JP2013205152A - 放射線測定システム - Google Patents

放射線測定システム Download PDF

Info

Publication number
JP2013205152A
JP2013205152A JP2012073123A JP2012073123A JP2013205152A JP 2013205152 A JP2013205152 A JP 2013205152A JP 2012073123 A JP2012073123 A JP 2012073123A JP 2012073123 A JP2012073123 A JP 2012073123A JP 2013205152 A JP2013205152 A JP 2013205152A
Authority
JP
Japan
Prior art keywords
radiation
detector
depth
shielding member
radiation measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012073123A
Other languages
English (en)
Other versions
JP6042627B2 (ja
Inventor
Akihito Yamaguchi
明仁 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Priority to JP2012073123A priority Critical patent/JP6042627B2/ja
Publication of JP2013205152A publication Critical patent/JP2013205152A/ja
Application granted granted Critical
Publication of JP6042627B2 publication Critical patent/JP6042627B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

【課題】土壌等の対象物の内部で放射線の測定を行う。その場合に外界から飛来する放射線による影響を受けないようにする。
【解決手段】
土壌サーベイメータは測定装置30と制御装置32からなる。測定装置30は、土壌に挿入される挿入ユニット34を有し、その内部には検出ユニットが昇降可能に配置されている。検出ユニット42は、シンチレータ部材58、遮蔽部材62を有し、遮蔽部材62が有するスリット66がコリメータとして機能する。遮蔽部材62は、上方から飛来する放射線を遮蔽し、下方から飛来する放射線を遮蔽する。これにより検出ユニット42において、主感度方向を水平方向とした指向特性68が生じる。検出ユニット42の深さ位置を可変すれば線量グラフを作成することができる。スリット列を備え深さ方向に伸長した遮蔽容器を用いて複数の深さ地位で放射線の測定を行うことも可能である。
【選択図】図1

Description

本発明は放射線測定システムに関し、特に土壌等の対象物の内部における放射性汚染を調査するための放射線測定システムに関する。
従来の一般的なサーベイメータは、可搬型の検出プローブ、及び、表示器や演算部を有する本体、からなる(特許文献1)。図12には、検出プローブの一例が示されている。検出プローブ10内には、円柱状のシンチレータ部材12、光電子増倍管(PMT)14、電子回路16等が収容されている。検出プローブ10内に、放射線検出器としてGM管、半導体検出器等が設けられることもある。図13には、検出プローブの他の例が示されている。検出プローブ18内には、平板状のシンチレータ部材22、光電子増倍管26、電子回路28等が収容されている。シンチレータ部材22から出た光が導光空間を経て光電子増倍管26の受光面に到達すると、光電子増倍管26においてその光が電気信号に変換される。
対象物の放射性汚染を調査する場合、上記のような検出プローブが対象物の表面に近付けられ、その状態で対象物の表面から出てくる放射線が検出される。サーベイメータで測定する放射線として、γ線(X線)、β線、α線等をあげることができるが、特に、環境中の放射性汚染度合いを調査する場合にはγ線が測定される。
周知のように、γ線(X線)の透過力は一般に非常に大きく、一般的な検出プローブでは全周囲から飛来するγ線を検出してしまう(図12、図13)。検出プローブを対象物の表面に近付けていても、対象物以外からのγ線も検出してしまう。例えば、原子力発電所事故等に起因して、土壌、河川、大気、自然物、人口構造物等が広く汚染した場合に、土壌汚染だけを調査するのは容易ではない。例えば、土壌に穴をあけてそこに検出プローブを差し込んでγ線の検出を行っても、土壌に含まれる放射性物質からのγ線の他、大気中に存在する放射性物質からのγ線も検知してしまうからである。海や河川等の放射性汚染を調査する場合にも同様の問題が生じる。
土壌等の一部を採取してそのサンプルを持ち帰り、遮蔽室を備えた大型の放射線測定装置を用いてサンプルに含有される放射性物質を調査することは可能である。しかし、その場合には測定結果が出るまでかなりの時間を要してしまう。汚染源の特定、汚染範囲の調査等のためには現場で測定結果が得られるようにする必要がある。
特許文献2には、コリメータ(遮蔽部材)を備えた検出プローブが開示されている。その検出プローブは対象物の外部に配置して用いられるものである。特許文献3には、複数の穴を有する遮蔽部材と、複数の穴の中に配置された複数の放射線検出器と、を有する放射線測定装置が開示されている。いずれにしても、特許文献1−3には、対象物の中に検出器を挿入して放射線を測定する技術については開示されていない。
特開2007−170935号公報 特開2002−214353号公報 特開2002−6053号公報
本発明の目的は、土壌等の対象物の内部において放射線を高精度に測定できる放射線測定装置を提供することにある。あるいは、本発明の目的は、土壌等の対象物の内部汚染の測定に当たって外界から飛来する放射線の影響を除外又は軽減できるようにすることにある。あるいは、本発明の目的は、土壌等の対象物における複数の深さ位置で内部汚染を測定できるようにすることある。
(1)望ましくは、放射線測定システムが、土壌等の対象物の表面からその内部へ挿入される挿入ユニットを含み、前記挿入ユニットは、前記対象物内において放射線の検出を行う検出器と、前記検出器の周囲の中で少なくとも前記対象物の表面側に設けられ、外界から前記対象物の表面を介して前記対象物の内部へ飛来する放射線を遮蔽しつつ前記検出器において前記対象物内に存在する放射性物質からの放射線が検出されるように前記検出器に対象物内指向特性を生じさせる遮蔽部材と、を含む。
上記構成によれば、対象物の表面からその内部へ挿入ユニットが挿入され、対象物の内部で検出器によって放射線(望ましくはγ線)が検出される。その際、遮蔽部材が検出器に対して対象物内指向特性を生じさせる。すなわち、遮蔽部材は、外界から対象物内部へ飛来する放射線(目的外放射線)を遮蔽又は低減し、且つ、対象物内部に存在する放射性物質からの放射線(目的放射線)が検出されるように働く。これにより、対象物それ自体の内部線量、対象物内の放射能、対象物内部の汚染度合い、等を指標する測定結果を得ることが可能となる。その場合において、外界からの放射線の影響を受けにくいので、測定精度を高められる。
(2)対象物は、土壌(大地)、水(海、湖、川、プール等)、人口構造物(コンクリートブロック、廃棄物等)、樹木、等である。対象物内部の放射性物質濃度、汚染、線量等が問題となる場合一般に上記構成を適用することが可能である。遮蔽体は、少なくとも外界からの放射線を遮蔽するものであり、その場合、下向き半球状の感度特性が形成されるようにしてもよい。望ましくは、平面状の指向特性が形成されるのが望ましい。そのような指向特性を利用して、特定の深さについて線量測定を行える。平面状の指向特性が検出器周りの360度にわたって形成されてもよいし、特定の方位範囲だけに形成されてもよい。後者によれば深さと方位とを限定した測定を行える。遮蔽部材にコリメート作用を発揮するスリット(開口)を形成するのが望ましい。その場合、スリットの高さ、幅、向き等を可変できるように構成してもよい。挿入ユニット自体に放射性汚染が生じないように挿入ユニットの外側にカバーを被せるようにしてもよい。挿入ユニットの挿入に先立って、対象物に穴が形成され、そこに挿入ユニットが指し込まれてもよい。対象物に生じている窪みに挿入ユニットを配置した上でその周囲を埋めることによって結果として挿入状態が形成されるようにしてもよい。土の中のかなり深い位置まで検出器を到達させて、地下水の放射性汚染を調査することも可能である。検出器は、シンチレータ検出器、GM管、半導体検出器その他である。検出器からの信号の取り出しは有線又は無線で行われる。挿入ユニットは、防水・防塵型として構成するのが望ましい。
(3)望ましくは、前記遮蔽部材は、前記検出器の周囲の内で前記対象物の表面側に設けられた一方側部分と、前記検出器の周囲の内で前記対象物の表面側とは反対側に設けられた他方側部分と、を含み、前記遮蔽部材は、前記検出器の対象物内指向特性として、深さ方向に直交する方向に主感度方向を向けた指向特性を生じさせる。
上記構成によれば、検出器の一方側(表面側)において一方側部分によって遮蔽作用が発揮され、且つ、検出器の他方側(表面側とは反対側)において他方側部分によって遮蔽作用が発揮される。これにより検出器の対象物内指向特性として、深さ方向に直交する方向に主感度方向を向けた指向特性が生じる。それは、望ましくは平面的な指向特性である。挿入ユニットが垂直方向に挿入される場合、平面的な指向特性は水平指向特性と言いうる。その場合に、指向特性における垂直方向の広がりは、一方側部分と他方側部分の間に生じる隙間の距離や長さによって規定される。検出器を収容する小型の遮蔽容器を構成する場合、その上側部分が上記一方側部分として機能し、その下側部分が上記他方側部分として機能する。下側部分を取り外し可能に構成するようにしてもよい。検出器を収容する大型の遮蔽容器を構成する場合、現在、検出器が位置している深さを基準として、それよりも上側が一方側部分として機能し、それよりも下側が他方側部分として機能する。
望ましくは、前記遮蔽部材は前記一方側部分と前記他方側部分との間に設けられたスリットを有し、前記検出器は前記スリットを通過してくる放射線を検出する。スリットはコリメータとして機能する。スリットは単なる空洞であってもよいし、スリット内に放射線をあまり減弱させない部材を充填してもよい。一方側部分と他方側部分とを連結する複数の柱によってスリットが複数のスリット要素に分断されていてもよい。
望ましくは、前記検出器及び前記遮蔽部材が可動体を構成し、前記可動体を前記深さ方向に移動させる移動機構が設けられる。この構成によれば、指定した深さ又は固定の深さに検出器を位置決め、そこで放射線の測定を行わせることができる。また、検出器を連続的に又は段階的に動かしながら放射線の測定を行わせることもできる。移動機構として、ワイヤー(ロープ)を利用した機構、ラックとピニオンとを利用した機構、油圧を利用した機構、ロッドを出し入れする機構、等を設けることができる。可動体の位置を検出するセンサを設けるのが望ましい。その場合、例えば、ワイヤーの運動量を検出するようにしてもよいし、距離センサを利用するようにしてもよい。
望ましくは、前記移動機構を制御することにより前記深さ方向における前記可動体の位置を制御する制御部と、前記前記可動体の位置の可変によって取得された複数の放射線検出データに基づいて深さと線量との関係を示すグラフを作成するグラフ作成部と、を含む。この構成によれば複数の深さ位置において放射線を測定して、深さ変化に応じた線量変化をグラフとして表現することが可能となる。これに基づき汚染土について、その表面からどの深さまで除去すればよいのかあるいは掘り返せばよいのかを容易に特定することができる。
望ましくは、前記挿入ユニットは、前記深さ方向に伸長した部材であって放射線を透過する材料で構成された中空部材を含み、前記中空部材の内部空間に前記対象物から隔てられつつ前記可動体が設けられる。この構成によれば可動体を構成する検出器及び遮蔽部材に対して対象物が直接接触してしまう問題を防止できる。遮蔽部材が鉛で構成される場合に対象物への鉛汚染を防止できる。
望ましくは、前記遮蔽部材は深さ方向に伸長した中空形態を有し、前記遮蔽部材は互いに異なる複数の深さに複数のスリットを有し、前記各スリットは、前記検出器の対象物内指向特性として、前記深さ方向に直交する方向に主感度方向を向けた指向特性を生じさせる。この構成によれば、遮蔽部材に複数のスリットが形成され、それらのスリットを利用して各深さにおいて放射線の測定を行える。スリット間で放射線のクロストークが生じないようにスリット間の距離やスリットの形状を定めるのが望ましい。
望ましくは、前記遮蔽部材の内部において前記深さ方向に前記検出器を移動させる移動機構を含み、前記複数のスリットの中から選択されたスリットに対して前記検出器が位置決められる。これは検出器とスリットの対応関係を異ならせることにより、指定された深さで放射線の検出を行うものである。
望ましくは、前記遮蔽部材の内部に前記複数のスリットに対応して複数の検出器が設けられる。この構成によれば移動機構が不要となり、複数の深さにおいて同時に放射線の測定を行うことも可能である。
望ましくは、前記挿入ユニットは、前記深さ方向に伸長した部材であって放射線を透過する材料で構成された中空部材を含み、前記中空部材の中に前記対象物から隔てられつつ前記遮蔽部材が設けられる。中空部材は例えば樹脂や軽密度金属(アルミニウム等)で構成される。
望ましくは、前記対象物は土壌であり、前記土壌に対して前記挿入ユニットを支持する支持機構が設けられる。前記対象物は水であり、前記水に対して前記挿入ユニットを支持する支持機構が設けられる。この場合には望ましくは浮きが利用される。
(4)望ましくは、放射線測定方法が、対象物に対してその表面から穴を形成する形成工程と、前記穴に対して放射線検出器を挿入する工程と、前記穴の内部において複数の深さ位置で前記検出器により放射線の検出を行う工程と、前記複数の深さ位置での放射線の検出により得られたデータに基づいて、深さと線量との関係を示すグラフを生成する工程と、を含む。穴を形成する場合、スクリュー等の工具が利用される。手作業で穴を形成するようにしてもよいし、重機を利用するようにしてもよい。グラフは例えば曲線グラフ又は棒グラフとして構成される。他の表現形態が採用されてもよい。地理上の複数の地点で個々の深さごとに線量を測定すれば、地層における三次元線量マッピングを行うことも可能である。望ましくは、除染方法が、前記グラフに基づいて前記土壌に対して行う除染作業の深さ範囲を決定する工程を含む。なお、上記構成の転用例としては、水平指向特性を使った対象物表面の測定、空中における高さごとの測定が考えられる。
本発明によれば、土壌等の対象物の内部において放射線を高精度に測定できる。あるいは、本発明によれば、土壌等の対象物の内部汚染の測定に当たって外界から飛来する放射線の影響を除外又は軽減できる。あるいは、本発明によれば、土壌等の対象物における複数の深さ位置で内部汚染を測定できる。
本発明に係る土壌サーベイシステムの構成例を示す図である。 線量分布の一例を示す図である。 検出ユニットの他の構成例を示す断面図である。 図3に示した検出器アセンブリの斜視図である。 検出器アセンブリの他の構成例を示す図である。 本発明に係る土壌サーベイシステムの他の構成例を示す図である。 線量分布の他の例を示す図である。 アレイ型検出器ユニットの構成例を示す図である。 無線通信を利用したシステム構成例を示す図である。 地山に対する放射線測定の一例を示す図である。 本発明に係る水中サーベイシステムの構成例を示す図である。 一般的な検出プローブの一例を示す図である。 一般的な検出プローブの他の例を示す図である。
以下、本発明の好適な実施形態を図面に基づいて説明する。
図1には、本発明に係る放射線測定システムの一例が示されている。このシステムは、土壌又は大地の内部における放射性汚染を調査するための土壌サーベイシステムである。
土壌サーベイシステムは、測定装置30と、制御装置32と、からなる。測定装置30は、例えば学校の校庭等の測定場所(通常、屋外)に設置される。制御装置32はパーソナルコンピュータ又は専用装置として構成される。測定装置30の近くに制御装置32が配置されてもよいが、両者が隔てて配置されてもよい。測定装置30がネットワークや通信回線を介して制御装置32に接続されてもよい。
測定装置30について説明する。測定装置30は、挿入体としての挿入ユニット34、測定台座としてのサポートユニット36、等を有している。挿入ユニット34は、図1に示す例において、深さ方向に伸長した円柱状の形態を有する。挿入ユニット34は土壌の表面39から掘削によって形成された穴38内に挿入される。穴38は手作業により形成され、あるいは、機械を利用して形成される。挿入ユニット34自体がドリルのような機能を有していてもよい。挿入ユニット34の外径は例えば10−15cmであり、その全長は1−3mである。挿入ユニット34における表面29よりも上方の部分(上方端部分)は例えば数十cmである。挿入ユニット34の形態は目的等に応じて適宜定められる。細径形を採用することもできるし、小型化も可能である。例えば、地中深くまで挿入される挿入ユニットが構成されてもよい。
サポートユニット36は表面(地面)39上に設置され、挿入ユニット34を支持するものである。サポートユニット36は台座として機能する。それはサポート台(水平板)44、脚部46等を有する。サポート台44は挿入ユニット34の蓋としても機能する。サポート台44を通じてリール48が回転可能に設けられている。それはモータ等の駆動部52からの駆動力によって回転する。リール48にはワイヤ50が巻き付けられている。ワイヤ50はサポート台44を通じて挿入ユニット34の内部へ導かれており、その下端は検出ユニット42に連結されている。検出ユニット42はワイヤによって吊り下げられている。検出ユニット42から伸びるケーブル(信号線、電源ケーブル等)はサポート台を通じて制御装置32へ導かれている。図1に示す有線方式に代えて無線方式を採用することもできる。深度検出器54は、検出ユニット42の位置(深さ)を直接的に又は間接的に検出するものである。深度検出器54として、ワイヤ50の動作量を検出するものを利用してもよいし、サポート台44から検出ユニット42までの距離を測定する距離センサを利用してもよい。駆動部52の動作は制御装置32により制御されており、深度検出器54の出力信号は制御装置32へ送られる。駆動部52に代えて手作業で検出ユニット42の深さ位置が設定されてもよい。
本実施形態では、移動機構としてリール52及びワイヤ50が設けられている。それに代わる移動機構として、ラック及びピニオンを利用する機構、ベルト駆動方式による機構、油圧力を利用する機構、ロッドを利用する機構、等を利用することができる。挿入ユニット34は、通常、表面39に対して垂直な方向に挿入される。但し、斜め方向に挿入されてもよい。
挿入ユニット34は、筒状のガイド部材40と、その内部に昇降自在に設けられた検出ユニット42と、を有する。ガイド部材40は、放射線(本実形態ではγ線)を透過させる(正確にはあまり減弱させない)材料、例えば樹脂やアルミニウムで構成される。その肉厚は構造的に一定の強度が得られる限りにおいて薄くしてもよい。ガイド部材40は、対象物としての土壌とその内部の検出ユニット42とを隔てる機能を発揮する。すなわち、検出ユニット42の汚染防止、検出ユニットの保護、等の機能を発揮する。ガイド部材40が透明フィルム等からなるカバーによって覆われるようにしてもよい。これは挿入ユニット34の汚染防止のためである。
検出ユニット42は可動体を構成するものであり、ガイド部材40の内部空間40Aにおいて昇降運動する。検出ユニット42を任意の深さに設置してその深さで放射線の測定を行える。検出ユニット42を一定速度で上方又は下方へ運動させながら放射線の測定を行うことも可能である。符号42Aは最上位置にある検出ユニットを示し、符号42Bは最下位置にある検出ユニットを示している。
検出ユニット42は、シンチレータ部材58、その周囲を包み込む遮蔽部材62、その外側に設けられた中空のケース70等を有する。シンチレータ部材58は例えばNaIシンチレータとして構成される。シンチレータ部材58は本実施形態において円盤状又は円柱状の形態を有している。同様に遮蔽部材62も円柱状の形態を有し、ケース70も同様である。遮蔽部材62は例えば鉛で構成され、それはγ線を遮蔽(又は減弱)する作用を発揮する。遮蔽部材62は、検出器としてのシンチレータ部材58の周囲を取り囲むように設けられている。但し、シンチレータ部材58から見て水平方向の周囲においては円形のスリット66が存在している。スリット66はコリメータとしての機能を発揮する。これによりシンチレータ部材58の側周囲面が放射線入射面となる。スリット66の一方側(上側)が上側部分62Aであり、スリット66の他方側(下側)が下側部分62Bである。上側部分62Aと下側部分62Bはスリット66を隔てて分離されている。但し両者を連結する部材をスリット66内に設けるようにしてもよい。スリット66における一定の方位ごとに遮蔽材料又は他の材料からなる支柱を設けるようにしてもよい。遮蔽部材62はシンチレータ部材58の周囲において例えば2.5cmの厚みをもった部材として構成されている。
シンチレータ部材58の上側には光電子増倍管(PMT)60が設けられている。それは上側部分62A内に形成された収容室に配置されている。遮蔽部材62はそれ全体としてスリット66の部分を除き検出機構の周囲全体を取り囲んでいる。遮蔽部材62の内部に充填剤を入れるようにしてもよい。光電子増倍管60が遮蔽部材62の内部に配置され、プリアンプ等の電子回路も遮蔽部材62内に配置できるから、電磁ノイズ等の影響を受けにくい。ケース70は放射線透過性をもった部材で構成され、例えば樹脂により構成される。ケース70の外面とガイド部材40の内面とが接触する構成となっているため両者間の摩擦を低減するように構成するのが望ましい。内部40A内に絶縁油等を注入することも可能である。
スリット66は、シンチレータ部材58の中心軸周りにおいて360度の方位範囲にわたって形成されている。また、スリット66は一定の高さを有する。これにより符号68で示すような平面状の指向特性(感度特性)を得ることができる。それは水平指向特性とも言いうる。その特性において主感度方向は水平方向である。検出器としてのシンチレータ部材58の中心点とスリット66の中間高さとが一致している。シンチレータ部材58の中心軸周りにおける特定の方位範囲だけにわたってスリットを形成するようにしてもよい。これによれば方位方向の指向特性を限定することが可能である。その範囲を可変できるように構成してもよく、またスリット66の高さを可変できるように構成してもよい。これらの構成によれば指向特性を自在に調整可能である。本実施形態では図示のような水平指向特性が形成されているため、検出ユニット42、より正確にはシンチレータ部材58の設置深さにおける土壌の放射線汚染等の測定を高精度に行える。つまり、深さ方向において位置分解能がよい。
シンチレータ部材58の上側は上側部分62Aにより覆われており、これによって外界(空気中)から表面39を介して土壌内に進入した放射線がシンチレータ部材に到達することが防止又は軽減されている。これにより土壌中の放射性物質から出た放射線を弁別して検出することが可能となる。シンチレータ部材58の下側に下側部分62Bが存在しており、それによって土壌中のより深いところからの放射線がシンチレータ部材に到達することも防止又は軽減されている。すなわち、水平指向特性が形成されており、シンチレータ部材58から見て水平方向の周囲から飛来する放射線を選択的に検出可能である。スリットの長さ(径方向の長さ)を長くすればコリメート作用をより強くすることができる。光電子増倍管60は、その受光面である下面をシンチレータ部材58の上面に対向させつつ配置されている。両者間に導光部材があってもよい。光電子増倍管に代わる電子回路を利用することも可能である。光電子増倍管60において不用意に外来光が到達しないようにシンチレータ部材58における接合面以外の領域に遮蔽膜を設けるか、ケース70を遮光構造とするのが望ましい。ガイド部材40内は基本的に暗室であるため、外来光ノイズの面でも有利である。光電子増倍管60の出力信号は所定の電子回路を経由して制御装置32へ送られる。光電子増倍管60に対しては制御装置32によって高電圧が印加される。シンチレータ部材58に代えて、半導体検出器、GM管等の公知のセンサを設けるようにしてもよい。
次に制御装置32について説明する。信号処理回路72は、光電子増倍管60からの出力パルスを処理する回路であり、アンプ、波高弁別器、等を有している。信号処理回路72の出力パルスは演算部74に入力されている。それはカウンタを有し、一定時間当たりのカウント数(cpm)を計測する。そのカウント値が線量に換算され、あるいは、放射性物質濃度に換算される。演算部74がマルチチャンネルアナライザとして構成されてもよい。表示部は液晶表示器等により構成され、その表示画面上には後述するグラフが表示される。測定結果の表示単位としては、線量率(μSv/h)、計数率(cpmもしくはmin-1)、
放射能面密度(Bq/cm2)等があげられる。制御部78は、制御装置32が有する各構成の動作制御を行っている。また駆動部52を制御しており、その際には深度検出器54からの信号が参照されている。バッテリ79はシステム全体に電力を供給するものである。一般電源からの電力を使って動作する構成を採用することも可能である。高電圧源80は光電子増倍管60に対してその動作で必要な高電圧を生成するものである。符号82は、電力信号と検出信号を示している。
本実施形態において、制御部78には入力部84が接続されている。入力部84を用いて測定深度がユーザー指定されると、制御部78はその指定された深度に検出ユニット42を位置決める制御を実行する。また、スキャンモードが選択された場合、検出ユニット42を一定速度で上方又は下方に移動させながら、連続的に測定を行わせる制御を実行する。その場合において、信号の移動平均処理に当たっての時定数はスキャン速度つまり昇降速度に応じて適応的に設定される。検出ユニット42を移動させながら測定を連続的に行うと、制御部78において図2に示すグラフが生成される。図2において、横軸は線量であり、縦軸は深さを示している。このグラフ85に示されるように、深さに応じて線量が変動しており、そのようなグラフからどの深さ範囲まで除染を行えばよいのかを的確に決定できる。
次に図1に示したシステムの動作例を説明する。まず学校の校庭等に所定の深さをもった穴38が形成される。その穴38の内径は挿入ユニット34を挿入可能なものとして設定される。穴38に対してガイド部材40が挿入され、また表面(地面)39上にサポートユニット36が設置される。それと共に、ガイド部材40の中に検出ユニット42が吊り下げられた状態で配置される。準備が整ったところで、入力部84を用いて測定する深さを指定すると、制御部78が駆動部52の動作を制御し、検出ユニット42が指定深さに位置決められる。その場合においては必要に応じて深度検出器54の出力に基づくフィードバック制御が実行される。検出ユニット42が位置決めされた後、そこで所定時間にわたって放射線の測定が実行される。これにより指定深度での線量データを得られる。ユーザーがスキャンモードを選択すると、制御部78は一定の深さ範囲にわたって検出ユニット42を低速で運動させる。これにより各深さごとに線量データが得られる。それらをプロットすれば図2に示した線量グラフを作成できる。このような測定作業が必要に応じて複数の地点で実施される。
上記構成によれば、対象物としての土壌の内部において、そこに含まれる放射性物質からの放射線を精度良く検出することができ、その場合において、空気中から表面39を介して進入してくる放射線や地中より深い地点から到来する放射線を遮蔽することができる。よって、対象とする放射線の測定精度を高められる。もっとも、下側部分62Bを取り外せば、下向き半球型の検出感度特性を生じさせることができ、土壌内部の全般にわたって放射線を検出できる。この場合も対象物内指向特性の形成と言いうる。なお、検出ユニット42の設置状況をモニタするための小型カメラを設けるようにしてもよい。
図3には、検出ユニットの他の構成例が示されている。検出ユニット86は円筒形状をもった中空のケース88を有し、その内部には検出器アセンブリ89が収容されている。検出器アセンブリ89は、シンチレータ部材90、光電子増倍管98、2つの遮蔽板92,94を有する。2つの遮蔽板92,94によってシンチレータ部材90が挟まれており、サンドイッチ構造が採用されている。上側の遮蔽部材92は中央部にスルーホール92Aを有し、そこには光電子増倍管98の先端部が差し込まれている。光電子増倍管98の受光面はシンチレータ部材90の上面に密着している。これによってシンチレータ部材90で生じた光が光電子増倍管98に取り込まれ、そこで光が電気信号に変換される。遮蔽板92,94は、それぞれ例えば2.5cmの厚みを有する。シンチレータ部材90は円盤形状を有しており、その厚み106は例えば数cmである。その直径104は例えば10cm程度である。その直径104よりも遮蔽板92,94の直径の方が大きく、両者間には水平方向においてリング状のギャップ102が生じており、それによってリング状のスリット107が構成されている。スリット107は、コリメータとして機能するものであり、シンチレータ部材90において平面状の指向特性つまり水平指向特性100が生じる。この構成において、ケース88が遮光構造を有するものであってもよい。
シンチレータ部材90の厚み106やギャップ102の大きさを適宜可変設定することにより、所望の指向特性を生成することが可能である。下側の遮蔽板94を取り外せば、下向き半球形状の指向特性を形成することもできる。その場合、光電子増倍管をシンチレータ部材90の下側に配置するのが望ましい。それによれば、スルーホール92Aを不要にできるから、上方からの放射線の遮蔽を効果的に行える。もっとも、シンチレータ部材90は、水平方向に広がった平たい形態を有しているので、シンチレータ部材90においては、水平方向からの放射線に対して感度がより高められており、一方、垂直方向からの放射線に対する感度が引き下げられている。このような平べったい形態とスリット107とが相俟って、鋭い水平方向指向特性を生成することが可能である。シンチレータ部材90に代えて、複数の半導体センサを水平方向に並べて配置するようにしてもよい。図4には図3に示した検出器アセンブリ89の斜視図が示されている。
図5には、検出器アセンブリの他の構成例が示されている。検出器アセンブリ108は、円盤形のシンチレータ部材110を有し、それは2つの遮蔽板112,114によって挟まれている。遮蔽板112の端部に垂直方向に伸びる切欠きが形成されており、そこに導光部材118が挿入されている。導光部材118の下部はシンチレータ部材110の側面に密着しており、導光部材118の上部は横倒し姿勢にある光電子増倍管116の受光面に密着している。シンチレータ部材110に放射線が入射すると、そこで光が生じ、その光は導光部材118を経由して光電子増倍管116へ導かれる。そこで光が電気信号に変換される。光電子増倍管116に代えて、それと同じような機能をもった電子回路を設けるようにしてもよい。導光部材として光ファイバを利用することも可能である。
図6には、土壌サーベイシステムの他の構成例が示されている。図1に示した構成と同様の構成には同一符号を付しその説明を省略する。土壌サーベイシステムは、測定装置120と制御装置32とを有する。
測定装置120は、挿入ユニット121及びサポートユニット36を有する。挿入ユニット121は、土壌内に挿入されるものであり、それはシースとしてのガイド部材122を有する。ガイド部材122は放射線を透過する部材で構成された中空の円筒部材である。その内部には深さ方向に伸長した遮蔽容器124が設けられている。遮蔽容器124は、鉛などの放射性遮蔽材料により構成され、それは中空の円筒形状を有する。すなわち、それは筒状側面板と天井板と底板とにより構成される。その上部は土壌表面より上方へ突き出ている。遮蔽容器124の厚さは例えば2.5cmであり、その内径は例えば10cmである。遮蔽容器124は、深さ方向に所定間隔をもって並んだ複数のスリット134a−134からなるスリット列134を有する。1番目のスリット134aは表面すれすれの深さD1に形成されている。2番目から6番目までのスリットがそれぞれD2−D6の深さに形成されている。個々のスリットはリング状の隙間であり、各スリットはそれに対応した位置にシンチレータ部材が位置決められた場合にそのシンチレータ部材に水平指向特性を生じさせるものである。図6においては、深さD4の位置に検出ユニット126が位置決められており、その際には4番目のスリットが機能し、これにより水平指向特性138が生じる。それは主感度方向を水平方向とした指向特性である。
検出ユニット126は、遮蔽容器124の内部空間において昇降可能に設けられており、具体的にはワイヤ50によって吊り下げられている。よって、ワイヤ50の駆動により、検出ユニット126を複数の深さ位置(D1−D6)の中から選択された深さ位置に位置決めることができる。深度検出器54の出力信号に基づいて制御装置32が深さ位置の設定を行っている。検出ユニット126は、ケース132を有し、その内部にはシンチレータ部材128と光電子増倍管130とが配置されている。検出ユニット126は図1に示したような遮蔽部材を有していないため、その昇降駆動は比較的楽である。もっとも、遮蔽容器124はかなり重い構造物となるので、重機を利用してその設置を行うのが望ましい。図6に示したシステムによって複数の深さ位置で放射線の測定を行うことにより図7に示す線量グラフ139を生成可能である。そのグラフ139は棒グラフである。
図8には、土壌サーベイシステムの更に他の構成例が示されている。測定ユニット140は、深さ方向に伸長した筒状のガイド部材122及び同じく筒状の遮蔽容器124を備えている。遮蔽容器124はスリット列134を有する。それを構成する複数のスリット134a−134fに対応して複数の検出器142a−142f(検出器アレイ142)が設けられている。この構成では、複数の深さ位置において複数の検出器142a−142fを用いて同時に放射線の測定を行える。複数の検出器142a−142から出力された複数の検出信号が信号処理回路72Aで並列的に処理される。高電圧源80Aは複数の検出器142a−142fに対してそれぞれ高電圧を印加する。
図9には図1に示したシステムの変形例が示されている。測定装置144と制御装置32との間で無線通信が行われている。測定装置144は、シンチレータ部材145及び光電子増倍管146を有し、光電子増倍管146には高電圧源148による高電圧が印加されている。それはバッテリ150により動作するものである。それらの構成は測定ユニット内に配置されてもよい。光電子増倍管146の出力信号は信号処理回路152で処理され、その処理後の信号が通信部154及び通信部156を介して制御装置32へ伝送されている。その信号は演算部74で処理される。制御部78からの制御信号も通信部156及び通信部154を介して測定装置144へ送られる。
図10には、地山158に対する測定が示されている。地山158の斜面の掘削により穴が形成され、そこにガイド部材162が差し込まれる。その内部160に検出ユニット164が挿入される。検出ユニット164はロッド(竿)168の先端に取付けられており、ロッド168の深さ方向の進入量を可変することにより、検出ユニット164の深さ位置を可変設定することができる。ロッド168は駆動機構により操作され、あるいは、ユーザーによって操作される。この構成では、重力方向とは別の方向に検出ユニットが挿入されている。そのような場合でも挿入方向の各深さ位置において放射線の測定を行える。検出ユニット164はシンチレータ部材166を有しており、それは、上述したように、深さ方向に直交する平面状の指向特性を有している。よって、外界からの放射線の遮断を良好に行うためには、地山158の斜面に対しておよそ垂直な方向に挿入ユニットを挿入するのが望ましい。但し、測定場所及び測定方位に応じて、指向特性を可変できる機構を備えるようにしてもよい。
図11には、水中サーベイシステムの構成例が示されている。このシステムは、海等において、水中において放射線の測定を行うものであり、特に外界(空気中)からの放射線を遮蔽して水中に存在する放射性物質からの放射線を効果的に検出するものである。図11に示す水中サーベイシステムは、測定装置170と演算装置で構成される。演算装置は図1に示した演算装置74と同様の機能を備える。
測定装置170は、浮遊体174を有する。それは海176の表面(海面)上において浮かぶものである。それが固定設置されてもよい。浮遊体174はバルーン又は浮き袋を備えている。浮遊体174のベース180にはサポートプレート182が設置されており、そのサポートプレート182によって挿入ユニットが保持されている。挿入ユニットは、円筒形状をもった中空のガイド部材192を有する。その内部の底面上には重心を下げて挿入ユニットの姿勢を安定化させるためのウエイト194が設けられている。ガイド部材192は放射線透過材料で構成され、気密構造を有し、その内部に海水が入り込むことはない。もっとも、その内部に海水を取り込むように構成すことは可能である。
ガイド部材192の内部には検出ユニット190が昇降可能に設けられている。その検出ユニット190は、図1に示した検出ユニットと基本的に同じ構造を有している。すなわち、それはシンチレータ部材196、遮蔽部材200、ケース208を有し、遮蔽部材200の一部がスリット192となっている。それがコリメータとして機能し、符号206で示すような水平指向特性が形成されている。
検出ユニット190の設置深さはリール184によるワイヤ186の巻き取り量によって可変される。光電子増倍管198からの信号はケーブル188を介して通信回路に送られ、無線信号に変換される。それがアンテナ210から電波として制御装置へ伝送される。符号212は支柱である。
この構成によれば、海中における指定深さ位置において線量を測定できる。また深さ方向に検出ユニット190を移動させながら線量を測定すれば線量グラフを形成できる。個々の測定に当たって、空気中から飛来する放射線は遮蔽されており、シンチレータ部材196においては海中に存在する放射性物質、特にシンチレータ部材196の深さと同じような深さにある放射性物質からの放射線(γ線)を高精度に検出することができる。図11に示した測定ユニットに代えて、図6や図8に示した測定ユニットを設けることも可能である。
30 測定装置、32 制御装置、34 検出ユニット、36 サポートユニット、42 測定ユニット、58 シンチレータ部材。

Claims (15)

  1. 土壌等の対象物の表面からその内部へ挿入される挿入ユニットを含み、
    前記挿入ユニットは、
    前記対象物内において放射線の検出を行う検出器と、
    前記検出器の周囲の中で少なくとも前記対象物の表面側に設けられ、外界から前記対象物の表面を介して前記対象物の内部へ飛来する放射線を遮蔽しつつ前記検出器において前記対象物内に存在する放射性物質からの放射線が検出されるように前記検出器に対象物内指向特性を生じさせる遮蔽部材と、
    を含むことを特徴とする放射線測定システム。
  2. 請求項1記載のシステムにおいて、
    前記遮蔽部材は、
    前記検出器の周囲の内で前記対象物の表面側に設けられた一方側部分と、
    前記検出器の周囲の内で前記対象物の表面側とは反対側に設けられた他方側部分と、
    を含み、
    前記遮蔽部材は、前記検出器の対象物内指向特性として、深さ方向に直交する方向に主感度方向を向けた指向特性を生じさせる、
    ことを特徴とする放射線測定システム。
  3. 請求項2記載のシステムにおいて、
    前記挿入ユニットは前記対象物の表面に対して垂直の方向に挿入され、
    前記対象物内指向特性は水平指向特性である、
    ことを特徴とする放射線測定システム。
  4. 請求項2又は3記載のシステムにおいて、
    前記遮蔽部材は前記一方側部分と前記他方側部分との間に設けられたスリットを有し、
    前記検出器は前記スリットを通過してくる放射線を検出する、
    ことを特徴とする放射線測定システム。
  5. 請求項4記載のシステムにおいて、
    前記検出器及び前記遮蔽部材が可動体を構成し、
    前記可動体を前記深さ方向に移動させる移動機構が設けられた、
    ことを特徴とする放射線測定システム。
  6. 請求項5記載のシステムにおいて、
    前記移動機構を制御することにより前記深さ方向における前記可動体の位置を制御する制御部と、
    前記前記可動体の位置の可変によって取得された複数の放射線検出データに基づいて深さと線量との関係を示すグラフを作成するグラフ作成部と、
    を含むことを特徴とする放射線測定システム。
  7. 請求項5記載のシステムにおいて、
    前記挿入ユニットは、前記深さ方向に伸長した部材であって放射線を透過する材料で構成された中空部材を含み、
    前記中空部材の内部空間に前記対象物から隔てられつつ前記可動体が設けられた、
    ことを特徴とする放射線測定システム。
  8. 請求項1記載のシステムにおいて、
    前記遮蔽部材は深さ方向に伸長した中空形態を有し、
    前記遮蔽部材は互いに異なる複数の深さに複数のスリットを有し、
    前記各スリットは、前記検出器の対象物内指向特性として、前記深さ方向に直交する方向に主感度方向を向けた指向特性を生じさせる、
    ことを特徴とする放射線測定システム。
  9. 請求項8記載のシステムにおいて、
    前記遮蔽部材の内部に前記深さ方向に前記検出器を移動させる移動機構を含み、
    前記複数のスリットの中から選択されたスリットに対して前記検出器が位置決められる、ことを特徴とする放射線測定システム。
  10. 請求項8記載のシステムにおいて、
    前記遮蔽部材の内部における前記複数のスリットに対応して複数の検出器が設けられた、ことを特徴とする放射線測定システム。
  11. 請求項9又は10記載のシステムにおいて、
    前記挿入ユニットは、前記深さ方向に伸長した部材であって放射線を透過する材料で構成された中空部材を含み、
    前記中空部材の中に前記対象物から隔てられつつ前記遮蔽部材が設けられた、
    ことを特徴とする放射線測定システム。
  12. 請求項1記載のシステムにおいて、
    前記対象物は土壌であり、
    前記土壌に対して前記挿入ユニットを支持する支持機構が設けられた、
    ことを特徴とする放射線測定システム。
  13. 請求項1記載のシステムにおいて、
    前記対象物は水であり、
    前記水に対して前記挿入ユニットを支持する支持機構が設けられた、
    ことを特徴とする放射線測定システム。
  14. 対象物に対してその表面から穴を形成する形成工程と、
    前記穴に対して放射線検出器を挿入する工程と、
    前記穴の内部において複数の深さ位置で前記検出器により放射線の検出を行う工程と、
    前記複数の深さ位置での放射線の検出により得られたデータに基づいて、深さと線量との関係を示すグラフを生成する工程と、
    を含むことを特徴とする放射線測定方法。
  15. 請求項14記載の放射線測定方法で得られた前記グラフに基づいて前記土壌に対して行う除染作業の深さ範囲を決定する、ことを特徴とする除染範囲決定方法。
JP2012073123A 2012-03-28 2012-03-28 放射線測定システム Expired - Fee Related JP6042627B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073123A JP6042627B2 (ja) 2012-03-28 2012-03-28 放射線測定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073123A JP6042627B2 (ja) 2012-03-28 2012-03-28 放射線測定システム

Publications (2)

Publication Number Publication Date
JP2013205152A true JP2013205152A (ja) 2013-10-07
JP6042627B2 JP6042627B2 (ja) 2016-12-14

Family

ID=49524385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073123A Expired - Fee Related JP6042627B2 (ja) 2012-03-28 2012-03-28 放射線測定システム

Country Status (1)

Country Link
JP (1) JP6042627B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010088A (ja) * 2012-06-29 2014-01-20 Tokyo Metropolitan Univ 地中放射線量の計測方法及び地中放射線量計測補助具
JP2015141043A (ja) * 2014-01-27 2015-08-03 国立研究開発法人海上技術安全研究所 放射性物質分布測定装置及び放射性物質分布測定方法
JP2015161560A (ja) * 2014-02-27 2015-09-07 日立アロカメディカル株式会社 放射線検出装置
JP2015210197A (ja) * 2014-04-28 2015-11-24 三菱電機株式会社 β線検出装置
JP2016118524A (ja) * 2014-12-19 2016-06-30 株式会社リソースクリエイト 放射線量測定装置、放射線測定方法及び放射線量マップ作製方法
JP2017015498A (ja) * 2015-06-30 2017-01-19 株式会社堀場製作所 放射線測定ユニット及び放射能濃度測定装置
CN109901212A (zh) * 2019-01-01 2019-06-18 中国人民解放军63653部队 用于放射性核素扫描测量及清污的平台系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102626149B1 (ko) * 2021-07-12 2024-01-18 한국원자력연구원 방사능 측정 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350607A (en) * 1977-07-28 1982-09-21 Apfel Robert E Detector and dosimeter for neutrons and other radiation
JPH0319984U (ja) * 1989-07-10 1991-02-27
JPH0634788A (ja) * 1992-07-17 1994-02-10 Toshiba Corp 燃焼度測定装置
JP2002006053A (ja) * 2000-06-19 2002-01-09 Japan Nuclear Cycle Development Inst States Of Projects 指向型放射線検出装置
JP2002071812A (ja) * 2000-08-25 2002-03-12 Japan Science & Technology Corp ラドン濃度測定装置および方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350607A (en) * 1977-07-28 1982-09-21 Apfel Robert E Detector and dosimeter for neutrons and other radiation
JPH0319984U (ja) * 1989-07-10 1991-02-27
JPH0634788A (ja) * 1992-07-17 1994-02-10 Toshiba Corp 燃焼度測定装置
JP2002006053A (ja) * 2000-06-19 2002-01-09 Japan Nuclear Cycle Development Inst States Of Projects 指向型放射線検出装置
JP2002071812A (ja) * 2000-08-25 2002-03-12 Japan Science & Technology Corp ラドン濃度測定装置および方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010088A (ja) * 2012-06-29 2014-01-20 Tokyo Metropolitan Univ 地中放射線量の計測方法及び地中放射線量計測補助具
JP2015141043A (ja) * 2014-01-27 2015-08-03 国立研究開発法人海上技術安全研究所 放射性物質分布測定装置及び放射性物質分布測定方法
JP2015161560A (ja) * 2014-02-27 2015-09-07 日立アロカメディカル株式会社 放射線検出装置
JP2015210197A (ja) * 2014-04-28 2015-11-24 三菱電機株式会社 β線検出装置
JP2016118524A (ja) * 2014-12-19 2016-06-30 株式会社リソースクリエイト 放射線量測定装置、放射線測定方法及び放射線量マップ作製方法
JP2017015498A (ja) * 2015-06-30 2017-01-19 株式会社堀場製作所 放射線測定ユニット及び放射能濃度測定装置
CN109901212A (zh) * 2019-01-01 2019-06-18 中国人民解放军63653部队 用于放射性核素扫描测量及清污的平台系统

Also Published As

Publication number Publication date
JP6042627B2 (ja) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6042627B2 (ja) 放射線測定システム
US9690006B2 (en) Downhole logging system with azimuthal and radial sensitivity
CA2722199C (en) Geometrically optimized fast neutron detector
CA2375044A1 (en) Geometrically optimized fast neutron detector
JP5925009B2 (ja) 放射線測定システム
JP2013501929A (ja) 新しい放射線検出器
AU2014372313B2 (en) Scanning instrument
JP2014020902A (ja) 土壌内放射能分布測定装置
JP4784991B2 (ja) 放射線検出装置
US3432656A (en) Gage device for measurement of density profiles of snowpack
JP6346750B2 (ja) 放射性物質分布測定装置及び放射性物質分布測定方法
JP2015180872A (ja) 放射能測定装置および放射能測定方法
JP6038646B2 (ja) 放射能測定装置
JP6268699B2 (ja) 放射能濃度測定装置、及び、放射能濃度の測定方法
JP6029054B2 (ja) 放射性セシウム簡易測定方法及び可搬式放射性セシウム簡易測定装置
KR101873807B1 (ko) 수막유도 수중 방사선 실시간 측정 방법
KR101221291B1 (ko) 방사선과 집속장치를 이용한 아스팔트 포장도로의 층별 밀도 측정장치 및 그 방법
JP7307992B2 (ja) 放射能測定装置
JP6818579B2 (ja) 土壌放射能汚染検査装置
JP7197878B2 (ja) 放射能測定装置
Jashank et al. Development of radon gas sensor to monitor the precursors of earthquake
JP2018141696A (ja) 放射能検出装置および放射能測定装置
RU2574322C1 (ru) Спектрометрический позиционно-чувствительный детектор
RU215718U1 (ru) Блок калибровки гамма-спектрометра механический
JP6282540B2 (ja) 放射能濃度測定システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161110

R150 Certificate of patent or registration of utility model

Ref document number: 6042627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees