JP2016507704A - Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same - Google Patents

Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same Download PDF

Info

Publication number
JP2016507704A
JP2016507704A JP2015546370A JP2015546370A JP2016507704A JP 2016507704 A JP2016507704 A JP 2016507704A JP 2015546370 A JP2015546370 A JP 2015546370A JP 2015546370 A JP2015546370 A JP 2015546370A JP 2016507704 A JP2016507704 A JP 2016507704A
Authority
JP
Japan
Prior art keywords
heat insulating
core material
vacuum heat
melamine resin
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015546370A
Other languages
Japanese (ja)
Inventor
キム・ミョンヒ
イ・ウンキ
チョイ・チョルジュン
キム・ジムン
チ・スンウク
チョン・ビョンヂュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LX Hausys Ltd
Original Assignee
LG Hausys Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Hausys Ltd filed Critical LG Hausys Ltd
Publication of JP2016507704A publication Critical patent/JP2016507704A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0285Condensation resins of aldehydes, e.g. with phenols, ureas, melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/06Open cell foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine

Abstract

【課題】一般のガラス繊維ウールを芯材として使用したときに比べて製造単価を節減することができ、長期耐久性に優れる真空断熱材を提供すること。【解決手段】開放気泡率が80%以上であるメラミン樹脂硬化発泡体で形成された真空断熱材用芯材。また、前記芯材及び前記芯材を真空包装する外被材を含む真空断熱材及びその製造方法。なお、前記メラミン樹脂硬化発泡体は、平均粒子径が50μm〜500μmである気泡を含むことや、圧縮強度が1.2kgf/cm2〜5.0kgf/cm2であることが好ましい。さらに、前記メラミン樹脂硬化発泡体は三次元網状骨格構造を含むことがより好ましい。【選択図】図1An object of the present invention is to provide a vacuum heat insulating material capable of reducing the manufacturing unit cost compared to the case of using general glass fiber wool as a core material and excellent in long-term durability. A vacuum insulation core material made of a melamine resin cured foam having an open cell ratio of 80% or more. Moreover, the vacuum heat insulating material containing the said core material and the jacket material which vacuum-wraps the said core material, and its manufacturing method. In addition, it is preferable that the said melamine resin cured foam contains the bubble whose average particle diameter is 50 micrometers-500 micrometers, or that compressive strength is 1.2 kgf / cm2-5.0 kgf / cm2. Furthermore, it is more preferable that the melamine resin cured foam contains a three-dimensional network skeleton structure. [Selection] Figure 1

Description

本発明は、メラミン樹脂硬化発泡体からなる真空断熱材用芯材とこれを用いた真空断熱材及びその製造方法に関する。   The present invention relates to a vacuum heat insulating core material made of a melamine resin cured foam, a vacuum heat insulating material using the same, and a method for producing the same.

真空断熱材は、一般にガラス繊維のように熱伝導率が低く、ガス発生率が少ない無機化合物を芯材として使用し、ガスバリア性に優れた複合プラスチックラミネートフィルムからなる封止体で外部を取り囲みながら内部を減圧した後、ガスバリア性フィルム同士の積層部分をヒートシーリングすることによって製造され、電子製品の断熱材として用いられる。既存の真空断熱材の芯材として使用されるガラス繊維ウールは、バルキー(bulky)なガラス繊維を集綿し、熱圧着工程を通じて製造した後、これを芯材として使用していたので、真空断熱材の製造時に0.45W/mK水準の断熱性能確保が可能であった。   Vacuum insulation is generally made of an inorganic compound with low thermal conductivity and low gas generation rate, such as glass fiber, as a core material, and encloses the outside with a sealed body made of a composite plastic laminate film with excellent gas barrier properties. After depressurizing the inside, it is manufactured by heat sealing the laminated portion of the gas barrier films and used as a heat insulating material for electronic products. The glass fiber wool used as the core material of the existing vacuum insulation material is gathered from bulky glass fibers and manufactured through the thermocompression process, and then used as the core material. It was possible to ensure a heat insulation performance of 0.45 W / mK level when manufacturing the material.

しかし、ガラス繊維ウールを真空断熱材の芯材として使用する場合、優れた初期熱性能の確保は可能であったが、長時間の使用時、外被材フィルムを通じて透過されるガスによって熱伝導率が上昇し、長期耐久性が低下するという問題があった。その一方、ガラス繊維ボードを真空断熱材用芯材として長期間使う場合にも、ガスの透過時、ガラス繊維ボードの小さい気孔直径によるガスの熱伝逹を最小化し、長期耐久性に優れるという長所はあったが、初期断熱性能が低下するという短所があった。   However, when glass fiber wool is used as the core material for vacuum insulation, it was possible to ensure excellent initial thermal performance. As a result, there was a problem that long-term durability decreased. On the other hand, even when glass fiber board is used as a vacuum insulation core material for a long period of time, it has the advantage of minimizing the heat transfer of gas due to the small pore diameter of the glass fiber board during gas permeation and excellent long-term durability. However, there was a disadvantage that the initial heat insulation performance was lowered.

結果的に、既存の真空断熱材において、芯材としてガラス繊維ウールを使用した場合は、長期耐久性能の低下によって短い寿命を有するようになり、10年以上の寿命を要求する建築分野のみならず、家電分野への適用時、信頼性に問題があった。また、芯材としてガラス繊維ボードを使用した場合は、製造単価が高く、成形特性が低下するので、断熱材としての応用に限界があり、真空断熱材用芯材の材料に対する研究の必要性が増加している。   As a result, when glass fiber wool is used as a core material in existing vacuum heat insulating materials, it has a short life due to a decrease in long-term durability performance, and not only in the construction field requiring a life of 10 years or more. There was a problem in reliability when applied to the home appliance field. In addition, when glass fiber board is used as the core material, the manufacturing cost is high and the molding characteristics are reduced, so there is a limit to application as a heat insulating material, and there is a need for research on the core material for vacuum heat insulating material. It has increased.

なしNone

本発明の一具現例は、製造単価が低いと共に、断熱性能と長期耐久性能に優れた真空断熱材用芯材を提供する。   One embodiment of the present invention provides a core material for a vacuum heat insulating material that has a low manufacturing cost and is excellent in heat insulating performance and long-term durability performance.

本発明の他の具現例は、熱伝逹経路を最小化することによって断熱性能を優秀にし、全体の重さを軽量化することによって活用度を多様化できる真空断熱材を提供する。   Another embodiment of the present invention provides a vacuum heat insulating material that can improve the heat insulation performance by minimizing the heat transfer path and diversify the utilization by reducing the weight of the whole.

本発明の一具現例において、開放気泡率(Open Cell Content)が80%以上であるメラミン樹脂硬化発泡体で形成された真空断熱材用芯材を提供する。   In one embodiment of the present invention, there is provided a core material for a vacuum heat insulating material formed of a melamine resin cured foam having an open cell content of 80% or more.

前記メラミン樹脂硬化発泡体は、平均粒子径が約50μm〜約500μmである気泡を含んでもよい。
前記メラミン樹脂硬化発泡体の圧縮強度は、約1.2kgf/cm〜約5.0kgf/cmであってもよい。
前記メラミン樹脂硬化発泡体は、三次元網状骨格構造を含んでもよい。
The melamine resin cured foam may include bubbles having an average particle diameter of about 50 μm to about 500 μm.
The compression strength of the melamine resin cured foam may be about 1.2 kgf / cm 2 to about 5.0 kgf / cm 2 .
The melamine resin cured foam may include a three-dimensional network skeleton structure.

前記骨格構造は、気泡壁を含まなくてもよい。   The skeletal structure may not include a bubble wall.

本発明の他の具現例において、前記メラミン樹脂硬化発泡体で形成された芯材;及び前記芯材を真空包装する外被材;を含む真空断熱材を提供する。   In another embodiment of the present invention, there is provided a vacuum heat insulating material comprising: a core material formed of the melamine resin cured foam; and a jacket material for vacuum-packaging the core material.

前記真空断熱材は、前記芯材に付着または挿入され、約25%以上の水分吸収率を有するゲッター材をさらに含んでもよい。   The vacuum heat insulating material may further include a getter material attached to or inserted into the core material and having a moisture absorption rate of about 25% or more.

前記外被材は、外部から表面保護層、金属バリア層及び接着層の積層構造を含んでもよい。   The jacket material may include a laminated structure of a surface protective layer, a metal barrier layer, and an adhesive layer from the outside.

前記表面保護層は、ポリエチレンテレフタレート(PET)及びナイロンフィルムの層構造を有し、前記金属バリア層は、アルミホイルで形成され、前記接着層は、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線形低密度ポリエチレン(LLDPE)、未延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、エチレン―酢酸ビニル共重合体(EVA)、エチレン―ビニルアルコール共重合体(EVOH)及びこれらの組み合わせからなる群から選ばれた一つ以上であってもよい。   The surface protective layer has a layer structure of polyethylene terephthalate (PET) and nylon film, the metal barrier layer is formed of aluminum foil, and the adhesive layer includes high density polyethylene (HDPE) and low density polyethylene (LDPE). ), Linear low density polyethylene (LLDPE), unstretched polypropylene (CPP), stretched polypropylene (OPP), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), ethylene-vinyl acetate copolymer (EVA), ethylene- It may be one or more selected from the group consisting of vinyl alcohol copolymer (EVOH) and combinations thereof.

前記表面保護層と金属バリア層との間の接着及び金属バリア層と接着層との間の接着は、それぞれポリウレタン(PU)系樹脂によって行われてもよい。   The adhesion between the surface protective layer and the metal barrier layer and the adhesion between the metal barrier layer and the adhesive layer may be performed by a polyurethane (PU) resin, respectively.

本発明の更に他の具現例において、前記メラミン樹脂硬化発泡体の芯材を製造するステップ;前記芯材に対して約50℃〜約250℃の温度で約0.5Pa〜約10Paの圧力を約10分〜約200分間印加し、残余物質を除去処理するステップ;及び前記芯材を外被材で取り囲んだ後、真空包装するステップ;を含む真空断熱材製造方法を提供する。   In still another embodiment of the present invention, a core material of the melamine resin cured foam is produced; a pressure of about 0.5 Pa to about 10 Pa is applied to the core material at a temperature of about 50 ° C. to about 250 ° C. A method for producing a vacuum heat insulating material, comprising: applying for about 10 minutes to about 200 minutes to remove residual substances; and surrounding the core material with an outer cover material and then vacuum packaging.

前記真空断熱材は、一般のガラス繊維ウールを芯材として使用したときに比べて製造単価を節減することができ、長期耐久性に優れるという長所を有する。また、熱伝逹経路を最小化することによって、断熱性能が約0.03W/mK未満と優秀になる。   The vacuum heat insulating material is advantageous in that it can save a manufacturing unit cost and is excellent in long-term durability as compared with the case where general glass fiber wool is used as a core material. Also, by minimizing the heat transfer path, the heat insulation performance becomes excellent at less than about 0.03 W / mK.

また、前記真空断熱材の製造方法は、メラミン発泡体から排出される有機化合物を最小化することによって真空度の低下を防止し、ガス放出(Out gassing)が発生しないため断熱性能が低下せず、少なくとも約10年以上使用できる真空断熱材を提供することができる。   Further, the manufacturing method of the vacuum heat insulating material prevents a decrease in the vacuum degree by minimizing the organic compound discharged from the melamine foam, and does not cause outgassing, so that the heat insulating performance is not deteriorated. In addition, a vacuum heat insulating material that can be used for at least about 10 years or more can be provided.

本発明の一実施例に係る真空断熱材用芯材を示した概略図である。It is the schematic which showed the core material for vacuum heat insulating materials which concerns on one Example of this invention. 本発明の一実施例に係る真空断熱材用芯材の構造を示した概略図である。It is the schematic which showed the structure of the core material for vacuum heat insulating materials which concerns on one Example of this invention. (a)及び(b)は、本発明の一実施例に係る真空断熱材を示した断面図である。(A) And (b) is sectional drawing which showed the vacuum heat insulating material which concerns on one Example of this invention. 本発明の一実施例に係る真空断熱材に含まれる外被材の断面図である。It is sectional drawing of the jacket material contained in the vacuum heat insulating material which concerns on one Example of this invention.

以下、本発明の具現例を詳細に説明する。ただし、これは、例示として提示されるものであって、これによって本発明が制限されることはなく、本発明は、後述する請求項の範疇によって定義されるものに過ぎない。   Hereinafter, embodiments of the present invention will be described in detail. However, this is provided as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later.

本発明を明確に説明するために説明と関係のない部分は省略し、明細書全体にわたって同一または類似する構成要素に対しては、同一の参照符号を付することにする。   In order to clearly describe the present invention, portions not related to the description are omitted, and the same reference numerals are given to the same or similar components throughout the specification.

図面において、多くの層及び領域を明確に表現するために厚さを拡大して示した。そして、図面において、説明の便宜上、一部の層及び領域の厚さを誇張して示した。   In the drawings, the thickness is shown enlarged to clearly represent many layers and regions. In the drawings, the thickness of some layers and regions is exaggerated for convenience of explanation.

以下で、基材の「上部(または下部)」または基材の「上(または下)」に任意の構成が形成されるとは、任意の構成が前記基材の上面(または下面)に接して形成されることを意味するだけでなく、前記基材と基材上に(または下に)形成された任意の構成との間に他の構成を含まないことに限定するのではない。   In the following, when an arbitrary configuration is formed on the “upper (or lower)” of the substrate or the “up (or lower)” of the substrate, the arbitrary configuration is in contact with the upper surface (or lower surface) of the substrate. It is not limited to include any other configuration between the substrate and any configuration formed on (or below) the substrate.

(真空断熱材用芯材)
本発明の一具現例において、開放気泡率が80%以上であるメラミン樹脂硬化発泡体で形成された真空断熱材用芯材を提供する。
(Vacuum insulation core material)
In one embodiment of the present invention, a core material for a vacuum heat insulating material formed of a melamine resin cured foam having an open cell ratio of 80% or more is provided.

図1は、本発明の一実施例に係る真空断熱材用芯材を示した概略図である。図1を参照すると、前記真空断熱材用芯材100は、メラミン樹脂硬化発泡体を含む凸状の形状であると見られる。   FIG. 1 is a schematic view showing a vacuum heat insulating material core according to an embodiment of the present invention. Referring to FIG. 1, the vacuum heat insulating material core 100 is seen to have a convex shape including a melamine resin cured foam.

このとき、芯材の開放気泡率が約80%以上になるように気泡110の発泡比率を調節することが好ましい。前記開放気泡率は、単位面積に形成された各気泡のうち開放された気泡の分率を定義するが、本発明において開放気泡率が80%未満である場合は、後続の真空工程時間が長くなるだけでなく、残余気体がメラミン樹脂硬化発泡体の内部に残り、これが真空断熱材の形成後に発生するガス放出の原因になり得る。   At this time, it is preferable to adjust the foaming ratio of the bubbles 110 so that the open cell ratio of the core material is about 80% or more. The open bubble rate defines the fraction of open bubbles among the bubbles formed in a unit area. In the present invention, when the open bubble rate is less than 80%, the subsequent vacuum process time is long. In addition, the residual gas remains inside the melamine resin cured foam, which can cause gas release that occurs after formation of the vacuum insulation.

その一方、開放気泡率が100%になる場合は、構造的強度が著しく低下し、真空圧に耐えられなくなるので、前記開放気泡率の下限は100%未満である。このとき、前記開放気泡率はASTM D―2856によって測定されてもよい。   On the other hand, when the open cell ratio is 100%, the structural strength is remarkably reduced and the vacuum pressure cannot be withstand, so the lower limit of the open cell ratio is less than 100%. At this time, the open cell ratio may be measured by ASTM D-2856.

前記メラミン樹脂硬化発泡体は、構造的強度と開放気泡率を全て満足させるために、平均粒子径が約50μm〜約500μmである気泡110を含んでもよい。前記気泡の平均粒子径が約50μm未満である場合は、メラミン樹脂硬化発泡体が含む気泡の個数が多くなり、発泡体の密度が大きくなるおそれがあり、その結果、工程時間が長くなり、ガス放出が発生し得る。また、前記気泡の平均粒子径が約500μmを超える場合は、気泡を支持できる構造的な強度が弱くなり得るという問題がある。   The melamine resin cured foam may include bubbles 110 having an average particle diameter of about 50 μm to about 500 μm in order to satisfy all of the structural strength and open cell ratio. When the average particle diameter of the bubbles is less than about 50 μm, the number of bubbles contained in the melamine resin cured foam may increase, and the density of the foam may increase. Release can occur. Moreover, when the average particle diameter of the bubbles exceeds about 500 μm, there is a problem that the structural strength capable of supporting the bubbles can be weakened.

そのため、前記気泡の平均粒子径が前記範囲を維持すると、工程条件及び物性の面で有利になるので、ガス放出のない真空工程を最適化することができ、構造的な強度を維持することができる。   Therefore, if the average particle diameter of the bubbles is maintained within the above range, it is advantageous in terms of process conditions and physical properties. Therefore, it is possible to optimize a vacuum process without outgassing and maintain structural strength. it can.

前記メラミン樹脂硬化発泡体の圧縮強度は、約1.2kgf/cm〜約5.0kgf/cmであり得る。圧縮強度は、材料が破壊せずに耐えられる最大の圧縮応力を称するが、前記圧縮強度は、メラミン樹脂硬化発泡体の発泡方向に対して垂直または水平に真空断熱材の10%を圧縮するときの強度を測定したものであって、ASTM D―1621、JIS A―9514、KS M―3809によって測定されてもよい。 The compressive strength of the melamine resin cured foam may be about 1.2 kgf / cm 2 to about 5.0 kgf / cm 2 . Compressive strength refers to the maximum compressive stress that the material can withstand without breaking, but the compressive strength is when compressing 10% of the vacuum insulation material perpendicularly or horizontally to the foaming direction of the melamine resin cured foam. And may be measured according to ASTM D-1621, JIS A-9514, KS M-3809.

前記メラミン樹脂硬化発泡体の圧縮強度が約1.2kgf/cm未満である場合は、前記発泡体で形成された芯材が真空工程に耐えられないという問題があり、圧縮強度が約5.0kgf/cmを超える場合は、発泡工程時、メラミン樹脂硬化発泡体の形成のための発泡剤または組成物などの投入量が増加し、包含する気泡の個数が多くなるため密度が大きくなるおそれがあり、その結果、真空工程時間が長くなり、ガス放出が発生し得る。そのため、前記メラミン樹脂硬化発泡体の圧縮強度が前記範囲を維持することによって、真空工程ステップに耐えられる構造的強度を具現することができる。 When the compression strength of the melamine resin cured foam is less than about 1.2 kgf / cm 2 , there is a problem that the core material formed of the foam cannot withstand the vacuum process, and the compression strength is about 5. If it exceeds 0 kgf / cm 2 , the amount of foaming agent or composition used to form the melamine resin cured foam increases during the foaming process, and the number of contained bubbles increases, which may increase the density. As a result, the vacuum process time becomes long, and gas emission may occur. Therefore, by maintaining the compression strength of the melamine resin cured foam within the above range, a structural strength that can withstand a vacuum process step can be realized.

前記メラミン樹脂硬化発泡体は、三次元網状骨格構造を含んでもよい。三次元網状骨格構造とは、特定の多角形が連続している平面網状の構造、あるいは、特定の多面体の頂点、角、面などを共有することによって3次元骨格構造を形成している構造を称し、例えば、前記三次元網状骨格構造は、フラーレン(Fullerence)炭素構造のように五角形及び六角形が面を共有してなる骨格構造を含んでもよい。   The melamine resin cured foam may include a three-dimensional network skeleton structure. A three-dimensional network structure is a planar network structure in which specific polygons are continuous, or a structure that forms a three-dimensional structure by sharing the vertices, corners, faces, etc. of a specific polyhedron. For example, the three-dimensional network skeleton structure may include a skeleton structure in which a pentagon and a hexagon share a plane, such as a fullerene carbon structure.

図2は、本発明の一実施例に係る真空断熱材用芯材の構造を示した概略図で、前記メラミン樹脂硬化発泡体が三次元網状骨格構造で形成されることを示すことができる。具体的に、前記メラミン樹脂硬化発泡体の骨格構造は、気泡壁を有していなくてもよい。   FIG. 2 is a schematic view showing the structure of the vacuum heat insulating material core according to one embodiment of the present invention, and can show that the melamine resin cured foam is formed with a three-dimensional reticulated skeleton structure. Specifically, the skeleton structure of the melamine resin cured foam may not have a cell wall.

前記骨格構造が気泡壁を含む場合、メラミン樹脂硬化発泡体の内部の対流を通じて熱が伝達されるだけでなく、気泡壁を介して熱が伝導される経路が短くなり、熱伝導率が上昇するおそれがあり、その結果、断熱性能が低下し得る。また、真空工程時間が長くなり、生産性が低下し得る。   When the skeleton structure includes a bubble wall, not only heat is transferred through convection inside the melamine resin cured foam, but also a path through which heat is conducted through the bubble wall is shortened, and the thermal conductivity is increased. As a result, the heat insulation performance may be reduced. Moreover, the vacuum process time becomes long, and the productivity can be lowered.

例えば、前記メラミン樹脂硬化発泡体は、メラミン―ホルムアルデヒド発泡体であってもよく、これは、メラミン―ホルムアルデヒド予備縮合物及び発泡剤を含む溶液を押出機を通じて押し出すことによって製造することができる。具体的に、前記溶液がダイを通じて排出された後、直ぐ加熱されて膨張することによって、気泡壁のない骨格構造のメラミン―ホルムアルデヒド発泡体を製造することができる。前記発泡剤としては、物理的発泡剤として炭化水素、ハロゲン化フッ化炭化水素、COを使用してもよい。 For example, the melamine resin cured foam may be a melamine-formaldehyde foam, which can be produced by extruding a solution containing a melamine-formaldehyde precondensate and a blowing agent through an extruder. Specifically, the melamine-formaldehyde foam having a skeletal structure without a bubble wall can be manufactured by heating and expanding immediately after the solution is discharged through a die. As the foaming agent, hydrocarbons, halogenated fluorinated hydrocarbons, and CO 2 may be used as physical foaming agents.

(真空断熱材)
本発明の他の具現例において、開放気泡率が80%以上であるメラミン樹脂硬化発泡体で形成された真空断熱材用芯材及び前記芯材を真空包装する外被材を含む真空断熱材を提供する。
(Vacuum insulation)
In another embodiment of the present invention, there is provided a vacuum heat insulating material including a core material for a vacuum heat insulating material formed of a melamine resin cured foam having an open cell ratio of 80% or more and a jacket material for vacuum-packaging the core material. provide.

また、前記真空断熱材は、前記のようなメラミン樹脂硬化発泡体からなる芯材及び前記芯材を真空包装する外被材を含んで形成され、前記芯材に付着または挿入されるゲッター材をさらに含んで形成されてもよい。前記ゲッター材は、外部の温度変化によって外被材の内部でガス及び水分が発生し得るが、これを防止するために含まれてもよい。   Further, the vacuum heat insulating material is formed including a core material made of the melamine resin cured foam as described above and a jacket material for vacuum packaging the core material, and a getter material attached to or inserted into the core material. Further, it may be formed. The getter material may generate gas and moisture inside the jacket material due to an external temperature change, but may be included to prevent this.

前記ゲッター材は、生石灰(CaO)及びこれを含むパウチで形成されてもよい。このとき、純度95%以上の生石灰粉末を使用し、パウチもクレープ紙及びポリプロピレン(PP)含浸不織布で形成し、25%以上の水分吸収性能を確保できるようにする。このとき、全体の真空断熱材の厚さを考慮して、ゲッター材の厚さは約2mm以内にすることが好ましい。   The getter material may be formed of quick lime (CaO) and a pouch containing the same. At this time, quick lime powder having a purity of 95% or more is used, and the pouch is also formed of crepe paper and polypropylene (PP) impregnated nonwoven fabric so that a moisture absorption performance of 25% or more can be secured. At this time, the thickness of the getter material is preferably within about 2 mm in consideration of the thickness of the entire vacuum heat insulating material.

図3の(a)及び(b)は、本発明の実施例に係る真空断熱材を示した断面図である。図3の(a)は、芯材100の表面にゲッター材300を付着させた状態で外被材200を用いて密封した真空断熱材を示した図で、図3の(b)は、芯材100の内部にゲッター材300を挿入した状態で外被材200を密封した真空断熱材を示した図である。   FIGS. 3A and 3B are sectional views showing a vacuum heat insulating material according to an embodiment of the present invention. FIG. 3A is a view showing a vacuum heat insulating material sealed with the jacket material 200 in a state where the getter material 300 is attached to the surface of the core material 100, and FIG. It is the figure which showed the vacuum heat insulating material which sealed the jacket material 200 in the state which inserted the getter material 300 in the inside of the material 100. FIG.

前記外被材は、前記真空断熱材用芯材を取り囲む封止体であって、以下では、その具体的な形状及び製造方法を説明する。図4は、実施例に係る真空断熱材に含まれる外被材の断面図である。   The jacket material is a sealing body that surrounds the vacuum heat insulating material core, and the specific shape and manufacturing method thereof will be described below. FIG. 4 is a cross-sectional view of a jacket material included in the vacuum heat insulating material according to the embodiment.

図4を参照すると、外被材200においては、接着層230の上部に金属バリア層220及び表面保護層210が順次形成される。前記接着層230は、封止体の内部に形成される層であって、表面保護層210は、最外郭に露出する層として定義することができる。   Referring to FIG. 4, in the jacket material 200, a metal barrier layer 220 and a surface protective layer 210 are sequentially formed on the adhesive layer 230. The adhesive layer 230 is a layer formed inside the sealing body, and the surface protective layer 210 can be defined as a layer exposed to the outermost surface.

また、接着層230は、ヒートシーリングによって互いに熱融着される層であって、真空状態を維持させる機能を行う。したがって、接着層230は、熱融着が容易な高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線形低密度ポリエチレン(LLDPE)、未延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、エチレン―酢酸ビニル共重合体(EVA)、エチレン―ビニルアルコール共重合体(EVOH)及びこれらの組み合わせからなる群から選ばれた一つ以上を含む熱可塑性プラスチックフィルムで形成し、十分なシーリング特性を提供するために約1μm〜約100μmの厚さに形成することが好ましい。   The adhesive layer 230 is a layer that is heat-sealed to each other by heat sealing, and performs a function of maintaining a vacuum state. Therefore, the adhesive layer 230 is made of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), unstretched polypropylene (CPP), stretched polypropylene (OPP), polychlorinated, which can be easily heat-sealed. Heat containing at least one selected from the group consisting of vinylidene (PVDC), polyvinyl chloride (PVC), ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), and combinations thereof. Preferably, it is formed from a plastic film and is formed to a thickness of about 1 μm to about 100 μm to provide sufficient sealing properties.

次に、接着層230の上部には、ガス遮断及び芯材保護のためのバリア層220として約6μm〜約7μmの厚さの金属薄膜を形成する。このとき、一般にアルミホイル金属バリア層220が最も多く使用されており、アルミホイルより優れた特性を有する薄膜が明らかにされていない状態であるので、本発明の一実施例でもアルミホイルを用いる。このとき、アルミニウムは、金属素材であるため、折り曲げ時にクラックが発生するなどの問題があり得るが、これを防止するために、金属バリア層220の上部に表面保護層210を形成する。   Next, a metal thin film having a thickness of about 6 μm to about 7 μm is formed on the adhesive layer 230 as a barrier layer 220 for gas blocking and core material protection. At this time, the aluminum foil metal barrier layer 220 is generally used most often, and since a thin film having characteristics superior to that of the aluminum foil has not been clarified, the aluminum foil is also used in one embodiment of the present invention. At this time, since aluminum is a metal material, there may be a problem that a crack is generated at the time of bending, but in order to prevent this, the surface protective layer 210 is formed on the upper portion of the metal barrier layer 220.

前記外被材の表面保護層210は、約10μm〜約14μmの厚さであるポリエチレンテレフタレート(PET)フィルムまたはポリ塩化ビニリデン(PVDC)/ポリエチレンテレフタレート(PET)フィルム、及び約20μm〜約30μmの厚さのナイロンフィルムの積層構造で形成されてもよい。この場合、金属バリア層220で発生するクラックの程度が深刻な場合、ポリエチレンテレフタレート/ナイロンフィルムにも損傷が加えられるおそれがあるが、これを防止するために、ポリエチレンテレフタレート層の上部にビニル系樹脂層をコーティングして使用してもよい。   The surface protective layer 210 of the outer cover material is a polyethylene terephthalate (PET) film or a polyvinylidene chloride (PVDC) / polyethylene terephthalate (PET) film having a thickness of about 10 μm to about 14 μm, and a thickness of about 20 μm to about 30 μm. It may be formed of a laminated structure of nylon film. In this case, if the degree of cracks generated in the metal barrier layer 220 is serious, the polyethylene terephthalate / nylon film may be damaged. In order to prevent this, a vinyl resin is formed on the polyethylene terephthalate layer. A layer may be coated and used.

前記ビニル系樹脂層としては、ポリ塩化ビニル(PVC)、ポリ酢酸ビニル(PVA)、ポリビニルアルコール(PVAL)、ポリビニルブチラール(PVB)、ポリ塩化ビニリデン(PVDC)及びこれらの組み合わせからなる群から選ばれた一つ以上のビニル系樹脂を使用してもよい。併せて、外被材の気密特性をより向上させるために、前記表面保護層210、金属バリア層220及び接着層230は、それぞれポリウレタン(PU)系樹脂を用いて接着させてもよい。このように外被材200を形成することによって、前記真空断熱材は、最上の気密性と長期耐久性能を有することができる。   The vinyl resin layer is selected from the group consisting of polyvinyl chloride (PVC), polyvinyl acetate (PVA), polyvinyl alcohol (PVAL), polyvinyl butyral (PVB), polyvinylidene chloride (PVDC), and combinations thereof. One or more vinyl resins may be used. In addition, the surface protective layer 210, the metal barrier layer 220, and the adhesive layer 230 may be bonded using a polyurethane (PU) resin, respectively, in order to further improve the airtight characteristics of the jacket material. By forming the jacket material 200 in this way, the vacuum heat insulating material can have the highest airtightness and long-term durability performance.

(真空断熱材の製造方法)
本発明の更に他の具現例において、開放気泡率が80%以上であるメラミン樹脂硬化発泡体で形成された真空断熱材用芯材を製造するステップ;前記芯材に対して50℃〜250℃の温度で0.5Pa〜10Paの圧力を10分〜200分間印加し、残余物質を除去処理するステップ;及び前記芯材を外被材で取り囲んだ後、真空包装するステップ;を含む真空断熱材の製造方法を提供する。
(Method for manufacturing vacuum insulation)
In still another embodiment of the present invention, a step of manufacturing a vacuum heat insulating material core formed of a melamine resin cured foam having an open cell ratio of 80% or more; 50 ° C to 250 ° C with respect to the core material A step of applying a pressure of 0.5 Pa to 10 Pa at a temperature of 10 minutes to 200 minutes to remove residual substances; and a step of vacuum packaging after surrounding the core material with an outer cover material; A manufacturing method is provided.

前記メラミン樹脂硬化発泡体からなる芯材は、メラミン―ホルムアルデヒド樹脂、硬化剤、発泡剤及びその他の添加剤を高速で混合し、常温以上の温度で硬化させながら形成されるが、反応の生成物として水が発生するだけでなく、残余モノマーが残るため、真空包装ステップまたは製作後にガス放出が発生する確率が非常に高い。   The core material composed of the cured melamine resin foam is formed by mixing melamine-formaldehyde resin, curing agent, foaming agent and other additives at high speed and curing at a temperature higher than room temperature, but the reaction product As a result, not only water is generated but also residual monomers are left, so that the probability of outgassing after the vacuum packaging step or fabrication is very high.

したがって、真空包装ステップ前に約50℃〜約250℃の温度で約0.5Pa〜約100Paの圧力を約10分〜約200分間芯材に印加し、残余モノマー(ホルムアルデヒド、残余フェノール、水)またはVOC(揮発性有機化合物)などのガス放出を起こし得る化合物を除去することができる。また、前記真空断熱材の製造方法は、芯材で発生するガス及び水分を最小化できるので、前記のようなゲッター材を省略することもできる。併せて、前記メラミン樹脂硬化発泡体は、約80%以上の開放気泡率を有することによって、製作後にも高い孔隙率(約50%以上)を維持するようになるので、優れた性能を示すことができる。   Therefore, before the vacuum packaging step, a pressure of about 0.5 Pa to about 100 Pa is applied to the core at a temperature of about 50 ° C. to about 250 ° C. for about 10 minutes to about 200 minutes, and residual monomers (formaldehyde, residual phenol, water) Alternatively, compounds capable of causing gas emission such as VOC (volatile organic compound) can be removed. Moreover, since the manufacturing method of the said vacuum heat insulating material can minimize the gas and water | moisture content which generate | occur | produce in a core material, the above getter materials can also be abbreviate | omitted. In addition, the melamine resin cured foam has an open cell ratio of about 80% or more, and maintains a high porosity (about 50% or more) even after production, and thus exhibits excellent performance. Can do.

以下では、本発明の具体的な実施例を提示する。ただし、下記に記載した各実施例は、本発明を具体的に例示または説明するためのものに過ぎなく、これによって本発明が制限されることはない。   In the following, specific examples of the present invention are presented. However, each example described below is only for specifically illustrating or explaining the present invention, and the present invention is not limited thereby.

<実施例及び比較例>
(実施例1)
気泡の平均粒子径が100μmで、開放気泡率が95%で、圧縮強度が1.5kgf/cmであるメラミン樹脂硬化発泡体を8mm×190mm×250mm(厚さ×幅×長さ)のサイズに製造した後、真空断熱材用芯材として使用した。次に、ポリ塩化ビニリデン(PVDC)/ポリエチレンテレフタレートフィルム(PET)12μm、ナイロンフィルム25μm、アルミホイル7μm及び線形低密度ポリエチレン(LLDPE)フィルム50μmの構造で形成された外被材を形成した。その次に、純度95%の生石灰(CaO)25gをパウチに入れて製造した2個のゲッター材を芯材の表面に挿入した。その後、150℃の温度で5Paの残留ガスを全て排出し、前記芯材を封止体に挿入した後、10Paの真空度状態で密封することによって本発明に係る真空断熱材を製造した。
<Examples and Comparative Examples>
Example 1
A melamine resin cured foam having an average particle diameter of 100 μm, an open cell ratio of 95%, and a compressive strength of 1.5 kgf / cm 2 is a size of 8 mm × 190 mm × 250 mm (thickness × width × length). Then, it was used as a core material for a vacuum heat insulating material. Next, a jacket material formed of a structure of polyvinylidene chloride (PVDC) / polyethylene terephthalate film (PET) 12 μm, nylon film 25 μm, aluminum foil 7 μm, and linear low density polyethylene (LLDPE) film 50 μm was formed. Next, two getter materials manufactured by putting 25 g of quick lime (CaO) with a purity of 95% in a pouch were inserted into the surface of the core material. Then, all the residual gas of 5 Pa was discharged | emitted at the temperature of 150 degreeC, and after inserting the said core material in the sealing body, the vacuum heat insulating material which concerns on this invention was manufactured by sealing in the vacuum degree state of 10 Pa.

(実施例2)
気泡の平均粒子径が100μmで、開放気泡率が90%で、圧縮強度が1.2kgf/cmであるメラミン樹脂硬化発泡体を8mm×190mm×250mm(厚さ×幅×長さ)のサイズに製造した後、真空断熱材用芯材として使用したことを除いては、前記実施例1と同一の条件で真空断熱材を製造した。
(Example 2)
A melamine resin cured foam having an average particle diameter of 100 μm, an open cell ratio of 90%, and a compressive strength of 1.2 kgf / cm 2 is a size of 8 mm × 190 mm × 250 mm (thickness × width × length). Then, a vacuum heat insulating material was manufactured under the same conditions as in Example 1 except that it was used as a core material for a vacuum heat insulating material.

(比較例1)
ガラス繊維ボードのみを8mm×190mm×250mm(厚さ×幅×長さ)のサイズに製造した後、真空断熱材用芯材として使用したことを除いては、前記実施例1と同一の条件で真空断熱材を製造した。
(Comparative Example 1)
Except that only the glass fiber board was manufactured to a size of 8 mm × 190 mm × 250 mm (thickness × width × length) and then used as a core material for a vacuum heat insulating material, the same conditions as in Example 1 were used. A vacuum insulation was produced.

(比較例2)
気泡の平均粒径が150μmで、開放気泡率が95%で、圧縮強度が1.5kgf/cmであるポリウレタン発泡体を8mm×190mm×250mm(厚さ×幅×長さ)のサイズに製造した後、真空断熱材用芯材として使用したことを除いては、前記実施例1と同一の条件で真空断熱材を製造した。
(Comparative Example 2)
Polyurethane foam with an average cell diameter of 150 μm, an open cell ratio of 95%, and a compressive strength of 1.5 kgf / cm 2 is manufactured to a size of 8 mm × 190 mm × 250 mm (thickness × width × length) After that, a vacuum heat insulating material was manufactured under the same conditions as in Example 1 except that it was used as a core material for a vacuum heat insulating material.

(比較例3)
気泡の平均粒径が100μmで、開放気泡率が70%で、圧縮強度が1.5kgf/cmであるメラミン樹脂硬化発泡体を8mm×190mm×250mm(厚さ×幅×長さ)のサイズに製造した後、真空断熱材用芯材として使用したことを除いては、前記実施例1と同一の条件で真空断熱材を製造した。
(Comparative Example 3)
A melamine resin cured foam having an average cell diameter of 100 μm, an open cell ratio of 70%, and a compressive strength of 1.5 kgf / cm 2 is a size of 8 mm × 190 mm × 250 mm (thickness × width × length). Then, a vacuum heat insulating material was manufactured under the same conditions as in Example 1 except that it was used as a core material for a vacuum heat insulating material.

Figure 2016507704
Figure 2016507704

<実験例>真空断熱材の熱伝導率測定
前記実施例及び比較例の真空断熱材を85℃の恒温チャンバーにそれぞれ入れて3ヶ月間維持しながら、全体加熱を実施していないものと熱伝導率を比較しながら実施した。このとき、熱伝導率の測定時には、HC―074―200(EKO社製造)熱伝導測定機を使用した。次に、加速ファクターを適用して初期から10年までの熱伝導率を予測し、その結果は、断熱値(W/mK)に換算して下記の表2のように示した。
<Experimental example> Measurement of thermal conductivity of vacuum heat insulating material The vacuum heat insulating materials of the above-mentioned examples and comparative examples were put in a constant temperature chamber at 85 ° C and maintained for 3 months, and the heat was not transferred to the heat insulating material. It carried out while comparing the rates. At this time, an HC-074-200 (manufactured by EKO) thermal conductivity measuring machine was used for measuring the thermal conductivity. Next, the thermal conductivity from the initial stage to 10 years was predicted by applying an acceleration factor, and the result was converted into an adiabatic value (W / mK) and shown in Table 2 below.

Figure 2016507704
Figure 2016507704

実施例1、2の場合、初期断熱値は、ガラス繊維ボードを真空断熱材用芯材として使用した比較例1、ポリウレタン発泡体を真空断熱材用芯材として使用した比較例2、メラミン樹脂硬化発泡体を真空断熱材用芯材として使用していたが、開放気泡率が80%未満である比較例3に比べて低く測定されたことが分かった。また、時間による熱伝導率の増加量も、各比較例に比べて著しく低く示されたことを確認することができる。   In the case of Examples 1 and 2, the initial heat insulation values are Comparative Example 1 using glass fiber board as the core material for vacuum heat insulating material, Comparative Example 2 using polyurethane foam as the core material for vacuum heat insulating material, and melamine resin curing Although the foam was used as the core material for the vacuum heat insulating material, it was found that it was measured lower than the comparative example 3 in which the open cell ratio was less than 80%. In addition, it can be confirmed that the increase in thermal conductivity with time was also shown to be significantly lower than in each comparative example.

したがって、メラミン樹脂硬化発泡体を真空断熱材用芯材として使用した真空断熱材の場合、初期断熱性能と長期耐久性能に優れることが分かった。また、比較例3を通じてメラミン樹脂硬化発泡体を真空断熱材用芯材として用いて真空断熱材が製造されていたが、この場合、前記真空断熱材用芯材の開放気泡率を80%以上に確保できなく、圧縮強度は向上し得るが、初期断熱性能及びガス放出による長期耐久性を確保できないことが分かった。
Therefore, it was found that the vacuum heat insulating material using the melamine resin cured foam as the core material for the vacuum heat insulating material is excellent in the initial heat insulating performance and the long-term durability performance. Moreover, although the vacuum heat insulating material was manufactured using the melamine resin hardening foam as a core material for vacuum heat insulating materials through the comparative example 3, in this case, the open cell rate of the said core material for vacuum heat insulating materials shall be 80% or more. It could not be ensured and the compressive strength could be improved.

Claims (11)

開放気泡率が80%以上であるメラミン樹脂硬化発泡体で形成された真空断熱材用芯材。 A core material for a vacuum heat insulating material formed of a melamine resin cured foam having an open cell ratio of 80% or more. 前記メラミン樹脂硬化発泡体は、平均粒子径が50μm〜500μmである気泡を含む、請求項1に記載の真空断熱材用芯材。 The said melamine resin cured foam is a core material for vacuum heat insulating materials of Claim 1 containing the bubble whose average particle diameter is 50 micrometers-500 micrometers. 前記メラミン樹脂硬化発泡体の圧縮強度は1.2kgf/cm〜5.0kgf/cmである、請求項1に記載の真空断熱材用芯材。 The core material for a vacuum heat insulating material according to claim 1, wherein the melamine resin cured foam has a compressive strength of 1.2 kgf / cm 2 to 5.0 kgf / cm 2 . 前記メラミン樹脂硬化発泡体は三次元網状骨格構造を含む、請求項1に記載の真空断熱材用芯材。 The core material for a vacuum heat insulating material according to claim 1, wherein the melamine resin cured foam includes a three-dimensional network skeleton structure. 前記骨格構造は気泡壁を含まない、請求項4に記載の真空断熱材用芯材。 The core material for a vacuum heat insulating material according to claim 4, wherein the skeleton structure does not include a bubble wall. 請求項1から請求項5のいずれか1項に記載のメラミン樹脂硬化発泡体で形成された芯材;及び
前記芯材を真空包装する外被材;を含む真空断熱材。
A vacuum heat insulating material comprising: a core material formed of the melamine resin cured foam according to any one of claims 1 to 5; and a jacket material for vacuum-packaging the core material.
前記真空断熱材は、前記芯材に付着または挿入され、25%以上の水分吸収率を有するゲッター材をさらに含む、請求項6に記載の真空断熱材。 The vacuum heat insulating material according to claim 6, wherein the vacuum heat insulating material further includes a getter material attached to or inserted into the core material and having a moisture absorption rate of 25% or more. 前記外被材は、外部から表面保護層、金属バリア層及び接着層の積層構造を含む、請求項6に記載の真空断熱材。 The vacuum jacket according to claim 6, wherein the jacket material includes a laminated structure of a surface protective layer, a metal barrier layer, and an adhesive layer from the outside. 前記表面保護層は、ポリエチレンテレフタレート(PET)及びナイロンフィルムの層構造を有し、
前記金属バリア層はアルミホイルで形成され、
前記接着層は、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線形低密度ポリエチレン(LLDPE)、未延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、エチレン―酢酸ビニル共重合体(EVA)、エチレン―ビニルアルコール共重合体(EVOH)及びこれらの組み合わせからなる群から選ばれた一つ以上である、請求項8に記載の真空断熱材。
The surface protective layer has a layer structure of polyethylene terephthalate (PET) and nylon film,
The metal barrier layer is formed of aluminum foil,
The adhesive layer is made of high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), unstretched polypropylene (CPP), stretched polypropylene (OPP), polyvinylidene chloride (PVDC), polyvinyl chloride. The vacuum heat insulation according to claim 8, which is at least one selected from the group consisting of (PVC), ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), and combinations thereof. Wood.
前記表面保護層と金属バリア層との間の接着及び金属バリア層と接着層との間の接着は、それぞれポリウレタン(PU)系樹脂によって行われる、請求項8に記載の真空断熱材。 The vacuum heat insulating material according to claim 8, wherein the adhesion between the surface protective layer and the metal barrier layer and the adhesion between the metal barrier layer and the adhesive layer are each made of polyurethane (PU) resin. 請求項1から請求項5のいずれか1項に記載のメラミン樹脂硬化発泡体の芯材を製造するステップ;
前記芯材に対して50℃〜250℃の温度で0.5Pa〜10Paの圧力を10分〜200分間印加し、残余物質を除去処理するステップ;及び
前記芯材を外被材で取り囲んだ後、真空包装するステップ;を含む真空断熱材の製造方法。
The step of manufacturing the core material of the melamine resin cured foam according to any one of claims 1 to 5;
Applying a pressure of 0.5 Pa to 10 Pa to the core material at a temperature of 50 ° C. to 250 ° C. for 10 minutes to 200 minutes to remove residual substances; and after surrounding the core material with a jacket material A method for producing a vacuum heat insulating material.
JP2015546370A 2012-12-06 2013-11-08 Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same Pending JP2016507704A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0141342 2012-12-06
KR1020120141342A KR101521685B1 (en) 2012-12-06 2012-12-06 Melamine resin foam as core material for vacuum insulation panel and method for fabricating vacuum insulation panel using the same
PCT/KR2013/010110 WO2014088222A1 (en) 2012-12-06 2013-11-08 Core material for vacuum insulation material containing melamine resin-cured foam, vacuum insulation material using same, and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2016507704A true JP2016507704A (en) 2016-03-10

Family

ID=50883613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015546370A Pending JP2016507704A (en) 2012-12-06 2013-11-08 Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same

Country Status (5)

Country Link
JP (1) JP2016507704A (en)
KR (1) KR101521685B1 (en)
CN (1) CN104838196B (en)
TW (1) TWI593793B (en)
WO (1) WO2014088222A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200232A (en) * 2015-04-13 2016-12-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation body and heat insulation container and heat insulation wall using the same
WO2020255604A1 (en) * 2019-06-19 2020-12-24 矢崎エナジーシステム株式会社 Method for manufacturing vacuum heat insulator and vacuum heat insulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104589766B (en) * 2015-01-27 2016-08-24 南靖县晨翔工贸有限公司 A kind of production technology of vacuum aluminum-coated composite membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120814A (en) * 1996-10-22 1998-05-12 Asahi Organic Chem Ind Co Ltd Phenolic foam for vacuum heat-insulating core material
JPH11269343A (en) * 1998-03-20 1999-10-05 Inoac Corporation:Kk Melamine resin foam and its production
JP2001349664A (en) * 2000-06-05 2001-12-21 Sanyo Electric Co Ltd Vacuum insulator utilizing waste for vacuum insulation and method of producing core material used for vacuum insulator
JP2002337256A (en) * 2001-05-18 2002-11-27 Jamco Corp Vacuum heat insulation panel and its manufacturing method
WO2008120909A1 (en) * 2007-03-29 2008-10-09 Lg Chem, Ltd. An impact sound insulation material of floors and floor construction method using the same
JP2009541673A (en) * 2006-06-22 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア Insulation element
KR20120073011A (en) * 2010-12-24 2012-07-04 (주)엘지하우시스 Phenolic foam as core material for vacuum insulation panel and method for fabricating vacuum insulation panel using the same
US20120225280A1 (en) * 2011-03-04 2012-09-06 Basf Se Composite elements

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283485A (en) * 2001-03-26 2002-10-03 Nichias Corp Heat insulating material
JP2002283482A (en) * 2001-03-27 2002-10-03 Kanegafuchi Chem Ind Co Ltd Interior material of automobile
KR20060022043A (en) * 2004-09-06 2006-03-09 박우건 Adiabatic material for having fire retardancy and sound absorptancy railload cars and making method thereof
KR101324293B1 (en) * 2006-08-23 2013-11-01 (주)엘지하우시스 Floor impact noise isolator/shock-absorber for construction
CN101148942B (en) * 2006-09-21 2012-03-14 Lg化学株式会社 Sound insulation/ damping material for floor of building
DE102006050939A1 (en) * 2006-10-28 2008-04-30 Greiner Purtec Gmbh Heat insulating coating for body i.e. hot water tank, has outer insulating layer made of melamine resin foam or less conductive material, and inner layer made of material with cotton like characteristics and high temperature-firmness
WO2009077616A1 (en) * 2007-12-19 2009-06-25 Basf Se Molded parts made of carrier materials which contain foaming reactive resin
JP2010059756A (en) * 2008-09-08 2010-03-18 Toray Ind Inc High performance heat insulation material
CN101423648B (en) * 2008-12-17 2010-11-17 中国人民解放军91872部队 Melamine foam material for pipeline heat insulation and preparation method and use thereof
KR101260557B1 (en) * 2010-01-05 2013-05-06 엘지전자 주식회사 Vacuum insulation pannel and method for fabricating the same
CN202464535U (en) * 2012-02-29 2012-10-03 江苏太阳宝新能源有限公司 Heat insulating structure of solar photo-thermal power generation high-temperature molten salt storage tank

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120814A (en) * 1996-10-22 1998-05-12 Asahi Organic Chem Ind Co Ltd Phenolic foam for vacuum heat-insulating core material
JPH11269343A (en) * 1998-03-20 1999-10-05 Inoac Corporation:Kk Melamine resin foam and its production
JP2001349664A (en) * 2000-06-05 2001-12-21 Sanyo Electric Co Ltd Vacuum insulator utilizing waste for vacuum insulation and method of producing core material used for vacuum insulator
JP2002337256A (en) * 2001-05-18 2002-11-27 Jamco Corp Vacuum heat insulation panel and its manufacturing method
JP2009541673A (en) * 2006-06-22 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア Insulation element
WO2008120909A1 (en) * 2007-03-29 2008-10-09 Lg Chem, Ltd. An impact sound insulation material of floors and floor construction method using the same
KR20120073011A (en) * 2010-12-24 2012-07-04 (주)엘지하우시스 Phenolic foam as core material for vacuum insulation panel and method for fabricating vacuum insulation panel using the same
US20120225280A1 (en) * 2011-03-04 2012-09-06 Basf Se Composite elements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200232A (en) * 2015-04-13 2016-12-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation body and heat insulation container and heat insulation wall using the same
WO2020255604A1 (en) * 2019-06-19 2020-12-24 矢崎エナジーシステム株式会社 Method for manufacturing vacuum heat insulator and vacuum heat insulator
GB2599813A (en) * 2019-06-19 2022-04-13 Yazaki Energy System Corp Method for manufacturing vacuum heat insulator and vacuum heat insulator
GB2599813B (en) * 2019-06-19 2023-02-15 Yazaki Energy System Corp Method for manufacturing vacuum heat insulator and vacuum heat insulator
JP7324063B2 (en) 2019-06-19 2023-08-09 矢崎エナジーシステム株式会社 Method for manufacturing vacuum insulator, and vacuum insulator
AU2020295083B2 (en) * 2019-06-19 2023-08-17 Yazaki Energy System Corporation Method for manufacturing vacuum heat insulator and vacuum heat insulator

Also Published As

Publication number Publication date
TWI593793B (en) 2017-08-01
KR101521685B1 (en) 2015-05-20
WO2014088222A1 (en) 2014-06-12
KR20140073724A (en) 2014-06-17
CN104838196A (en) 2015-08-12
TW201422801A (en) 2014-06-16
CN104838196B (en) 2017-03-08

Similar Documents

Publication Publication Date Title
KR101260557B1 (en) Vacuum insulation pannel and method for fabricating the same
KR101286342B1 (en) Core material for vacuum insulation panel, method for fabricating the same and vacuum insulation panel using the same
JP5596794B2 (en) Core material for vacuum insulation panel and method for producing the same
JP2013540607A5 (en)
JP5695212B2 (en) CORE MATERIAL FOR VACUUM INSULATION MATERIAL COMPRISING PHENOL RESIN CURED FOAM, VACUUM INSULATION MATERIAL USING SAME, AND METHOD FOR PRODUCING THE SAME
KR20120097326A (en) Material for vacuum insulation pannel and method for fabricating the same
JP2016507704A (en) Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same
KR101525297B1 (en) Core material having glass wool for vacuum insulation, method for manufacturing the same and vacuum insulation using the same
KR101808899B1 (en) Core material for vacuum insulation pannel, method for fabricating the same and vacuum insulation panel using the same
JP2018141517A (en) Vacuum heat insulation material, equipment including the same and manufacturing method of vacuum heat insulation material
JP2017137955A (en) Jacket material for vacuum heat insulation material and vacuum heat insulation material using the same
KR20220026289A (en) Core material for vacuum insulation panel and preparing method thereof
KR20150133901A (en) Complex core material for vacuum insulation pannel and vacuum insulation panel using the same
KR101489039B1 (en) Vacuum heat insulation material including through hole and manufacturing thereof
KR20160005158A (en) Vacuum insulation having open cell polyurethane foam and method of manufacturing the same
JP2015004368A (en) Manufacturing method of outer packing material for vacuum heat insulation material, manufacturing method of vacuum heat insulation material, and outer packing material for vacuum heat insulation material and vacuum heat insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180410