JP2013165196A - 照明光学系、露光装置、およびデバイス製造方法 - Google Patents

照明光学系、露光装置、およびデバイス製造方法 Download PDF

Info

Publication number
JP2013165196A
JP2013165196A JP2012027897A JP2012027897A JP2013165196A JP 2013165196 A JP2013165196 A JP 2013165196A JP 2012027897 A JP2012027897 A JP 2012027897A JP 2012027897 A JP2012027897 A JP 2012027897A JP 2013165196 A JP2013165196 A JP 2013165196A
Authority
JP
Japan
Prior art keywords
filter
optical system
illumination
illumination optical
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012027897A
Other languages
English (en)
Inventor
Hideki Komatsuda
秀基 小松田
Kaoru Inoue
馨 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012027897A priority Critical patent/JP2013165196A/ja
Publication of JP2013165196A publication Critical patent/JP2013165196A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】 被照射面上の各点での瞳強度分布をそれぞれ所要の分布に調整することのできる照明光学系。
【解決手段】 光源からの光により被照射面を照明する照明光学系は、その照明瞳の位置から光軸方向に沿って離れた第1位置に配置されて、第1透過率分布を有する第1フィルタと、第1フィルタと隣接する第2位置、あるいは第1位置光学的に共役な第1共役位置または第2位置と光学的に共役な第2共役位置に配置されて、第1透過率分布と相補的な第2透過率分布を有する第2フィルタとを備えている。第1フィルタと第2フィルタとの相対位置は変更可能であり、第1透過率分布は、多項式で表される関数を相対位置の変更方向に対応する座標について積分して得られる原始関数にしたがって形成されている。
【選択図】 図1

Description

本発明は、照明光学系、露光装置、およびデバイス製造方法に関する。
半導体素子等のデバイスの製造に用いられる露光装置では、光源から射出された光が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「瞳強度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。
二次光源からの光は、コンデンサーレンズにより集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは高集積化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。
マスクの微細パターンをウェハ上に正確に転写するために、例えば輪帯状や複数極状(2極状、4極状など)の瞳強度分布を形成し、投影光学系の焦点深度や解像力を向上させる技術が提案されている(特許文献1を参照)。
米国特許公開第2006/0055834号公報
マスクの微細パターンをウェハ上に正確に転写するには、瞳強度分布を所望の形状に調整するだけでなく、最終的な被照射面としてのウェハ上の各点に関する瞳強度分布をそれぞれほぼ均一に調整する必要がある。ウェハ上の各点での瞳強度分布の均一性にばらつきがあると、ウェハ上の位置毎にパターンの線幅がばらついて、マスクの微細パターンを露光領域の全体に亘って所望の線幅でウェハ上に正確に転写することができない。
本発明は、前述の課題に鑑みてなされたものであり、被照射面上の各点での瞳強度分布をそれぞれ所要の分布に調整することのできる照明光学系を提供することを目的とする。また、本発明は、被照射面上の各点での瞳強度分布をそれぞれ所要の分布に調整する照明光学系を用いて、適切な照明条件のもとで良好な露光を行うことのできる露光装置を提供することを目的とする。
前記課題を解決するために、第1形態では、光源からの光により被照射面を照明する照明光学系において、
前記照明光学系の照明瞳の位置から光軸方向に沿って離れた第1位置に配置されて、第1透過率分布を有する第1フィルタと、
前記第1フィルタと隣接する第2位置、あるいは前記第1位置光学的に共役な第1共役位置または前記第2位置と光学的に共役な第2共役位置に配置されて、前記第1透過率分布と相補的な第2透過率分布を有する第2フィルタとを備え、
前記第1フィルタと前記第2フィルタとの相対位置は変更可能であり、
前記第1透過率分布は、多項式で表される関数を前記相対位置の変更方向に対応する座標について積分して得られる原始関数にしたがって形成されていることを特徴とする照明光学系を提供する。
第2形態では、所定のパターンを照明するための第1形態の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。
第3形態では、第2形態の露光装置を用いて、前記所定のパターンを前記感光性基板に露光することと、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法を提供する。
実施形態にかかる露光装置の構成を概略的に示す図である。 照明瞳に輪帯状の光強度分布が形成される様子を示す図である。 ウェハ上に形成される矩形状の静止露光領域を示す図である。 (a)は静止露光領域内の中心点に関する瞳強度分布の光強度分布の性状を、(b)は周辺点に関する瞳強度分布の光強度分布の性状を模式的に示す図である。 実施形態における調整ユニットの構成を概略的に示す図である。 円形状の外形を有する一対のフィルタの中心と光軸とが一致した調整ユニットの基準状態を示す図である。 調整ユニットにおける合成透過率分布が一対のフィルタの相対位置の変更量に応じて変化する様子を定性的に示す図である。 調整ユニットと補正フィルタとの協働作用を定性的に説明する図である。 一対のフィルタからなる調整ユニットを2組設けた変形例の要部構成を概略的に示す図である。 半導体デバイスの製造工程を示すフローチャートである。 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。
以下、実施形態を、添付図面に基づいて説明する。図1は、実施形態にかかる露光装置の構成を概略的に示す図である。図1において、感光性基板であるウェハWの露光面(転写面)の法線方向に沿ってZ軸を、ウェハWの露光面内において図1の紙面に平行な方向にY軸を、ウェハWの露光面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。
図1を参照すると、本実施形態の露光装置では、光源LSから露光光(照明光)が供給される。光源LSとして、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や、248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。光源LSから射出された光は、ビーム送光部1および回折光学素子2を介して、アフォーカルレンズ3に入射する。ビーム送光部1は、光源LSからの入射光束を適切な大きさおよび形状の断面を有する光束に変換しつつ回折光学素子2へ導くとともに、回折光学素子2に入射する光の位置変動および角度変動をアクティブに補正する機能を有する。
アフォーカルレンズ3は、前側レンズ群3aと後側レンズ群3bとからなり、前側レンズ群3aの前側焦点位置と回折光学素子2の位置とがほぼ一致し、後側レンズ群3bの後側焦点位置と図中破線で示す所定面4の位置とがほぼ一致し且つ前側レンズ群3aの後側焦点位置と後側レンズ群3bの前側焦点位置とがほぼ一致するように設定されたアフォーカル系(無焦点光学系)である。回折光学素子2は、基板に露光光(照明光)の波長程度のピッチを有する段差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有する。回折光学素子2は照明光路に対して挿脱自在であり、例えば制御系CRからの指令にしたがって回折特性の異なる他の回折光学素子と交換可能である。以下、説明を簡単にするために、回折光学素子2は、輪帯照明用の回折光学素子であるものとする。
輪帯照明用の回折光学素子2は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールド(またはフラウンホーファー回折領域)に輪帯状の光強度分布を形成する機能を有する。したがって、回折光学素子2に入射したほぼ平行光束は、図2に示すように、前側レンズ群3aの後側焦点位置と後側レンズ群3bの前側焦点位置とがほぼ一致している位置であるアフォーカルレンズ3の瞳位置に輪帯状の光強度分布21を形成した後、輪帯状の角度分布でアフォーカルレンズ3から射出される。なお、輪帯状の角度分布で射出される光束は、光軸AXに対する角度の範囲が0度(光軸と平行)ではない最小値と所定の最大値との間であって、光軸AXまたは光軸AXと平行な軸線を中心とした回転対称な分布を有している。アフォーカルレンズ3の瞳位置またはその近傍には、例えば制御系CRからの指令にしたがって制御される円錐アキシコン系5が配置されている。円錐アキシコン系5の構成および作用については後述する。
アフォーカルレンズ3を介した光は、σ値(σ値=照明光学系のマスク側開口数/投影光学系のマスク側開口数)可変用のズームレンズ6を介して、オプティカルインテグレータとしてのマイクロフライアイレンズ(またはフライアイレンズ)7に入射する。マイクロフライアイレンズ7は、例えば縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子であって、平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成されている。
マイクロフライアイレンズを構成する各微小レンズは、フライアイレンズを構成する各レンズエレメントよりも微小である。また、マイクロフライアイレンズは、互いに隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成されている。しかしながら、正屈折力を有するレンズ要素が縦横に配置されている点でマイクロフライアイレンズはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。マイクロフライアイレンズ7として、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成および作用は、例えば米国特許第6913373号明細書に開示されている。
所定面4の位置はズームレンズ6の前側焦点位置またはその近傍に配置され、マイクロフライアイレンズ7の入射面はズームレンズ6の後側焦点位置またはその近傍に配置されている。換言すると、ズームレンズ6は、所定面4とマイクロフライアイレンズ7の入射面とを実質的にフーリエ変換の関係に配置し、ひいてはアフォーカルレンズ3の瞳面とマイクロフライアイレンズ7の入射面とを光学的にほぼ共役に配置している。また、アフォーカルレンズ3とズームレンズ6との合成光学系は、回折光学素子2が配置される配置面とマイクロフライアイレンズ7の入射面とを光学的にほぼ共役にしている。
したがって、マイクロフライアイレンズ7の入射面上には、アフォーカルレンズ3の瞳面と同様に、たとえば光軸AXを中心とした輪帯状の照野が形成される(輪帯状に照明光が分布する)。この輪帯状の照野の全体形状は、ズームレンズ6の焦点距離に依存して相似的に変化する。マイクロフライアイレンズ8における各微小レンズの入射面(すなわち単位波面分割面)は、例えばY方向に沿って長辺を有し且つX方向に沿って短辺を有する矩形状であって、マスクM上において形成すべき照明領域の形状(ひいてはウェハW上において形成すべき露光領域の形状)と相似な矩形状である。
マイクロフライアイレンズ7に入射した光束は二次元的に分割され、その後側焦点面またはその近傍の位置(ひいては照明瞳の位置)には、マイクロフライアイレンズ7の入射面に形成される照野とほぼ同じ光強度分布を有する二次光源、すなわち図2に示すように光軸AXを中心とした輪帯状の二次光源(多数の小光源からなる実質的な面光源:瞳強度分布)21’が形成される。マイクロフライアイレンズ7の直後の照明瞳に形成された二次光源21’からの光は、コンデンサー光学系8を介して、マスクブラインド9を重畳的に照明する。
こうして、照明視野絞りとしてのマスクブラインド9には、マイクロフライアイレンズ7の微小レンズの形状と焦点距離とに応じた矩形状の照野が形成される。なお、マイクロフライアイレンズ7の後側焦点面またはその近傍に、すなわち後述する投影光学系PLの入射瞳面と光学的にほぼ共役な位置に、二次光源に対応した形状の開口部(光透過部)を有する照明開口絞りを配置してもよい。コンデンサー光学系8の光路中には、一対のフィルタ10a,10bからなる調整ユニット10が配置されている。調整ユニット10の構成および作用については後述する。
マスクブラインド9の矩形状の開口部(光透過部)を経た光は、前側レンズ群11aと後側レンズ群11bとからなる結像光学系11を介して、所定のパターンが形成されたマスクMを重畳的に照明する。すなわち、結像光学系11は、マスクブラインド9の矩形状開口部の像をマスクM上に形成することになる。結像光学系11の瞳位置またはその近傍には、補正フィルタ(透過率分布フィルタ)12が配置されている。
補正フィルタ12は平行平面板の形態を有し、その光学面にはクロムや酸化クロム等からなる遮光性ドットの濃密パターンが形成されている。あるいは、補正フィルタ12の光学面には、位置により厚さの異なる減光性の薄膜、例えばクロムや酸化クロムからなる薄膜が形成されている。すなわち、補正フィルタ12は、光の入射位置に応じて透過率の異なる透過率分布を有する。補正フィルタ12は照明光路に対して挿脱自在であり、例えば制御系CRからの指令にしたがって濃密パターンの異なる他の補正フィルタと交換可能である。補正フィルタ12の具体的な作用については後述する。
マスクステージMS上に保持されたマスクMには転写すべきパターンが形成されており、パターン領域全体のうちY方向に沿って長辺を有し且つX方向に沿って短辺を有する矩形状(スリット状)のパターン領域が照明される。マスクMのパターン領域を透過した光は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。すなわち、マスクM上での矩形状の照明領域に光学的に対応するように、ウェハW上においてもY方向に沿って長辺を有し且つX方向に沿って短辺を有する矩形状の静止露光領域(実効露光領域)にパターン像が形成される。
こうして、いわゆるステップ・アンド・スキャン方式にしたがって、投影光学系PLの光軸AXと直交する平面(XY平面)内において、X方向(走査方向)に沿ってマスクステージMSとウェハステージWSとを、ひいてはマスクMとウェハWとを同期的に移動(走査)させることにより、ウェハW上には静止露光領域のY方向寸法に等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有するショット領域(露光領域)に対してマスクパターンが走査露光される。
円錐アキシコン系5は、光源側から順に、光源側に平面を向け且つマスク側に凹円錐状の屈折面を向けた第1プリズム部材5aと、マスク側に平面を向け且つ光源側に凸円錐状の屈折面を向けた第2プリズム部材5bとから構成されている。そして、第1プリズム部材5aの凹円錐状の屈折面と第2プリズム部材5bの凸円錐状の屈折面とは、互いに当接可能なように相補的に形成されている。また、第1プリズム部材5aおよび第2プリズム部材5bのうち少なくとも一方の部材が光軸AXに沿って移動可能に構成され、第1プリズム部材5aと第2プリズム部材5bとの間隔が可変に構成されている。
ここで、第1プリズム部材5aと第2プリズム部材5bとが互いに当接している状態では、円錐アキシコン系5は平行平面板として機能し、形成される輪帯状の二次光源に及ぼす影響はない。しかしながら、第1プリズム部材5aと第2プリズム部材5bとを離間させると、輪帯状の二次光源の幅(輪帯状の二次光源の外径と内径との差の1/2)を一定に保ちつつ、輪帯状の二次光源の外径(内径)が変化する。すなわち、輪帯状の二次光源の輪帯比(内径/外径)および大きさ(外径)が変化する。
ズームレンズ7は、輪帯状の二次光源の全体形状を相似的に拡大または縮小する機能を有する。たとえば、ズームレンズ7の焦点距離を最小値から所定の値へ拡大させることにより、輪帯状の二次光源の全体形状が相似的に拡大される。換言すると、ズームレンズ7の作用により、輪帯状の二次光源の輪帯比が変化することなく、その幅および大きさ(外径)がともに変化する。このように、円錐アキシコン系5およびズームレンズ7の作用により、輪帯状の二次光源の輪帯比と大きさ(外径)とを制御することができる。
輪帯照明用の回折光学素子2に代えて、複数極照明(2極照明、4極照明、8極照明など)用の回折光学素子(不図示)を照明光路中に設定することによって、複数極照明を行うことができる。複数極照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに複数極状(2極状、4極状、8極状など)の光強度分布を形成する機能を有する。したがって、複数極照明用の回折光学素子を介した光束は、マイクロフライアイレンズ7の入射面に、たとえば光軸AXを中心とした複数の所定形状(円弧状、円形状など)の照野からなる複数極状の照野を形成する(複数極状に照明光が分布する)。その結果、マイクロフライアイレンズ7の後側焦点面またはその近傍にも、その入射面に形成された照野と同じ複数極状の二次光源が形成される。
また、輪帯照明用の回折光学素子2に代えて、円形照明用の回折光学素子(不図示)を照明光路中に設定することによって、通常の円形照明を行うことができる。円形照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに円形状の光強度分布を形成する機能を有する。したがって、円形照明用の回折光学素子を介した光束は、マイクロフライアイレンズ7の入射面に、たとえば光軸AXを中心とした円形状の照野を形成する。その結果、マイクロフライアイレンズ7の後側焦点面またはその近傍にも、その入射面に形成された照野と同じ円形状の二次光源が形成される。また、輪帯照明用の回折光学素子2に代えて、適当な特性を有する回折光学素子(不図示)を照明光路中に設定することによって、様々な形態の変形照明を行うことができる。
本実施形態の露光装置は、照明光学系(2〜12)を介した光に基づいて照明光学系の射出瞳面における瞳強度分布を計測する第1瞳強度分布計測部DTrと、投影光学系PLを介した光に基づいて投影光学系PLの瞳面(投影光学系PLの射出瞳面)における瞳強度分布を計測する第2瞳強度分布計測部DTwと、第1および第2瞳強度分布計測部DTr,DTwのうちの少なくとも一方の計測結果に基づいて円錐アキシコン系5および調整ユニット10を制御し且つ露光装置の動作を統括的に制御する制御系CRとを備えている。
第1瞳強度分布計測部DTrは、例えば照明光学系の射出瞳位置と光学的に共役な位置に配置された光電変換面を有する撮像部を備え、照明光学系による被照射面上の各点に関する瞳強度分布(各点に入射する光が照明光学系の射出瞳位置に形成する瞳強度分布)をモニターする。また、第2瞳強度分布計測部DTwは、例えば投影光学系PLの瞳位置と光学的に共役な位置に配置された光電変換面を有する撮像部を備え、投影光学系PLの像面の各点に関する瞳強度分布(各点に入射する光が投影光学系PLの瞳位置に形成する瞳強度分布)をモニターする。
すなわち、第1および第2瞳強度分布計測部DTr,DTwは、被照射面(マスクまたはウェハ)上の所定点に達する光束の、光軸AXまたは光軸AXと平行な軸に対する角度方向の強度分布を計測する瞳強度分布計測部を構成している。第1および第2瞳強度分布計測部DTr,DTwの詳細な構成および作用については、例えば米国特許公開第2008/0030707号明細書を参照することができる。また、瞳強度分布計測部として、米国特許公開第2010/0020302号公報の開示を参照することもできる。
本実施形態では、上述したように、マイクロフライアイレンズ7により形成される二次光源を光源として、照明光学系(2〜12)の被照射面に配置されるマスクMをケーラー照明する。このため、二次光源が形成される位置は投影光学系PLの開口絞りASの位置と光学的に共役であり、二次光源の形成面を照明光学系(2〜12)の照明瞳面と呼ぶことができる。典型的には、照明瞳面に対して被照射面(マスクMが配置される面、または投影光学系PLを含めて照明光学系と考える場合にはウェハWが配置される面)が光学的なフーリエ変換面となる。
瞳強度分布とは、照明光学系(2〜12)の照明瞳面または当該照明瞳面と光学的に共役な面における光強度分布(輝度分布)である。マイクロフライアイレンズ7による波面分割数が比較的大きい場合、マイクロフライアイレンズ7の入射面に形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布(瞳強度分布)とが高い相関を示す。このため、マイクロフライアイレンズ7の入射面および当該入射面と光学的に共役な面も照明瞳面と呼ぶことができ、これらの面における光強度分布についても瞳強度分布と称することができる。
図1の構成において、回折光学素子2、アフォーカルレンズ3、ズームレンズ6、およびマイクロフライアイレンズ7は、マイクロフライアイレンズ7よりも後側の照明瞳に瞳強度分布を形成する分布形成光学系を構成している。本実施形態では、回折光学素子からの光が、マイクロフライアイレンズ7の入射面の照明瞳に、ひいてはマイクロフライアイレンズ7の直後の照明瞳に、所望の瞳強度分布を形成する。さらに、マイクロフライアイレンズ7の直後の照明瞳と光学的に共役な別の照明瞳の位置、すなわち結像光学系11の瞳位置および投影光学系PLの瞳位置(開口絞りASが配置されている位置)にも、所望の瞳強度分布が形成される。
本実施形態にかかる走査型の露光装置では、図3に示すように、Y方向に沿って長辺を有し且つX方向に沿って短辺を有する矩形状の静止露光領域ERがウェハW上に形成される。ここで、静止露光領域ER内の1点に入射する光が照明瞳に形成する瞳強度分布は、入射点の位置に依存することなく、互いにほぼ同じ形状を有する。しかしながら、瞳強度分布における光強度の分布は、入射点の位置に依存して異なる場合がある。具体的に、マイクロフライアイレンズ7の直後の照明瞳に形成される瞳強度分布のY方向(静止露光領域ERの長手方向に対応する方向)に沿った光強度分布は、入射点の位置に依存して異なる場合がある。
以下の説明において単に「照明瞳」という場合には、マイクロフライアイレンズ7の後側焦点面またはその近傍の照明瞳を指すものとする。一般に、照明瞳に形成される瞳強度分布の外形形状にかかわらず、ウェハW上の静止露光領域ER内の中心点P1に関する瞳強度分布のY方向に沿った光強度分布は、図4(a)に示すように、中央において最も小さく周辺に向かって増大する凹曲線状の分布を有する傾向がある。一方、静止露光領域ER内の周辺点P2,P3に関する瞳強度分布のY方向に沿った光強度分布は、図4(b)に示すように、中央において最も大きく周辺に向かって減少する凸曲線状の分布を有する傾向がある。
そして、瞳強度分布のY方向に沿った光強度分布は、静止露光領域ER内のX方向(走査方向)に沿った入射点の位置にはあまり依存しないが、静止露光領域ER内のY方向(走査直交方向)に沿った入射点の位置に依存して変化する傾向がある。このように、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布(各点に入射する光が照明瞳を通過するときの当該照明瞳における強度分布)がそれぞれほぼ均一でない場合、ウェハW上の位置毎にパターンの線幅がばらついて、マスクMの微細パターンを露光領域の全体に亘って所望の線幅でウェハW上に正確に転写することができない。
本実施形態では、上述したように、結像光学系11の瞳位置またはその近傍(すなわち結像光学系11の光路中の照明瞳)に、光の入射位置に応じて透過率の異なる透過率分布を有する補正フィルタ12が配置されている。結像光学系11の瞳位置は、マスクMのパターン面(ひいてはウェハWの露光面)とフーリエ変換の関係にある。したがって、補正フィルタ12の作用により、結像光学系11の瞳位置またはその近傍の照明瞳に形成される瞳強度分布が調整される。ただし、補正フィルタ12は、ウェハW上の露光領域内の各点に関する瞳強度分布を、各点の位置に依存することなく一様に(一律に)調整するだけである。
ウェハW上の静止露光領域ER内の各点に関する瞳強度分布をそれぞれほぼ均一に調整するには、補正フィルタ12とは別の手段により、各点に関する瞳強度分布を互いに同じ性状の分布に調整する必要がある。そこで、本実施形態では、静止露光領域ER内の各点に関する瞳強度分布を互いに同じ性状の分布に調整するための調整手段(一般的には各点に関する瞳強度分布をそれぞれ独立的に調整するための調整手段)として、コンデンサー光学系8の光路中においてマイクロフライアイレンズ7の直後の照明瞳から光軸AX方向に沿って離れた位置に配置された調整ユニット10を備えている。
調整ユニット10は、図5に示すように、光軸AX(Z方向に対応)に沿って隣接配置された一対のフィルタ10aおよび10bを備えている。フィルタ10a,10bの本体は、例えば石英または蛍石のような光学材料により形成された平行平面板の形態を有する。第1フィルタ10aの射出面10ab、および第2フィルタ10bの入射面10baには、例えばクロムや酸化クロム等からなる微小な遮光性ドットの濃密パターンが形成されている。
あるいは、第1フィルタ10aの射出面10ab、および第2フィルタ10bの入射面10baには、位置により厚さの異なる減光性の薄膜、例えばクロムや酸化クロムからなる薄膜が形成されている。すなわち、フィルタ10a,10bは、上述した補正フィルタ12と同様に、光の入射位置に応じて透過率の異なる透過率分布を有する。さらに詳細には、第1フィルタ10aの第2フィルタ10b側の光透過面10abには第1濃度分布を持つ第1パターンが形成され、第2フィルタ10bの第1フィルタ10a側の光透過面10baには第2濃度分布を持つ第2パターンが形成されている。
第1フィルタ10aは、例えば光軸AXを中心とする円形状の外形形状を有し、その入射面(ひいては射出面10ab)が光軸AXと直交するような姿勢を維持しつつ、Y方向(ウェハWの走査方向と直交する走査直交方向に対応)に沿って移動可能に構成されている。第2フィルタ10bは、第1フィルタ10aの後側(マスク側)に隣接して配置され、例えば光軸AXを中心とする円形状の外形形状を有し、その入射面10ba(ひいては射出面)が光軸AXと直交するような姿勢を維持しつつ、Y方向に沿って移動可能に構成されている。
調整ユニット10では、制御系CRからの指令にしたがって作動する駆動制御部101の作用により、第1フィルタ10aおよび第2フィルタ10bがそれぞれY方向に沿って移動する。図5では、図面の明瞭化のために、一対のフィルタ10aと10bとをある程度離間させた状態を示している。しかしながら、一対のフィルタ10aと10bとは、射出面10abと入射面10baとが互いに近接するように配置される。以下、調整ユニット10の作用の理解を容易にするために、射出面10abと入射面10baとがほぼ一致しているものとする。
第1フィルタ10aは、図6に示す局所座標(x,y)により表される透過率分布T1(x,y)を有し、第2フィルタ10bは透過率分布T1(x,y)と相補的な透過率分布T2(x,y)を有する。図6は、円形状の外形を有するフィルタ10a,10bの中心と光軸AXとが一致した調整ユニット10の基準状態を示している。局所座標(x,y)のx座標は光軸AXを通り全体座標(X,Y,Z)のX方向と平行に設定され、y座標は光軸AXを通り全体座標のY方向と平行に設定されている。
具体的に、第1フィルタ10aの透過率分布T1(x,y)および第2フィルタ10bの透過率分布T2(x,y)は、次の式(1)および(2)に示すように、ツェルニケ(Zernike)多項式で表される関数をy座標(フィルタ10aと10bとの相対位置の変更方向に対応する座標)について積分して得られる原始関数ZIk(k=1〜n)にしたがって形成されている。式(1)および(2)において、αkは多項式で表される原始関数の各項ZIkの係数である。
Figure 2013165196
ここで、透過率分布T1(x,y)および透過率分布T2(x,y)は、0〜1の間で透過率が変化する絶対的な分布ではなく、所定の範囲内で透過率が変化する相対的な分布である。式(1)および(2)を参照すると、第1透過率分布T1(x,y)と第2透過率分布T2(x,y)との和は常に2であり、ひいては第1透過率分布T1(x,y)と第2透過率分布T2(x,y)とは相互に補完する関係にある。例示的にn=16とした場合、原始関数ZIkの第1項ZI1〜第16項ZI16は、次の式(3−1)〜式(3−16)により表される。
Figure 2013165196
ちなみに、ツェルニケ多項式で表される関数の第1項Z1〜第16項Z16は、次の式(4−1)〜式(4−16)に示す通りである。ただし、式(4−1)〜式(4−16)では、図6において光軸AXを原点とする極座標(r,θ)を用いて表されるツェルニケ多項式の第1項Z1(r,θ)〜第16項Z16(r,θ)を示している。直交座標(x,y)によるツェルニケ多項式の第1項Z1(x,y)〜第16項Z16(x,y)は、x=rcosθおよびy=rsinθの関係と極座標(r,θ)による第1項Z1(r,θ)〜第16項Z16(r,θ)とにより求められるが、その表記が比較的複雑になるため記載を省略する。
1=1 (4−1)
2=rcosθ (4−2)
3=rsinθ (4−3)
4=2r2−1 (4−4)
5=r2cos2θ (4−5)
6=r2sin2θ (4−6)
7=(3r2−2)rcosθ (4−7)
8=(3r2−2)rsinθ (4−8)
9=6r4−6r2+1 (4−9)
10=r3cos3θ (4−10)
11=r3sin3θ (4−11)
12=(4r2−3)r2cos2θ (4−12)
13=(4r2−3)r2sin2θ (4−13)
14=(10r4−12r2+3)rcosθ (4−14)
15=(10r4−12r2+3)rsinθ (4−15)
16=20r6−30r4+12r2−1 (4−16)
図6に示す基準状態から第1フィルタ10aをY方向に沿って移動させて、フィルタ10aと10bとのY方向に沿った相対位置をdyだけ変更すると、フィルタ10aと10bとを合わせた合成透過率分布T1(x,y+dy)T2(x,y)は、係数αkの大きさが1よりも十分小さいと仮定して、次の式(5)に示すように近似される。式(5)は、次の式(5a)および(5b)に示す関係を用いて導かれる。
Figure 2013165196
式(5)を参照すると、Y方向に沿って相対位置が変更可能な一対のフィルタ10aと10bとの合成透過率分布T12(第1透過率分布T1(x,y)と第2透過率分布T2(x,y)とを合成した透過率分布)は、フィルタ10aと10bとのY方向に沿った相対位置の変更量(駆動量)dyの値に応じて、ツェルニケ多項式で表されることがわかる。このことは、所要の項数nのツェルニケ多項式をy座標について積分して得られる原始関数ZIkにしたがって形成された相補的な透過率分布T1(x,y),T2(x,y)が付与された一対のフィルタ10aと10bとのY方向に沿った相対位置を変更する調整ユニット10では、相対位置の変更量dyと項数nのツェルニケ多項式とを用いてフィルタ10aと10bとの合成透過率分布T12を管理できることを意味している。
調整ユニット10は、被照射面であるマスクMのパターン面とフーリエ変換の関係に位置するマイクロフライアイレンズ7の直後の照明瞳と、マスクMのパターン面と光学的に共役なマスクブラインド9との間の光路中において、照明瞳から離れた位置に配置されている。したがって、ウェハW上の静止露光領域ER内の中心点P1に達する光が調整ユニット10を通過する領域と、静止露光領域ER内の周辺点P2(P3)に達する光が調整ユニット10を通過する領域とは互いに異なる。
具体的に、中心点P1に達する光は調整ユニット10において光軸AXを中心とする中央領域を通過するのに対し、周辺点P2(P3)に達する光は調整ユニット10において光軸AXから偏心した周辺領域を通過する。一般に、静止露光領域ER内の互いに異なる位置に達する光は、調整ユニット10において互いに異なる領域を通過し、ひいては互いに異なる透過率分布の作用を受ける。そして、調整ユニット10における合成透過率分布T12は、上述したように、フィルタ10aと10bとのY方向に沿った相対位置の変更量に依存して変化する。このことは、調整ユニット10が静止露光領域ER内の各点に関する瞳強度分布をそれぞれ独立的に調整できることを意味している。
図7は、調整ユニットにおける合成透過率分布が一対のフィルタの相対位置の変更量に応じて変化する様子を定性的に示す図である。図7(a)に示すように、第1透過率分布T1を有する第1フィルタ10aおよび第2透過率分布T2を有する第2フィルタ10bが図6に示す基準状態にある場合、フィルタ10aと10bとの合成透過率分布T12は、調整ユニット10の全面に亘って一定であり、ひいてはY方向に沿って一定である。図7(a)を参照すると、第2透過率分布T2は第1透過率分布T1を反転させて得られる分布であり、この観点において第1透過率分布T1と第2透過率分布T2とは相補的であることがわかる。
図7(a)の基準状態から第1フィルタ10aを+Y方向にΔy/2だけ移動させ且つ第2フィルタ10bを−Y方向にΔy/2だけ移動させて、フィルタ10aと10bとのY方向に沿った相対位置を基準状態からΔyだけ変更すると、図7(b)に示すように、基準状態からの変更量Δyに応じた分だけ第1透過率分布T1は図7中左側へ移動し且つ第2透過率分布T2は図7中右側へ移動する。その結果、図7(b)に示すような性状の合成透過率分布T12が得られる。
次いで、図7(b)の状態から第1フィルタ10aを+Y方向にΔy/2だけ移動させ且つ第2フィルタ10bを−Y方向にΔy/2だけ移動させて、フィルタ10aと10bとのY方向に沿った相対位置を基準状態から2×Δyだけ変更すると、図7(c)に示すように、基準状態からの変更量2×Δyに応じた分だけ第1透過率分布T1は図7中左側へさらに移動し且つ第2透過率分布T2は図7中右側へさらに移動する。その結果、図7(c)に示すような性状の合成透過率分布T12が得られる。
さらに、図7(c)の状態から第1フィルタ10aを+Y方向にΔy/2だけ移動させ且つ第2フィルタ10bを−Y方向にΔy/2だけ移動させて、フィルタ10aと10bとのY方向に沿った相対位置を基準状態から3×Δyだけ変更すると、図7(d)に示すように、基準状態からの変更量3×Δyに応じた分だけ第1透過率分布T1は図7中左側へさらに移動し且つ第2透過率分布T2は図7中右側へさらに移動する。その結果、図7(d)に示すような性状の合成透過率分布T12が得られる。
図7(a)〜図7(d)を参照すると、調整ユニット10の合成透過率分布T12は、一対のフィルタ10aと10bとのY方向に沿った相対位置の変更に伴って、図7(a)に示すほぼ均一な透過率分布と図7(d)に示す性状の透過率分布との間で変化している。すなわち、Y方向に沿って相対位置が変更可能な一対のフィルタ10aと10bとの合成透過率分布T12の性状は、フィルタ10aと10bとのY方向に沿った相対位置の変更量(0,Δy,2×Δy,3×Δy)の値に応じて変化している。上述したように、調整ユニット10の合成透過率分布T12は、一対のフィルタ10aと10bとのY方向に沿った相対位置の変更量とツェルニケ多項式とを用いて管理される。
図8は、調整ユニットと補正フィルタとの協働作用を定性的に説明する図である。図4を参照して、静止露光領域ER内の中心点P1に関する瞳強度分布のY方向に沿った光強度分布が凹曲線状の分布を有し、周辺点P2,P3に関する瞳強度分布のY方向に沿った光強度分布は凸曲線状の分布を有する傾向があることを説明した。しかしながら、図8では、調整ユニット10と補正フィルタ12との協働作用の理解を容易にするために、中心点P1に関する瞳強度分布のY方向に沿った光強度分布がほぼ均一であるものとする。
すなわち、調整ユニット10と補正フィルタ12との協働作用の説明に際して、静止露光領域ER内の中心点P1に関する瞳強度分布のY方向に沿った光強度分布は、図8(a)の中央の図に示すように、中央から周辺に向かってほぼ均一であるものとする。一方、静止露光領域ER内の周辺点P2,P3に関する瞳強度分布のY方向に沿った光強度分布は、図8(a)の左側の図および右側の図に示すように、中央において最も大きく周辺に向かって減少する凸曲線状の分布を有するものとする。
本実施形態では、コンデンサー光学系8の光路中においてマイクロフライアイレンズ7の直後の照明瞳から離れた位置に配置された調整ユニット10の作用により、静止露光領域ER内の点P1,P2,P3に関する瞳強度分布はそれぞれ独立的に調整され、ひいては図8(b)に示すように互いに同じ性状の分布に調整される。また、結像光学系11の光路中の照明瞳に配置された補正フィルタ12の作用により、静止露光領域ER内の点P1,P2,P3に関する瞳強度分布は一様に調整され、ひいては図8(c)に示すように互いにほぼ均一な分布に調整される。
以上のように、本実施形態の照明光学系(2〜12)では、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布をそれぞれ独立的に調整する調整ユニット10と、各点に関する瞳強度分布を一様に調整する補正フィルタ12との協働作用により、各点に関する瞳強度分布をそれぞれほぼ均一に(一般的にはそれぞれ所要の分布に)調整することができる。したがって、本実施形態の露光装置(2〜WS)では、ウェハW上の静止露光領域ER内の各点での瞳強度分布をそれぞれほぼ均一に調整する照明光学系(2〜12)を用いて、マスクMの微細パターンに応じた適切な照明条件のもとで良好な露光を行うことができ、ひいてはマスクMの微細パターンを露光領域の全体に亘って所望の線幅でウェハW上に正確に転写することができる。
本実施形態において、静止露光領域ER内の各点に関する瞳強度分布をそれぞれほぼ均一に調整する動作(一般的には各点に関する瞳強度分布をそれぞれ所要の分布に調整する動作)は、瞳強度分布計測部DTr,DTwの計測結果に基づいて行われる。具体的に、瞳強度分布計測部DTr,DTwの計測結果は、制御系CRに供給される。制御系CRは、瞳強度分布計測部DTr,DTwの計測結果に基づいて、例えば投影光学系PLの瞳面における瞳強度分布が所望の分布になるように、調整ユニット10の駆動制御部101に指令を出力する。駆動制御部101は、制御系CRからの指令に基づいて一対のフィルタ10aと10bとのY方向に沿った相対位置を所要量だけ変更し、ウェハW上の静止露光領域ER内の各点に関する瞳強度分布を所要の分布に調整する。
本実施形態にかかる走査型の露光装置では、上述したように、静止露光領域ER内の中心点P1に関する瞳強度分布のY方向に沿った光強度分布は凹曲線状の分布を有し、周辺点P2,P3に関する瞳強度分布のY方向に沿った光強度分布は凸曲線状の分布を有する傾向がある。したがって、調整ユニット10は、その合成透過率分布がフィルタ10aと10bとのY方向に沿った相対位置の変更に伴って、ほぼ均一な透過率分布と中心から離れるに従って透過率が低下する透過率分布との間で変化するように構成されるのが通常である。
本実施形態において、ウェハ(被照射面)W上の光量分布が、例えば調整ユニット10の調整作用の影響を受けることが考えられる。この場合、必要に応じて、公知の構成を有する光量分布調整部の作用により、静止露光領域ER内の照度分布または静止露光領域(照明領域)ERの形状を変更することができる。具体的に、照度分布を変更する光量分布調整部としては、特開2001−313250号および特開2002−100561号(並びにそれらに対応する米国特許第6771350号および第6927836号)に記載された構成および手法を用いることができる。また、照明領域の形状を変更する光量分布調整部としては、国際特許公開第WO2005/048326号パンフレット(およびそれに対応する米国特許公開第2007/0014112号公報)に記載された構成および手法を用いることができる。
なお、上述の実施形態では、静止露光領域ER内の各点に関する瞳強度分布をそれぞれ独立的に調整する調整ユニット10と、各点に関する瞳強度分布を一様に調整する補正フィルタ12との協働作用により、各点に関する瞳強度分布をそれぞれ所要の分布に調整している。しかしながら、場合によっては、補正フィルタ12の設置を省略し、調整ユニット10の作用だけで各点に関する瞳強度分布をそれぞれ所要の分布に調整することも可能である。
また、上述の実施形態において、調整ユニット10は、図5および図6を参照して説明したように、光軸AXに対して垂直に配置された平行平面板の形態を有し且つその光学面が光軸AXと直交するような姿勢を維持しつつY方向に沿って移動可能な一対のフィルタ10aおよび10bにより構成されている。また、フィルタ10aおよび10bの透過率分布は、ツェルニケ多項式で表される関数をy座標について積分して得られる原始関数にしたがって形成されている。しかしながら、これに限定されることなく、調整ユニット10の具体的な構成については、様々な形態が可能である。
すなわち、調整ユニットを構成する各フィルタの形態(外形形状など)、各フィルタの姿勢、各フィルタの相対位置の変化の形態、各フィルタに形成される透過率分布の形態、透過率分布の形成面の位置(入射面または射出面)、各フィルタの配置位置、調整ユニットの数、調整ユニットの配置位置などについて、様々な形態が可能である。例えば、平行平面板の形態に限定されることなく、各フィルタの本体として、少なくとも一方の面が曲率を有するような光透過性の基板を用いることもできる。また、フィルタ10aおよび10bの双方が移動可能な構成に限定されることなく、一方のフィルタを固定的に位置決めし、他方のフィルタを移動可能に構成しても良い。
また、コンデンサー光学系8の光路中においてマイクロフライアイレンズ7の直後の照明瞳から光軸AX方向に沿って離れた位置に限定されることなく、マイクロフライアイレンズの前側(光源側)または後側(被照射面)の光路中において照明瞳から光軸方向に沿って離れた位置(例えば照明瞳との間に少なくとも1つのレンズが介在する位置)に一対のフィルタを隣接配置することができる。あるいは、照明瞳の位置から光軸方向に沿って離れた第1位置に第1フィルタを配置し、この第1位置と光学的に共役な第1共役位置、または第1位置に隣接した第2位置と光学的に共役な第2共役位置に第2フィルタを配置しても良い。
ところで、調整ユニット10を構成する一対のフィルタ10aと10bとを隣接して配置する場合、フィルタ10aと10bとのY方向に沿った相対位置の変更を可能にするために、フィルタ10aと10bとを密着して配置することはできず、フィルタ10aと10bとを光軸AX方向にある程度間隔を隔てて配置せざるを得ない。この場合、フィルタ10aと10bとを同じサイズ(互いに反転した状態にある透過率分布を同じサイズ)にすると、基準状態においてほぼ均一な合成透過率分布が得られなくなってしまう。したがって、基準状態においてほぼ均一な合成透過率分布を得るには、静止露光領域内の1点に入射する光束が第1フィルタを通過する領域の大きさと第2フィルタを通過する領域の大きさとの比率に合わせて、第1フィルタに付与すべき第1透過率分布のサイズと第2フィルタに付与すべき第2透過率分布のサイズとの比率を決定すれば良い。
また、y座標についての積分およびY方向に沿った相対位置の変更に限定されることなく、直交座標(x,y)で表されるツェルニケ多項式をx座標について積分して得られる原始関数にしたがって、調整ユニットを構成する一対のフィルタの透過率分布を形成しても良い。この場合、少なくとも1つのフィルタをX方向(光軸AXと直交する平面の面内方向)に沿って移動可能に構成し、一対のフィルタのX方向に沿った相対位置を変更することにより、調整ユニットの合成透過率分布を変化させる。
また、直交座標(x,y)で表されるツェルニケ多項式に限定されることなく、極座標(r,θ)で表されるツェルニケ多項式をθ座標について積分して得られる原始関数にしたがって、調整ユニットを構成する一対のフィルタの透過率分布を形成しても良い。この場合、少なくとも1つのフィルタを光軸AX廻りに回転可能に構成し、θ座標に対応する方向すなわち一対のフィルタの光軸AX廻りの回転方向に相対位置を変更することにより、調整ユニットの合成透過率分布を変化させる。
また、極座標(r,θ)で表されるツェルニケ多項式をr座標について積分して得られる原始関数にしたがって、調整ユニットを構成する一対のフィルタの透過率分布を形成しても良い。この場合、少なくとも1つのフィルタを光軸AXに沿って移動可能に構成し、一対のフィルタの光軸AX方向の相対位置(ひいては一対のフィルタの間隔)を変更することにより、調整ユニットの合成透過率分布を変化させる。これは、一対のフィルタの間隔の変化に伴って、静止露光領域内の1点に入射する光束が第1フィルタを通過する領域のr座標に沿った寸法と第2フィルタを通過する領域のr座標に沿った寸法との比率が変化するからである。
また、ツェルニケ多項式に代えて、例えばチェビシェフ(Chebyshev)多項式、べき級数(べき多項式)のような多項式を用いることもできる。すなわち、チェビシェフ多項式、べき級数などで表される関数を所要の座標について積分して得られる原始関数にしたがって、調整ユニットを構成する一対のフィルタの透過率分布を形成しても良い。
また、図9に示すように、例えばマスクブラインド9と結像光学系11との間の光路中に配置された一対のフィルタ13aと13bとからなる調整ユニット13を付設することにより、すなわち一対のフィルタからなる調整ユニットを2組設けることにより、調整ユニットによる瞳強度分布の調整効果を高める変形例も可能である。図9では、マイクロフライアイレンズ7からマスクMまでの光路を直線状に展開して示している。以下、説明の理解を容易にするために、調整ユニット10と13とが互いに同じ構成を有するものとする。
調整ユニット13は、マスクMのパターン面(被照射面)と光学的に共役な位置に配置されたマスクブラインド9を挟んで、結像光学系11の光路中の照明瞳(補正フィルタ12が配置されている位置)から光軸AX方向に沿って離れた位置に配置されている。したがって、図9の変形例では、任意の光線が第1の調整ユニット10を通過する位置と第2の調整ユニット13を通過する位置とは、上下左右が反転した位置関係になる。その結果、2組の調整ユニット10,13を用いる図9の変形例では、1組の調整ユニット10を用いる図1の実施形態よりも、調整ユニットによる瞳強度分布の調整効果が向上する。
調整ユニット10と13とは互いに同じ構成である必要はなく、例えば一対のフィルタ10a,10bとは異なる任意の透過率分布(多項式で表される関数を相対位置の変更方向に対応する座標について積分して得られる原始関数にしたがって形成される任意の透過率分布)を、一対のフィルタ13a,13bに付与することができる。また、調整ユニット13を光路から退避可能に構成しても良い。また、調整ユニット13についても調整ユニット10の場合と同様に、各フィルタの形態(外形形状など)、各フィルタの姿勢、各フィルタの相対位置の変化の形態、各フィルタに形成される透過率分布の形態、透過率分布の形成面の位置(入射面または射出面)、各フィルタの配置位置などについて、様々な形態が可能である。
例えば、図9では第1フィルタ13aと第2フィルタ13bとを隣接して配置しているが、これに限定されることなく、照明瞳の位置から光軸方向に沿って離れた第3位置に第1フィルタを配置し、この第3位置と光学的に共役な第3共役位置、または第3位置に隣接した第4位置と光学的に共役な第4共役位置に第2フィルタを配置しても良い。
また、上述の実施形態では、被照射面の各位置に関する瞳強度分布を一様に補正する補正部材としての補正ユニット12が、結像光学系11の光路中の照明瞳の位置に配置されている。しかしながら、これに限定されることなく、瞳強度分布が形成される他の照明瞳の位置に補正ユニットを配置することもできる。
また、上述の実施形態において、回折光学素子2に代えて、あるいは回折光学素子2に加えて、たとえばアレイ状に配列され且つ傾斜角および傾斜方向が個別に駆動制御される多数の微小な要素ミラーにより構成されて入射光束を反射面毎の微小単位に分割して偏向させることにより、光束の断面を所望の形状または所望の大きさに変換する空間光変調器を用いても良い。このような空間光変調器を用いた照明光学系は、例えば特開2002−353105号公報や米国公開公報第2009/0109417号公報に開示されている。
上述の回折光学素子および空間光変調器は、瞳強度分布を形成するために入射光を空間的に変調して射出する空間光変調素子である。したがって、補正ユニットに代えて、あるいは補正ユニットに加えて、回折光学素子および/または空間光変調器を、被照射面の各位置に関する瞳強度分布を一様に補正する補正部材として用いることができる。
上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含む空間光変調素子を用いることができる。空間光変調素子を用いた露光装置は、たとえば米国特許公開第2007/0296936号公報に開示されている。また、上述のような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。
上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。
次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図10は、半導体デバイスの製造工程を示すフローチャートである。図10に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の投影露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。
その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の投影露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の投影露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。
図11は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図11に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源などに対して本発明を適用することもできる。
また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンプレットに開示されているような局所的に液体を満たす手法や、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10−303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。ここでは、国際公開第WO99/49504号パンフレット、特開平6−124873号公報および特開平10−303114号公報の教示を参照として援用する。
また、上述の実施形態において、米国公開公報第2006/0170901号、第2007/0146676号及び第2009/0109417号公報に開示されるいわゆる偏光照明方法を適用することも可能である。ここでは、米国特許公開第2006/0170901号公報、第2007/0146676号公報及び第2009/0109417号公報の教示を参照として援用する。
また、上述の実施形態では、ウェハWのショット領域にマスクMのパターンを走査露光するステップ・アンド・スキャン方式の露光装置に対して本発明を適用している。しかしながら、これに限定されることなく、ウェハWの各露光領域にマスクMのパターンを一括露光する動作を繰り返すステップ・アンド・リピート方式の露光装置に対して本発明を適用することもできる。
また、上述の実施形態では、露光装置においてマスク(またはウェハ)を照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク(またはウェハ)以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。
1 ビーム送光部
2 回折光学素子
3 アフォーカルレンズ
5 円錐アキシコン系
6 ズームレンズ
7 マイクロフライアイレンズ(オプティカルインテグレータ)
8 コンデンサー光学系
9 マスクブラインド
10 調整ユニット
10a,10b フィルタ
11 結像光学系
12 補正フィルタ
LS 光源
M マスク
MS マスクステージ
PL 投影光学系
AS 開口絞り
W ウェハ
WS ウェハステージ

Claims (30)

  1. 光源からの光により被照射面を照明する照明光学系において、
    前記照明光学系の照明瞳の位置から光軸方向に沿って離れた第1位置に配置されて、第1透過率分布を有する第1フィルタと、
    前記第1フィルタと隣接する第2位置、あるいは前記第1位置と光学的に共役な第1共役位置または前記第2位置と光学的に共役な第2共役位置に配置されて、前記第1透過率分布と相補的な第2透過率分布を有する第2フィルタとを備え、
    前記第1フィルタと前記第2フィルタとの相対位置は変更可能であり、
    前記第1透過率分布は、多項式で表される関数を前記相対位置の変更方向に対応する座標について積分して得られる原始関数にしたがって形成されていることを特徴とする照明光学系。
  2. 前記第1透過率分布と前記第2透過率分布とを合成した透過率分布である第1合成透過率分布は、前記第1フィルタと前記第2フィルタとの相対位置の変更に伴って、均一な透過率分布と中心から離れるに従って透過率が低下する透過率分布との間で変化することを特徴とする請求項1に記載の照明光学系。
  3. 前記第1フィルタおよび前記第2フィルタは、平行平面板の形態を有することを特徴とする請求項1または2に記載の照明光学系。
  4. 前記第1フィルタと前記第2フィルタとは、互いに平行な状態を維持しつつ相対位置が変更可能であることを特徴とする請求項1乃至3のいずれか1項に記載の照明光学系。
  5. 前記第1フィルタと前記第2フィルタとは、前記照明光学系の光軸と直交する平面の面内方向に沿って相対的に移動可能に構成されていることを特徴とする請求項1乃至4のいずれか1項に記載の照明光学系。
  6. 前記第1フィルタと前記第2フィルタとは、前記照明光学系の光軸廻りに相対的に回転可能に構成されていることを特徴とする請求項1乃至5のいずれか1項に記載の照明光学系。
  7. 前記第1フィルタと前記第2フィルタとは、前記照明光学系の光軸の方向に沿って相対的に移動可能に構成されていることを特徴とする請求項1乃至6のいずれか1項に記載の照明光学系。
  8. 前記第2フィルタは、前記第1フィルタと隣接する第2位置に配置され、
    前記第1フィルタの前記第2フィルタ側の光透過面に第1濃度分布を持つ第1パターンが形成され、
    前記第2フィルタの前記第1フィルタ側の光透過面に第2濃度分布を持つ第2パターンが形成されていることを特徴とする請求項1乃至7のいずれか1項に記載の照明光学系。
  9. 前記照明光学系の照明瞳から光軸方向に沿って離れた第3位置に配置されて、第3透過率分布を有する第3フィルタと、
    前記第3フィルタと隣接する第4位置、あるいは前記第3位置と光学的に共役な第3共役位置または前記第4位置と光学的に共役な第4共役位置に配置されて、前記第3透過率分布と相補的な第4透過率分布を有する第4フィルタとをさらに備え、
    前記第3フィルタと前記第4フィルタとの相対位置は変更可能であり、
    前記第3透過率分布は、多項式で表される関数を、前記第3フィルタと前記第4フィルタとの相対位置の変更方向に対応する座標について積分して得られる原始関数にしたがって形成されていることを特徴とする請求項1乃至8のいずれか1項に記載の照明光学系。
  10. 前記第3透過率分布と前記第4透過率分布とを合成した透過率分布である第2合成透過率分布は、前記第3フィルタと前記第4フィルタとの相対位置の変更に伴って、均一な透過率分布と中心から離れるに従って透過率が低下する透過率分布との間で変化することを特徴とする請求項9に記載の照明光学系。
  11. 前記第2フィルタは前記第2位置に配置され、
    前記第3フィルタと前記第4フィルタとは、前記第1位置に対して前記被照射面と光学的に共役な位置を挟んで配置され、
    前記第4フィルタは、前記第4位置に配置されていることを特徴とする請求項9または10に記載の照明光学系。
  12. 前記第3フィルタと前記第4フィルタとは、光路から退避可能に構成されていることを特徴とする請求項9乃至11のいずれか1項に記載の照明光学系。
  13. 前記第3フィルタおよび前記第4フィルタは、平行平面板の形態を有することを特徴とする請求項9乃至12のいずれか1項に記載の照明光学系。
  14. 前記第3フィルタと前記第4フィルタとは、互いに平行な状態を維持しつつ相対位置が変更可能であることを特徴とする請求項9乃至13のいずれか1項に記載の照明光学系。
  15. 前記第3フィルタと前記第4フィルタとは、前記照明光学系の光軸と直交する平面の面内方向に沿って相対的に移動可能に構成されていることを特徴とする請求項9乃至14のいずれか1項に記載の照明光学系。
  16. 前記第3フィルタと前記第4フィルタとは、前記照明光学系の光軸廻りに相対的に回転可能に構成されていることを特徴とする請求項9乃至15のいずれか1項に記載の照明光学系。
  17. 前記第3フィルタと前記第4フィルタとは、前記照明光学系の光軸の方向に沿って相対的に移動可能に構成されていることを特徴とする請求項9乃至16のいずれか1項に記載の照明光学系。
  18. 前記第4フィルタは、前記第3フィルタと隣接する第4位置に配置され、
    前記第3フィルタの前記第4フィルタ側の光透過面に第3濃度分布を持つ第3パターンが形成され、
    前記第4フィルタの前記第3フィルタ側の光透過面に第4濃度分布を持つ第4パターンが形成されていることを特徴とする請求項9乃至17のいずれか1項に記載の照明光学系。
  19. 前記関数を表す多項式は、ツェルニケ多項式、チェビシェフ多項式、またはべき級数であることを特徴とする請求項1乃至18のいずれか1項に記載の照明光学系。
  20. オプティカルインテグレータを有し、該オプティカルインテグレータよりも後側の照明瞳に瞳強度分布を形成する分布形成光学系と、
    前記被照射面の各位置に関する瞳強度分布を一様に補正する補正部材とをさらに備えていることを特徴とする請求項1乃至19のいずれか1項に記載の照明光学系。
  21. 前記補正部材は、前記照明瞳の位置、または前記照明瞳と光学的に共役な位置に配置された透過率分布フィルタを有することを特徴とする請求項20に記載の照明光学系。
  22. 前記分布形成光学系は、前記補正部材として、前記瞳強度分布を形成するために入射光を空間的に変調して射出する空間光変調素子を有することを特徴とする請求項20または21に記載の照明光学系。
  23. 前記空間光変調素子は、所定面内で二次元的に配列された複数のミラー要素と、該複数のミラー要素の姿勢を個別に制御駆動する駆動部とを有することを特徴とする請求項22に記載の照明光学系。
  24. 前記空間光変調素子は、回折光学素子を有することを特徴とする請求項22または23に記載の照明光学系。
  25. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項1乃至24のいずれか1項に記載の照明光学系。
  26. 前記被照射面または前記被照射面と光学的に共役な面上の所定点に達する光束の、前記光軸または前記光軸と平行な軸に対する角度方向の強度分布を計測する瞳強度分布計測部と、
    該瞳強度計測部からの出力を受けて、前記第1フィルタおよび前記第2フィルタのうちの少なくとも一方の位置を変更するように駆動する駆動制御部とをさらに備えていることを特徴とする請求項1乃至25のいずれか1項に記載の照明光学系。
  27. 前記照明光学系の照明瞳から光軸方向に沿って離れた第3位置に配置されて、第3透過率分布を有する第3フィルタと、
    前記第3フィルタと隣接する第4位置、あるいは前記第3位置と光学的に共役な第3共役位置または前記第4位置と光学的に共役な第4共役位置に配置されて、前記第3透過率分布と相補的な第4透過率分布を有する第4フィルタと、
    前記被照射面または前記被照射面と光学的に共役な面上の所定点に達する光束の、前記光軸または前記光軸と平行な軸に対する角度方向の強度分布を計測する瞳強度分布計測部と、
    該瞳強度計測部からの出力を受けて、前記第3フィルタおよび前記第4フィルタのうちの少なくとも一方の位置を変更するように駆動する駆動制御部とをさらに備え、
    前記第3フィルタと前記第4フィルタとの相対位置は変更可能であり、
    前記第3透過率分布は、多項式で表される関数を、前記第3フィルタと前記第4フィルタとの相対位置の変更方向に対応する座標について積分して得られる原始関数にしたがって形成されていることを特徴とする請求項1乃至26のいずれか1項に記載の照明光学系。
  28. 所定のパターンを照明するための請求項1乃至27のいずれか1項に記載の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。
  29. 前記所定のパターンの像を前記感光性基板上に形成する投影光学系を備え、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項28に記載の露光装置。
  30. 請求項28または29に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光することと、
    前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
    前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
JP2012027897A 2012-02-13 2012-02-13 照明光学系、露光装置、およびデバイス製造方法 Pending JP2013165196A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027897A JP2013165196A (ja) 2012-02-13 2012-02-13 照明光学系、露光装置、およびデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027897A JP2013165196A (ja) 2012-02-13 2012-02-13 照明光学系、露光装置、およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2013165196A true JP2013165196A (ja) 2013-08-22

Family

ID=49176373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027897A Pending JP2013165196A (ja) 2012-02-13 2012-02-13 照明光学系、露光装置、およびデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2013165196A (ja)

Similar Documents

Publication Publication Date Title
JP6410115B2 (ja) 照明光学系、露光装置、露光方法、およびデバイス製造方法
WO2009125511A1 (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
WO2010061674A1 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5541604B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5688672B2 (ja) 光伝送装置、照明光学系、露光装置、およびデバイス製造方法
JP5182588B2 (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP2010097975A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5387893B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2014146660A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP5201061B2 (ja) 補正フィルター、照明光学系、露光装置、およびデバイス製造方法
JP5190804B2 (ja) 減光ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5366019B2 (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
JP2014157890A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP5187631B2 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2010067943A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2013165196A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2010182703A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5187632B2 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2014146718A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP5187636B2 (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5672424B2 (ja) 投影光学系、露光装置、およびデバイス製造方法
JP2011171563A (ja) 調整ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2010177304A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2010225954A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2013098208A (ja) 照明光学系、露光装置、デバイス製造方法、および照明方法