JP2013194761A - Vacuum insulating material and heat insulation box body - Google Patents

Vacuum insulating material and heat insulation box body Download PDF

Info

Publication number
JP2013194761A
JP2013194761A JP2012059767A JP2012059767A JP2013194761A JP 2013194761 A JP2013194761 A JP 2013194761A JP 2012059767 A JP2012059767 A JP 2012059767A JP 2012059767 A JP2012059767 A JP 2012059767A JP 2013194761 A JP2013194761 A JP 2013194761A
Authority
JP
Japan
Prior art keywords
layer
heat insulating
insulating material
heat
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012059767A
Other languages
Japanese (ja)
Inventor
Toshio Kobayashi
俊夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012059767A priority Critical patent/JP2013194761A/en
Publication of JP2013194761A publication Critical patent/JP2013194761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide excellent heat insulation performance over a long period of time by controlling gas invasion to the inside of a vacuum insulating material or a heat insulation box body.SOLUTION: A heat welding layer 7 of a sealing part 8 in a vacuum insulating material 1 has a boundary surface with a gas barrier layer 6 on both sides thereof. Because the wave height of swells of a boundary surface of a surface which has a metallic foil layer of a concave part exceeds the weight height of swells of a boundary surface of a surface which has a vapor deposition film layer of the concave part and a deepest part of a part which is concave to a heat welding layer 7 side of one boundary surface of the concave part does not face a deepest part of a part which is concave to a heat welding layer 7 side of the other boundary surface of the concave part, heat insulation performance excellent in controlling gas invasion to the inside can be achieved over a long period of time.

Description

本発明は、2枚の外被材の間に芯材を減圧密封してなり、長期にわたって優れた密閉性能を維持する真空断熱材および断熱箱体に関するものである。   The present invention relates to a vacuum heat insulating material and a heat insulating box that are formed by sealing a core material between two outer cover materials under reduced pressure and maintaining excellent sealing performance over a long period of time.

近年、深刻な地球環境問題である温暖化への対策として、家電製品や設備機器並びに住宅などの建物の省エネルギー化を推進する動きが活発となっており、優れた断熱効果を長期的に有する真空断熱材が、これまで以上に求められている。   In recent years, as a measure against global warming, which is a serious global environmental problem, there has been an active movement to promote energy conservation in home appliances, equipment, and buildings such as houses, and a vacuum that has an excellent thermal insulation effect over the long term. Insulation is more demanded than ever.

真空断熱材とは、グラスウールやシリカ粉末などの微細空隙を有する芯材を、ガスバリア性を有する外被材で覆い、外被材の内部を減圧密封したものである。真空断熱材は、その内空間を高真空に保ち、気相を伝わる熱量を出来る限り小さくすることにより、高い断熱効果の発現を可能としたものである。よって、その優れた断熱効果を長期にわたって発揮するためには、真空断熱材内部の高い真空度を維持する技術が極めて重要となる。   The vacuum heat insulating material is a material in which a core material having fine voids such as glass wool or silica powder is covered with a jacket material having gas barrier properties, and the inside of the jacket material is sealed under reduced pressure. A vacuum heat insulating material enables expression of a high heat insulating effect by keeping the inner space in a high vacuum and reducing the amount of heat transmitted through the gas phase as much as possible. Therefore, a technique for maintaining a high degree of vacuum inside the vacuum heat insulating material is extremely important in order to exhibit the excellent heat insulating effect over a long period of time.

真空断熱材内部の真空度を維持する方法として、気体吸着剤や水分吸着剤を芯材とともに真空断熱材内部に減圧密封する方法が、一般的に用いられている。これによって、真空包装後に芯材の微細空隙から真空断熱材中へ放出される残存水分や、外気から外被材を透過して経時的に真空断熱材内へ浸透する水蒸気や酸素等の大気ガスを除去することが可能となる。   As a method for maintaining the degree of vacuum inside the vacuum heat insulating material, a method in which a gas adsorbent or a moisture adsorbent is sealed under reduced pressure inside the vacuum heat insulating material together with the core material is generally used. As a result, residual moisture released into the vacuum heat insulating material from the minute gaps in the core material after vacuum packaging, or atmospheric gases such as water vapor and oxygen that permeate through the jacket material from the outside air and permeate into the vacuum heat insulating material over time. Can be removed.

別の方法として、真空断熱材内部へ浸透する大気ガス量自体を抑制する手段がある。ここで、外気から真空断熱材内部へ侵入するガス経路について述べる。   As another method, there is means for suppressing the amount of atmospheric gas permeating into the vacuum heat insulating material itself. Here, a gas path entering from the outside air into the vacuum heat insulating material will be described.

真空断熱材は、通常、2枚の長方形の外被材を重ね合わせて外被材の3辺の周縁近傍の外周部同士を熱溶着して作製した3方シール袋内へ3方シール袋の開口部から芯材を挿入し、真空包装機を用いて外被材の袋内部を真空引きしながら、3方シール袋の開口部を熱溶着することによって製造される。   The vacuum heat insulating material is usually a three-way sealing bag that is formed by superposing two rectangular outer covering materials and heat-sealing the outer peripheral portions in the vicinity of the three sides of the outer covering material. It is manufactured by inserting the core material from the opening and thermally welding the opening of the three-side seal bag while evacuating the inside of the bag of the jacket material using a vacuum packaging machine.

外被材には、通常、最内層に低密度ポリエチレンなどの熱可塑性樹脂からなる熱溶着層、中間層にアルミニウム箔やアルミニウム蒸着フィルムなどのバリア性を有する材料からなるガスバリア層、そして最外層にはナイロンフィルムやポリエチレンテレフタレートフィルムなどの表面保護の役割を果たす表面保護層を、接着剤を介して積層したラミネートフィルムを用いる。   The outer cover material is usually a heat-welded layer made of a thermoplastic resin such as low density polyethylene in the innermost layer, a gas barrier layer made of a material having a barrier property such as an aluminum foil or an aluminum vapor deposited film in the intermediate layer, and an outermost layer in the outer layer. Uses a laminated film obtained by laminating a surface protective layer such as a nylon film or a polyethylene terephthalate film through an adhesive.

この場合、外気から真空断熱材内部へ透過する大気ガスは、外被材表面から透過してくる成分と、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過してくる成分との2つに分類される。   In this case, the atmospheric gas that permeates from the outside air into the vacuum heat insulating material passes through the sealing portion from the portion where the component that permeates from the surface of the jacket material and the heat-welded layer on the edge surface of the jacket material are exposed. And the components that permeate inside.

このうち、熱溶着層を構成している熱可塑性樹脂は、ガスバリア層と比べると気体透過度および透湿度が極めて高いことから、真空断熱材内部へ経時的に侵入する大気ガス量のうち、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過したものが大半を占める。   Of these, the thermoplastic resin constituting the heat-welded layer has extremely high gas permeability and moisture permeability compared to the gas barrier layer. Most of the material is transmitted through the sealing portion to the inside from the exposed portion of the heat-welded layer on the end surface of the peripheral edge of the workpiece.

よって、長期にわたって優れた断熱性能を維持する真空断熱材の提供には、外被材周縁の端面の熱溶着層が露出している部分からの大気ガス浸透量抑制が不可欠であり、その効果的な手法が課題とされてきた。   Therefore, in order to provide a vacuum insulation material that maintains excellent heat insulation performance over a long period of time, it is indispensable to suppress the amount of atmospheric gas permeation from the exposed part of the edge of the outer periphery of the outer jacket material. Techniques have been a challenge.

この課題に対して、封止部における熱溶着層の一部を薄肉にした薄肉部を設けた真空断熱材が報告されている(例えば、特許文献1参照)。   In response to this problem, there has been reported a vacuum heat insulating material provided with a thin portion in which a part of the heat-welded layer in the sealing portion is thin (see, for example, Patent Document 1).

図9は、特許文献1に記載された従来の真空断熱材の断面図である。   FIG. 9 is a cross-sectional view of a conventional vacuum heat insulating material described in Patent Document 1.

図9に示すように、真空断熱材101は、ガスバリア層102と熱溶着層103とを有する外被材104の封止部分の熱溶着層103の一部が薄肉になっている。この薄肉部105は、図10に示すような封止冶具106を用いて、封止部分における外被材104の一部を特に強く加圧することにより形成されたもので、外被材104の全周を取り巻くように形成されている。   As shown in FIG. 9, in the vacuum heat insulating material 101, a part of the heat welding layer 103 in the sealing portion of the outer covering material 104 having the gas barrier layer 102 and the heat welding layer 103 is thin. The thin-walled portion 105 is formed by using a sealing jig 106 as shown in FIG. 10 to apply a particularly strong pressure to a portion of the jacket material 104 at the sealed portion. It is formed so as to surround the circumference.

従来の構成は、薄肉部105によって外被材周縁の端面から侵入するガスの透過抵抗が増大し、内部へのガス侵入を抑制することで長期に渡って優れた断熱性能を発揮できるとされている。   In the conventional configuration, the permeation resistance of the gas entering from the end face of the outer periphery of the jacket material is increased by the thin wall portion 105, and it is said that excellent heat insulation performance can be exhibited for a long time by suppressing the gas intrusion into the inside. Yes.

実開昭62−141190号公報Japanese Utility Model Publication No. 62-141190

さらなる長期にわたって優れた断熱性能を維持する真空断熱材の提供には、外被材表面から透過してくる成分と、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過してくる成分の両方の大気ガスの浸透量を抑制しなければならない。   In order to provide a vacuum heat insulating material that maintains excellent heat insulation performance for a longer period of time, the sealing portion is formed from the component that is permeated from the surface of the outer cover material and the portion where the heat-welded layer on the edge surface of the outer cover material is exposed. The amount of permeation of both atmospheric gases through the components that pass through the interior must be suppressed.

しかし、薄肉部105に上記特許文献1の構成で、図10に示されるような両面に角部107を有している場合は、真空断熱材の製造時および取り扱い時に、角部107においてクラックが発生する。このクラックから、経年的に大気ガス成分の真空断熱材内部への侵入が促進されるという課題があった。   However, when the thin portion 105 has the configuration of the above-mentioned Patent Document 1 and has corner portions 107 on both sides as shown in FIG. 10, cracks are generated in the corner portions 107 during the manufacture and handling of the vacuum heat insulating material. Occur. From this crack, there was a problem that the penetration of atmospheric gas components into the vacuum heat insulating material was promoted over time.

ここで、角部107とは、封止部を外被材104の周縁に垂直な平面で切断した場合の断面を見た時、薄肉部105の境界及びその近傍に生じる、熱溶着層103の厚み変化に伴い形成される角形状となった部位(曲率が大きい部位)を指す。   Here, the corner portion 107 refers to the thermal weld layer 103 generated at and near the boundary of the thin portion 105 when the cross section when the sealing portion is cut by a plane perpendicular to the periphery of the outer covering material 104 is seen. This refers to a square-shaped part (a part having a large curvature) formed with a change in thickness.

本発明は、上記従来の課題を解決するものであり、封止部に設けた熱溶着層の薄肉部及びその近傍において、ガスバリア層のクラック発生や封止部破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供することを目的とする。   The present invention solves the above-described conventional problems, and the gas barrier layer is hardly cracked or broken at the thin portion of the heat-welded layer provided in the sealing portion and in the vicinity thereof. An object of the present invention is to provide a vacuum heat insulating material that maintains excellent heat insulating performance.

上記目的を達成するために、本発明の真空断熱材は、充填物を挿入して密封する2枚の外被材の周縁近傍の外周部同士が熱溶着された真空断熱材において、前記外被材が保護層、金属箔および蒸着、熱溶着層で構成されており、前記外被材の外周部同士が熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が少なくとも一つの凹部を金属箔層を有する面に有しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されている。   In order to achieve the above object, the vacuum heat insulating material of the present invention is a vacuum heat insulating material in which outer peripheral portions in the vicinity of the peripheral edges of two outer cover materials to be inserted and sealed are thermally welded. When the material is composed of a protective layer, metal foil and vapor deposition, and a heat-welded layer, and at least a part of the sealing portion where the outer peripheral portions of the jacket material are heat-welded to each other is cut along a plane perpendicular to the peripheral edge When the cross section is viewed, the thermal welding layer located in the sealing portion has at least one concave portion on the surface having the metal foil layer, and the thickness of the thermal welding layer is the deepest portion of the concave portion. A thin part thinner than the peripheral part of the deepest part is formed.

上記構成において、まず、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部の熱溶着層の厚みが局所的に
薄い薄肉部を設けていることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。
In the above configuration, first, when looking at a cross section when cutting at least a part of the sealing portion in which the peripheral portions of the jacket material are heat-welded with each other in a plane perpendicular to the peripheral portion, the heat-welding layer of the sealing portion By providing a thin portion with a locally thin thickness, the permeation area of gas and moisture entering from the end surface of the outer periphery of the outer cover material is reduced in the thin portion of the heat-welded layer, and the permeation resistance of gas and moisture is increased. In addition, since the permeation rate of gas and moisture is reduced, the amount of gas and moisture that permeate over time is suppressed, and excellent sealing performance can be exhibited over a long period of time.

また、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、熱溶着層より外層側に積層された金属箔は、封止部の薄肉部およびその近傍において、熱溶着層は少なくとも一つの凹部の形状に沿って曲がるが、凹部形成時に外力を受けた場合に、内層になるに従い段階的に応力を緩和し、局所的に応力が集中することが起きにくくなり、熱溶着層より外層側に積層された金属箔のクラックの発生が極めて起きにくくなる。   In addition, when viewing a cross-section when cutting at least a part of the sealing portion in which the peripheral portions of the jacket material are heat-welded with each other in a plane perpendicular to the peripheral edge, the metal foil laminated on the outer layer side from the heat-welded layer The thermal weld layer bends along the shape of at least one recess in the thin part of the sealing part and in the vicinity thereof, but when receiving external force during the formation of the recess, the stress is gradually reduced as it becomes the inner layer. It is difficult for stress to be locally concentrated, and the occurrence of cracks in the metal foil laminated on the outer layer side from the heat-welded layer is extremely difficult to occur.

さらに、熱溶着層の薄肉部においては、熱溶着層の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着層の厚みが角部に沿って徐々に滑らかに増減することに伴い、封止部の強度も連続的に滑らかに増減することから、熱溶着層の薄肉部において局所的に応力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や封止部の破断が極めて起きにくくなる。   Furthermore, in the thin part of the heat-welded layer, the thickness of the heat-welded layer is thinner than the peripheral part, and the strength is reduced by the thickness reduction, but the thickness of the heat-welded layer is gradually smoothed along the corners. Along with the increase / decrease, the strength of the sealing part also increases / decreases smoothly continuously, so that stress is unlikely to concentrate locally in the thin part of the heat weld layer, and the thin part of the heat weld layer and its vicinity. Cracks in the outer cover material and breakage of the sealing portion are extremely difficult to occur.

また、真空断熱材は前記充填物を芯材とし、前記袋体に前記芯材を挿入して、真空引きを行ったものである。   The vacuum heat insulating material is obtained by evacuation by using the filler as a core material and inserting the core material into the bag body.

以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、金属箔のクラック発生や封止部破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。   As described above, the vacuum heat insulating material that maintains the excellent heat insulating performance for a long period of time, in which the occurrence of cracking of the metal foil and the fracture of the sealing portion hardly occur in the thin portion of the heat welding layer provided in the sealing portion and the vicinity thereof. Can be provided.

本発明によれば、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、外被材周縁の端面から侵入する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。また、凹部形成時に外力を受けた場合に、熱溶着層より外層側に積層された金属箔のクラックの発生が極めて起きにくくなる。さらに、熱溶着層の薄肉部において局所的に応力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や封止部の破断が極めて起きにくくなる。   According to the present invention, by providing the thin portion where the thickness of the heat-welding layer of the sealing portion is locally thin, the gas and moisture amount entering from the end face of the outer periphery of the outer jacket material are suppressed, and the thermal insulation layer is excellent over a long period of time. Sealing performance can be demonstrated. In addition, when an external force is applied during the formation of the recess, the occurrence of cracks in the metal foil laminated on the outer layer side from the heat-welded layer is extremely difficult to occur. Furthermore, it is difficult for stress to be locally concentrated in the thin portion of the heat-welded layer, and cracks and breakage of the sealing portion in the thin-wall portion of the heat-welded layer and the jacket material in the vicinity thereof are extremely unlikely to occur.

以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。   As described above, it is possible to provide a vacuum heat insulating material that maintains the excellent heat insulating performance for a long period of time, in which the generation of cracks and the breakage of the sealing portion are extremely unlikely to occur in the thin portion of the heat welding layer provided in the sealing portion and in the vicinity thereof.

本発明の実施の形態1における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention 同実施の形態1における真空断熱材の平面図Plan view of the vacuum heat insulating material in the first embodiment 同実施の形態1における真空断熱材における薄肉部を含む封止部の一例を示す断面図Sectional drawing which shows an example of the sealing part containing the thin part in the vacuum heat insulating material in Embodiment 1 同実施の形態1における真空断熱材の加熱圧縮治具を示す断面図Sectional drawing which shows the heating compression jig | tool of the vacuum heat insulating material in the same Embodiment 1. 本発明の実施の形態1における袋体の薄肉部を含む封止部の変形例を示す断面図Sectional drawing which shows the modification of the sealing part containing the thin part of the bag body in Embodiment 1 of this invention 本発明の実施の形態2における断熱箱体の斜視図The perspective view of the heat insulation box in Embodiment 2 of this invention 同実施の形態2における断熱箱体の正面断面図Front sectional view of the heat insulation box in the second embodiment 同実施の形態2における断熱箱体の縦断面図The longitudinal cross-sectional view of the heat insulation box in Embodiment 2 従来の真空断熱材の断面図Cross section of conventional vacuum insulation 従来の真空断熱材の加熱圧縮冶具で薄肉部を形成している状態を示す断面図Sectional drawing which shows the state which forms the thin part with the heating compression jig of the conventional vacuum heat insulating material

第1の発明は、熱溶着層同士が対向する金属箔層を有する外被材と蒸着フィルム層を有する外被材の間に芯材が減圧密封され前記芯材を覆う2枚の前記外被材の周縁近傍の外周部同士が熱溶着された真空断熱材において、前記外被材の外周部同士が熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が凹部を有しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されている。   According to a first aspect of the present invention, there is provided two jackets that cover the core member by sealing the core member under reduced pressure between the outer cover member having a metal foil layer facing the heat-welded layers and the outer cover member having a vapor deposition film layer. In the vacuum heat insulating material in which the outer peripheral portions in the vicinity of the periphery of the material are heat-welded, at least a part of the sealing portion in which the outer peripheral portions of the jacket material are heat-welded is cut by a plane perpendicular to the peripheral edge. When the cross section is viewed, the heat-welded layer located in the sealing portion has a recess, and the thin-walled portion where the thickness of the heat-welded layer is thinner than the peripheral portion of the deepest portion is in the deepest portion of the recess. Is formed.

さらに、前記封止部の前記熱溶着層は両面に他の層との境界面を有し、前記凹部の金属箔層を有する面の前記境界面のうねりの波高が、前記凹部の蒸着フィルム層を有する面の前記境界面のうねりの波高よりも大きく、前記凹部の一方の前記境界面の前記熱溶着層側に凹となっている部分の最深部と、前記凹部の他方の前記境界面の前記熱溶着層側に凹となっている部分の最深部とが対向していない特徴を持つ。   Furthermore, the thermal welding layer of the sealing portion has a boundary surface with other layers on both surfaces, and the wave height of the undulation of the boundary surface of the surface having the metal foil layer of the concave portion is a vapor deposition film layer of the concave portion. The deepest part of the part of the concave part that is concave on the thermal welding layer side of one of the boundary surfaces, and the other boundary surface of the concave part. It has a feature that the deepest portion of the concave portion on the heat welding layer side does not face.

上記構成において、まず、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。   In the above configuration, first, when looking at a cross section when cutting at least a part of the sealing portion in which the peripheral portions of the jacket material are heat-welded with each other in a plane perpendicular to the peripheral portion, the heat-welding layer of the sealing portion By providing a thin portion with a locally thin thickness, the permeation area of gas and moisture entering from the end surface of the outer periphery of the outer cover material is reduced in the thin portion of the heat-welded layer, and the permeation resistance of gas and moisture is increased. In addition, since the permeation rate of gas and moisture is reduced, the amount of gas and moisture that permeate over time is suppressed, and excellent heat insulation performance can be exhibited over a long period of time.

また、薄肉部及びその近傍では、熱溶着層よりも外層側にある外被材が、熱溶着層の形状に沿って歪曲することによる応力を受け、強度が低下するが、凹部の一方の境界面のうねりの波高を、凹部の他方の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側の外被材の強度低下は、もう一方の相対的に波高の大きいうねりを有する境界面側の外被材と比べて僅かとなり、外被材の封止部では、強度低下が小さい外被材がもう一方の外被材を支持する形で剛性が保たれ、外力を受けた場合におけるクラック発生および封止部の破断が極めて起きにくくなる。   Further, in the thin wall portion and the vicinity thereof, the outer cover material on the outer layer side from the heat welding layer receives stress due to distortion along the shape of the heat welding layer, and the strength is reduced, but one boundary of the concave portion By making the wave height of the waviness of the surface larger than the wave height of the waviness of the other boundary surface of the recess, the strength reduction of the outer shell material on the boundary surface side having a relatively small wave height is reduced relative to the other. In comparison with the outer shell material on the boundary surface side having a large wave height, the outer shell material having a small strength decrease supports the other outer shell material at the sealing portion of the outer shell material. Thus, cracks and breakage of the sealing portion are hardly caused when an external force is applied.

また、薄肉部があると、熱溶着層の厚みが薄く強度が低下するだけでなく、凹部の最深部が位置していることにより、歪曲による外被材の強度低下が起こるが、凹部の一方の境界面の熱溶着層側に凹となっている部分の最深部と、凹部の他方の境界面の熱溶着層側に凹となっている部分の最深部とが対向していないことにより、凹部の最深部が位置する封止部の強度低下が抑制され、封止部が外力を受けた際の傷つきや破断が極めて起きにくくなる。同時に、凹部におけるガスバリア層のクラック発生の抑制効果もさらに高くなる。   In addition, if there is a thin portion, not only the thickness of the heat-welded layer is thin and the strength is lowered, but also the strength of the outer jacket material is reduced due to distortion because the deepest portion of the concave portion is located. The deepest part of the part that is concave on the side of the thermal welding layer of the boundary surface and the deepest part of the part that is concave on the side of the thermal welding layer of the other boundary surface of the recess are not facing each other, A decrease in strength of the sealing portion where the deepest portion of the concave portion is located is suppressed, and damage or breakage when the sealing portion receives an external force is extremely difficult to occur. At the same time, the effect of suppressing the occurrence of cracks in the gas barrier layer in the recesses is further enhanced.

なお、凹部とは、外被材の外周部同士が熱溶着された封止部の少なくとも一部を外被材の周縁に垂直な平面で切断した場合の断面を見た時、封止部に位置する熱溶着層が凹んでいる部分であり、熱溶着層と熱溶着層の外側に隣接する他の層との境界線(境界面)が熱溶着層側へ凸となる曲線部を指す。   In addition, a recessed part is a sealing part when seeing the cross section at the time of cut | disconnecting at least one part of the sealing part by which the outer peripheral parts of the jacket material were heat-welded by a plane perpendicular | vertical to the periphery of a jacket material. This is a portion where the heat-welded layer is recessed, and indicates a curved portion where a boundary line (boundary surface) between the heat-welded layer and another layer adjacent to the outside of the heat-welded layer is convex toward the heat-welded layer.

なお、凹部の最深部とは、凹部を形成している点群のうち、対向する境界面上の点との間に位置する熱溶着層の厚みが、最も薄い箇所に位置する点部を指す。   In addition, the deepest part of a recessed part refers to the point part located in the location where the thickness of the heat welding layer located between the points on the opposing boundary surface is the thinnest among the point groups which form the recessed part. .

なお、境界面とは、封止部において、熱溶着層と、熱溶着層と隣接する外被材が有する他層との境界面を指す。   Note that the boundary surface refers to a boundary surface between the heat-welded layer and another layer included in the jacket material adjacent to the heat-welded layer in the sealing portion.

なお、波高とは、凹部の周辺部に位置する境界面と、凹部の最深部を含む境界面と平行
な面との距離を指す。
The wave height refers to the distance between the boundary surface located in the peripheral portion of the recess and a plane parallel to the boundary surface including the deepest portion of the recess.

以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。   As described above, it is possible to provide a vacuum heat insulating material that maintains the excellent heat insulating performance for a long period of time, in which the generation of cracks and the breakage of the sealing portion are extremely unlikely to occur in the thin portion of the heat welding layer provided in the sealing portion and in the vicinity thereof.

次に真空断熱材の構成材料について説明する。   Next, constituent materials of the vacuum heat insulating material will be described.

外被材を構成する熱溶着層としては、特に指定されるものではないが、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、中密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム等の熱可塑性樹脂あるいはそれらの混合フィルム等が使用できる。   The heat welding layer constituting the jacket material is not particularly specified, but a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a medium density polyethylene film, a polypropylene film, a polyacrylonitrile film, etc. These thermoplastic resins or mixed films thereof can be used.

外被材に使用するラミネート接着剤については、特に指定するものではないが、2液硬化型ウレタン接着剤等の従来公知のラミネート用接着剤もしくはエポキシ系樹脂接着剤が使用できる。   The laminate adhesive used for the jacket material is not particularly specified, and conventionally known laminate adhesives such as two-component curable urethane adhesives or epoxy resin adhesives can be used.

芯材は、その種類について特に指定するものではないが、気層比率90%前後の多孔体であり、ウレタンフォーム、スチレンフォーム、フェノールフォームなどの連続気泡体や、グラスウールやロックウール、アルミナ繊維、シリカアルミナ繊維などの繊維体、パーライトや湿式シリカ、乾式シリカなどの粉体など、従来公知の芯材が使用できる。   The core material is not particularly specified for its type, but is a porous body having a gas layer ratio of about 90%, and is open-celled such as urethane foam, styrene foam, phenol foam, glass wool, rock wool, alumina fiber, Conventionally known core materials such as fiber bodies such as silica-alumina fibers, powders such as pearlite, wet silica, and dry silica can be used.

吸着剤は、その種類について特に指定するものではないが、芯材や外被材の残留ガス成分や、外被材内へ侵入する水分や気体を吸着するもので、酸化カルシウム、ゼオライト、シリカゲルなどのガス吸着剤や水分吸着剤等のゲッター物質で、外被材の真空度を下げる作用や維持する作用があるものであれば使用できる。   The adsorbent is not particularly specified for its type, but it adsorbs residual gas components in the core material and jacket material, and moisture and gas entering the jacket material, such as calcium oxide, zeolite, silica gel, etc. A getter material such as a gas adsorbent or a moisture adsorbent can be used as long as it has an action of lowering or maintaining the vacuum degree of the outer cover material.

第2の発明は、前記真空断熱材の内部に気体吸着剤を備えていることを特徴としている。   The second invention is characterized in that a gas adsorbent is provided inside the vacuum heat insulating material.

これにより、気体吸着剤を用いた真空断熱材は、外被材内に気体吸着剤を有しているため、外被材内部は圧力が低く維持され、芯材を用いた真空断熱材の熱伝導率は低く維持されるため、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。   Thereby, since the vacuum heat insulating material using the gas adsorbent has the gas adsorbent in the jacket material, the pressure inside the jacket material is kept low, and the heat of the vacuum heat insulating material using the core material is maintained. Since the conductivity is kept low, it is possible to provide a vacuum heat insulating material that maintains excellent heat insulating performance over a long period of time.

第3の発明は、相対向する2つの伝熱面を有する真空断熱材の一方の前記伝熱面を内箱における外箱と対向する面に固定して、前記外箱と前記内箱との間の前記真空断熱材部分を除いた残りの空間に発泡断熱材を充填した断熱箱体である。   3rd invention fixes one said heat-transfer surface of the vacuum heat insulating material which has two heat-transfer surfaces which oppose each other to the surface facing the outer box in an inner box, and the said outer box and the said inner box It is the heat insulation box which filled the remaining space except the said vacuum heat insulating material part in between with the foam heat insulating material.

以上により、長期にわたって優れた真空性能を維持する断熱箱体を提供することができる。   As described above, it is possible to provide a heat insulating box that maintains excellent vacuum performance over a long period of time.

以下、本発明の実施の形態について、真空断熱材、断熱箱体を例にして、図面を参照しながら説明する。なお、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略するものとする。また、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking a vacuum heat insulating material and a heat insulating box as examples. Note that the same reference numerals are given to the same components as those of the above-described embodiment, and the detailed description thereof will be omitted. Further, the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面図、図2は、同実施の形態の真空断熱材の平面図、図3は、同実施の形態の真空断熱材における薄肉部を含む封止部の一例を示す断面図を示す。
(Embodiment 1)
1 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention, FIG. 2 is a plan view of the vacuum heat insulating material of the same embodiment, and FIG. 3 is a thin-walled portion of the vacuum heat insulating material of the same embodiment. Sectional drawing which shows an example of the sealing part containing is shown.

図1において、真空断熱材1は、芯材2と芯材2内に配置された吸着剤3と、同一寸法に裁断された長方形の2枚の外被材4よりなり、2枚の外被材4の間に芯材2と吸着剤3が減圧密封され、芯材2を覆う2枚の外被材4の周縁近傍の外周部同士が熱溶着されている。   In FIG. 1, a vacuum heat insulating material 1 includes a core material 2, an adsorbent 3 disposed in the core material 2, and two rectangular envelope materials 4 cut to the same dimensions. The core material 2 and the adsorbent 3 are sealed under reduced pressure between the materials 4, and the outer peripheral portions in the vicinity of the peripheral edges of the two jacket materials 4 covering the core material 2 are heat-welded.

2枚の外被材4は、外層側から、表面保護層5と、ガスバリア層6と、熱溶着層7とが積層されてなる。一方のガスバリア層6は金属箔層であり、他方のガスバリア層6は蒸着フィルム層である。また、外被材4の周囲辺(外周部)には、外被材の有する熱溶着層同士を溶融し貼り合わせた封止部8があり、封止部8の4辺のうちの3辺に薄肉部9を有している。   The two jacket materials 4 are formed by laminating a surface protective layer 5, a gas barrier layer 6, and a heat welding layer 7 from the outer layer side. One gas barrier layer 6 is a metal foil layer, and the other gas barrier layer 6 is a vapor deposition film layer. In addition, on the peripheral side (outer peripheral portion) of the jacket material 4, there is a sealing portion 8 in which the heat-welding layers of the jacket material are melted and bonded together, and three of the four sides of the sealing portion 8. Has a thin portion 9.

ここで、薄肉部9周辺の封止部8の形状について説明する。   Here, the shape of the sealing part 8 around the thin part 9 will be described.

図3において、熱溶着層7とガスバリア層6との境界面が有する円弧状の凹部の波高の大きさには差が設けられており、波高の大きい凹部を有する境界面に設けられた凹部の最深部のみが薄肉部9に位置している。   In FIG. 3, there is a difference in the wave height of the arc-shaped concave portion provided on the boundary surface between the heat welding layer 7 and the gas barrier layer 6, and the concave portion provided on the boundary surface having the concave portion having a large wave height. Only the deepest part is located in the thin part 9.

次に、本実施の形態において、図1〜3に示す本実施の形態の真空断熱材1の製造方法の一例を述べる。   Next, in the present embodiment, an example of a method for manufacturing the vacuum heat insulating material 1 of the present embodiment shown in FIGS.

まず、2枚の外被材4の熱溶着層7同士が対向するように配置し、外被材4の周囲辺の3辺を熱溶着して袋状とする。この熱溶着時に、金属製の加熱圧縮冶具10(図4参照)とシリコンゴムヒーターとで金属箔層を有する外被材を加熱圧縮冶具10に向け、蒸着フィルム層を有する外被材をシリコンゴムヒーターに向けた形で、2枚の外被材4を挟むように加熱圧縮し、図3に示す形状の封止部8を形成する。この後、袋内に芯材2と吸着剤3とを挿入し、袋内部を減圧しながら、外被材4の袋の開口部を熱溶着させて密封することにより真空断熱材1を得る。   First, it arrange | positions so that the heat-welding layers 7 of the two jacket | cover materials 4 may oppose, and the three sides of the circumference | surroundings of the jacket | cover_material 4 are heat-welded and it is set as a bag shape. At the time of this thermal welding, the outer cover material having a metal foil layer is directed to the heat compression jig 10 with a metal heat compression jig 10 (see FIG. 4) and a silicon rubber heater, and the outer cover material having a vapor deposition film layer is changed to silicon rubber. In a shape facing the heater, heat compression is performed so as to sandwich the two outer covering materials 4 to form the sealing portion 8 having the shape shown in FIG. Thereafter, the core material 2 and the adsorbent 3 are inserted into the bag, and the vacuum heat insulating material 1 is obtained by thermally welding and sealing the opening of the bag of the jacket material 4 while reducing the pressure inside the bag.

金属箔層を有する外被材を加熱圧縮冶具10に向け、蒸着フィルム層を有する外被材をシリコンゴムヒーターに向けた形で、2枚の外被材4を挟むように加熱圧縮する理由は、蒸着フィルム層を有する外被材を加熱圧縮冶具10に向けた場合、封止部8の端にエッジ切れが生じるためである。   The reason why the outer cover material having the metal foil layer is directed to the heat compression jig 10 and the outer cover material having the vapor deposition film layer is directed to the silicon rubber heater is heated and compressed so as to sandwich the two outer cover materials 4. This is because when the outer cover material having the vapor deposition film layer is directed to the heating and compression jig 10, the edge of the sealing portion 8 is cut off.

ここでは、加熱圧縮冶具10で熱溶着されていない2枚の外被材4を加熱圧縮することにより薄肉部9を含めた封止部8を同時に形成したが、2枚の外被材4周縁に通常の平板冶具を用いて薄肉部を有さない厚みが略均一な熱溶着層からなる封止部8を形成した後、封止部8上を加熱圧縮冶具10で加熱圧縮して薄肉部9を形成してもよい。   Here, the two outer jacket materials 4 that are not thermally welded by the heat compression jig 10 are heated and compressed to simultaneously form the sealing portion 8 including the thin wall portion 9. After forming the sealing portion 8 made of a heat-welded layer having a substantially uniform thickness without having a thin portion using a normal flat plate jig, the thin portion is heated and compressed on the sealing portion 8 with the heating compression jig 10. 9 may be formed.

また、4辺目の袋開口部を封止する際は、袋内部を減圧しながら密封するために、真空包装機を用いて封止する必要がある。   Moreover, when sealing the bag opening part of the 4th side, in order to seal, reducing the inside of a bag, it is necessary to seal using a vacuum packaging machine.

通常の真空包装機は、平板状のヒートシール冶具が備わっていることから、袋開口部のみは真空包装機を用いて厚みが略均一な熱溶着層からなる封止部8を形成した後に、加熱圧縮冶具10を用いて薄肉部9を形成してもよい。   Since a normal vacuum packaging machine is equipped with a flat plate heat seal jig, only the bag opening is formed using the vacuum packaging machine after forming the sealing portion 8 made of a heat welding layer having a substantially uniform thickness. You may form the thin part 9 using the heating compression jig 10. FIG.

本実施の形態の真空断熱材1は、熱溶着層7同士が対向する2枚の長方形の外被材4の間に芯材2と吸着剤3が減圧密封され芯材2を覆う2枚の外被材4の周縁近傍の3辺の外周部同士が熱溶着された真空断熱材1であり、外被材4の外周部同士が熱溶着された封止部8のうち3辺の封止部8を周縁に垂直な平面で切断した場合の断面を見た時、封止部8
に位置する熱溶着層7が略円弧状の凹部を有しており、その凹部の最深部に熱溶着層7の厚みが最深部の周辺部よりも薄い薄肉部9が形成されている。
The vacuum heat insulating material 1 according to the present embodiment includes two sheets of the core material 2 and the adsorbent 3 that are sealed under reduced pressure between the two rectangular outer cover materials 4 facing each other with the heat-welded layers 7 facing each other. 3 is a vacuum heat insulating material 1 in which the outer peripheral portions of the three sides in the vicinity of the periphery of the jacket material 4 are heat-welded, and the sealing is performed on three sides of the sealing portion 8 in which the outer peripheral portions of the jacket material 4 are heat-welded. When the cross section when the part 8 is cut by a plane perpendicular to the periphery is viewed, the sealing part 8
The heat-welded layer 7 located at the center has a substantially arc-shaped recess, and a thin-walled portion 9 is formed at the deepest portion of the recess, where the thickness of the heat-welded layer 7 is thinner than the peripheral portion of the deepest portion.

また、封止部8の熱溶着層7は両面に他の層(ガスバリア層6)との境界面を有し、凹部の金属箔層を有する面の境界面のうねりの波高が、凹部の蒸着フィルム層を有する面の境界面のうねりの波高よりも大きい。   Moreover, the heat welding layer 7 of the sealing part 8 has a boundary surface with another layer (gas barrier layer 6) on both surfaces, and the wave height of the undulation of the boundary surface having the metal foil layer of the concave portion is the deposition of the concave portion. It is larger than the wave height of the undulation of the boundary surface of the surface having the film layer.

また、凹部の一方の境界面の熱溶着層側に凹となっている部分の最深部と、凹部の他方の境界面の熱溶着層側に凹となっている部分の最深部とが対向していない。   In addition, the deepest portion of the concave portion on the side of the thermal welding layer on one boundary surface of the concave portion and the deepest portion of the concave portion on the side of the thermal bonding layer on the other boundary surface of the concave portion face each other. Not.

また、図3に示す例では、封止部8に薄肉部9を少なくとも2個以上(4つ)有している。   In the example shown in FIG. 3, the sealing portion 8 has at least two thin portions 9 (four).

以上のように構成された真空断熱材1について、以下その動作、作用を説明する。   About the vacuum heat insulating material 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、芯材2は、真空断熱材1の骨材として微細空間を形成する役割を果たし、真空排気後の真空断熱材1の断熱部を形成するものであり、ガラス繊維からなる。   First, the core material 2 plays a role of forming a fine space as an aggregate of the vacuum heat insulating material 1, forms a heat insulating portion of the vacuum heat insulating material 1 after evacuation, and is made of glass fiber.

吸着剤3は、真空包装後に芯材2の微細空隙から真空断熱材1中へ放出された残留ガス成分や、真空断熱材1内へ侵入する水分や気体を吸着除去する役割を果たすものである。   The adsorbent 3 serves to adsorb and remove residual gas components released into the vacuum heat insulating material 1 from the fine gaps of the core material 2 after vacuum packaging, and moisture and gas that enter the vacuum heat insulating material 1. .

気体吸着剤とは、気体中に含まれる非凝縮性気体を吸着できる吸着材料と容器で構成されているものである。   The gas adsorbent is composed of an adsorbing material and a container capable of adsorbing a non-condensable gas contained in the gas.

主な吸着材料として、ジルコニウム、バナジウム及びタングステンからなる合金や、鉄、マンガン、イットリウム、ランタンと、希土類元素の1種の元素を含む合金や、Ba−Li合金、および、金属イオン交換したゼオライトなどがある。これによって、空気中の概ね75%を有する窒素を常温状態で吸着できるため、高い真空度を得ることができる。   As main adsorbing materials, alloys consisting of zirconium, vanadium and tungsten, alloys containing one element of rare earth elements such as iron, manganese, yttrium, lanthanum, Ba-Li alloys, and metal ion exchanged zeolites, etc. There is. Accordingly, since nitrogen having approximately 75% in the air can be adsorbed at room temperature, a high degree of vacuum can be obtained.

主な容器としては、アルミニウム、鉄、胴、ステンレスなどの金属材料があり、特にコストや取り扱いを考慮するとアルミニウムが望ましい。   As main containers, there are metal materials such as aluminum, iron, trunk, and stainless steel, and aluminum is preferable in consideration of cost and handling.

外被材4は、熱可塑性樹脂やガスバリア性を有する金属箔や樹脂フィルム等をラミネート加工したものであり、外部から真空断熱材1内部への大気ガス侵入を抑制する役割を果たすものである。   The jacket material 4 is obtained by laminating a thermoplastic resin, a metal foil having a gas barrier property, a resin film, or the like, and plays a role of suppressing atmospheric gas intrusion into the vacuum heat insulating material 1 from the outside.

表面保護層5は、外被材が有する層のうち、ガスバリア層6よりも外層側に位置する、外力から外被材4、特にガスバリア層6の傷つきや破れを防ぐ役割を果たすものである。   The surface protective layer 5 serves to prevent the outer cover material 4, particularly the gas barrier layer 6 from being damaged or torn from an external force, located on the outer layer side of the gas barrier layer 6 among the layers of the outer cover material.

表面保護層5としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等従来公知の材料が使用でき、1種類でも2種類以上重ねて使用してもよい。   As the surface protective layer 5, a conventionally known material such as a nylon film, a polyethylene terephthalate film, or a polypropylene film can be used, and one type or two or more types may be used.

ガスバリア層6は、高いバリア性を有する1種類もしくは2種以上のフィルムから構成される層であり、外被材4に優れたガスバリア性を付与するものである。   The gas barrier layer 6 is a layer composed of one or more kinds of films having high barrier properties, and imparts excellent gas barrier properties to the jacket material 4.

ガスバリア層6としては、アルミニウム箔、銅箔、ステンレス箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体フィルムへアルミニウムや銅等の金属原子もしくはアルミナやシリカ等の金属酸化物を蒸着したフィルムや、金属原子や金属酸化物を蒸着した面にコーティング処理を施したフィルム等が使用で
きる。
As the gas barrier layer 6, metal foil such as aluminum foil, copper foil, stainless steel foil, polyethylene terephthalate film, ethylene-vinyl alcohol copolymer film, metal atoms such as aluminum or copper, or metal oxide such as alumina or silica are used. A vapor-deposited film, a film in which a metal atom or metal oxide is vapor-deposited, or the like can be used.

熱溶着層7は、外被材4同士を溶着し、真空断熱材1内部の真空を保持する役割に加えて、芯材2や吸着剤3による真空断熱材1内部からの突刺し等からガスバリア層6を保護する役割を果たすものである。   The thermal welding layer 7 welds the jacket materials 4 to each other, and in addition to the role of maintaining the vacuum inside the vacuum heat insulating material 1, the gas barrier from the piercing from the inside of the vacuum heat insulating material 1 by the core material 2 and the adsorbent 3, etc. It serves to protect the layer 6.

封止部8は、外被材4の熱溶着層7同士を溶着することにより構成され、真空断熱材1内部と外部とを遮断する役割を果たしている。   The sealing portion 8 is configured by welding the heat welding layers 7 of the jacket material 4, and plays a role of blocking the inside and the outside of the vacuum heat insulating material 1.

薄肉部9は、外被材4周縁の端面から封止部8を通って真空断熱材1内部へ侵入する大気ガスの透過速度を抑制し、真空断熱材1の真空度を維持する役割を果たしている。   The thin-walled portion 9 serves to maintain the vacuum degree of the vacuum heat insulating material 1 by suppressing the permeation rate of atmospheric gas that enters the vacuum heat insulating material 1 through the sealing portion 8 from the end surface of the outer periphery of the jacket material 4. Yes.

以上のように、本実施の形態においては、封止部8における熱溶着層7とガスバリア層6との境界面が有する略円弧状の凹部の最深部位置に薄肉部9が設けられ、この2層の境界面が有する凹部の波高に差が設けられているため、ガスバリア層6および外被材4の劣化や破断が極めて起きにくくなるとともに、真空断熱材1内部への経時的な大気ガス侵入が抑制される。   As described above, in the present embodiment, the thin-walled portion 9 is provided at the deepest position of the substantially arc-shaped concave portion included in the boundary surface between the heat welding layer 7 and the gas barrier layer 6 in the sealing portion 8. Since there is a difference in the wave heights of the recesses on the boundary surface of the layers, the gas barrier layer 6 and the jacket material 4 are extremely unlikely to deteriorate and break, and the atmospheric gas intrusion into the vacuum heat insulating material 1 with time Is suppressed.

また、上記の製造方法にて真空断熱材1を作製した場合、通常、図4に示すような円弧状の曲面を有する突起部11によって構成される過熱圧縮冶具10により熱溶着層7が加熱圧縮されるため、加圧による外力が突起部11の円弧の接線と垂直な方向にも加わることにより、熱溶着層7の樹脂が薄肉部9の両端方向へ流動しやすくなることから、図10のような従来の封止冶具106のような平面部にて圧縮される場合と比べて、同一の薄肉部9の厚みを得る場合の製造時の温度条件および圧力条件が緩和され、ガスバリア層6および外被材4の劣化が抑制される。   Moreover, when the vacuum heat insulating material 1 is produced by the above-described manufacturing method, the heat-welded layer 7 is usually heated and compressed by the superheated compression jig 10 constituted by the protruding portions 11 having an arcuate curved surface as shown in FIG. 10 is applied to the direction perpendicular to the tangent line of the arc of the protrusion 11, the resin of the heat-welded layer 7 can easily flow toward both ends of the thin portion 9. Compared with the case where the flat portion such as the conventional sealing jig 106 is compressed, the temperature condition and pressure condition at the time of manufacturing when the same thin portion 9 is obtained are relaxed, and the gas barrier layer 6 and Deterioration of the jacket material 4 is suppressed.

言い換えれば、同一の成形条件によって、より熱溶着層7の薄肉部9の厚みを薄くすることが可能となり、外被材4周縁の端面からの気体および水分侵入量の抑制が容易となる。   In other words, under the same molding conditions, the thickness of the thin portion 9 of the heat-welded layer 7 can be further reduced, and the amount of gas and moisture intrusion from the end surface of the outer periphery of the outer cover material 4 can be easily suppressed.

本実施の形態の真空断熱材1は、熱溶着層7同士が対向する2枚の長方形の外被材4の間に芯材2と吸着剤3が減圧密封され芯材2を覆う2枚の外被材4の周縁近傍の3辺の外周部同士が熱溶着された真空断熱材1であり、外被材4の外周部同士が熱溶着された封止部8のうち3辺の封止部8を周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7が略円弧状の凹部を有しており、その凹部の最深部に熱溶着層7の厚みが最深部の周辺部よりも薄い薄肉部9が形成されている。   The vacuum heat insulating material 1 according to the present embodiment includes two sheets of the core material 2 and the adsorbent 3 that are sealed under reduced pressure between the two rectangular outer cover materials 4 facing each other with the heat-welded layers 7 facing each other. 3 is a vacuum heat insulating material 1 in which the outer peripheral portions of the three sides in the vicinity of the periphery of the jacket material 4 are heat-welded, and the sealing is performed on three sides of the sealing portion 8 in which the outer peripheral portions of the jacket material 4 are heat-welded. When the cross section when the portion 8 is cut by a plane perpendicular to the periphery is viewed, the heat welding layer 7 located in the sealing portion 8 has a substantially arc-shaped recess, and the heat welding is performed at the deepest portion of the recess. A thin portion 9 in which the thickness of the layer 7 is thinner than the peripheral portion of the deepest portion is formed.

上記構成において、まず、外被材4の周縁部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部8の熱溶着層7の厚みが局所的に薄い薄肉部9を設けていることにより、熱溶着層7の薄肉部9において、外被材4周縁の端面から侵入する気体および水分の透過断面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。   In the above-described configuration, first, when a cross-section when cutting at least a part of the sealing portion 8 where the peripheral portions of the jacket material 4 are heat-welded is cut by a plane perpendicular to the peripheral portion, the heat of the sealing portion 8 is obtained. By providing the thin portion 9 where the thickness of the welding layer 7 is locally thin, the gas and moisture permeation cross-sectional area entering from the end face of the outer periphery of the outer cover material 4 is reduced in the thin portion 9 of the heat welding layer 7. Since the permeation resistance of gas and moisture is increased and the permeation rate of gas and moisture is reduced, the amount of gas and moisture that permeate with time is suppressed, and excellent heat insulation performance can be exhibited over a long period of time.

また、外被材4の周縁部同士が熱溶着された封止部8の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部8に位置する熱溶着層7が略円弧状の凹部を有しているので、熱溶着層7より外層側に積層された層(ガスバリア層6)は、封止部8の薄肉部9およびその近傍において、熱溶着層7の形状に沿って、円弧状に曲がり、角部を形成することなく、熱溶着層7より外層側に積層された層(ガスバリア層6)のクラックの発生が極めて起きにくくなる。   Moreover, when the cross section at the time of cut | disconnecting at least one part of the sealing part 8 by which the peripheral parts of the jacket material 4 were heat-welded by a plane perpendicular | vertical to a peripheral part was seen, the heat welding layer located in the sealing part 8 7 has a substantially arc-shaped recess, the layer (gas barrier layer 6) laminated on the outer layer side of the heat-welded layer 7 is the thin-walled portion 9 of the sealing portion 8 and the vicinity thereof. In this way, the generation of cracks in the layer (gas barrier layer 6) laminated on the outer layer side from the heat-welded layer 7 is extremely difficult to occur without forming a corner portion by bending in a circular arc shape.

ここで、当然ながら、熱溶着層7の薄肉部9及びその近傍に限らず、封止部8全体において角部を形成していないことが望ましい。   Here, as a matter of course, it is desirable that corner portions are not formed in the entire sealing portion 8, not limited to the thin-walled portion 9 and the vicinity thereof.

さらに、熱溶着層7の薄肉部9においては、熱溶着層7の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着層7が有する凹部が略円弧状を形成している場合、熱溶着層7の厚みが円弧に沿って徐々に滑らかに増減することに伴い、封止部8の強度(曲げ強度など)も位置が変わるにつれて連続的に滑らかに増減することから、熱溶着層7の薄肉部9において局所的に外力が集中することが起きにくく、熱溶着層7の薄肉部9及びその近傍の外被材4におけるクラック発生や封止部8の破断が極めて起きにくくなる。   Further, in the thin-walled portion 9 of the heat-welded layer 7, the thickness of the heat-welded layer 7 is thinner than the peripheral portion, and the strength is reduced by the thickness reduction, but the concave portion of the heat-welded layer 7 has a substantially arc shape. When formed, the strength (bending strength, etc.) of the sealing portion 8 also increases and decreases smoothly and continuously as the position changes as the thickness of the heat welding layer 7 gradually increases and decreases along the arc. Therefore, it is difficult for external force to concentrate locally in the thin portion 9 of the heat-welded layer 7, and cracks in the thin-wall portion 9 of the heat-welded layer 7 and the jacket material 4 in the vicinity thereof and breakage of the sealing portion 8 are caused. Is extremely difficult to occur.

以上により、封止部8に設けた熱溶着層7の薄肉部9及びその近傍において、クラック発生や封止部8破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材1を提供できる。   By the above, the vacuum heat insulating material which maintains the heat insulation performance excellent in the long term in which the crack generation | occurrence | production and the fracture | rupture of the sealing part 8 do not occur easily in the thin part 9 of the heat welding layer 7 provided in the sealing part 8 and its vicinity. 1 can be provided.

また、本実施の形態の真空断熱材1は、封止部8の熱溶着層7は両面に他の層(ガスバリア層6)との境界面を有し、凹部の一方の境界面のうねりの波高が、凹部の他方の境界面のうねりの波高よりも大きい。   Further, in the vacuum heat insulating material 1 of the present embodiment, the heat welding layer 7 of the sealing portion 8 has a boundary surface with another layer (gas barrier layer 6) on both surfaces, and the undulation of one boundary surface of the concave portion The wave height is larger than the wave height of the undulation of the other boundary surface of the recess.

薄肉部9及びその近傍では、熱溶着層7よりも外層側にある外被材4(の各層6,5)が、略円弧状の凹である熱溶着層7の形状に沿って歪曲することによる応力を受け、強度が低下する。   In the thin-walled portion 9 and the vicinity thereof, the covering material 4 (each of the layers 6 and 5) on the outer layer side of the heat-welding layer 7 is distorted along the shape of the heat-welding layer 7 that is a substantially arc-shaped recess. Due to the stress caused by, the strength decreases.

よって、凹部の一方(図1では上側)の境界面のうねりの波高を、凹部の他方(図1では下側)の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側(図1では下側)の外被材4の強度低下は、もう一方の相対的に波高の大きいうねりを有する境界面側(図1では上側)の外被材4と比べて僅かとなり、外被材4の封止部8では、強度低下が小さい(図1では下側の)外被材4がもう一方の(図1では上側の)外被材4を支持する形で剛性が保たれ、外力を受けた場合におけるクラック発生および封止部8の破断が極めて起きにくくなる。   Therefore, by making the wave height of the undulation of the boundary surface on one side (upper side in FIG. 1) of the concave portion larger than that of the boundary surface on the other side (lower side in FIG. 1), the wave height is relatively small. The lowering of the strength of the outer cover material 4 on the boundary surface side having waviness (lower side in FIG. 1) In comparison with the sealing portion 8 of the outer covering material 4, the outer covering material 4 (lower in FIG. 1) supports the other outer covering material 4 (upper in FIG. 1). The rigidity is maintained in the shape, and the occurrence of cracks and breakage of the sealing portion 8 when receiving external force are extremely difficult.

薄肉部9があると、熱溶着層7の厚みが薄く強度が低下するだけでなく、凹部の最深部が位置していることにより、歪曲による外被材4の強度低下が起こる。   When the thin-walled portion 9 is present, not only the thickness of the heat-welded layer 7 is thin and the strength is reduced, but also the strength of the jacket material 4 is reduced due to the distortion due to the deepest portion of the recess being located.

本実施の形態では、凹部の一方の(図1では上側の)境界面の熱溶着層7側に凹となっている部分の最深部と、凹部の他方の(図1では下側の)境界面の熱溶着層7側に凹となっている部分の最深部とが対向していないことにより、凹部の最深部が位置する封止部8の強度低下が抑制され、封止部8が外力を受けた際の傷つきや破断が極めて起きにくくなる。同時に、凹部におけるガスバリア層6のクラック発生の抑制効果もさらに高くなる。   In the present embodiment, the deepest portion of the concave portion on the heat welding layer 7 side of one boundary surface (upper side in FIG. 1) of the concave portion and the other boundary (lower side in FIG. 1) of the concave portion Since the deepest portion of the concave portion on the surface of the surface is not opposed to the deepest portion, a decrease in strength of the sealing portion 8 where the deepest portion of the concave portion is located is suppressed, and the sealing portion 8 has an external force. Scratches and breakage are less likely to occur. At the same time, the effect of suppressing the occurrence of cracks in the gas barrier layer 6 in the recesses is further enhanced.

また、図3に示す例のように、封止部8に薄肉部9を少なくとも2個以上有していることが好ましい。   Moreover, it is preferable that the sealing part 8 has at least two thin parts 9 as in the example shown in FIG.

薄肉部9においては、封止部8の他箇所に比べて熱溶着層7の厚みが薄く、シール強度が低下することにより、例えば、製造工程において芯材2物質であるガラス繊維やシリカ粉末等を挟み込んだ状態で外被材4が熱溶着された場合、薄肉部9において熱溶着不良が発生することが懸念される。   In the thin portion 9, the thickness of the heat-welded layer 7 is thinner than that of the other portion of the sealing portion 8, and the sealing strength is reduced. For example, glass fiber or silica powder that is the core material 2 in the manufacturing process When the outer cover material 4 is heat-welded in a state where the material is sandwiched, there is a concern that a poor heat-welding occurs in the thin portion 9.

熱溶着不良が発生した箇所では樹脂が存在しないため、ガス侵入抑制効果が低下する。
この対策として、少なくとも2個以上の薄肉部9を設けることにより、熱溶着不良に起因する真空断熱材1内部への気体および水分侵入促進の影響が緩和される。
Since there is no resin at the location where the thermal welding failure occurs, the effect of suppressing gas intrusion decreases.
As a countermeasure, by providing at least two or more thin-walled portions 9, the influence of gas and moisture intrusion promotion into the vacuum heat insulating material 1 due to poor heat welding is mitigated.

特に、芯材2としてガラス繊維を用いた場合は、挟雑物として熱溶着の際に挟み込まれた芯材2物質が加熱変形し、薄肉部9にスルーホールを形成することが多々あることから、本発明の(本実施の形態の)効果がより顕著となる。   In particular, when glass fiber is used as the core material 2, the core material 2 material sandwiched at the time of heat welding as an interstitial material is often heat-deformed and forms a through hole in the thin portion 9. The effect (of the present embodiment) of the present invention becomes more remarkable.

また、薄肉部9においては、外被材4の強度が周囲部よりも低くなり、外力を受けた際の荷重集中が懸念されるが、薄肉部9が複数個存在することにより、外力の荷重が分散され、薄肉部9におけるクラックの発生や封止部8の破断が極めて起きにくくなる。   Moreover, in the thin part 9, although the intensity | strength of the jacket material 4 becomes lower than a surrounding part and there is a concern about the load concentration at the time of receiving external force, the load of external force is due to the presence of a plurality of thin parts 9. Are dispersed, and the occurrence of cracks in the thin-walled portion 9 and the breakage of the sealing portion 8 are extremely difficult to occur.

また、薄肉部9を複数個有する場合は、薄肉部9が1個のみの場合と比べて、薄肉部9における熱溶着層7の厚みを増加させても同一の効果が得られるため、薄肉部9における外被材4強度やシール強度低下が緩和され、薄肉部9におけるクラック発生や封止部8の破断のリスクが低減される。   Further, when the plurality of thin portions 9 are provided, the same effect can be obtained even if the thickness of the thermal welding layer 7 in the thin portion 9 is increased as compared with the case where only one thin portion 9 is provided. 9 is reduced, and the risk of cracks in the thin-walled portion 9 and breakage of the sealing portion 8 is reduced.

なお、本実施の形態では、薄肉部9を有する封止部8を3辺としたが、封止部8全周の4辺に設けても良い。   In the present embodiment, the sealing portion 8 having the thin portion 9 has three sides, but may be provided on four sides of the entire circumference of the sealing portion 8.

なお、各薄肉部9における熱溶着層7の厚みは、同一でなくても良い。   In addition, the thickness of the heat welding layer 7 in each thin part 9 does not need to be the same.

なお、本実施の形態では、図2に示すように、薄肉部9が直交しているが、薄肉部9は交差していなくてもよい。   In the present embodiment, as shown in FIG. 2, the thin portions 9 are orthogonal, but the thin portions 9 do not have to intersect.

なお、各薄肉部9に位置する境界面の凹部の曲率半径は同一ある必要はなく、ガスバリア層6として使用している金属箔やフィルムが、劣化しない程度の曲率半径を有しておればよい。   In addition, the curvature radius of the recessed part of the interface located in each thin part 9 does not need to be the same, The metal foil and film used as the gas barrier layer 6 should just have a curvature radius of the grade which does not deteriorate. .

なお、薄肉部9の間隔は特に指定するものではなく、また、図5のように、境界面が有する凹部同士の間隔が等しくなくてもよい。   In addition, the space | interval of the thin part 9 is not specified in particular, and as shown in FIG. 5, the space | interval of the recessed parts which a boundary surface does not need to be equal.

なお、本実施の形態では、薄肉部9の位置は特に指定するのもではないが、境界面の有する凹部位置が、外被材4の封止部8とそうでない部分との境目に存在している場合は、薄肉部9の片側の樹脂が十分に加熱されておらず、樹脂の流動性が悪いため薄肉化が困難となり、好ましくない。   In the present embodiment, the position of the thin-walled portion 9 is not particularly specified, but the position of the concave portion on the boundary surface exists at the boundary between the sealing portion 8 of the jacket material 4 and the portion that is not. In such a case, the resin on one side of the thin-walled portion 9 is not sufficiently heated, and the fluidity of the resin is poor.

(実施の形態2)
図6は本発明の実施の形態2による断熱箱体の斜視図である。図7は本発明の実施の形態2による断熱箱体の正面断面図である。図8は本発明の実施の形態1による断熱箱体の縦断面図である。
(Embodiment 2)
FIG. 6 is a perspective view of a heat insulation box according to Embodiment 2 of the present invention. FIG. 7 is a front sectional view of a heat insulation box according to Embodiment 2 of the present invention. FIG. 8 is a longitudinal sectional view of the heat insulation box according to the first embodiment of the present invention.

図6から図8に示すように、断熱箱体本体21は、前方に開口する金属製(例えば鉄板)の外箱27と硬質樹脂製(例えばABS)の内箱28と、外箱27と内箱28の間に発泡充填された発泡断熱材29からなる断熱箱体で、この本体21の上部に設けられた冷蔵室22と、冷蔵室22の下に設けられた上段冷凍室23と、冷蔵室22の下で上段冷凍室23に並列に設けられた製氷室24と、本体下部に設けられた野菜室26と、並列に設置された上段冷凍室23及び製氷室24と野菜室26の間に設けられた下段冷凍室25で構成されている。   As shown in FIGS. 6 to 8, the heat insulating box body 21 includes a metal (for example, iron plate) outer box 27, a hard resin (for example, ABS) inner box 28, A heat insulating box 29 made of a foam heat insulating material 29 filled with foam between the boxes 28, a refrigerating chamber 22 provided above the main body 21, an upper freezing chamber 23 provided below the refrigerating chamber 22, and a refrigerating chamber An ice making chamber 24 provided in parallel with the upper freezing chamber 23 under the chamber 22, a vegetable chamber 26 provided in the lower part of the main body, and between the upper freezing chamber 23 and ice making chamber 24 and the vegetable chamber 26 installed in parallel. The lower freezing room 25 provided in the.

上段冷凍室23と製氷室24と下段冷凍室25と野菜室26の前面部は引き出し式の図
示しない扉により開閉自由に閉塞されると共に、冷蔵室22の前面は、例えば観音開き式の図示しない扉により開閉自由に閉塞される。
Front portions of the upper freezing chamber 23, the ice making chamber 24, the lower freezing chamber 25, and the vegetable chamber 26 are freely opened and closed by a drawer-type door (not shown), and the front side of the refrigerator compartment 22 is, for example, a double door type door (not shown). Is closed freely.

冷蔵室22は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。野菜室26は冷蔵室22と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。上段冷凍室23と下段冷凍室25は冷凍保存のために通常−22から−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30から−25℃の低温で設定されることもある。   The refrigerator compartment 22 is normally set at 1 to 5 ° C. with a temperature that does not freeze for refrigerated storage as a lower limit. The vegetable room 26 is often set to a temperature setting of 2 ° C. to 7 ° C., which is equal to or slightly higher than that of the refrigerator compartment 22. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time. The upper freezer compartment 23 and the lower freezer compartment 25 are normally set at −22 to −18 ° C. for frozen storage, but are set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state. Sometimes.

冷蔵室22や野菜室26は庫内をプラス温度で設定されるので、冷蔵温度帯を呼ばれる。また、上段冷凍室23や下段冷凍室25や製氷室24は庫内をマイナス温度で設定されるので、冷凍温度帯を呼ばれる。また、上段冷凍室23は切替室として、冷蔵温度帯から冷凍温度帯まで選択可能な部屋としても良い。   The refrigerator compartment 22 and the vegetable compartment 26 are called refrigerated temperature zones because the interior is set at a plus temperature. Moreover, since the upper stage freezer room 23, the lower stage freezer room 25, and the ice making room 24 are set by the minus temperature in the store | warehouse | chamber, they are called freezing temperature zones. Moreover, the upper freezer compartment 23 may be a switching room that can be selected from a refrigeration temperature zone to a freezing temperature zone.

断熱箱体本体21の天面部は、断熱箱体の背面方向に向かって階段状に凹みを設けて機械室34があり、第一の天面部35と第二の天面部36で構成されている。この階段状の凹部に配置された圧縮機37と、水分除去を行うドライヤ(図示せず)と、コンデンサ(図示せず)と、放熱用の放熱パイプと、キャピラリーチューブ38と、冷却器39とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。   The top surface portion of the heat insulation box body 21 is provided with a machine room 34 having a dent in a stepped shape toward the back surface of the heat insulation box body, and is composed of a first top surface portion 35 and a second top surface portion 36. . A compressor 37 disposed in the stepped recess, a dryer (not shown) for removing moisture, a condenser (not shown), a heat radiating pipe, a capillary tube 38, a cooler 39, The refrigerant is sealed in a refrigeration cycle in which the are sequentially connected in an annular form, and a cooling operation is performed.

前記冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室内に配設することもできる。   In recent years, a flammable refrigerant is often used as the refrigerant for environmental protection. In the case of a refrigeration cycle using a three-way valve or a switching valve, these functional components can be arranged in the machine room.

ここで、真空断熱材1は、発泡断熱材29とともに断熱箱体本体21を構成している。   Here, the vacuum heat insulating material 1 constitutes a heat insulating box body 21 together with the foam heat insulating material 29.

ここで、真空断熱材1は、外箱27にそれぞれ天面、背面、左側面、右側面の内側に接して貼り付けられている。また、真空断熱材1は、内箱28の底面に接して貼り付けられている。   Here, the vacuum heat insulating material 1 is attached to the outer box 27 in contact with the inside of the top surface, the back surface, the left side surface, and the right side surface, respectively. The vacuum heat insulating material 1 is attached in contact with the bottom surface of the inner box 28.

真空断熱材1には、吸着剤3がそれぞれ内部に搭載されており、真空断熱材1の気体吸着剤は、中心よりも庫外側(外箱側)に配設されている。   Adsorbents 3 are respectively mounted inside the vacuum heat insulating material 1, and the gas adsorbent of the vacuum heat insulating material 1 is disposed on the outer side (outer box side) than the center.

また、冷蔵室22と製氷室24および上段冷凍室23とは第一の断熱仕切り部30で区画されている。   The refrigerator compartment 22, the ice making compartment 24, and the upper freezer compartment 23 are partitioned by a first heat insulating partition 30.

また、製氷室24と上段冷凍室23とは第二の断熱仕切り部31で区画されている。   In addition, the ice making chamber 24 and the upper freezing chamber 23 are partitioned by a second heat insulating partition 31.

また、製氷室24および上段冷凍室23と、下段冷凍室25とは第三の断熱仕切り部32で区画されている。   Further, the ice making chamber 24, the upper freezing chamber 23, and the lower freezing chamber 25 are partitioned by a third heat insulating partition 32.

第二の断熱仕切り部31および第三の断熱仕切り部32は、断熱箱体本体21の発泡後組み立てられる部品であるため、通常断熱材として発泡ポリスチレンが使われるが、断熱性能や剛性を向上させるために発泡断熱材29を用いてもよく、更には高断熱性の真空断熱材を挿入して、仕切り構造のさらなる薄型化を図ってもよい。   Since the second heat insulating partition part 31 and the third heat insulating partition part 32 are parts assembled after foaming of the heat insulating box body 21, foamed polystyrene is usually used as a heat insulating material, but the heat insulating performance and rigidity are improved. Therefore, the foam heat insulating material 29 may be used, and further, a vacuum heat insulating material having high heat insulating properties may be inserted to further reduce the partition structure.

また、ドアフレームの稼動部を確保して第二の断熱仕切り部31および第三の断熱仕切り部32の形状の薄型化や廃止を行うことで、冷却風路を確保でき冷却能力の向上を図ることもできる。また、第二の断熱仕切り部31および第三の断熱仕切り部32の内部をくりぬき、風路とすることで材料の低減につながる。   In addition, by securing the operating part of the door frame and making the second heat insulating partition part 31 and the third heat insulating partition part 32 thinner or abolished, a cooling air passage can be secured and the cooling capacity can be improved. You can also Moreover, the inside of the 2nd heat insulation partition part 31 and the 3rd heat insulation partition part 32 is hollowed, and it leads to reduction of material by setting it as an air path.

また、下段冷凍室25と野菜室26とは第四の仕切り部33で区画されている
断熱箱体本体21の背面には冷却室40が設けられ、冷却室40内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する冷却器39が断熱仕切壁である第二および第三の仕切り部31、32の後方領域を含めて下段冷凍室25の背面に上下方向に縦長に配設されている。また、冷却器39の材質は、アルミや銅が用いられる。
The lower freezer compartment 25 and the vegetable compartment 26 are partitioned by a fourth partition 33. A cooling chamber 40 is provided on the back of the heat insulating box body 21, and a representative one is provided in the cooling chamber 40. As shown, a cooler 39 that generates fin-and-tube cold air is disposed vertically in the vertical direction on the back surface of the lower freezer compartment 25 including the rear regions of the second and third partition portions 31 and 32 that are heat insulating partition walls. Has been. The cooler 39 is made of aluminum or copper.

冷却器39の近傍(例えば上部空間)には強制対流方式により冷蔵室22,製氷室24、上段冷凍室23、下段冷凍室25、野菜室26の各貯蔵室に冷却器39で生成した冷気を送風する冷気送風ファン41が配置され、冷却器39の下部空間には冷却時に冷却器39や冷気送風ファン41に付着する霜を除霜する除霜装置としてのガラス管製のラジアントヒータ42が設けられている。   In the vicinity of the cooler 39 (for example, the upper space), the cold air generated by the cooler 39 is stored in each storage room of the refrigerator compartment 22, the ice making room 24, the upper freezer room 23, the lower freezer room 25, and the vegetable room 26 by a forced convection method. A cool air blowing fan 41 for blowing air is disposed, and a radiant heater 42 made of glass tube is provided in a lower space of the cooler 39 as a defrosting device for defrosting the frost attached to the cooler 39 and the cold air blowing fan 41 during cooling. It has been.

除霜装置は特に指定するものではなく、ラジアントヒータの他に、冷却器39に密着したパイプヒータを用いても良い。   The defroster is not particularly specified, and a pipe heater in close contact with the cooler 39 may be used in addition to the radiant heater.

次に断熱箱体の冷却について説明する。例えば冷凍室26が外気からの侵入熱およびドア開閉などにより、庫内温度が上昇して冷凍室センサ(図示せず)が起動温度以上になった場合に、圧縮機37が起動し冷却が開始される。   Next, cooling of the heat insulating box will be described. For example, when the freezer compartment 26 rises in temperature due to intrusion heat from outside air and door opening and closing, and the freezer compartment sensor (not shown) exceeds the start temperature, the compressor 37 is started and cooling is started. Is done.

圧縮機37から吐出された高温高圧の冷媒は、最終的に機械室34に配置されたドライヤ(図示せず)まで到達する間、特に外箱27に設置される放熱パイプにおいて、外箱27の外側の空気や庫内の発泡断熱材29との熱交換により、冷却されて液化する。   While the high-temperature and high-pressure refrigerant discharged from the compressor 37 finally reaches a dryer (not shown) disposed in the machine chamber 34, particularly in a heat radiating pipe installed in the outer box 27, It is cooled and liquefied by heat exchange with the outside air and the foam heat insulating material 29 in the warehouse.

次に液化した冷媒はキャピラリーチューブ38で減圧されて、冷却器39に流入し冷却器39周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン41により庫内に冷気が送風され庫内を冷却する。   Next, the liquefied refrigerant is decompressed by the capillary tube 38, flows into the cooler 39, and exchanges heat with the internal air around the cooler 39. The cold air that has undergone heat exchange is blown into the cabinet by a nearby cool air blower fan 41 to cool the inside of the cabinet.

この後、冷媒は加熱されガス化して圧縮器37に戻る。庫内が冷却されて冷凍室センサ(図示せず)の温度が停止温度以下になった場合に圧縮機37の運転が停止する。   Thereafter, the refrigerant is heated and gasified, and returns to the compressor 37. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 37 is stopped.

冷気送風ファン41は、内箱28に直接配設されることもあるが、発泡後に組み立てられる第二の仕切り部31に配設し、部品のブロック加工を行うことで製造コストの低減を図ることもできる。   Although the cool air blowing fan 41 may be directly disposed in the inner box 28, it is disposed in the second partition portion 31 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also.

本発明にかかる真空断熱材、断熱箱体は、真空断熱材の外被材の表面に凸部と凹部とを交互に複数回繰り返す波形の凸凹が形成された凸凹封止部を設けていることにより、内部へのガス侵入を抑制することで長期に渡って優れた断熱性能を発揮できるため、冷蔵庫や自動販売機、給湯容器、建造物用断熱材、自動車用断熱材、保冷・保温ボックス等のような用途にも適用できる。   The vacuum heat insulating material and the heat insulating box according to the present invention are provided with an uneven sealing part in which a corrugated unevenness is repeatedly formed on the surface of the outer cover material of the vacuum heat insulating material alternately plural times. By suppressing gas intrusion into the interior, it can exhibit excellent heat insulation performance for a long time, so refrigerators, vending machines, hot water supply containers, heat insulation materials for buildings, heat insulation materials for automobiles, cold insulation and heat insulation boxes, etc. It can be applied to such applications.

1 真空断熱材
2 芯材
3 吸着剤
4 外被材
5 保護層
6 ガスバリア層
7 熱溶着層
8 封止部
9 厚肉部
21 断熱箱体
27 外箱
28 内箱
29 発泡断熱材
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 3 Adsorbent 4 Cover material 5 Protective layer 6 Gas barrier layer 7 Heat welding layer 8 Sealing part 9 Thick part 21 Heat insulation box 27 Outer box 28 Inner box 29 Foam heat insulation

Claims (3)

熱溶着層同士が対向する金属箔層を有する外被材と蒸着フィルム層を有する外被材の間に芯材が減圧密封され前記芯材を覆う2枚の前記外被材の周縁近傍の外周部同士が熱溶着された真空断熱材において、
前記外被材の外周部同士が熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が凹部を有しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されており、
前記封止部の前記熱溶着層は両面に他の層との境界面を有し、前記凹部の金属箔層を有する面の前記境界面のうねりの波高が、前記凹部の蒸着フィルム層を有する面の前記境界面のうねりの波高よりも大きく、前記凹部の一方の前記境界面の前記熱溶着層側に凹となっている部分の最深部と、前記凹部の他方の前記境界面の前記熱溶着層側に凹となっている部分の最深部とが対向していない真空断熱材。
The outer periphery in the vicinity of the periphery of the two outer cover materials covering the core member by sealing the core member between the outer cover member having the metal foil layer and the outer cover member having the vapor deposition film layer facing each other. In the vacuum heat insulating material where the parts are heat-welded,
When the cross-section when cutting at least a part of the sealing portion in which the outer peripheral portions of the jacket material are thermally welded is cut by a plane perpendicular to the peripheral edge, the thermal welding layer located in the sealing portion is A thin-walled part having a thickness that is thinner than the peripheral part of the deepest part is formed in the deepest part of the concave part.
The heat welding layer of the sealing portion has a boundary surface with another layer on both surfaces, and the wave height of the undulation of the boundary surface of the surface having the metal foil layer of the recess has the deposited film layer of the recess. The deepest part of the portion of the concave surface that is larger than the wave height of the undulation of the boundary surface and is concave on the thermal welding layer side of one of the boundary surfaces, and the heat of the other boundary surface of the concave portion A vacuum heat insulating material in which the deepest portion of the concave portion on the weld layer side does not face.
前記真空断熱材の内部に気体吸着剤を備えた請求項1記載の真空断熱材。 The vacuum heat insulating material according to claim 1, further comprising a gas adsorbent inside the vacuum heat insulating material. 相対向する2つの伝熱面を有する真空断熱材の一方の前記伝熱面を内箱における外箱と対向する面に固定して、前記外箱と前記内箱との間の前記真空断熱材部分を除いた残りの空間に発泡断熱材を充填したことを特徴とする請求項1または請求項2に記載の真空断熱材を搭載した断熱箱体。 The vacuum heat insulating material between the outer box and the inner box by fixing one heat transfer surface of the vacuum heat insulating material having two heat transfer surfaces facing each other to a surface of the inner box facing the outer box. The heat insulation box which mounted the vacuum heat insulating material of Claim 1 or Claim 2 which filled the remaining space except the part with the foam heat insulating material.
JP2012059767A 2012-03-16 2012-03-16 Vacuum insulating material and heat insulation box body Pending JP2013194761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059767A JP2013194761A (en) 2012-03-16 2012-03-16 Vacuum insulating material and heat insulation box body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059767A JP2013194761A (en) 2012-03-16 2012-03-16 Vacuum insulating material and heat insulation box body

Publications (1)

Publication Number Publication Date
JP2013194761A true JP2013194761A (en) 2013-09-30

Family

ID=49393997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059767A Pending JP2013194761A (en) 2012-03-16 2012-03-16 Vacuum insulating material and heat insulation box body

Country Status (1)

Country Link
JP (1) JP2013194761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141517A (en) * 2017-02-28 2018-09-13 日立アプライアンス株式会社 Vacuum heat insulation material, equipment including the same and manufacturing method of vacuum heat insulation material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141517A (en) * 2017-02-28 2018-09-13 日立アプライアンス株式会社 Vacuum heat insulation material, equipment including the same and manufacturing method of vacuum heat insulation material

Similar Documents

Publication Publication Date Title
JP6226242B2 (en) Vacuum heat insulating material, heat insulating box including the same, and method for manufacturing vacuum heat insulating material
JP5903567B2 (en) refrigerator
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
EP2397802B1 (en) Refrigerator
JP5661175B2 (en) Refrigerator and vacuum insulation for refrigerator
US10337787B2 (en) Vacuum insulation panel, method of manufacturing vacuum insulation panel, and refrigerator including vacuum insulation panel
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
JP2017511445A (en) Vacuum insulation material and refrigerator including the same
KR20130018919A (en) Vacuum heat insulation member and refrigerator using same
JP2017511445A5 (en)
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
US20180339490A1 (en) Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
TWI622747B (en) Refrigerator
WO2015186345A1 (en) Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
JP2013194761A (en) Vacuum insulating material and heat insulation box body
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP6225324B2 (en) Heat insulation box
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP7474921B2 (en) Vacuum insulation body and insulated container and wall using the same
JP7499435B2 (en) Vacuum insulator and insulated container and insulated wall using same