generation using photoelectric conversion is formed. An electrode separation groove M2 reaching the lower Mo electrode layer 2 is formed by scribing, using the solar cell substrate provided.
 上述した集積型薄膜太陽電池を製造する工程において、電極分離用の溝M1及びM2をスクライブにより溝加工する技術として、レーザスクライブ法とメカニカルスクライブ法が用いられてきた。 In the process of manufacturing the integrated thin film solar cell described above, a laser scribing method and a mechanical scribing method have been used as a technique for groove-growing the electrode separation grooves M1 and M2 by scribing.
 レーザスクライブ法は、例えば特許文献1で開示されているように、アークランプ等の連続放電ランプによってNd:YAG結晶を励起して発信したレーザ光を照射することにより電極分離用の溝を形成する。この方法は、光吸収層形成後の薄膜太陽電池基板に対して溝を形成する場合、スクライブ時にレーザ光の熱によって光吸収層3の光電変換特性が劣化するおそれがあった。 In the laser scribing method, as disclosed in, for example, Patent Document 1, a groove for electrode separation is formed by irradiating laser light emitted by exciting an Nd: YAG crystal with a continuous discharge lamp such as an arc lamp. . In this method, when a groove is formed on the thin-film solar cell substrate after the light absorption layer is formed, the photoelectric conversion characteristics of the light absorption layer 3 may be deteriorated by the heat of the laser light during scribing.
 メカニカルスクライブ法は、例えば特許文献2及び3で開示されているように、先端が先細り状となった金属針(ニードル)等の溝加工ツールの刃先を、所定の圧力をかけて基板に押しつけながら移動させることによって、電極分離用の溝を加工する技術である。現在ではこのメカニカルスクライブ法が多く行われている。 For example, as disclosed in Patent Documents 2 and 3, the mechanical scribing method is performed by pressing a cutting edge of a groove processing tool such as a metal needle (needle) having a tapered tip against a substrate while applying a predetermined pressure. This is a technique for processing a groove for electrode separation by moving the electrode. At present, this mechanical scribing method is often performed.
特開平11-312815号公報Japanese Patent Laid-Open No. 11-31815 特開2002-094089号公報JP 2002-094089 A 特開2004-115356号公報JP 2004-115356 A
 従来のメカニカルスクライブ法で使用される溝加工ツールは、特許文献2並びに特許文献3で開示されているものを含め、ボディの先端部に一つの刃先を設けた形状で構成されている。このような形状の溝加工ツールをスクライブ装置のホルダに取り付けて固定し、溝加工ツールを薄膜太陽電池に押しつけながら、スクライブ予定ラインに沿って相対的に移動させることで、溝加工を行うようにしている。
 しかしながら単一の刃先で形成された溝加工ツールでは、使用によって刃先が摩耗したり、刃こぼれしたりした場合には、その都度ホルダから取り外して研磨、若しくは、新品と交換する必要があって着脱が面倒であった。
Grooving tools used in conventional mechanical scribing methods, including those disclosed in Patent Document 2 and Patent Document 3, are configured in a shape in which one cutting edge is provided at the tip of the body. The groove processing tool having such a shape is attached and fixed to the holder of the scribing device, and the groove processing tool is pressed against the thin film solar cell and moved relatively along the planned scribe line so that the groove processing is performed. ing.
However, with a grooving tool formed with a single cutting edge, if the cutting edge wears or spills due to use, it must be removed from the holder and polished or replaced with a new one each time. Was troublesome.
 そこで、本発明は第一に、刃先が摩耗したとき、溝加工ツール自体を交換することなく、新しい刃先に簡単に据え替えることができる太陽電池用の溝加工ツールを提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, a first object of the present invention is to provide a solar cell grooving tool that can be easily replaced with a new cutting edge without replacing the grooving tool itself when the cutting edge is worn. .
 また、特許文献2及び特許文献3に開示されているようなメカニカルスクライブ法では、溝加工ツールの刃先の形状を先細りの針状にしてあるが、厳密には、薄膜太陽電池に圧接される部分は接触面積を広くするために平らとなるように先端が水平にカットされている。即ち、図8に示すように、先端部分が先細りのテーパ面を有する円錐台形状にしてある。
 刃先が摩耗したときに、溝加工ツールをホルダから取り外して研磨補修し、再度利用することができるなら経済的であるが、先端部分が円錐台形状であると、研磨することにより刃先の径が変化してしまうことになる。太陽電池基板では、スクライブラインの線幅を一定に維持して製品としての設計上予定された品質(光電変換効率等)の実現及び品質の均一性(再現性)をよくすることが重要であり、そのためには、薄膜の剥離度合を一定にする必要がある。
Further, in the mechanical scribing method disclosed in Patent Document 2 and Patent Document 3, the shape of the cutting edge of the grooving tool is a tapered needle shape, but strictly speaking, the portion pressed against the thin film solar cell The tip is cut horizontally to be flat to increase the contact area. That is, as shown in FIG. 8, the tip portion has a truncated cone shape with a tapered surface.
When the cutting edge is worn, it is economical if the grooving tool can be removed from the holder, polished and repaired, and reused, but if the tip has a truncated cone shape, the diameter of the cutting edge is reduced by polishing. Will change. In solar cell substrates, it is important to maintain the scribe line width constant to achieve the quality (photoelectric conversion efficiency, etc.) planned in the product design and to improve the quality uniformity (reproducibility). For this purpose, it is necessary to make the degree of peeling of the thin film constant.
 そこで、本発明は第二に、既に摩耗した刃先についても、研磨によりスクライブラインの線幅を一定に維持して再度利用することができるようにした薄膜太陽電池用の溝加工ツールを提供することを目的とする。 Therefore, the present invention secondly provides a grooving tool for a thin-film solar cell that can be reused by maintaining a constant width of the scribe line by polishing even for a cutting edge that has already been worn. With the goal.
 上記課題を解決するためになされた本発明の集積型薄膜太陽電池用の溝加工ツールは、円盤状ボディの外周部に、接線方向に刃先を向けた複数の刃が周方向に等しい間隔をあけて複数設けられ、いずれか一つの刃で溝加工できるようにした構造にしてある。 The groove processing tool for an integrated thin film solar cell of the present invention, which has been made to solve the above-mentioned problems, has a plurality of blades whose blade edges are directed in the tangential direction at the outer peripheral portion of the disc-shaped body with equal intervals in the circumferential direction. A plurality of the grooves, and the groove can be formed with any one of the blades.
 本発明の集積型薄膜太陽電池の溝加工ツールにあっては、使用している刃が摩耗又は刃こぼれしたときは、次の新しい刃が溝加工位置にくるように、円盤状のボディを所定角度だけ回転させるだけで、溝加工ツール自体を交換することなく簡単に新しい刃に据え替えることができ、交換作業の煩雑さを解消することができる。 In the grooving tool of the integrated thin film solar cell of the present invention, when the blade used is worn or spilled, the disc-shaped body is set so that the next new blade is at the grooving position. By rotating only the angle, the grooving tool itself can be easily replaced with a new blade without exchanging, and the complexity of the replacement work can be eliminated.
(その他の課題を解決するための手段及び効果)
 前記刃が、ボディの外周面に放射方向に沿った刃面を有する切り欠きを設けて、ボディ外周面と刃面とによって形成される角部が刃先となるように形成するのがよい。
 これにより、溝加工時に刃先が点接触で基板に接触して薄膜を切れ味よくスムースに剥離することができて、直線状できれいなスクライブラインを形成することができる。
(Means and effects for solving other problems)
The blade is preferably provided with a notch having a blade surface along the radial direction on the outer peripheral surface of the body so that a corner formed by the outer peripheral surface of the body and the blade surface becomes a blade edge.
As a result, the cutting edge can be point-contacted with the substrate at the time of grooving, and the thin film can be peeled smoothly and smoothly, and a straight and clean scribe line can be formed.
 また、溝加工ツールの刃の先端部分の左右側面が、互いに平行な一対の面で形成するのが好ましい。
 これにより、刃先が摩耗したときに、刃の頂面、即ちボディ外周面を研磨しても刃の左右幅の寸法に変化が生じることがないので、研磨後であってもスクライブされる溝幅を研磨前と同じに維持することができ、これにより、全ての刃先が摩耗した際に研磨補修して再度利用することができる。
Moreover, it is preferable that the left and right side surfaces of the tip portion of the blade of the grooving tool are formed by a pair of parallel surfaces.
As a result, when the blade tip is worn, there is no change in the horizontal width of the blade even if the top surface of the blade, that is, the outer peripheral surface of the body is polished. Can be maintained the same as before polishing, and when all the cutting edges are worn, they can be repaired and reused.
 また、溝加工ツールが、超硬合金又はダイヤモンド(焼結ダイヤモンド(PCD)等)で形成されている構成とするのが好ましい。
 これにより、ツールの寿命が長く、変形も少ないことから、長期間にわたって精度よくスクライブ加工することができる。
Moreover, it is preferable that the grooving tool is made of cemented carbide or diamond (sintered diamond (PCD) or the like).
As a result, the tool has a long life and little deformation, so that it can be accurately scribed over a long period of time.
本発明にかかる溝加工ツールを用いた集積型薄膜太陽電池用スクライブ装置の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the scribing apparatus for integrated type thin film solar cells using the groove processing tool concerning this invention. 本発明にかかる溝加工ツールの斜視図。The perspective view of the groove processing tool concerning this invention. 上記溝加工ツールの正面図。The front view of the said groove processing tool. 上記溝加工ツールの側面図。The side view of the said groove processing tool. 上記溝加工ツールの使用形態の例を示す側面図。The side view which shows the example of the usage condition of the said groove processing tool. 本発明にかかる溝加工ツールの別の実施例を示す斜視図。The perspective view which shows another Example of the groove processing tool concerning this invention. 一般的なCIGS系の薄膜太陽電池の製造工程を示す模式図。The schematic diagram which shows the manufacturing process of a general CIGS type thin film solar cell. 従来の溝加工ツールの一例を示す斜視図。The perspective view which shows an example of the conventional groove processing tool.
 以下において、本発明の詳細を、その実施の形態を示す図面に基づいて詳細に説明する。最初に、本発明の溝加工ツールを取り付けるスクライブ装置の全体構成について説明する。
 図1は本発明にかかる溝加工ツールを用いた集積型薄膜太陽電池用スクライブ装置の実施形態を示す斜視図である。スクライブ装置は、水平方向(Y方向)に移動可能で、かつ、水平面内で90度及び角度θ回転可能なテーブル18を備えており、テーブル18は実質的に太陽電池基板Wの保持手段を形成する。
Hereinafter, details of the present invention will be described in detail with reference to the drawings showing embodiments thereof. Initially, the whole structure of the scribe device which attaches the grooving tool of this invention is demonstrated.
FIG. 1 is a perspective view showing an embodiment of an integrated thin film solar cell scribing apparatus using a groove processing tool according to the present invention. The scribing device includes a table 18 that is movable in the horizontal direction (Y direction) and that can rotate 90 degrees and an angle θ in a horizontal plane. The table 18 substantially forms a means for holding the solar cell substrate W. To do.
 テーブル18を挟んで設けてある両側の支持柱20,20と、X方向に延びるガイドバー21とで構成されるブリッジ19は、テーブル18上を跨ぐように設けてある。ホルダ支持体23は、ガイドバー21に形成したガイド22に沿って移動可能に取り付けられ、モータ24の回転によりX方向に移動する。 The bridge 19 composed of the support pillars 20 and 20 on both sides provided across the table 18 and the guide bar 21 extending in the X direction is provided so as to straddle the table 18. The holder support 23 is attached to be movable along a guide 22 formed on the guide bar 21, and moves in the X direction by the rotation of the motor 24.
 ホルダ支持体23には、スクライブヘッド7が設けられており、スクライブヘッド7の下部には、テーブル18上に載置される太陽電池基板Wの薄膜表面をスクライブ加工する溝加工ツール8(詳細は後述する)を保持するホルダ9が設けられている。ホルダ9は取り付け角度を調整することができるようにしてあり、この取り付け角度を調整することで、溝加工ツール8と太陽電池基板Wとの角度を調整できるようにしてある。また、取り付けた溝加工ツール8を一定角度(例えば90度)ずつ回転できるようにしてある。例えばラチェット機構を採用し、取り付けた刃の回転方向を一方向にするとともに、逆方向は爪で一定角度ずつの位置で回転が停止されるようにしてある。 The holder support 23 is provided with a scribe head 7. A grooving tool 8 for scribing the thin film surface of the solar cell substrate W placed on the table 18 is provided below the scribe head 7 (for details, see FIG. A holder 9 is provided for holding (described later). The holder 9 can adjust the attachment angle, and the angle between the groove processing tool 8 and the solar cell substrate W can be adjusted by adjusting the attachment angle. Further, the attached grooving tool 8 can be rotated by a certain angle (for example, 90 degrees). For example, a ratchet mechanism is employed, and the rotation direction of the attached blade is set to one direction, and the rotation is stopped at a position of a predetermined angle by the claw in the reverse direction.
 また、X方向及びY方向に移動することが可能な台座12,13にカメラ10,11がそれぞれ設けられている。台座12,13は支持台14上でX方向に延設されたガイド15に沿って移動する。カメラ10,11は、手動操作で上下動することができ、撮像の焦点を調整することができる。カメラ10,11で撮影された画像はモニタ16,17に表示される。 The cameras 10 and 11 are provided on the pedestals 12 and 13 that can move in the X direction and the Y direction, respectively. The pedestals 12 and 13 move along a guide 15 extending in the X direction on the support base 14. The cameras 10 and 11 can be moved up and down by manual operation, and the focus of imaging can be adjusted. Images taken by the cameras 10 and 11 are displayed on the monitors 16 and 17.
 テーブル18上に載置された太陽電池基板Wには、各工程により、前工程で形成され、表面から観察できるスクライブライン等が存在する。そのため、各工程において太陽電池基板Wをスクライブする場合、前工程で形成されたスクライブライン等をスクライブ位置を特定するためのマークとして利用する。例えば、スクライブされた下部電極層(Mo電極層)2の上に光吸収層3、バッファ層4及び絶縁層5が形成された太陽電池基板Wに上下電極コンタクト用の溝を形成する場合、下部電極層2に形成されたスクライブラインを溝形成位置特定のためのマークとして利用する。即ち、カメラ10,11により下部電極層2に形成されたスクライブラインを撮像することにより、太陽電池基板Wの位置を調整する。具体的には、テーブル18に支持された太陽電池基板W表面から観察できる下部電極層2に形成されたスクライブラインを、カメラ10,11により撮像して下部電極層2に形成されたスクライブラインの位置を特定する。特定された下部電極層に形成されたスクライブラインの位置に基づいて、上下電極コンタクト用の溝を形成すべき位置(スクライブ位置)を割り出し、太陽電池基板Wの位置を調整することによりスクライブ位置を調整する。 The solar cell substrate W placed on the table 18 has a scribe line or the like that is formed in the previous process and can be observed from the surface by each process. Therefore, when scribing the solar cell substrate W in each process, the scribe line formed in the previous process is used as a mark for specifying the scribe position. For example, when forming grooves for upper and lower electrode contacts on the solar cell substrate W in which the light absorption layer 3, the buffer layer 4 and the insulating layer 5 are formed on the scribed lower electrode layer (Mo electrode layer) 2, A scribe line formed on the electrode layer 2 is used as a mark for specifying a groove forming position. That is, the position of the solar cell substrate W is adjusted by imaging the scribe line formed on the lower electrode layer 2 by the cameras 10 and 11. Specifically, the scribe line formed on the lower electrode layer 2 is imaged with the cameras 10 and 11 by imaging the scribe line formed on the lower electrode layer 2 that can be observed from the surface of the solar cell substrate W supported by the table 18. Identify the location. Based on the position of the scribe line formed in the specified lower electrode layer, the position (scribe position) where the upper and lower electrode contact grooves are to be formed is determined, and the position of the solar cell substrate W is adjusted to determine the scribe position. adjust.
 そして、テーブル18をY方向に所定ピッチで移動するごとに、スクライブヘッド7を下降させて溝加工ツール8の刃先を太陽電池基板Wの表面に押しつけた状態でX方向に移動させ、太陽電池基板Wの表面をX方向に沿ってスクライブ加工する。太陽電池基板Wの表面をY方向に沿ってスクライブ加工する場合は、テーブル18を90度回転させて、上記と同様の動作を行う。 Each time the table 18 is moved at a predetermined pitch in the Y direction, the scribe head 7 is lowered to move in the X direction with the cutting edge of the groove processing tool 8 pressed against the surface of the solar cell substrate W. The surface of W is scribed along the X direction. When the surface of the solar cell substrate W is scribed along the Y direction, the table 18 is rotated 90 degrees and the same operation as described above is performed.
 次に、本発明にかかる溝加工ツールについて説明する。
 図2~図4は、本発明の一例である溝加工ツール8を示す。図2は斜視図であり、図3は正面図、図4は側面図である。この溝加工ツール8は、超硬合金又はダイヤモンド等の硬質材料で造られた円盤状のボディ81の外周部に、周方向に等しい間隔をあけて複数の、本実施例では4個の刃領域82が設けられている。
 刃領域82は、ボディ81の放射方向に沿った刃面83を形成する切り欠き84をボディ81の外周に設けて、ボディ外周面と刃面83とによって形成される角部が刃先85となるように形成されている。また円盤状ボディ81の中心にはスクライブ装置のホルダ9に取り付けるための取り付け孔86が設けられおり、この取り付け孔86を介してホルダ9に回転並びに固定可能に取り付けられる。
Next, the grooving tool according to the present invention will be described.
2 to 4 show a grooving tool 8 which is an example of the present invention. 2 is a perspective view, FIG. 3 is a front view, and FIG. 4 is a side view. The grooving tool 8 includes a plurality of four blade regions in the present embodiment at equal intervals in the circumferential direction on the outer periphery of a disc-shaped body 81 made of a hard material such as cemented carbide or diamond. 82 is provided.
The blade region 82 is provided with a notch 84 that forms a blade surface 83 along the radial direction of the body 81 on the outer periphery of the body 81, and a corner formed by the body outer peripheral surface and the blade surface 83 becomes the blade edge 85. It is formed as follows. Further, an attachment hole 86 for attaching to the holder 9 of the scribing device is provided at the center of the disc-shaped body 81, and the attachment is made to the holder 9 via the attachment hole 86 so as to be rotatable and fixed.
 上記溝加工ツール8をホルダ9に取り付けるに際して、刃先85が図4に示すように、太陽電池基板Wに対して進行方向側に向けて配置し、いずれか一つの刃先で溝加工を行うようにしている。 When attaching the grooving tool 8 to the holder 9, the blade edge 85 is arranged toward the traveling direction side with respect to the solar cell substrate W as shown in FIG. ing.
 刃領域82の頂部の左右幅L1は50~60μmが好ましいが、要求されるスクライブの溝幅に対応して25~80μmとすることができる。また、円盤状ボディ81の直径は、例えば1~20mm、厚みL2は20μm~1mm、刃面83の高さHは50μm~5mm程度にしてある。 The left and right width L1 of the top of the blade region 82 is preferably 50 to 60 μm, but can be 25 to 80 μm corresponding to the required groove width of the scribe. The diameter of the disk-shaped body 81 is, for example, 1 to 20 mm, the thickness L2 is 20 μm to 1 mm, and the height H of the blade surface 83 is about 50 μm to 5 mm.
 上記構成において、溝加工ツール8をホルダ9に取り付けて溝加工を行う際に、図4に示すように、刃先85が基板Wに対して線接触(図4における紙面の前後方向に線接触する)で接触して薄膜をスムースに剥離することができ、直線状できれいなスクライブラインを形成することができる。また、溝加工ツール8の取り付け時において、図5に示すように、刃領域82の刃面83を基板Wに対して進行方向側に少し傾斜させた姿勢で取り付けることにより、刃先85が基板Wに対して確実に線接触で接触し、薄膜を切れ味よく剥離することが可能となる。 In the above configuration, when the grooving tool 8 is attached to the holder 9 and grooving is performed, the blade edge 85 is in line contact with the substrate W (line contact in the front-rear direction of the page in FIG. ), The thin film can be smoothly peeled off, and a straight and clean scribe line can be formed. Further, when the grooving tool 8 is attached, the blade edge 85 is attached to the substrate W in a posture in which the blade surface 83 of the blade region 82 is slightly inclined with respect to the substrate W as shown in FIG. It is possible to reliably make contact with the line contact and peel off the thin film with good sharpness.
 また、使用している刃先85が摩耗又は刃こぼれしたときは、次の新しい刃先が溝加工部位になるように、円盤状のボディ81を回転させて固定する。本実施例の場合、等間隔で形成された刃領域82の数が4個であるので、新しい刃先に位置替えする場合の回転角度は90度となる。これにより、溝加工ツールを交換することなく簡単に新しい刃先にセットすることができて交換作業の煩雑さを解消することができる。 Also, when the cutting edge 85 being used is worn or spilled, the disk-shaped body 81 is rotated and fixed so that the next new cutting edge becomes the groove machining part. In the case of the present embodiment, the number of blade regions 82 formed at equal intervals is four, and therefore the rotation angle when the position is changed to a new blade edge is 90 degrees. Thereby, it is possible to easily set a new cutting edge without exchanging the grooving tool, and it is possible to eliminate the complexity of the exchanging operation.
 図6は、本発明にかかる溝加工ツールの別の実施例を示すものであって、刃領域82の刃先85を含む先端部分の左右側面82a,82bが、互いに平行をなす一対の面で形成されている。
 これにより、刃先85が摩耗したときに、刃領域82の頂面、即ちボディ81の外周面を研磨しても刃領域82の左右幅の寸法に変化が生じることがないので、研磨後であってもスクライブされる溝幅を研磨前と同じに維持することができ、これにより、刃先が摩耗した際に研磨補修して再度利用することが可能となる。
FIG. 6 shows another embodiment of the grooving tool according to the present invention, in which left and right side surfaces 82a and 82b of the tip portion including the cutting edge 85 of the blade region 82 are formed by a pair of parallel surfaces. Has been.
As a result, when the cutting edge 85 is worn, the top and bottom surfaces of the blade region 82, that is, the outer peripheral surface of the body 81, will not change in the horizontal width of the blade region 82. However, the scribed groove width can be kept the same as that before polishing, so that when the cutting edge is worn, it can be repaired and reused.
 上述した実施例では、スクライブヘッド7をX方向に移動させることでスクライブ加工を実行したが、スクライブヘッド7と、太陽電池基板Wとが相対的に移動できれば足りることから、太陽電池基板Wが固定された状態でスクライブヘッド7をX方向及びY方向に移動させてもよいし、スクライブヘッド7を移動させることなく、太陽電池基板WのみをX方向及びY方向に移動させてもよい。 In the above-described embodiment, the scribing process is performed by moving the scribe head 7 in the X direction. However, since it is sufficient that the scribe head 7 and the solar cell substrate W can be relatively moved, the solar cell substrate W is fixed. The scribing head 7 may be moved in the X direction and the Y direction in the state where it is applied, or only the solar cell substrate W may be moved in the X direction and the Y direction without moving the scribing head 7.
 以上、本発明の代表的な実施例について説明したが、本発明は必ずしも上記の実施例構造のみに特定されるものではない。例えば、溝加工ツール8のホルダ9への取り付け手段は、溝加工ツール8を所定角度ごとに順次回転でき、かつ設定位置で確実に固定できるものであればどのような手段であってもよい。その他本発明では、その目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正、変更することが可能である。 The representative embodiments of the present invention have been described above, but the present invention is not necessarily limited to the above-described embodiment structures. For example, the means for attaching the grooving tool 8 to the holder 9 may be any means as long as the grooving tool 8 can be sequentially rotated every predetermined angle and can be reliably fixed at the set position. Others The present invention can be appropriately modified and changed within the scope of achieving the object and without departing from the scope of the claims.
 本発明は、カルコパイライト化合物系半導体膜を用いた集積型薄膜太陽電池を製造する際に使用される溝加工ツールに適用することができる。 The present invention can be applied to a groove processing tool used in manufacturing an integrated thin film solar cell using a chalcopyrite compound semiconductor film.
W 太陽電池基板
8 溝加工ツール
81 ボディ
82 刃領域
83 刃面
84 切り欠き
85 刃先
9 ホルダ
W Solar cell substrate 8 Groove machining tool 81 Body 82 Blade region 83 Blade surface 84 Notch 85 Blade tip 9 Holder

Claims (4)

  1.  円盤状ボディの外周部に、接線方向に刃先を向けた複数の刃領域が周方向に等しい間隔をあけて複数設けられている集積型薄膜太陽電池用の溝加工ツール。 A groove processing tool for an integrated thin-film solar cell in which a plurality of blade regions with blade edges facing in the tangential direction are provided at equal intervals in the circumferential direction on the outer peripheral portion of the disc-shaped body.
  2.  前記ボディの外周面に、放射方向に沿った刃面を有する切り欠きが設けられ、ボディ外周面と刃面とによって形成される角部が刃先となる請求項1に記載の溝加工ツール。 The grooving tool according to claim 1, wherein a notch having a blade surface along a radial direction is provided on the outer peripheral surface of the body, and a corner formed by the outer peripheral surface of the body and the blade surface is a cutting edge.
  3.  前記溝加工ツールが、超硬合金又はダイヤモンドで形成されている請求項1~2のいずれかに記載の溝加工ツール。 The grooving tool according to any one of claims 1 to 2, wherein the grooving tool is formed of cemented carbide or diamond.
  4.  刃領域の先端部分の左右側面が、互いに平行な一対の面で形成されている請求項1~3のいずれかに記載の溝加工ツール。
     
    The grooving tool according to any one of claims 1 to 3, wherein the left and right side surfaces of the tip portion of the blade region are formed of a pair of surfaces parallel to each other.
PCT/JP2010/053212 2009-03-09 2010-03-01 Grooving tool for thin film solar cell WO2010103947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-055452 2009-03-09
JP2009055452A JP2010207945A (en) 2009-03-09 2009-03-09 Groove machining tool for thin film solar battery

Publications (1)

Publication Number Publication Date
WO2010103947A1 true WO2010103947A1 (en) 2010-09-16

Family

ID=42728237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053212 WO2010103947A1 (en) 2009-03-09 2010-03-01 Grooving tool for thin film solar cell

Country Status (3)

Country Link
JP (1) JP2010207945A (en)
TW (1) TW201115752A (en)
WO (1) WO2010103947A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458108B (en) * 2011-12-07 2014-10-21 Ind Tech Res Inst Trench scribing apparatus and trench scribing method
JP6005571B2 (en) * 2013-03-28 2016-10-12 三星ダイヤモンド工業株式会社 Metal film laminated ceramic substrate groove processing tool
JP6458372B2 (en) * 2014-06-30 2019-01-30 三星ダイヤモンド工業株式会社 Multipoint diamond tool and method of manufacturing multipoint diamond tool
JP6476883B2 (en) * 2015-01-16 2019-03-06 三星ダイヤモンド工業株式会社 Multipoint diamond tool
JP6476892B2 (en) * 2015-01-20 2019-03-06 三星ダイヤモンド工業株式会社 Multipoint diamond tools
CN107775825A (en) * 2016-08-30 2018-03-09 三星钻石工业股份有限公司 Diamond cutter and its scribble method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628807U (en) * 1979-08-08 1981-03-18
JPH1058205A (en) * 1996-08-26 1998-03-03 Ngk Spark Plug Co Ltd Throw-away chip
JPH10328922A (en) * 1997-06-02 1998-12-15 Canon Inc Finely grooving method and device, cutting blade for fine grooving, and cutting blade holder
JP2002094089A (en) * 2000-09-11 2002-03-29 Honda Motor Co Ltd Manufacturing method of compound thin-film solar cell
JP2003011014A (en) * 2001-07-02 2003-01-15 Ricoh Co Ltd Cutter head, curved face machining method, v-groove machining method, optical part and mold for optical part
JP2005014116A (en) * 2003-06-24 2005-01-20 Okamoto Machine Tool Works Ltd Plural-cutting tool setting holder for groove cutting device of light conductive plate metal mold
JP2005219185A (en) * 2004-02-09 2005-08-18 Konica Minolta Opto Inc Machining method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628807U (en) * 1979-08-08 1981-03-18
JPH1058205A (en) * 1996-08-26 1998-03-03 Ngk Spark Plug Co Ltd Throw-away chip
JPH10328922A (en) * 1997-06-02 1998-12-15 Canon Inc Finely grooving method and device, cutting blade for fine grooving, and cutting blade holder
JP2002094089A (en) * 2000-09-11 2002-03-29 Honda Motor Co Ltd Manufacturing method of compound thin-film solar cell
JP2003011014A (en) * 2001-07-02 2003-01-15 Ricoh Co Ltd Cutter head, curved face machining method, v-groove machining method, optical part and mold for optical part
JP2005014116A (en) * 2003-06-24 2005-01-20 Okamoto Machine Tool Works Ltd Plural-cutting tool setting holder for groove cutting device of light conductive plate metal mold
JP2005219185A (en) * 2004-02-09 2005-08-18 Konica Minolta Opto Inc Machining method

Also Published As

Publication number Publication date
JP2010207945A (en) 2010-09-24
TW201115752A (en) 2011-05-01

Similar Documents

Publication Publication Date Title
TWI501415B (en) A trench processing tool, a trench processing method and a cutting device using a thin film solar cell
WO2010103947A1 (en) Grooving tool for thin film solar cell
TWI417260B (en) Set
TWI472050B (en) Production of integrated thin film solar cells
JP5357580B2 (en) Grooving tool and method of grooving thin film solar cell using the same
WO2010098307A1 (en) Method for manufacturing integrated thin film solar cell
JP5804999B2 (en) Groove machining tool, groove machining method and groove machining apparatus for thin-film solar cell using the same
JP5369011B2 (en) Grooving tool and method for grooving thin film solar cell using the same
JP2015126205A (en) Grooving tool and scribe device with grooving tool attached thereto
JP2020107800A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107795A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107798A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107796A (en) Groove processing tool, and grooving method and grooving apparatus for thin film solar cell using the same
JP2020107799A (en) Grooving tool, and thin film solar cell grooving method and grooving device using the same
JP2015192112A (en) Groove processing tool and scribe apparatus with the groove processing tool
JP2015126204A (en) Grooving tool and scribe device with grooving tool attached thereto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750701

Country of ref document: EP

Kind code of ref document: A1