JP2013204082A - 溶接部の応力腐食割れ防止方法およびタービンロータ - Google Patents

溶接部の応力腐食割れ防止方法およびタービンロータ Download PDF

Info

Publication number
JP2013204082A
JP2013204082A JP2012073816A JP2012073816A JP2013204082A JP 2013204082 A JP2013204082 A JP 2013204082A JP 2012073816 A JP2012073816 A JP 2012073816A JP 2012073816 A JP2012073816 A JP 2012073816A JP 2013204082 A JP2013204082 A JP 2013204082A
Authority
JP
Japan
Prior art keywords
sacrificial anode
welded portion
stress corrosion
corrosion cracking
turbine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012073816A
Other languages
English (en)
Inventor
Liang Yan
梁 閻
Shoichi Fukamatsu
彰一 深松
Masao Arimura
正雄 有村
Hideyuki Maeda
秀幸 前田
Tetsuya Yamanaka
哲哉 山中
Shinichi Terada
慎一 寺田
Kenichi Imai
健一 今井
Atsuo Nakatomi
淳夫 中富
Hideaki Shimada
秀顕 島田
Shuichi Inagaki
修一 稲垣
Yoshio Mochida
芳雄 餅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012073816A priority Critical patent/JP2013204082A/ja
Publication of JP2013204082A publication Critical patent/JP2013204082A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

【課題】タービンロータ等の蒸気タービン発電プラント、ガスタービン等の構成部品を溶接を用いて製造するに際し、構成部品の強度を維持したまま溶接部の応力腐食割れを防止する。
【解決手段】第1部材11及び第2部材12の溶接部16を含む領域に溝部17を形成するステップと、前記溝部内に犠牲陽極材を充填し、犠牲陽極層18を形成するステップと、を具える。
【選択図】図6

Description

本発明は、溶接部の応力腐食割れ防止方法およびその方法を使用したタービンロータに関する。
蒸気タービン発電プラント、ガスタービン等の発電効率を向上させるためには、主蒸気温度あるいは燃焼温度の向上が有効である。主蒸気温度あるいは燃焼温度の向上に伴い、上記プラント、ガスタービンを構成する部品の温度も高くなるため、これら部品に対しては優れた耐高温特性が要求される。
上述のような部品として例えばタービンロータを挙げることができるが、このタービンロータは所定の金属材料を鋳造、鍛造等の諸工程を経ることにより一括して製造する場合と、複数の部品を溶接によって結合させて製造する場合とがある。
溶接によってタービンロータを製造する場合、溶接金属はロータ材とほぼ同等の組成を有する溶接棒を使用することが多い。また、溶接後、溶接部の残留応力を除去し、溶接部の硬さを低下させるため、熱処理を行う必要がある。熱処理によって溶接部の硬さを改善することによって、溶接部の応力腐食割れ発生リスクが低減される。しかしながら、熱処理温度を高くすることにより、タービンロータの強度が下がり、熱処理温度を低くすることにより、溶接部の硬さは十分に下がることができず、そこで応力腐食割れが生じやすくなる。
したがって、溶接部の硬さ低下と溶接されたタービンロータの強度維持との両立を図ることが重要であり、その解決方法が求められている。
上記の解決方法として、例えば、タービンロータを溶接する部位の一部(ロータ表面に近い部位)に、予め溶接材料からなる塗布層を設け、局部熱処理によってその塗布層を軟化させた後、本体溶接を行い、再度熱処理を行うことによって、タービンロータの強度を維持しながら、応力腐食割れを回避するという方法が開示されている(特許文献1)。
しかしながら、上記方法では、溶接部と事前に塗布した軟化層との間における硬さの管理は明確ではない。また、塗布層を軟化させることによって、塗布層の金属組織は本体溶接部の金属組織と変わる場合があり、組織の変化によるタービンロータの溶接部における耐食性、耐応力腐食割れ特性が劣化してしまう場合がある。
特表2009−520603号
本発明が解決しようとする課題は、タービンロータ等の蒸気タービン発電プラント、ガスタービン等の構成部品を溶接を用いて製造するに際し、構成部品の強度を維持したまま溶接部の応力腐食割れを防止することである。
本発明の一態様は、第1部材及び第2部材の溶接部を含む領域に溝部を形成するステップと、前記溝部内に犠牲陽極材を充填し、犠牲陽極層を形成するステップと、を具えることを特徴とする、溶接部の応力腐食割れ防止方法に関する。
また本発明の一態様は、組成の異なる複数の部材を溶接によって接合して構成されるタービンロータにおいて、このタービンロータを構成する第1部材及び第2部材の溶接部を含む領域に溝部を形成し、この溝部内に犠牲陽極層を形成して成ることを特徴とするタービンロータに関する。
本発明によれば、タービンロータ等の蒸気タービン発電プラント、ガスタービン等の構成部品を溶接を用いて製造するに際し、構成部品の強度を維持したまま溶接部の応力腐食割れを防止することができる。
実施形態におけるタービンロータの溶接による製造形態を示す断面図である。 図1に示すタービンロータの溶接部位を拡大して示す断面図である。 実施形態におけるタービンロータの溶接後の形態を示す断面図である。 図3に示すタービンロータの溶接部を拡大して示す断面図である。 実施形態における溶接部の応力腐食割れ防止方法を説明するための工程図である。 実施形態における溶接部の応力腐食割れ防止方法を説明するための工程図である。 実施形態の応力腐食割れ防止方法の変形例を説明するための工程図である。 図5に示す溝部の近傍を拡大して示す断面図である。 図8に示す溝部のエッジ部を拡大して示す断面図である。
(応力腐食割れ防止方法の工程)
図1は、実施形態におけるタービンロータの溶接による製造形態を示す断面図であり、図2は、図1に示すタービンロータの溶接部位を拡大して示す断面図である。また、図3は、タービンロータの溶接後の形態を示す断面図であり、図4は、図3に示すタービンロータの溶接部を拡大して示す断面図である。さらに、図5及び図6は、実施形態における溶接部の応力腐食割れ防止方法を説明するための工程図である。
なお、本実施形態では、タービンロータを3つの構成部品から構成する場合について説明しているが、構成部品の数は特に限定されるものではない。また、本実施形態ではタービンロータの溶接部の応力腐食割れ防止方法について説明するが、溶接部を有する部品はタービンロータに限定されるものではなく、本実施形態の溶接部の応力腐食割れ防止方法は、腐食、孔食、応力腐食割れが発生する環境に使用されるその他の任意の部品の溶接部に対して適用することができる。例えば、発電プラント及び発電機器の溶接部の応力腐食割れの対策に適用することができる。
図1に示すように、タービンロータ10は、3つの構成部品11,12及び13から構成されており、図2に溶接部位を拡大して示すように、以下においては、構成部品11及び12間を溶接によって結合する場合について説明する。
最初に図2に示すように、タービンロータ10の構成部品11及び12を付き合せることにより形成された開先15に対して、構成部品11及び12、すなわちタービンロータ10と同じ材料組成の溶接材料を供給し、バタリング溶接等の汎用の溶接方法によって構成部品11及び12を溶接し、結合する(図3及び図4参照)。
次いで、図5に示すように、開先15に形成された溶接部16を含む領域に、深さ方向の断面が台形状の溝部17を形成する。次いで、図6に示すように、常温かつ大気下において、例えば金属溶射装置21を用いて溝部17内に犠牲陽極材18xを充填し、図7に示すように犠牲陽極層18を形成する。
なお、犠牲陽極層18を形成するに際しては、金属溶射装置21を用いた金属溶射法の他に、ショートコーティング法、大気圧化学蒸着法等を用いることもできる。また、溝部17の深さ方向の断面形状は、犠牲陽極材18xを保持して犠牲陽極層18を形成及び保持できるものであれば台形状に限られるものではなく、任意の断面形状を有する溝部17から構成することができる。
溝部17は、溶接された構成部品11及び12の結合体を、この結合体の長さ方向における軸回りに回転させながら、グラインダなどで機械加工を施すことによって形成する。また、犠牲陽極層18の形成も、上記結合体を長さ方向における軸回りに回転させながら、金属溶射装置21から犠牲陽極材18xを溝部17内に充填させながら行う。
上述のように溝部17内に犠牲陽極層18を形成することにより、いわゆる犠牲陽極作用によって、犠牲陽極層18から溶接部16に対して防食電流が流れるようになる。したがって、構成部品11及び12の結合体を、比較的低い温度で熱処理し、結合体の強度を高く保持するような場合においても、溶接部16には上述のように犠牲陽極作用によって防食電流が流れるようになるので、溶接部16の応力腐食割れを十分に防止することができる。
なお、以下に詳述するが、犠牲陽極層18を構成する犠牲陽極材18xの自然電位は、応力腐食割れの防止対象である溶接部16、すなわち構成部品11及び12の構成材料よりも電気的に卑であることが必要である。
図7は、本実施形態の応力腐食割れ防止方法の変形例を説明するための工程図である。
本実施形態では、図6に示すようにして溝部17内に犠牲陽極層18を形成した後、この犠牲陽極層18上に、常温かつ大気下において、例えば高速フレーム溶射装置22を用いて耐摩耗材を溶射して耐摩耗層19を形成する。この場合、耐摩耗層19が保護層として作用するので、構成部品11及び12の結合体、すなわちタービンロータ10の使用中における犠牲陽極層18の摩耗を抑制することができる。したがって、上述した犠牲陽極層18による溶接部16の犠牲陽極作用による応力腐食割れをより効果的に抑制することができる。
なお、耐摩耗層19は、上述したように、構成部品11及び12の結合体を、この結合体の長さ方向における軸回りに回転させながら、高速フレーム溶射装置22を用いて耐摩耗材を溶射することによって行う。
耐摩耗層19は、例えば、質量%で、C:4〜8、Cr:2〜6、Co:8〜12、Fe:0.05〜0.2%、残部がW及び不可避不純物のW系合金から構成することができる。このようなW系合金を上述した高速フレーム溶射装置22に供給して耐摩耗層19とすることにより、この耐摩耗層19中には耐摩耗性に優れたWC相及びCoCr相が形成されるようになる。したがって、耐摩耗層19は溶接部16に形成した犠牲陽極層18を十分に保護し、犠牲陽極層18の摩耗を抑制することができる。
また、耐摩耗層19は、例えば、質量%で、C:4〜8、Cr:16〜24、Ni:15〜25、Fe:0.1〜0.3%、残部がW及び不可避不純物のW系合金から構成することができる。このようなW系合金を上述した高速フレーム溶射装置22に供給して耐摩耗層19とすることにより、この耐摩耗層19中には耐摩耗性に優れたWC相、Cr相が形成されるようになる。したがって、耐摩耗層19は溶接部16に形成した犠牲陽極層18を十分に保護し、犠牲陽極層18の摩耗を抑制することができる。なお、この場合、Ni等はWC相及びCr相のバインダーとして機能する。
(タービンロータ10(構成部品11,12,13及び溶接部16)、及び犠牲陽極層18の材料組成)
次に、本実施形態の応力腐食割れ防止方法において使用することのできるタービンロータ10(構成部品11,12,13)、犠牲陽極層18及び耐摩耗層19の材料組成について説明する。
<タービンロータ10(構成部品11,12,13)の材料組成>
本実施形態の応力腐食割れ防止方法において、タービンロータ10(構成部品11,12,13)は、好ましくは、質量%で、C:0.25〜0.28、Cr:1.5〜2.0、Mn:0.2〜0.4、Mo:0.25〜0.5、V:0.07〜0.14を含有し、残部がFe及び不可避不純物のフェライト系ステンレス鋼から構成する。
各成分及びその成分範囲限定の理由について簡単に説明する。
(1)C(炭素)
Cは、強化相であるM236型炭化物の構成元素として有用であり、0.25%未満では、炭化物析出による強度向上を期待できない。0.28%を超えると炭化物が析出しすぎることによって強度が低下する。このため、0.25〜0.28%とする。
(2)Cr(クロム)
Crは、強化相であるM236型炭化物を析出させることで、合金のクリープ強度を維持する作用がある。また、Crは、高温蒸気環境下における耐酸化性を高める。Crの含有率が1.5%未満の場合には、耐酸化性が低下する。一方、Crの含有率が2.0%を超えると、逆にクリープ破断強度などの機械的特性が低下する。このため、Crの添加量を1.5〜2.0%とする。
(3)Mn(マンガン)
Mnは、δフェライト等の析出を抑制して、延性などの機械的特性の劣化を抑制するものである。添加量が0.2%未満では、δフェライト等の析出抑制効果が期待できない。0.4%を超えると耐酸化性が劣化する。このため、Mnの添加量は0.2〜0.4%とする。
(4)Mo(モリブデン)
Moは、M236型炭化物中に一部が置換することによって炭化物の安定性を高める。添加量が0.25%未満の場合耐孔食性が低下し、0.5%を超えて添加するとδフェライト相の析出により延性などの機械的特性が劣化する。このため、Moの添加量を0.25〜0.5%とした。
(5)V(バナジウム)
Vは、Vの炭窒化物の析出による高温強度を高める。添加量が0.07%未満の場合、Vの炭窒化物の析出による高温強度の効果が得られず、0.14%を超えると逆に炭化物の析出量が減少し高温強度が十分得られない。このため、Vの添加量を0.07〜0.14%とする。
(6)Si(ケイ素)、Mg(マグネシウム)、Cu(銅)、硫黄(S)等
Si(ケイ素)、Mg(マグネシウム)、Cu(銅)、硫黄(S)等は、フェライト系ステンレス鋼においては不可避不純物として分類されるものである。したがって、これらの元素は可能な限り0%に近いことが望ましい。
<犠牲陽極層>
タービンロータ10の構成材料として上述のような材料組成のフェライト系ステンレス鋼を用いた場合、犠牲陽極層(犠牲陽極材)は以下のような組成成分の材料を好ましく用いることができる。
(1)質量%で、Mg:1〜25%、Al:75〜99%のAl系合金
このAl系合金は、上述したフェライト系ステンレス鋼に対して自然電位が卑であるため、当該Al系合金から構成した犠牲陽極層18は、上記フェライト系ステンレス鋼からなるタービンロータ10(構成部品11及び12)の溶接部16に対して十分に高い犠牲陽極作用を示す。
Mgの添加量が25%を超えると、必要以上の防食電流が流れるため、犠牲陽極層18の腐食速度が早くなり、寿命が短くなる。一方、Mgの添加量が1%未満であると、十分な防食電流が流れず、上記フェライト系ステンレス鋼からなるタービンロータ10(構成部品11及び12)の溶接部16に対して十分な犠牲陽極作用を示すことができない。このため、Mgの添加量を1〜25%とする。
(2)質量%で、Zn:1〜25%、Al:75〜99%のAl系合金
このAl系合金は、上述したフェライト系ステンレス鋼に対して自然電位が卑であるため、当該Al系合金から構成した犠牲陽極層18は、上記フェライト系ステンレス鋼からなるタービンロータ10(構成部品11及び12)の溶接部16に対して十分に高い犠牲陽極作用を示す。
Znの添加量が25%を超えると、必要以上の防食電流が流れるため、犠牲陽極層18の腐食速度が早くなり、寿命が短くなる。一方、Znの添加量が1%未満であると、十分な防食電流が流れず、上記フェライト系ステンレス鋼からなるタービンロータ10(構成部品11及び12)の溶接部16に対して十分な犠牲陽極作用を示すことができない。このため、Znの添加量を1〜25%とする。
(3)質量%で、Mg:1〜5%、Zn:3〜15%、Al:80〜96%のAl系合金
このAl系合金も、上述したフェライト系ステンレス鋼に対して自然電位が卑であるため、当該Al系合金から構成した犠牲陽極層18は、上記フェライト系ステンレス鋼からなるタービンロータ10(構成部品11及び12)の溶接部16に対して十分に高い犠牲陽極作用を示す。
Zgの添加量が5%を超え、かつZnの添加量が15%を超えると、必要以上の防食電流が流れるため、犠牲陽極層18の腐食速度が早くなり、寿命が短くなる。一方、Mgの添加量が1%未満かつZnの添加量が3%未満であると、十分な防食電流が流れず、上記フェライト系ステンレス鋼からなるタービンロータ10(構成部品11及び12)の溶接部16に対して十分な犠牲陽極作用を示すことができない。このため、Mgの添加量を1〜5%とし、Znの添加量を3〜15%とする。
(応力腐食割れ防止方法の詳細)
図8は、図5に示す溝部17の近傍を拡大して示す図であり、図9は、図8に示す溝部17のエッジ部を拡大して示す図である。
上述のように、本実施形態では、溝部17の深さ方向の断面形状を台形状としているが、この場合、溝部17の底部17Aに対する側壁17Bの角度θは、例えば10度〜60度とすることが好ましい。この場合、上述した応力腐食割れ防止方法において、溝部17内に犠牲陽極材18xを十分に保持することができ、これによって犠牲陽極層18を十分に形成及び保持できる。したがって、犠牲陽極材18xの溝部17への充填時及び犠牲陽極層18の形成時における、これら犠牲陽極材18x及び犠牲陽極層18の飛散を抑制することができる。
また、上記同様の理由及び十分な厚さの犠牲陽極層18を形成するという観点から、溝深さdは6mm〜12mmとすることが好ましい。
さらに、犠牲陽極層18による犠牲陽極作用をより効果的に奏するようにするには、溶接部16の開先の幅w1に対して溝部17の底部17Aの幅w2を2〜5倍とすることが好ましい。すなわち、開先の幅w1に対して、その幅の2〜5の幅で溝部17内に犠牲陽極層18を形成することが好ましい。
なお、溶接部16に対する犠牲陽極層18の電気防食による減肉速度は0.05〜0.2mm/年であることが実験データから判明しているので、10年間の実機運転環境中では最大減肉量は0.2mm/×10年=2mmという結果となる。したがって、例えばエロージョン及び剥離等のその他の損傷を考慮して安全係数を3倍にかけると、犠牲陽極層18の厚さは2mm×3(安全係数)=6mm以上にすることが適切である。
また、上述した耐摩耗層19の摩耗速度(mm/年)は0.01〜0.1mm/年という実績があり、10年の使用寿命及び2倍の安全係数を考慮すると、耐摩耗層19の厚さは0.1mm/年×10年×2(安全係数)=2mm、つまり2mm以上にすることが望ましい。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10 タービンロータ
11,12,13 タービンロータの構成部品
15 開先
16 溶接部
17 溝部
18 犠牲陽極層
19 耐摩耗層

Claims (10)

  1. 第1部材及び第2部材の溶接部を含む領域に溝部を形成するステップと、
    前記溝部内に犠牲陽極材を充填し、犠牲陽極層を形成するステップと、
    を具えることを特徴とする、溶接部の応力腐食割れ防止方法。
  2. 前記溝部は、深さ方向の断面が台形状を呈していることを特徴とする、請求項1に記載の溶接部の応力腐食割れ防止方法。
  3. 前記溶接部は、質量%で、C:0.25〜0.28、Cr:1.5〜2.0、Mn:0.2〜0.4、Mo:0.25〜0.5、V:0.07〜0.14を含有し、残部がFe及び不可避不純物のフェライト系ステンレス鋼であって、
    前記犠牲陽極層は、質量%で、Mg:1〜25%、Al:75〜99%のAl系合金であることを特徴とする、請求項1又は2に記載の溶接部の応力腐食割れ防止方法。
  4. 前記溶接部は、質量%で、C:0.25〜0.28、Cr:1.5〜2.0、Mn:0.2〜0.4、Mo:0.25〜0.5、V:0.07〜0.14を含有し、残部がFe及び不可避不純物のフェライト系ステンレス鋼であって、
    前記犠牲陽極層は、質量%で、Zn:1〜25%、Al:75〜99%のAl系合金であることを特徴とする、請求項1又は2に記載の溶接部の応力腐食割れ防止方法。
  5. 前記溶接部は、質量%で、C:0.25〜0.28、Cr:1.5〜2.0、Mn:0.2〜0.4、Mo:0.25〜0.5、V:0.07〜0.14を含有し、残部がFe及び不可避不純物のフェライト系ステンレス鋼であって、
    前記犠牲陽極層は、質量%で、Mg:1〜5%、Zn:3〜15%、Al:80〜96%のAl系合金であることを特徴とする、請求項1又は2に記載の溶接部の応力腐食割れ防止方法。
  6. 前記犠牲陽極層上に耐摩耗層を形成するステップを具えることを特徴とする、請求項1〜5のいずれか一に記載の溶接部の応力腐食割れ防止方法。
  7. 前記耐摩耗層は、質量%で、C:4〜8、Cr:2〜6、Co:8〜12、Fe:0.05〜0.2%、残部がW及び不可避不純物のW系合金であることを特徴とする、請求項6に記載の溶接部の応力腐食割れ防止方法。
  8. 前記耐摩耗層は、質量%で、C:4〜8、Cr:16〜24、Ni:15〜25、Fe:0.1〜0.3%、残部がW及び不可避不純物のW系合金であることを特徴とする、請求項6に記載の溶接部の応力腐食割れ防止方法。
  9. 組成の異なる複数の部材を溶接によって接合して構成されるタービンロータにおいて、
    このタービンロータを構成する第1部材及び第2部材の溶接部を含む領域に溝部を形成し、
    この溝部内に犠牲陽極層を形成して成ることを特徴とするタービンロータ。
  10. 前記犠牲陽極層の上に耐磨耗層が形成されていることを特徴とする請求項9記載のタービンロータ。
JP2012073816A 2012-03-28 2012-03-28 溶接部の応力腐食割れ防止方法およびタービンロータ Pending JP2013204082A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073816A JP2013204082A (ja) 2012-03-28 2012-03-28 溶接部の応力腐食割れ防止方法およびタービンロータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073816A JP2013204082A (ja) 2012-03-28 2012-03-28 溶接部の応力腐食割れ防止方法およびタービンロータ

Publications (1)

Publication Number Publication Date
JP2013204082A true JP2013204082A (ja) 2013-10-07

Family

ID=49523513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073816A Pending JP2013204082A (ja) 2012-03-28 2012-03-28 溶接部の応力腐食割れ防止方法およびタービンロータ

Country Status (1)

Country Link
JP (1) JP2013204082A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679430B2 (en) 2020-01-22 2023-06-20 Kabushiki Kaisha Toshiba Method of correcting bend of joint type-turbine rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679430B2 (en) 2020-01-22 2023-06-20 Kabushiki Kaisha Toshiba Method of correcting bend of joint type-turbine rotor

Similar Documents

Publication Publication Date Title
JP5984213B2 (ja) 溶接性に優れる被覆管用オーステナイト系Fe−Ni−Cr合金
US9873930B2 (en) Precipitation hardening martensitic stainless steel and steam turbine component made thereof
JP2007332412A (ja) 低熱膨張Ni基超合金
JP2015528057A (ja) 高い使用温度で優れたクリープ強度、耐酸化性、耐蝕性を有するオーステナイト系合金鋼
US9695697B2 (en) Erosion shield, method of fabricating a shield, and method of fabricating an article having a shield
JP5537587B2 (ja) Ni基合金溶接材料並びにこれを用いた溶接ワイヤ、溶接棒及び溶接用粉末
JP5622165B2 (ja) 耐摩耗性及び耐高温腐食性に優れた肉盛溶射用粉末合金
JP2012232336A (ja) 高硬度肉盛合金粉末
JP2013209742A (ja) 蒸気タービンロータ
JP5454723B2 (ja) 耐海水腐食性に優れたステンレスクラッド鋼板の合せ材及びそれを用いたステンレスクラッド鋼板並びにその製造方法
KR20190084208A (ko) 육성 용접용 합금, 용접용 분말 및 반응관
JP2008214734A (ja) 耐メタルダスティング性に優れた金属材料
JP6918114B2 (ja) ニッケル−クロム−モリブデン合金の使用
JP2013052441A (ja) 熱間鍛造用金敷および熱間鍛造方法
JP2013204082A (ja) 溶接部の応力腐食割れ防止方法およびタービンロータ
JP5554192B2 (ja) Co基硬化肉盛材料及び肉盛方法
JP2014111265A (ja) 肉盛用粉末合金
JP6257454B2 (ja) 肉盛溶接金属及び機械構造物
JP4823652B2 (ja) 連続鋳造ロール肉盛用溶接材料およびロール
JP2017159350A (ja) 溶接金属、および該溶接金属を含む溶接構造体
JP6335248B2 (ja) 肉盛溶接用合金及び溶接用粉末
KR102499653B1 (ko) 용가재를 사용하여 용접함으로써 FeCrAl 합금을 FeNiCr 합금으로 접합시키는 방법
JP2008127613A (ja) 析出硬化型マルテンサイト系ステンレス鋼
JP2021049583A (ja) 厚肉鋼材のアーク溶接用の高クロムクリープ抵抗性溶接金属
JP2011231410A (ja) 低熱膨張Ni基超合金