JP2018141517A - Vacuum heat insulation material, equipment including the same and manufacturing method of vacuum heat insulation material - Google Patents

Vacuum heat insulation material, equipment including the same and manufacturing method of vacuum heat insulation material Download PDF

Info

Publication number
JP2018141517A
JP2018141517A JP2017036055A JP2017036055A JP2018141517A JP 2018141517 A JP2018141517 A JP 2018141517A JP 2017036055 A JP2017036055 A JP 2017036055A JP 2017036055 A JP2017036055 A JP 2017036055A JP 2018141517 A JP2018141517 A JP 2018141517A
Authority
JP
Japan
Prior art keywords
pair
vacuum heat
laminated films
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017036055A
Other languages
Japanese (ja)
Other versions
JP6793571B2 (en
Inventor
大五郎 嘉本
Daigoro Kamoto
大五郎 嘉本
越後屋 恒
Hisashi Echigoya
恒 越後屋
祐志 新井
Yushi Arai
祐志 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2017036055A priority Critical patent/JP6793571B2/en
Publication of JP2018141517A publication Critical patent/JP2018141517A/en
Application granted granted Critical
Publication of JP6793571B2 publication Critical patent/JP6793571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material which can prevent intrusion of a gas to the inside of an outer packaging material and which can prevent lowering of heat insulation characteristics for a long time, and equipment including the same and a manufacturing method of vacuum heat insulation material.SOLUTION: A vacuum heat insulation material includes: a core material; and an outer packaging material comprising a pair of laminated films (10a, 10b) provided facing with each other by sandwiching the core material. The laminated films (10a, 10b) are a substance in which surface protection layers (5a, 5b), protection layers (6a, 6b), gas barrier layers (7a, 7b) and thermal fusion layers (8a, 8b) are laminated in this order from the outside sequentially. At an end part (4) of the pair of laminated films, the respective thermal fusion layers (8a,8b) of the pair of laminated films are bonded with each other. Angles α formed by a bonded surface (81) of the respective thermal fusion layers (8a, 8b) of the pair of laminated films and surfaces (80a, 80b) on the outside of the respective thermal fusion layers (8a, 8b) of the pair of laminated films are acute angles.SELECTED DRAWING: Figure 2

Description

本発明は、真空断熱材、それを備えた機器及び真空断熱材の製造方法に関する。   The present invention relates to a vacuum heat insulating material, a device including the same, and a method for manufacturing the vacuum heat insulating material.

近年、地球環境保護の観点又は省エネルギー化の観点から、家電製品や産業機器の断熱性向上が検討されている。機器を断熱する断熱材としては、樹脂フォームや有機又は無機の繊維が用いられているが、断熱性を向上しようとした場合、断熱材を厚くする必要がある。しかし、断熱材を厚くすると、機器全体の容積が増大し、部品等を実装できるスペースの割合が低くなってしまう等の課題が生じる。   In recent years, from the viewpoint of protecting the global environment or from the viewpoint of energy saving, improvement in heat insulation of home appliances and industrial equipment has been studied. Resin foams and organic or inorganic fibers are used as the heat insulating material for insulating the equipment. However, in order to improve the heat insulating property, the heat insulating material needs to be thickened. However, when the heat insulating material is thickened, the volume of the entire device increases, and problems such as a reduction in the proportion of space in which components and the like can be mounted arise.

このような課題を解決するために、上述した樹脂フォームや有機又は無機繊維等と比較して断熱性に優れる真空断熱材が提案されている。真空断熱材は、ガスバリア性を有する外包材(ラミネートフィルム)を袋状にし、内部に繊維集合体からなる芯材及びガス吸着用のゲッター剤を入れ、袋内部を減圧した後、袋の端部を封止して作製される物である。従来の樹脂フォームや有機又は無機繊維等の断熱材と比較して、20〜40倍の断熱性を持つことから、断熱材を薄くしても十分な断熱を行うことが可能である。   In order to solve such a problem, a vacuum heat insulating material excellent in heat insulating properties as compared with the above-described resin foam, organic or inorganic fibers, etc. has been proposed. The vacuum heat insulating material is a bag-shaped outer packaging material (laminate film) having a gas barrier property, a core material made of a fiber assembly and a getter agent for gas adsorption are put inside, the inside of the bag is decompressed, and the end of the bag It is a thing produced by sealing. Compared to conventional heat insulating materials such as resin foam and organic or inorganic fibers, the heat insulating property is 20 to 40 times, so that sufficient heat insulation can be performed even if the heat insulating material is thinned.

一方、真空断熱材の伝熱は空間中に存在する固体分と気体成分の熱伝導、輻射及び対流熱伝達により引き起こされる。真空断熱材を常温以下の温度領域で使用する際には、輻射による熱伝導は小さく無視できる程度となる。さらに、真空断熱材は袋状の外包材に芯材を入れて内部を減圧していることから、固体の熱伝導が一定である場合、気体成分の熱伝導を抑制することで熱伝導率を低減することができる。つまり、内部の圧力を低くすることでより断熱性の高い真空断熱材を得ることができる。一般に、真空断熱材に用いる外包材は、複数のプラスチックフィルムをラミネートしたものであるが、プラスチックフィルムだけではガスのバリア性が不十分であることから、金属箔や金属蒸着膜を併用するものが知られている。   On the other hand, heat transfer of the vacuum heat insulating material is caused by heat conduction, radiation, and convective heat transfer of solid components and gas components existing in the space. When a vacuum heat insulating material is used in a temperature range below room temperature, heat conduction due to radiation is small and negligible. Furthermore, since the vacuum heat insulating material puts the core material in the bag-shaped outer packaging material and depressurizes the inside, when the heat conduction of the solid is constant, the heat conductivity is suppressed by suppressing the heat conduction of the gas component. Can be reduced. That is, a vacuum heat insulating material with higher heat insulation can be obtained by reducing the internal pressure. In general, the outer packaging material used for the vacuum heat insulating material is a laminate of a plurality of plastic films, but the plastic film alone has insufficient gas barrier properties. Are known.

真空断熱材の公知の一例として、例えば特許文献1がある。特許文献1には、ヒートシール層、ガスバリヤー層、JISK7127でのヤング率が200MPa以下のポリエチレンフィルム層またはポリプロピレンフィルム層、保護層の順で接着剤によりラミネートしてなるラミネートフィルムが開示されている。   As a known example of the vacuum heat insulating material, there is, for example, Patent Document 1. Patent Document 1 discloses a laminate film formed by laminating a heat seal layer, a gas barrier layer, a polyethylene film layer having a Young's modulus of 200 MPa or less in JISK7127 or a polypropylene film layer, and a protective layer in this order. .

特開2006‐21429号公報JP 2006-21429 A

しかしながら、上記のような真空断熱材を機器に使用した場合、外包材を通じて徐々に気体が侵入し、内部の圧力が上昇することで断熱特性が経年劣化することが知られている。   However, when the vacuum heat insulating material as described above is used in an apparatus, it is known that the heat insulating properties deteriorate over time due to the gas gradually entering through the outer packaging material and the internal pressure rising.

本発明は、上記事情に鑑み、外包材の内部への気体の侵入を防止し、長期に渡って断熱特性の低下を防止することが可能な真空断熱材、それを備えた機器及び真空断熱材の製造方法を提供することを目的とする。   In view of the above circumstances, the present invention is a vacuum heat insulating material capable of preventing gas from entering the outer packaging material and preventing deterioration of heat insulating characteristics over a long period of time, and an apparatus and a vacuum heat insulating material including the same It aims at providing the manufacturing method of.

本発明は、上記課題を解決するために、芯材と、芯材を挟んで対向して設けられた一対の積層膜からなる外包材と、を備え、積層膜は、外側から順に、表面保護層、保護層、ガスバリア層及び熱溶着層がこの順で積層された物であり、一対の積層膜の端部において、一対の積層膜のそれぞれの熱溶着層が互いに接合されており、一対の積層膜のそれぞれの熱溶着層の接合面と、一対の積層膜のそれぞれの熱溶着層の外側の表面とがなす角αが鋭角であることを特徴とする真空断熱材を提供する。   In order to solve the above problems, the present invention includes a core material and an outer packaging material made of a pair of laminated films provided to face each other with the core material interposed therebetween. A layer, a protective layer, a gas barrier layer, and a heat welding layer are laminated in this order, and at each end of the pair of laminated films, the respective heat welding layers of the pair of laminated films are joined together, There is provided a vacuum heat insulating material characterized in that an angle α formed by a bonding surface of each heat-welded layer of the laminated film and an outer surface of each heat-welded layer of the pair of laminated films is an acute angle.

また、本発明は、上記真空断熱材を備えた機器を提供する。   Moreover, this invention provides the apparatus provided with the said vacuum heat insulating material.

さらに、本発明は、芯材と、芯材を挟んで対向して設けられた一対の積層膜からなる外包材と、を備え、積層膜は、外側から順に、表面保護層、保護層、ガスバリア層及び熱溶着層がこの順で積層された物である真空断熱材の製造方法であって、一対の積層膜を作製する工程と、一対の積層膜の内部に芯材を配置し、一対の積層膜の端部において、一対の積層膜のそれぞれの熱溶着層を接合する工程と、を有し、一対の積層膜のそれぞれの熱溶着層を接合する工程において、一対の積層膜のそれぞれの熱溶着層の接合面と、一対の積層膜のそれぞれの熱溶着層の外側の表面とがなす角αが鋭角となるように一対の積層膜の熱溶着層を熱溶着することを特徴とする真空断熱材の製造方法を提供する。   Furthermore, the present invention includes a core material and an outer packaging material made of a pair of laminated films provided to face each other with the core material interposed therebetween, and the laminated film comprises a surface protective layer, a protective layer, and a gas barrier in order from the outside. A method of manufacturing a vacuum heat insulating material in which a layer and a heat-welded layer are laminated in this order, a step of producing a pair of laminated films, a core material disposed inside the pair of laminated films, Bonding the respective thermal welding layers of the pair of laminated films at the end of the laminated film, and in the step of bonding the respective thermal welding layers of the pair of laminated films, The heat welding layers of the pair of laminated films are heat-welded so that an angle α formed by a bonding surface of the heat welding layers and an outer surface of each of the pair of laminated films is an acute angle. A method for producing a vacuum heat insulating material is provided.

本発明のより具体的な構成は、特許請求の範囲に記載される。   More specific configurations of the present invention are described in the claims.

本発明によれば、外包材の内部への気体の侵入を防止し、長期に渡って断熱特性の低下を防止することが可能な真空断熱材、それを備えた機器及び真空断熱材の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material which can prevent the penetration | invasion of the gas to the inside of an outer packaging material, and can prevent the deterioration of a heat insulation characteristic over a long period of time, the apparatus provided with it, and the manufacturing method of a vacuum heat insulating material Can be provided.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

本発明に係る真空断熱材の断面を示す模式図。The schematic diagram which shows the cross section of the vacuum heat insulating material which concerns on this invention. 図1のA部分を拡大する図。The figure which expands the A section of FIG. 従来の真空断熱材の断面を示す模式図。The schematic diagram which shows the cross section of the conventional vacuum heat insulating material. 図3のB部分を拡大する図。The figure which expands the B section of FIG. 本発明に係る真空断熱材を備えた機器(冷蔵庫)の一例の断面を示す模式図。The schematic diagram which shows the cross section of an example of the apparatus (refrigerator) provided with the vacuum heat insulating material which concerns on this invention. 本発明に係る真空断熱材を備えた機器(ヒートポンプ給湯器)の一例の断面を示す模式図。The schematic diagram which shows the cross section of an example of the apparatus (heat pump water heater) provided with the vacuum heat insulating material which concerns on this invention. 本発明に係る真空断熱材の製造方法に使用するラミネーターの一例を示す断面模式図。The cross-sectional schematic diagram which shows an example of the laminator used for the manufacturing method of the vacuum heat insulating material which concerns on this invention. 図7のC部分を拡大する図。The figure which expands the C section of FIG. 本発明に係る真空断熱材の製造方法の一例を示すフロー図。The flowchart which shows an example of the manufacturing method of the vacuum heat insulating material which concerns on this invention.

以下、本発明に係る実施形態について詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail.

[真空断熱材]
図1は本発明に係る真空断熱材の断面を示す模式図である。図1に示すように、真空断熱材1は、外包材3と、外包材3に収納された芯材2及び吸着剤(ゲッター剤11)とを有する。外包材3は、一対の積層膜10a,10bが、端部(図1のA部分)で熱溶着によって接合されて封止されている。なお、吸着剤11は必要に応じて外包材3に封入されるものであり、本発明において必須の構成ではない。
[Vacuum insulation]
FIG. 1 is a schematic view showing a cross section of a vacuum heat insulating material according to the present invention. As shown in FIG. 1, the vacuum heat insulating material 1 includes an outer packaging material 3, a core material 2 accommodated in the outer packaging material 3, and an adsorbent (getter agent 11). The outer packaging material 3 is sealed by bonding a pair of laminated films 10a and 10b by thermal welding at end portions (portion A in FIG. 1). The adsorbent 11 is enclosed in the outer packaging material 3 as necessary, and is not an essential component in the present invention.

図2は図1のA部分を拡大する図である。図2に示すように、外包材3を構成する積層膜10aは、外気に触れる外側の表面(外包材3の真空の内部と接触する表面と反対側の表面)から、第1層(表面保護層)5a、第2層(保護層)6a、第3層(ガスバリア層)7a及び熱溶着層8aがこの順で積層された多層構造を有する。積層膜10bも、積層膜10aと同様の構成を有する。上述したように、外包材3は、積層膜10a,10bが重ね合わされ、熱溶着層8a,8bの端部(熱溶着部,接合部)4が熱溶着されることによって封止されている。熱溶着層8a,8bが熱溶着によって接合されている面を接合面81と称する。   FIG. 2 is an enlarged view of portion A in FIG. As shown in FIG. 2, the laminated film 10 a constituting the outer packaging material 3 has a first layer (surface protection) from an outer surface in contact with the outside air (a surface on the opposite side to the surface in contact with the vacuum inside of the outer packaging material 3). Layer) 5a, second layer (protective layer) 6a, third layer (gas barrier layer) 7a, and heat-welded layer 8a are laminated in this order. The laminated film 10b has the same configuration as the laminated film 10a. As described above, the outer packaging material 3 is sealed by laminating the laminated films 10a and 10b and heat-welding the end portions (heat-welded portions and joint portions) 4 of the heat-welded layers 8a and 8b. A surface on which the heat-welded layers 8a and 8b are bonded by heat welding is referred to as a bonding surface 81.

本発明においては、接合面81と、熱溶着部4における熱溶着層8a,8bの外側の表面80a,80bとがなす角α(図2に拡大して図示)が、鋭角となっている(0°<α<90°)。言い換えると、熱溶着層8a,8bは、真空断熱材1の外周に向かって薄肉化している。このような構成とすることで、熱溶着層8a,8bの端面82のみが外気に露出し、熱溶着層8a,8bの他の部分は、積層膜10a,10bの他の層によってほぼ覆われる構造となっている。   In the present invention, an angle α (enlarged in FIG. 2) formed by the joining surface 81 and the outer surfaces 80a, 80b of the heat-welded layers 8a, 8b in the heat-welded portion 4 is an acute angle ( 0 ° <α <90 °). In other words, the heat welding layers 8 a and 8 b are thinned toward the outer periphery of the vacuum heat insulating material 1. With such a configuration, only the end faces 82 of the heat welding layers 8a and 8b are exposed to the outside air, and other portions of the heat welding layers 8a and 8b are almost covered with the other layers of the laminated films 10a and 10b. It has a structure.

ここで、従来の真空断熱材の構成について説明する。図3は従来の真空断熱材の断面を示す模式図であり、図4は図3のB部分を拡大する図である。図3及び図4に示すように、従来の真空断熱材1´の外包材3´は、熱溶着部4´における熱溶着層8a´,8b´の外側の表面80a´,80b´と接合面81´とが平行になっており、溶着層8a´,8b´の外気に露出している端面82a´,82b´の面積が、図2に示す本発明の場合よりも大きくなっている。   Here, the structure of the conventional vacuum heat insulating material is demonstrated. FIG. 3 is a schematic view showing a cross section of a conventional vacuum heat insulating material, and FIG. 4 is an enlarged view of a portion B in FIG. As shown in FIGS. 3 and 4, the outer packaging material 3 ′ of the conventional vacuum heat insulating material 1 ′ is bonded to the outer surfaces 80 a ′ and 80 b ′ of the heat welding layers 8 a ′ and 8 b ′ in the heat welding portion 4 ′. 81 'is parallel to each other, and the areas of the end faces 82a' and 82b 'exposed to the outside air of the weld layers 8a' and 8b 'are larger than in the case of the present invention shown in FIG.

外包材3の内部へ侵入するガスとしては、外包材3を構成する各層5a´〜8a´、5b´〜8b´の積層方向から侵入するガス(第1層(表面保護層)5aの表面から侵入するガス)30と、外包材3の積層方向と垂直な方向から侵入するガス(熱溶着層8a´,8b´の82a´,82b´端面から侵入するガス)31が考えられる。本発明者が得た知見によると、第1層(表面保護層)5a´をアルミニウム箔とし、外包材3´の積層方向からのガス30の侵入を抑制しても、外包材3´の内部の圧力が上昇し、熱伝導率が上昇(断熱特性が劣化)することがわかった。すなわち、外包材3´の内部に侵入するガスを低減するためには、外包材3´の積層方向からのガス30の侵入のみならず、熱溶着層8a´,8b´の端面82a´,82b´から侵入するガス31を抑制する必要がある。   The gas that enters the inside of the outer packaging material 3 is a gas that enters from the stacking direction of the layers 5a ′ to 8a ′ and 5b ′ to 8b ′ constituting the outer packaging material 3 (from the surface of the first layer (surface protective layer) 5a). Intruding gas) 30 and gas entering from a direction perpendicular to the stacking direction of the outer packaging material 3 (gas entering from the end faces 82a ′ and 82b ′ of the heat welding layers 8a ′ and 8b ′) 31 are conceivable. According to the knowledge obtained by the present inventor, even if the first layer (surface protective layer) 5a ′ is made of aluminum foil and the intrusion of the gas 30 from the stacking direction of the outer packaging material 3 ′ is suppressed, the inside of the outer packaging material 3 ′ It was found that the heat pressure increased and the thermal conductivity increased (insulation characteristics deteriorated). That is, in order to reduce the gas intruding into the outer packaging material 3 ′, not only the gas 30 enters from the stacking direction of the outer packaging material 3 ′ but also the end faces 82 a ′ and 82 b of the heat-welded layers 8 a ′ and 8 b ′. It is necessary to suppress the gas 31 entering from '.

上述したように、従来の構成では、外包材3´の端部は外気に接触しており、この部分から経年的にガスが侵入してしまい、真空断熱材1´の内部の圧力が高くなり、結果として熱伝導率が高くなる。特に、熱溶着層8a´,8b´は、ガスバリア層7a´,7b´よりも内部に近い位置に配置されていることや、他の層と比較して厚さが厚くなる傾向にあることから、ガスが侵入しやすい構造となる。   As described above, in the conventional configuration, the end portion of the outer packaging material 3 ′ is in contact with the outside air, and gas enters through this portion over time, and the pressure inside the vacuum heat insulating material 1 ′ increases. As a result, the thermal conductivity is increased. In particular, the heat-welded layers 8a ′ and 8b ′ are disposed closer to the inside than the gas barrier layers 7a ′ and 7b ′, and tend to be thicker than other layers. , The structure is easy for gas to enter.

そこで、本発明は、図2に示すように、熱溶着層8a,8bの端面のほとんどが、外包材3を構成する積層膜の他の層によって覆われる構造とし、熱溶着層8a,8bの外気に触れる部分を極力低減して、外包材3の内部への気体の侵入を防止し、長期に渡って断熱特性の低下を防止することができる構成とした。   Therefore, in the present invention, as shown in FIG. 2, most of the end faces of the heat-welded layers 8a and 8b are covered with other layers of the laminated film constituting the outer packaging material 3, and the heat-welded layers 8a and 8b The part which touches external air was reduced as much as possible, the gas intrusion into the outer packaging material 3 was prevented, and the heat insulating property could be prevented from deteriorating over a long period of time.

上述した特許文献1は、真空断熱材端面からのガスの侵入を抑制し断熱特性の維持を図ったものである。具体的には、真空断熱材の外被材として用いるラミネートフィルムの断面をエチレンポリビニルアルコール共重合体またはポリアクリル酸系樹脂によりコートした真空断熱材が開示されている。しかし、コートに用いているエチレンポリビニルアルコール共重合体またはポリアクリル酸系樹脂のガス透過性は比較的低いものの、透過量がゼロではないことから、断熱特性の劣化は進行してしまう。また、端面にコートする樹脂材料を使用することやコートをするプロセスが増加してしまうことからコストアップにもつながるものである。   Patent document 1 mentioned above aims at maintaining the heat insulation characteristic by suppressing the invasion of gas from the end face of the vacuum heat insulating material. Specifically, a vacuum heat insulating material in which a cross section of a laminate film used as a covering material of a vacuum heat insulating material is coated with an ethylene polyvinyl alcohol copolymer or a polyacrylic acid resin is disclosed. However, although the gas permeability of the ethylene polyvinyl alcohol copolymer or polyacrylic acid resin used in the coating is relatively low, the amount of permeation is not zero, so that the heat insulation characteristics deteriorate. In addition, the use of a resin material for coating the end face and the number of coating processes increase, leading to an increase in cost.

本発明において、角度αは、熱溶着層8a,8bの端面がほとんど覆われる角度であればよい。角度αは、3°以下とすることが好ましい。角度αを3°以下とすることで、外包材3の積層方向と垂直な方向からのガスの侵入を抑制することができる。また、角度αは溶着層の厚さや後述する熱溶着部4の幅(図2中矢印で示す部分の寸法)により変化するが、傾斜角度が高くなると溶着が困難になることから3°以下とすることが好ましい。なお、角度αは電子顕微鏡(Scanning Electron Microscope,SEM)による断面観察によって測定することができる。   In the present invention, the angle α may be an angle at which the end faces of the heat welding layers 8a and 8b are almost covered. The angle α is preferably 3 ° or less. By setting the angle α to 3 ° or less, gas intrusion from a direction perpendicular to the stacking direction of the outer packaging material 3 can be suppressed. In addition, the angle α varies depending on the thickness of the weld layer and the width of the heat-welded portion 4 (to be described later) (the size of the portion indicated by the arrow in FIG. 2). It is preferable to do. In addition, angle (alpha) can be measured by cross-sectional observation with an electron microscope (Scanning Electron Microscope, SEM).

熱溶着部(接合面)4の幅(シール幅)は、7〜20mm(7mm以上20mm以下)とすることが好ましい。熱溶着部4の幅は角度αに依存する。幅を20mmより大きくすると外包材全体に対する割合が大きくなり効率が悪く、7mm未満とすると接着強度が低下することから、7〜20mmとすることが好ましい。   The width (seal width) of the heat-welded portion (joint surface) 4 is preferably 7 to 20 mm (7 mm or more and 20 mm or less). The width of the heat-welded portion 4 depends on the angle α. If the width is larger than 20 mm, the ratio to the entire outer packaging material is increased and the efficiency is poor, and if it is less than 7 mm, the adhesive strength is reduced. Therefore, the width is preferably 7 to 20 mm.

さらに、熱溶着層8a,8bの厚さ(熱溶着前の厚さ、すなわち熱溶着部4以外の部分の厚さ)は30×10−6m以上であることが好ましい。これにより、溶着層8a,8bの端面からのガス侵入が少なくし、真空断熱材内部の圧力上昇を抑制することで熱伝導率の経時的な変化を低くすることが可能となる。 Furthermore, it is preferable that the thickness of the heat-welded layers 8a and 8b (thickness before heat-welding, that is, thickness of a portion other than the heat-welded portion 4) is 30 × 10 −6 m or more. As a result, gas intrusion from the end faces of the weld layers 8a and 8b is reduced, and the change in thermal conductivity over time can be reduced by suppressing the pressure rise inside the vacuum heat insulating material.

第1層(表面保護層)5a,5b、第2層(保護層)6a,6b、第3層(ガスバリア層)7a,7b、熱溶着層8a,8b、芯材2及び脱酸素材11には、従来用いられている材料を使用することができる。例えば、第1層(表面保護層)5a及び第2層(保護層)6aとしては、ポリエチレンテレフタレートフィルム、ポリアミドフィルム及びポリプロピレンフィルム等の延伸加工品等を用いることができる。第3層(ガスバリア層)7aとしては、金属蒸着フィルム、無機質蒸着フィルム及び金属箔等を用いることができる。熱溶着層8a,8bとしては、低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンレテレフタレートフィルム及び直鎖状低密度ポリエチレンフィルム等を用いることができる。   First layer (surface protective layer) 5a, 5b, second layer (protective layer) 6a, 6b, third layer (gas barrier layer) 7a, 7b, heat welded layer 8a, 8b, core material 2 and deoxidizing material 11 Can use a conventionally used material. For example, as the first layer (surface protective layer) 5a and the second layer (protective layer) 6a, stretched products such as a polyethylene terephthalate film, a polyamide film, and a polypropylene film can be used. As the third layer (gas barrier layer) 7a, a metal vapor-deposited film, an inorganic vapor-deposited film, a metal foil, or the like can be used. As the heat welding layers 8a and 8b, a low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, an unstretched polyethylene terephthalate film, a linear low density polyethylene film, or the like can be used.

スペーサの役割を持つ芯材2は、熱伝導率低減の観点から空隙率の高い部材を用いることが望ましい。また、芯材2の内部の空隙は減圧により気体を除去できるように、連続的につながった形状であることが望ましい。このような特性をもつ材料の例として、無機材料を繊維化し集積した繊維集合体等がある。繊維集合体は、ソーダライムガラス等のガラスを原料とし、溶融したガラス材料を延伸法や火炎法などにより繊維化することで作製され、繊維化後は吸引機能を持ったコンベア等で集積される。   As the core material 2 having the role of a spacer, it is desirable to use a member having a high porosity from the viewpoint of reducing thermal conductivity. Moreover, it is desirable that the voids inside the core material 2 have a continuously connected shape so that the gas can be removed by decompression. As an example of a material having such characteristics, there is a fiber assembly in which inorganic materials are fiberized and accumulated. A fiber assembly is made by using glass such as soda lime glass as a raw material and fiberizing the molten glass material by a stretching method or a flame method, and after fiberization, it is collected by a conveyor having a suction function. .

また、溶融延伸法で作製したガラス繊維を水に分散した後、集積しシート化する湿式法で作製した無機繊維シートや溶融延伸法で作製した繊維を集積した後に熱と圧力を加えて成形した無機繊維マット等の芯材を用いることができる。さらに、芯材である無機繊維は使用する前に繊維表面に吸着した水分を除去するために、加熱による乾燥を行うことが望ましく、これにより真空断熱材を作製する際の真空排気時間を低減することができる。   Moreover, after dispersing the glass fiber produced by the melt drawing method in water, the inorganic fiber sheet produced by the wet method for accumulating and forming the sheet or the fiber produced by the melt drawing method are accumulated and then molded by applying heat and pressure. A core material such as an inorganic fiber mat can be used. Furthermore, in order to remove the moisture adsorbed on the fiber surface before use, the inorganic fiber as the core material is desirably dried by heating, thereby reducing the time for evacuating the vacuum heat insulating material. be able to.

また、芯材2とともに減圧封止後の残存ガス及び水分を吸着する吸着剤(ゲッター剤)11を同包することが好ましい。ゲッター剤としては、モレキュラーシーブス、シリカゲル、酸化カルシウム、合成ゼオライト、活性炭、水酸化カリウム、水酸化ナトリウム及び水酸化リチウム等を用いることができる。   Further, it is preferable to enclose an adsorbent (getter agent) 11 that adsorbs the residual gas and moisture after vacuum sealing together with the core material 2. As the getter agent, molecular sieves, silica gel, calcium oxide, synthetic zeolite, activated carbon, potassium hydroxide, sodium hydroxide, lithium hydroxide and the like can be used.

[真空断熱材を備えた機器]
次に、上述した本発明に係る真空断熱材を備えた機器の例について説明する。図5は本発明に係る真空断熱材を備えた機器(冷蔵庫)の一例の断面を示す模式図であり、図6は本発明に係る真空断熱材を用いたヒートポンプ給湯器の一例の断面を示す模式図である。
[Equipment with vacuum insulation]
Next, the example of the apparatus provided with the vacuum heat insulating material which concerns on this invention mentioned above is demonstrated. FIG. 5 is a schematic view showing a cross section of an example of a device (refrigerator) provided with the vacuum heat insulating material according to the present invention, and FIG. 6 shows a cross section of an example of a heat pump water heater using the vacuum heat insulating material according to the present invention. It is a schematic diagram.

図5に示す冷蔵庫12の冷蔵庫箱体は、冷蔵庫外箱13又は冷蔵庫内箱14に、上述した本発明に係る真空断熱材を張り付けた後、冷蔵庫外箱13と冷蔵庫内箱14を組み合わせ、両者の間に形成された隙間に発泡ウレタン樹脂15を注入して作製することができる。冷蔵庫扉16についても、冷蔵庫箱体と同様に作製することができる。作製した冷蔵庫箱体と冷蔵庫扉16、コンプレッサー17、熱交換機及び電気品等の部品とを用いて冷蔵庫12を完成することができる。本発明に係る真空断熱材を用いた冷蔵庫12は、真空断熱材への外気の侵入を長期に渡って抑制することができることから、長期にわたって熱伝導率の上昇を抑制し、機器の消費電力を低く抑えられることができる。   The refrigerator box body of the refrigerator 12 shown in FIG. 5 is a combination of the refrigerator outer box 13 and the refrigerator inner box 14 after the above-described vacuum heat insulating material according to the present invention is attached to the refrigerator outer box 13 or the refrigerator inner box 14. The urethane foam resin 15 can be injected into the gap formed between the two. The refrigerator door 16 can be produced in the same manner as the refrigerator box. The refrigerator 12 can be completed using the produced refrigerator box and parts such as the refrigerator door 16, the compressor 17, the heat exchanger, and electrical equipment. Since the refrigerator 12 using the vacuum heat insulating material according to the present invention can suppress the intrusion of outside air into the vacuum heat insulating material over a long period of time, it suppresses the increase in thermal conductivity over a long period of time and reduces the power consumption of the device. It can be kept low.

図6に示すヒートポンプ給湯器18の貯湯タンク19にはヒートポンプユニット21で暖められたお湯(図示せず)が貯められている。お湯を使用しない場合にタンク内の湯温が低下すると沸かし直しを行う必要があるため、給湯器の成績係数(COP:Coefficient of Performance)が低下してしまう。図6に示すように、本発明に係る真空断熱材1を貯湯タンク19の側面に設ければ、長期に渡って熱伝導率の上昇を抑制することができるので、湯タンク19の湯音の低下を抑制することができ、機器の消費電力を低く抑えられることができる。   Hot water (not shown) warmed by the heat pump unit 21 is stored in the hot water storage tank 19 of the heat pump water heater 18 shown in FIG. When hot water is not used, when the hot water temperature in the tank is lowered, it is necessary to re-boil, so that the coefficient of performance (COP: Coefficient of Performance) of the water heater is lowered. As shown in FIG. 6, if the vacuum heat insulating material 1 according to the present invention is provided on the side surface of the hot water storage tank 19, an increase in thermal conductivity can be suppressed over a long period of time. The decrease can be suppressed, and the power consumption of the device can be suppressed low.

本発明に係る真空断熱材1は、上述した冷蔵庫12及びヒートポンプ給湯器18の他、自動販売機及び業務用のショーケース等にも好適である。   The vacuum heat insulating material 1 according to the present invention is suitable not only for the refrigerator 12 and the heat pump water heater 18 described above, but also for vending machines and commercial showcases.

[真空断熱材の製造方法]
図9は、本発明に係る真空断熱材の製造方法の一例を示すフロー図である。図9に示すように、本発明に係る真空断熱材の製造方法は、外包材3を構成する一対の積層膜10a,10bを作製する工程(S1)と、作製した一対の積層膜10a,10bの内側に芯材2を配置する工程(S2)と、一対の積層膜10a,10bの端部において、一対の積層膜10a,10bのそれぞれの熱溶着層(8a,8b)を接合(熱融着)する工程(S3)とを有する。
[Method of manufacturing vacuum insulation]
FIG. 9 is a flowchart showing an example of a method for manufacturing a vacuum heat insulating material according to the present invention. As shown in FIG. 9, the manufacturing method of the vacuum heat insulating material according to the present invention includes a step (S1) of producing a pair of laminated films 10a and 10b constituting the outer packaging material 3, and a produced pair of laminated films 10a and 10b. The step (S2) of disposing the core material 2 on the inside of the pair, and bonding (thermal fusion) of the respective heat-welded layers (8a, 8b) of the pair of laminated films 10a, 10b at the ends of the pair of laminated films 10a, 10b (Step S3).

S1では、積層膜10a(10b)を構成する表面保護層5a(5b)、保護層6a(6b)及び熱溶着層8a(8b)を重ね合わせ、ドライシール等によって接合して積層膜10a(10b)を作製することができる。   In S1, the surface protective layer 5a (5b), the protective layer 6a (6b), and the heat-welded layer 8a (8b) constituting the laminated film 10a (10b) are overlapped and joined by dry sealing or the like to be laminated film 10a (10b). ) Can be produced.

図7は本発明に係る真空断熱材の製造方法に使用するラミネーター(ヒートシーラー)の一例を示す断面模式図であり、図8は図7のC部分を拡大する図である。熱溶着層(8a,8b)の接合(熱溶着)は、図7及び図8に示す装置を用いて行う。   FIG. 7 is a schematic cross-sectional view showing an example of a laminator (heat sealer) used in the method for manufacturing a vacuum heat insulating material according to the present invention, and FIG. 8 is an enlarged view of a portion C in FIG. Joining (thermal welding) of the heat welding layers (8a, 8b) is performed using the apparatus shown in FIGS.

ヒートシーラーは、一片毎にシールが可能なバータイプのものや、連続的にシールを行うもの等を用いることができる。図7及び図8に示すヒートシーラー70は、上部シールバー77及び下部シールバー78を有するバータイプのものである。   As the heat sealer, a bar type that can be sealed for each piece, a continuous sealer, or the like can be used. The heat sealer 70 shown in FIGS. 7 and 8 is of a bar type having an upper seal bar 77 and a lower seal bar 78.

本発明に係る真空断熱材の角度αは、シールバー77,78の傾斜角度によって調整することが可能である。   The angle α of the vacuum heat insulating material according to the present invention can be adjusted by the inclination angle of the seal bars 77 and 78.

本開示における真空断熱材は、ガラス繊維を有する芯材と熱により溶着した部分が外周方向へ傾斜的に薄肉化した外包材を用いることができる。これにより、溶着層端面からのガス侵入が少なくし、真空断熱材内部の圧力上昇を抑制することで熱伝導率の経時的な変化を低くすることが可能となる。   As the vacuum heat insulating material in the present disclosure, an outer packaging material in which a core material having glass fibers and a portion welded by heat are inclined and thinned in an outer peripheral direction can be used. As a result, gas intrusion from the end face of the weld layer is reduced, and the change in thermal conductivity over time can be reduced by suppressing the pressure rise inside the vacuum heat insulating material.

以下、本発明を実施例に基づいてより詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

(1.1)実施例1の真空断熱材の作製
図1に示す構成を有する真空断熱材を作製した。芯材2には、ガラス繊維の集合体(繊維集合体)を用いた。これは、ソーダライムガラスを遠心法により溶融紡糸した平均繊維径5.0μmのグラスウール繊維を、吸引機能がついたコンベアで集積したグラスウールシートである。グラスウールシートの目付(シート状のグラスウール1mあたりの重量)は1枚当り1500g/mとなっており、本実施例では3枚重ねて使用した。また、芯材2は使用前に300mm×300mmの大きさに切断し、温度200℃の乾燥炉で30分間乾燥した。
(1.1) Production of vacuum heat insulating material of Example 1 A vacuum heat insulating material having the configuration shown in FIG. 1 was produced. As the core material 2, a glass fiber aggregate (fiber aggregate) was used. This is a glass wool sheet in which glass wool fibers having an average fiber diameter of 5.0 μm obtained by melting and spinning soda lime glass by a centrifugal method are accumulated on a conveyor having a suction function. The basis weight of the glass wool sheet (weight per 1 m 2 of sheet-like glass wool) is 1500 g / m 2 per sheet, and three sheets were used in this embodiment. Moreover, the core material 2 was cut into a size of 300 mm × 300 mm before use and dried in a drying furnace at a temperature of 200 ° C. for 30 minutes.

外包材3は、表面保護層5a,5bとしてポリアミドフィルム(厚さ25×10−6m)、保護層6a,6bとしてアルミニウム蒸着層を付加したポリエチレンテレフタレートフィルム(厚さ12×10−6m)、ガスバリア層7a,7bとし、アルミニウム蒸着したエチレン−ビニルアルコール共重合体(厚さ15×10−6m)を用いた。また、熱溶着層8a,8bとして直鎖状低密度ポリエチレンフィルム(厚さ50×10−6m)を用い、上記表面保護層5a,5b、保護層6a,6b、ガスバリア層7a,7b及び熱溶着層8a,8bをドライラミネート法により積層し、4層構成からなる積層膜(10a,10b)を作製した。 The outer packaging material 3 is a polyethylene terephthalate film (thickness 12 × 10 −6 m) with a polyamide film (thickness 25 × 10 −6 m) as the surface protective layers 5 a and 5 b and an aluminum vapor deposition layer added as the protective layers 6 a and 6 b. As the gas barrier layers 7a and 7b, an aluminum-deposited ethylene-vinyl alcohol copolymer (thickness 15 × 10 −6 m) was used. Further, a linear low density polyethylene film (thickness 50 × 10 −6 m) is used as the heat welding layers 8a and 8b, and the surface protective layers 5a and 5b, the protective layers 6a and 6b, the gas barrier layers 7a and 7b, and the heat The welding layers 8a and 8b were laminated by a dry lamination method to produce a laminated film (10a and 10b) having a four-layer structure.

作製した外包材3を380×450mmに切断し、熱溶着層8a,8b同士が接触するように重ね、3辺の端部を、熱溶着部4の幅10mmとし、傾斜構造を持つヒートシーラーで熱溶着し熱溶着した。作製した熱溶着部4の断面を電子顕微鏡にて観察したところ、熱溶着層8a,8bは図2に示す構造を有しており、その角度αは0.6°であった。   The produced outer packaging material 3 is cut into 380 × 450 mm, stacked so that the heat-welded layers 8a and 8b are in contact with each other, the end of the three sides is set to a width of 10 mm of the heat-welded portion 4, and a heat sealer having an inclined structure. Heat-welded and heat-welded. When the cross section of the produced heat welding part 4 was observed with the electron microscope, the heat welding layers 8a and 8b had the structure shown in FIG. 2, and the angle (alpha) was 0.6 degrees.

吸着剤11としては合成ゼオライト(重量5g)を用いた。乾燥により水分を除去した芯材2と、吸着剤11を一緒に袋状の外包材3中に入れた後、減圧用のチャンバー内にセットし、減圧操作を行った。減圧操作は油回転ポンプで5分間行い、続いて油拡散ポンプで5分間行った。減圧操作が終了した後、開口部(ヒートシールされていない1辺)を熱溶着により接着し封止した。熱溶着部の形状は他の3辺と同様とした。実施例1の熱溶着層の構成を、後述する表1に記載する。   As the adsorbent 11, synthetic zeolite (weight: 5 g) was used. The core material 2 from which moisture was removed by drying and the adsorbent 11 were put together in a bag-like outer packaging material 3, and then set in a vacuum chamber and subjected to a vacuum operation. The depressurization operation was performed for 5 minutes with an oil rotary pump, and then for 5 minutes with an oil diffusion pump. After the decompression operation was completed, the opening (one side that was not heat-sealed) was adhered and sealed by thermal welding. The shape of the heat welded portion was the same as the other three sides. The structure of the heat weld layer of Example 1 is described in Table 1 described later.

(1.2)実施例1の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1の熱伝導率(初期値)を英弘精機(株)製のオートラムダを用いて平均温度10℃で測定した結果、1.89mW/m・Kであった。さらに、作製した真空断熱材について、経時的な熱伝導率の変化を評価するため70℃で30日間の加熱試験を実施した。その結果、加熱試験後の熱伝導率は3.01mW/m・Kとなり、熱伝導率の変化分を初期値で割って100倍した、変化率は59となった。実施例1の真空断熱材の熱伝導率の評価結果を、後述する表1に併記する。
(1.2) Evaluation of thermal conductivity of vacuum heat insulating material of Example 1 The thickness of the manufactured vacuum heat insulating material 1 was 18 mm. The heat conductivity (initial value) of the produced vacuum heat insulating material 1 was measured at an average temperature of 10 ° C. using an auto lambda manufactured by Eihiro Seiki Co., Ltd. As a result, it was 1.89 mW / m · K. Furthermore, the produced vacuum heat insulating material was subjected to a heating test for 30 days at 70 ° C. in order to evaluate the change in thermal conductivity over time. As a result, the thermal conductivity after the heating test was 3.01 mW / m · K, and the change rate of thermal conductivity was 59 by dividing the change in thermal conductivity by the initial value and multiplying by 100. The evaluation results of the thermal conductivity of the vacuum heat insulating material of Example 1 are also shown in Table 1 described later.

(1.3)実施例1の真空断熱材を備えた機器の作製と評価
実施例1の真空断熱材を用いて図5に示す冷蔵庫を作製し、消費電力を測定したところ、実施例1の真空断熱材を用いない場合と比較して約40%低くなった。このことから、本実施例の真空断熱材を用いることで機器の消費電力を低く抑えられることが明らかとなった。
(1.3) Production and evaluation of equipment provided with vacuum heat insulating material of Example 1 The refrigerator shown in FIG. 5 was produced using the vacuum heat insulating material of Example 1, and the power consumption was measured. Compared to the case where no vacuum heat insulating material was used, the temperature was reduced by about 40%. From this, it became clear that the power consumption of the equipment can be kept low by using the vacuum heat insulating material of the present embodiment.

(2.1)実施例2の真空断熱材の作製
実施例2の真空断熱材は、外包材3の表面保護層5a,5b、保護層6a,6b及びガスバリア層7a,7bについては実施例1と同様である。実施例2では、熱溶着層8a,8bとして高密度ポリエチレンフィルム(厚さ75×10−6m)を用い、熱溶着部の幅を7mmとした。実施例1と同様に積層膜(10a,10b)を作製し、顕微鏡によって断面を観察したところ、角度αは1.2°であった。実施例2の熱溶着層の構成を、後述する表1に併記する。
(2.1) Production of vacuum heat insulating material of Example 2 The vacuum heat insulating material of Example 2 is the same as that of Example 1 for the surface protective layers 5a and 5b, protective layers 6a and 6b, and gas barrier layers 7a and 7b of the outer packaging material 3. It is the same. In Example 2, a high-density polyethylene film (thickness 75 × 10 −6 m) was used as the heat-welded layers 8a and 8b, and the width of the heat-welded portion was 7 mm. When a laminated film (10a, 10b) was produced in the same manner as in Example 1 and the cross section was observed with a microscope, the angle α was 1.2 °. The structure of the heat-welded layer of Example 2 is also shown in Table 1 described later.

(2.2)実施例2の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1の熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.79mW/m・K加熱試験後の熱伝導率は2.75mW/m・K、熱変化率は54となった。実施例2の真空断熱材の熱伝導率の評価結果を、後述する表1に併記する。
(2.2) Evaluation of thermal conductivity of vacuum heat insulating material of Example 2 The thickness of the manufactured vacuum heat insulating material 1 was 18 mm. When the thermal conductivity (initial value) of the manufactured vacuum heat insulating material 1 and the thermal conductivity and change rate after the acceleration test were evaluated using the same apparatus and conditions as in Example 1, the thermal conductivity (initial value) ) Showed a thermal conductivity of 2.75 mW / m · K after a 1.79 mW / m · K heating test, and a thermal change rate of 54. The evaluation results of the thermal conductivity of the vacuum heat insulating material of Example 2 are also shown in Table 1 described later.

(2.3)実施例2の真空断熱材を備えた機器の作製と評価
実施例2の真空断熱材1を複数枚用いて図6に示すヒートポンプ給湯器18を作製した。本実施例の真空断熱材を適用した場合COPに約10%の改善が確認された。このことから、本実施例の真空断熱材を用いることで機器の消費電力を低く抑えられることが明らかとなった。
(2.3) Production and Evaluation of Equipment Comprising Vacuum Insulating Material of Example 2 A heat pump water heater 18 shown in FIG. 6 was produced using a plurality of the vacuum insulating materials 1 of Example 2. About 10% improvement in COP was confirmed when the vacuum heat insulating material of the present Example was applied. From this, it became clear that the power consumption of the equipment can be kept low by using the vacuum heat insulating material of the present embodiment.

(3.1)実施例3の真空断熱材の作製
実施例3の真空断熱材は、外包材3の表面保護層5a,5b、保護層6a,6b及びガスバリア層7a,7bについては実施例1及び2と同様である。実施例3では、熱溶着層8a,8bとして直鎖状低密度ポリエチレンフィルム(厚さ50×10−6m)を用い、熱溶着部の幅を20mmとした。実施例1と同様に積層膜(10a,10b)を作製し、顕微鏡によって断面を観察したところ、角度αは0.3°であった。実施例3の熱溶着層の構成を、後述する表1に併記する。
(3.1) Production of vacuum heat insulating material of Example 3 The vacuum heat insulating material of Example 3 is the same as that of Example 1 for the surface protective layers 5a, 5b, protective layers 6a, 6b and gas barrier layers 7a, 7b of the outer packaging material 3. And 2. In Example 3, a linear low density polyethylene film (thickness 50 × 10 −6 m) was used as the heat welding layers 8a and 8b, and the width of the heat welding portion was 20 mm. When a laminated film (10a, 10b) was produced in the same manner as in Example 1 and the cross section was observed with a microscope, the angle α was 0.3 °. The configuration of the heat-welded layer of Example 3 is also shown in Table 1 described later.

(3.2)実施例3の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1の
熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.83mW/m・K、加熱試験後の熱伝導率は2.8mW/m・K、変化率は53となった。実施例3の真空断熱材の熱伝導率の評価結果を、後述する表1に併記する。
(3.2) Evaluation of thermal conductivity of vacuum heat insulating material of Example 3 The thickness of the manufactured vacuum heat insulating material 1 was 18 mm. When the thermal conductivity (initial value) of the manufactured vacuum heat insulating material 1 and the thermal conductivity and change rate after the acceleration test were evaluated using the same apparatus and conditions as in Example 1, the thermal conductivity (initial value) ) Was 1.83 mW / m · K, the thermal conductivity after the heating test was 2.8 mW / m · K, and the rate of change was 53. The evaluation results of the thermal conductivity of the vacuum heat insulating material of Example 3 are also shown in Table 1 described later.

(4.1)実施例4の真空断熱材の作製
実施例4の真空断熱材は、外包材3の表面保護層5a,5b、保護層6a,6b及びガスバリア層7a,7bについては実施例1〜3と同様である。実施例4では、熱溶着層8a,8bとして直鎖状低密度ポリエチレンフィルム(厚さ100×10−6m)を用い、熱溶着部の幅を7mmとした。実施例1と同様に積層膜(10a,10b)を作製し、顕微鏡によって断面を観察したところ、熱溶着層は外周部へ向かって傾斜しており、その角度αは1.6°であった。実施例4の熱溶着層の構成を、後述する表1に併記する。
(4.1) Production of vacuum heat insulating material of Example 4 The vacuum heat insulating material of Example 4 is the same as that of Example 1 for the surface protective layers 5a, 5b, protective layers 6a, 6b and gas barrier layers 7a, 7b of the outer packaging material 3. Same as ~ 3. In Example 4, a linear low density polyethylene film (thickness 100 × 10 −6 m) was used as the heat welding layers 8a and 8b, and the width of the heat welding portion was 7 mm. When the laminated films (10a, 10b) were produced in the same manner as in Example 1 and the cross section was observed with a microscope, the heat-welded layer was inclined toward the outer periphery, and the angle α was 1.6 °. . The structure of the heat-welded layer of Example 4 is also shown in Table 1 described later.

(4.2)実施例4の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1の熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.83mW/m・K、加熱試験後の熱伝導率は2.92mW/m・K、変化率は60となった。実施例4の真空断熱材の熱伝導率の評価結果を、後述する表1に併記する。
(4.2) Evaluation of thermal conductivity of vacuum heat insulating material of Example 4 The thickness of the manufactured vacuum heat insulating material 1 was 18 mm. When the thermal conductivity (initial value) of the manufactured vacuum heat insulating material 1 and the thermal conductivity and change rate after the acceleration test were evaluated using the same apparatus and conditions as in Example 1, the thermal conductivity (initial value) ) Was 1.83 mW / m · K, the thermal conductivity after the heating test was 2.92 mW / m · K, and the rate of change was 60. The evaluation results of the thermal conductivity of the vacuum heat insulating material of Example 4 are also shown in Table 1 described later.

(5.1)比較例1の真空断熱材の作製
図4に示すように、熱溶着部4´における角度αをつけず、熱溶着層8a´,8b´の外側の表面80a´,80b´と接合面81´とが平行になるようにしたこと以外は実施例1と同様にして比較例1の積層膜10a´,10b´を作製した。
(5.1) Production of Vacuum Heat Insulating Material of Comparative Example 1 As shown in FIG. 4, the outer surfaces 80a ′ and 80b ′ of the heat-welded layers 8a ′ and 8b ′ are not provided with the angle α in the heat-welded portion 4 ′. The laminated films 10a ′ and 10b ′ of Comparative Example 1 were produced in the same manner as in Example 1 except that the bonding surface 81 ′ and the bonding surface 81 ′ were parallel to each other.

(5.2)比較例1の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1´の熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.83mW/m・K、加熱試験後の熱伝導率は3.9mW/m・K、変化率は113となり、実施例1と比較して大幅に高い値となった。これは、熱溶着層が外気に接触する面積が大きくなり、ガスの透過量が高くなったためと考える。
(5.2) Evaluation of thermal conductivity of vacuum heat insulating material of Comparative Example 1 The thickness of the manufactured vacuum heat insulating material 1 was 18 mm. When the thermal conductivity (initial value) of the manufactured vacuum heat insulating material 1 ′, the thermal conductivity and the change rate after the acceleration test were evaluated using the same apparatus and conditions as in Example 1, the thermal conductivity (initial value) Value) was 1.83 mW / m · K, the thermal conductivity after the heating test was 3.9 mW / m · K, and the rate of change was 113, which was significantly higher than that of Example 1. This is considered to be because the area where the heat-welded layer is in contact with the outside air is increased and the amount of gas permeation is increased.

(6.1)比較例2の真空断熱材の作製
図4に示すように、角度αをつけず、熱溶着部4´における熱溶着層8a´,8b´の外側の表面80a´,80b´と接合面81´とが平行になるようにしたこと以外は実施例2と同様にして比較例2の積層膜10a´,10b´を作製した。
(6.1) Production of Vacuum Insulating Material of Comparative Example 2 As shown in FIG. 4, the outer surfaces 80 a ′ and 80 b ′ of the heat welding layers 8 a ′ and 8 b ′ in the heat welding part 4 ′ are not provided with the angle α. The laminated films 10a ′ and 10b ′ of Comparative Example 2 were produced in the same manner as in Example 2 except that the bonding surface 81 ′ and the bonding surface 81 ′ were parallel to each other.

(6.2)比較例2の真空断熱材の熱伝導率の評価
作製した真空断熱材1の厚さは18mmであった。作製した真空断熱材1´の熱伝導率(初期値)、加速試験後の熱伝導率及び変化率を、実施例1と同じ装置及び条件を用いて評価を行ったところ、熱伝導率(初期値)は1.85mW/m・K、加熱試験後の熱伝導率は3.78mW/m・K、変化率は104となり、実施例2と比較して大幅に高い値となった。これは、熱溶着層が外気に接触する面積が大きくなり、ガスの透過量が高くなったためと考える。
(6.2) Evaluation of thermal conductivity of vacuum heat insulating material of Comparative Example 2 The thickness of the manufactured vacuum heat insulating material 1 was 18 mm. When the thermal conductivity (initial value) of the manufactured vacuum heat insulating material 1 ′, the thermal conductivity and the change rate after the acceleration test were evaluated using the same apparatus and conditions as in Example 1, the thermal conductivity (initial value) Value) was 1.85 mW / m · K, the thermal conductivity after the heating test was 3.78 mW / m · K, and the rate of change was 104, which was significantly higher than that of Example 2. This is considered to be because the area where the heat-welded layer is in contact with the outside air is increased and the amount of gas permeation is increased.

Figure 2018141517
Figure 2018141517

以上説明したように、本発明によれば、外包材の内部への気体の侵入を防止し、長期に渡って断熱特性の低下を防止することが可能な真空断熱材、それを備えた機器及び真空断熱材の製造方法を提供することができる。   As described above, according to the present invention, a vacuum heat insulating material capable of preventing gas from entering the outer packaging material and preventing deterioration of heat insulating properties over a long period of time, and an apparatus equipped with the same A manufacturing method of a vacuum heat insulating material can be provided.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1,1´…真空断熱材、2…芯材、3,3´…外包材、4,4´…熱溶着部(接合部)、5a,5b,5a´,5b´…第1層(表面保護層)、6a,6b,6a´,6b´…第2層(保護層)、7a,7b,7a´,7b´…第3層(ガスバリア層)、8a,8b,8a´,8b´…熱溶着層、80a,80b,80a´、80b´…熱溶着層の外側の表面、81,81´…接合面、82,82a´,82b´…熱溶着層の端面、10a,10b,10a´,10b´…積層膜、11…吸着剤(ゲッター剤)、12…冷蔵庫、13…冷蔵庫外箱、14…冷蔵庫内箱、15…発泡ウレタン樹脂、16…冷蔵庫扉、17…コンプレッサー、18…ヒートポンプ給湯器、19…貯湯タンク、20…貯湯タンクユニット、21…ヒートポンプユニット、70…ヒートシーラー、71…支持台、72…台座、73…、アーム、74…本体、76…止め具、77…上部シールバー、78…下部シールバー、79…上部ヒーター、80…下部ヒーター。   DESCRIPTION OF SYMBOLS 1,1 '... Vacuum heat insulating material, 2 ... Core material, 3, 3' ... Outer packaging material, 4, 4 '... Thermal welding part (joining part), 5a, 5b, 5a', 5b '... 1st layer (surface Protective layer), 6a, 6b, 6a ', 6b' ... Second layer (protective layer), 7a, 7b, 7a ', 7b' ... Third layer (gas barrier layer), 8a, 8b, 8a ', 8b' ... Thermal welding layer, 80a, 80b, 80a ', 80b' ... outer surface of the thermal welding layer, 81, 81 '... bonding surface, 82, 82a', 82b '... end face of the thermal welding layer, 10a, 10b, 10a' , 10b '... laminated film, 11 ... adsorbent (getter agent), 12 ... refrigerator, 13 ... refrigerator outer box, 14 ... refrigerator inner box, 15 ... foamed urethane resin, 16 ... refrigerator door, 17 ... compressor, 18 ... heat pump Water heater, 19 ... Hot water storage tank, 20 ... Hot water storage tank unit, 21 ... Heat pump unit, 70 ... Toshira, 71 ... support platform, 72 ... base, 73 ... arm, 74 ... body, 76 ... stopper, 77 ... upper seal bar, 78 ... lower seal bar 79 ... upper heater, 80 ... lower heater.

Claims (7)

芯材と、前記芯材を挟んで対向して設けられた一対の積層膜からなる外包材と、を備え、
前記積層膜は、外側から順に、表面保護層、保護層、ガスバリア層及び熱溶着層がこの順で積層された物であり、
前記一対の積層膜の端部において、前記一対の積層膜のそれぞれの前記熱溶着層が互いに接合されており、
前記一対の積層膜のそれぞれの前記熱溶着層の接合面と、前記一対の積層膜のそれぞれの前記熱溶着層の外側の表面とがなす角αが鋭角であることを特徴とする真空断熱材。
A core material, and an outer packaging material made of a pair of laminated films provided facing each other with the core material interposed therebetween,
The laminated film is a product in which a surface protective layer, a protective layer, a gas barrier layer, and a heat welding layer are laminated in this order from the outside,
At the end portions of the pair of laminated films, the thermal welding layers of the pair of laminated films are bonded to each other,
A vacuum heat insulating material characterized in that an angle α formed between a bonding surface of each of the pair of laminated films and the outer surface of each of the pair of laminated films is an acute angle. .
前記αは、3°以下であることを特徴とする請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein α is 3 ° or less. 前記接合面の幅が7〜20mmであることを特徴する請求項1又は2に記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein a width of the joint surface is 7 to 20 mm. 前記熱溶着層の接合面以外の部分の厚さが30×10−6m以上であることを特徴とする請求項1又は2に記載の真空断熱材。 3. The vacuum heat insulating material according to claim 1, wherein a thickness of a portion other than a bonding surface of the heat welding layer is 30 × 10 −6 m or more. 芯材と、前記芯材を挟んで対向して設けられた一対の積層膜からなる外包材と、を備え、
前記積層膜は、外側から順に、表面保護層、保護層、ガスバリア層及び熱溶着層がこの順で積層された物であり、
前記一対の積層膜の端部において、前記一対の積層膜のそれぞれの前記熱溶着層が互いに接合されており、
前記一対の積層膜のそれぞれの前記熱溶着層の接合面と、前記一対の積層膜のそれぞれの前記熱溶着層の外側の表面とがなす角αが鋭角であることを特徴とする真空断熱材を備えた機器。
A core material, and an outer packaging material made of a pair of laminated films provided facing each other with the core material interposed therebetween,
The laminated film is a product in which a surface protective layer, a protective layer, a gas barrier layer, and a heat welding layer are laminated in this order from the outside,
At the end portions of the pair of laminated films, the thermal welding layers of the pair of laminated films are bonded to each other,
A vacuum heat insulating material characterized in that an angle α formed between a bonding surface of each of the pair of laminated films and the outer surface of each of the pair of laminated films is an acute angle. With equipment.
前記機器が、冷蔵庫又はヒートポンプ給湯器であることを特徴とする請求項5記載の機器。   6. The device according to claim 5, wherein the device is a refrigerator or a heat pump water heater. 芯材と、前記芯材を挟んで対向して設けられた一対の積層膜からなる外包材と、を備え、前記積層膜は、外側から順に、表面保護層、保護層、ガスバリア層及び熱溶着層がこの順で積層された物である真空断熱材の製造方法であって、
前記一対の積層膜を作製する工程と、
前記一対の積層膜の内部に前記芯材を配置し、前記一対の積層膜の端部において、前記一対の積層膜のそれぞれの前記熱溶着層を接合する工程と、を有し、
前記一対の積層膜のそれぞれの前記熱溶着層を接合する工程において、前記一対の積層膜のそれぞれの前記熱溶着層の接合面と、前記一対の積層膜のそれぞれの前記熱溶着層の外側の表面とがなす角αが鋭角となるように前記一対の積層膜の前記熱溶着層を熱溶着することを特徴とする真空断熱材の製造方法。
A core material, and an outer packaging material made of a pair of laminated films provided opposite to each other with the core material interposed therebetween, the laminated film including a surface protective layer, a protective layer, a gas barrier layer, and heat welding in order from the outside. A method for producing a vacuum heat insulating material in which layers are laminated in this order,
Producing the pair of laminated films;
Arranging the core material inside the pair of laminated films, and joining the respective heat-welded layers of the pair of laminated films at the ends of the pair of laminated films,
In the step of bonding the thermal welding layers of the pair of laminated films, the bonding surfaces of the thermal welding layers of the pair of laminated films and the outer sides of the thermal welding layers of the pair of laminated films, respectively. A method for manufacturing a vacuum heat insulating material, characterized in that the heat-welded layer of the pair of laminated films is heat-welded so that an angle α formed with the surface is an acute angle.
JP2017036055A 2017-02-28 2017-02-28 Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material Expired - Fee Related JP6793571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036055A JP6793571B2 (en) 2017-02-28 2017-02-28 Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036055A JP6793571B2 (en) 2017-02-28 2017-02-28 Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material

Publications (2)

Publication Number Publication Date
JP2018141517A true JP2018141517A (en) 2018-09-13
JP6793571B2 JP6793571B2 (en) 2020-12-02

Family

ID=63527835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036055A Expired - Fee Related JP6793571B2 (en) 2017-02-28 2017-02-28 Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP6793571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133655A (en) * 2019-02-13 2020-08-31 日鉄日新製鋼株式会社 Method for manufacturing vacuum heat insulating panel, and vacuum heat insulating panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077790A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, manufacturing method of vacuum heat insulating material and outfit for protection against cold using vacuum heat insulating material
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method
JP2008021634A (en) * 2006-07-10 2008-01-31 Lg Chem Ltd Secondary battery with security of sealing part improved
US20080286515A1 (en) * 2005-10-18 2008-11-20 Dong-Ju Jung Vacuum Insulation Panel and Insulation Structure of Refrigerator Applying the Same
JP2011192603A (en) * 2010-03-16 2011-09-29 Toppan Printing Co Ltd Container for lithium ion batteries, lithium ion battery with the same, and method for manufacturing of container for lithium ion battery
JP2013194761A (en) * 2012-03-16 2013-09-30 Panasonic Corp Vacuum insulating material and heat insulation box body
WO2014097630A1 (en) * 2012-12-20 2014-06-26 パナソニック株式会社 Vacuum heat insulation material, heat insulation box comprising same, and method for manufacturing vacuum heat insulation material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077790A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, manufacturing method of vacuum heat insulating material and outfit for protection against cold using vacuum heat insulating material
JP2007016927A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and its manufacturing method
US20080286515A1 (en) * 2005-10-18 2008-11-20 Dong-Ju Jung Vacuum Insulation Panel and Insulation Structure of Refrigerator Applying the Same
JP2008021634A (en) * 2006-07-10 2008-01-31 Lg Chem Ltd Secondary battery with security of sealing part improved
JP2011192603A (en) * 2010-03-16 2011-09-29 Toppan Printing Co Ltd Container for lithium ion batteries, lithium ion battery with the same, and method for manufacturing of container for lithium ion battery
JP2013194761A (en) * 2012-03-16 2013-09-30 Panasonic Corp Vacuum insulating material and heat insulation box body
WO2014097630A1 (en) * 2012-12-20 2014-06-26 パナソニック株式会社 Vacuum heat insulation material, heat insulation box comprising same, and method for manufacturing vacuum heat insulation material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133655A (en) * 2019-02-13 2020-08-31 日鉄日新製鋼株式会社 Method for manufacturing vacuum heat insulating panel, and vacuum heat insulating panel
JP7269468B2 (en) 2019-02-13 2023-05-09 日本製鉄株式会社 Vacuum insulation panel manufacturing method and vacuum insulation panel

Also Published As

Publication number Publication date
JP6793571B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
KR101286342B1 (en) Core material for vacuum insulation panel, method for fabricating the same and vacuum insulation panel using the same
KR101260557B1 (en) Vacuum insulation pannel and method for fabricating the same
JP2013540607A5 (en)
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
KR20120097326A (en) Material for vacuum insulation pannel and method for fabricating the same
JP2010053979A (en) Vacuum heat insulating material, and heat insulating box and refrigerator using the same
JP2010090905A (en) Vacuum heat insulation material
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP2010065711A (en) Vacuum heat insulating material and refrigerator using the same
JP2015007450A (en) Vacuum heat insulation material vacuum-packaged doubly
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
TWI604150B (en) Vacuum heat insulation material and heat insulation box
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
KR101525297B1 (en) Core material having glass wool for vacuum insulation, method for manufacturing the same and vacuum insulation using the same
JP2006316872A (en) Vacuum heat insulating material and heat retaining equipment adopting the same
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP4997198B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP6929223B2 (en) Vacuum heat insulating material, manufacturing method of vacuum heat insulating material and outer packaging material for vacuum heat insulating material
JP2016507704A (en) Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same
JP2012057745A (en) Vacuum heat insulation material
JP2011208763A (en) Vacuum heat insulating material
JP5216510B2 (en) Vacuum insulation material and equipment using the same
CN214272448U (en) Vacuum heat-insulating plate
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201110

R150 Certificate of patent or registration of utility model

Ref document number: 6793571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees