JP2014146660A - 照明光学装置、露光装置、およびデバイス製造方法 - Google Patents

照明光学装置、露光装置、およびデバイス製造方法 Download PDF

Info

Publication number
JP2014146660A
JP2014146660A JP2013013471A JP2013013471A JP2014146660A JP 2014146660 A JP2014146660 A JP 2014146660A JP 2013013471 A JP2013013471 A JP 2013013471A JP 2013013471 A JP2013013471 A JP 2013013471A JP 2014146660 A JP2014146660 A JP 2014146660A
Authority
JP
Japan
Prior art keywords
optical
optical member
illumination
refractive power
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013013471A
Other languages
English (en)
Inventor
Kaoru Inoue
馨 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013013471A priority Critical patent/JP2014146660A/ja
Publication of JP2014146660A publication Critical patent/JP2014146660A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 被照射面上の各点での瞳強度分布をそれぞれ所要の分布に調整することのできる照明光学装置。
【解決手段】 並列的に配置された複数の波面分割要素を有するオプティカルインテグレータと、第1方向に延びた第1軸上の点での屈折力が第1方向に沿って周期的に変化している第1屈折力分布を持つ第1光学部材と、第1屈折力分布と同じ周期を有する第2屈折力分布を持つ第2光学部材と、第1軸上の点での屈折力が第1方向に沿って周期的に変化している第3屈折力分布を持つ第3光学部材と、第3屈折力分布と同じ周期を有する第4屈折力分布を持つ第4光学部材とを備えている。第1光学部材と第2光学部材とは、照明光学装置の光軸と平行な所定の軸線廻りに回転可能に構成され、第3光学部材と第4光学部材とは、照明光学装置の光軸を横切る第2方向に沿って移動可能に構成されている。
【選択図】 図1

Description

本発明は、照明光学装置、露光装置、およびデバイス製造方法に関する。
半導体素子等のデバイスの製造に用いられる露光装置では、光源から射出された光が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「瞳強度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。
二次光源からの光は、コンデンサーレンズにより集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは微細化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。
マスクの微細パターンをウェハ上に正確に転写するために、例えば輪帯状や複数極状(2極状、4極状など)の瞳強度分布を形成し、投影光学系の焦点深度や解像力を向上させる技術が提案されている(特許文献1を参照)。
米国特許公開第2006/0055834号公報
マスクの微細パターンをウェハ上に正確に転写するには、瞳強度分布を所望の形状に調整するだけでなく、最終的な被照射面としてのウェハ上の各点に関する瞳強度分布をそれぞれほぼ均一に調整する必要がある。ウェハ上の各点での瞳強度分布の均一性にばらつきがあると、ウェハ上の位置毎にパターンの線幅がばらついて、マスクの微細パターンを露光領域の全体に亘って所望の線幅でウェハ上に正確に転写することができない。
本発明は、前述の課題に鑑みてなされたものであり、被照射面上の各点での瞳強度分布をそれぞれ所要の分布に調整することのできる照明光学装置を提供することを目的とする。また、本発明は、被照射面上の各点での瞳強度分布をそれぞれ所要の分布に調整する照明光学装置を用いて、適切な照明条件のもとで良好な露光を行うことのできる露光装置を提供することを目的とする。
前記課題を解決するために、第1形態では、光源からの光により被照射面を照明する照明光学装置において、
並列的に配置された複数の波面分割要素を有するオプティカルインテグレータと、
該オプティカルインテグレータの入射側の光路に配置されて、第1方向に延びた第1軸上の点での屈折力が前記第1方向に沿って周期的に変化している第1屈折力分布を持つ第1光学部材と、
前記オプティカルインテグレータの入射側の光路に配置されて、前記第1屈折力分布と同じ周期を有する第2屈折力分布を持つ第2光学部材と、
前記オプティカルインテグレータの入射側の光路に配置されて、前記第1軸上の点での屈折力が前記第1方向に沿って周期的に変化している第3屈折力分布を持つ第3光学部材と、
前記オプティカルインテグレータの入射側の光路に配置されて、前記第3屈折力分布と同じ周期を有する第4屈折力分布を持つ第4光学部材とを備え、
前記第1光学部材と前記第2光学部材とは、前記照明光学装置の光軸と平行な所定の軸線廻りに回転可能に構成され、
前記第3光学部材と前記第4光学部材とは、前記照明光学装置の前記光軸を横切る第2方向に沿って移動可能に構成されていることを特徴とする照明光学装置を提供する。
第2形態では、光源からの光により被照射面を照明する照明光学装置において、
並列的に配置された複数の波面分割要素を有するオプティカルインテグレータと、
該オプティカルインテグレータの入射側の光路に配置されて、第1方向に延びた第1軸上の点での屈折力が前記第1方向に沿って周期的に変化している第1屈折力分布を持つと共に、前記第1軸と平行な第2軸上の点での屈折力が前記第1方向に沿って周期的に変化している第2屈折力分布を持つ第1光学部材と、
該オプティカルインテグレータの入射側の光路に配置されて、第1方向に延びた第3軸上の点での屈折力が前記第1方向に沿って周期的に変化している第3屈折力分布を持つと共に、前記第3軸と平行な第4軸上の点での屈折力が前記第1方向に沿って周期的に変化している第4屈折力分布を持つ第2光学部材とを備え、
前記第1光学部材は、前記第1屈折力分布を持つ第1部分と前記第2屈折力分布を持つ第2部分とを備え、
前記第1屈折力分布と前記第2屈折力分布とは、前記第1軸および前記第2軸と平行な方向において異なる位相を有し、
前記第2光学部材は、前記第3屈折力分布を持つ第3部分と前記第4屈折力分布を持つ第4部分とを備え、
前記第3屈折力分布と前記第4屈折力分布とは、前記第3軸および前記第4軸と平行な方向において異なる位相を有し、
前記第1光学部材と前記第2光学部材とは、前記照明光学装置の光軸と平行な軸線廻りに回転可能に構成されていることを特徴とする照明光学装置を提供する。
第3形態では、前記被照射面に設置された所定のパターンを照明するための第1形態または第2形態の照明光学装置を備え、前記所定のパターンを基板に露光することを特徴とする露光装置を提供する。
第4形態では、第3形態の露光装置を用いて、前記所定のパターンを前記基板に露光することと、
前記所定のパターンが転写された前記基板を現像し、前記所定のパターンに対応する形状のマスク層を前記基板の表面に形成することと、
前記マスク層を介して前記基板の表面を加工することと、を含むことを特徴とするデバイス製造方法を提供する。
本発明の照明光学装置では、被照射面上の各点での瞳強度分布をそれぞれ所要の分布に調整することができる。本発明の露光装置およびデバイス製造方法では、被照射面上の各点での瞳強度分布をそれぞれ所要の分布に調整する照明光学装置を用いて、適切な照明条件のもとで良好な露光を行うことができる。
第1実施形態にかかる照明光学装置の構成を概略的に示す図である。 第1光学部材の機能を説明する図である。 第1光学部材による照度分布がマイクロフライアイレンズの入射側の面に形成され、微小レンズを経た部分光束が被照射面上で重畳される様子を示す図である。 マイクロフライアイレンズの入射側の面を光軸に沿って見た図である。 照明瞳と照明領域との間の光線の対応関係を示す図である。 照明領域上の各点に関する瞳強度分布について説明する図である。 (a)は基準状態において各微小レンズの入射側の面に形成される光強度分布を、(b)は第1回転状態において光軸から最も離れた微小レンズの入射側の面に形成される光強度分布を示す図である。 第2実施形態にかかる照明光学装置の構成を概略的に示す図である。 第2実施形態における第1光学部材の射出面を光軸に沿って見た図である。 実施形態にかかる照明光学装置を備えた露光装置の構成を概略的に示す図である。 半導体デバイスの製造工程を示すフローチャートである。 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。
以下、実施形態を、添付図面に基づいて説明する。図1は、第1実施形態にかかる照明光学装置の構成を概略的に示す図である。図1において、被照射面17の法線方向(光軸AXの方向)に沿ってZ軸を、被照射面17の面内において図1の紙面に平行な方向にX軸を、被照射面17の面内において図1の紙面に垂直な方向にY軸をそれぞれ設定している。
図1を参照すると、第1実施形態の照明光学装置1では、光源11から射出された光がコリメートレンズ12により平行光束に変換され、一対の光学ユニット13および14を介して、オプティカルインテグレータとしてのマイクロフライアイレンズ(またはフライアイレンズ)15に入射する。マイクロフライアイレンズ15は、例えば縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズ(波面分割要素)15aからなる光学素子であって、平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成されている。
マイクロフライアイレンズを構成する各微小レンズは、フライアイレンズを構成する各レンズエレメントよりも微小である。また、マイクロフライアイレンズは、互いに隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成されている。しかしながら、正屈折力を有するレンズ要素が縦横に配置されている点でマイクロフライアイレンズはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。
マイクロフライアイレンズ15として、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成および作用は、例えば米国特許第6913373号明細書に開示されている。光学ユニット13および14の構成および作用については後述する。図1では、図面の明瞭化のために、マイクロフライアイレンズ15を構成する微小レンズ15aの数を実際よりもはるかに少なく表示している。この点は、図3、図5および図8においても同様である。
マイクロフライアイレンズ15の入射側の面には、例えば光軸AXを中心とする円形状の照野が形成される。マイクロフライアイレンズ15における各微小レンズ15aの入射側の面(すなわち単位波面分割面)は、例えばX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状であって、被照射面17上において形成すべき照明領域17aの形状と相似な矩形状である。
マイクロフライアイレンズ15に入射した光束は二次元的に分割され、その後側焦点面またはその近傍の位置(ひいては照明瞳の位置)には、マイクロフライアイレンズ15の入射側の面に形成される照野とほぼ同じ光強度分布を有する二次光源、すなわち光軸AXを中心とした円形状の二次光源(多数の小光源からなる実質的な面光源:瞳強度分布)が形成される。マイクロフライアイレンズ15の直後の照明瞳に形成された二次光源からの光は、コンデンサー光学系16を介して、被照射面17を重畳的に照明する。こうして、被照射面17には、X方向に沿って細長い矩形状の照明領域17aが形成される。
第1実施形態の照明光学装置1は、光学ユニット14を駆動する第1駆動部18と、光学ユニット13を駆動する第2駆動部19と、被照射面17上の所定の点に到達する光の角度方向の強度分布、すなわち照明光学装置1の射出瞳面(マイクロフライアイレンズ15の直後の照明瞳面)における瞳強度分布を計測する瞳強度分布計測部20と、瞳強度分布計測部20の計測結果に基づいて駆動部18および19を制御する制御系CRとを備えている。瞳強度分布計測部20は、例えば照明光学装置1の射出瞳位置と光学的に共役な位置に配置された光電変換面を有する撮像部を備え、被照射面17上の各点に関する瞳強度分布(各点に入射する光が照明光学装置1の射出瞳位置に形成する瞳強度分布)を計測する。
第1実施形態の照明光学装置1が走査型の露光装置に適用される場合、被照射面17上の照明領域17aと光学的に共役な領域として、例えばX方向に沿って細長い矩形状の静止露光領域が、投影光学系を介してウェハ(感光性基板)上に形成される。静止露光領域内の1点に入射する光が照明瞳(例えば投影光学系の瞳)に形成する瞳強度分布が入射点の位置に依存して大きく異なる場合、ウェハ上の位置毎にパターンの線幅がばらついて、マスクの微細パターンを露光領域の全体に亘って所望の線幅でウェハ上に正確に転写することができない。
静止露光領域では、走査方向(スキャン方向)であるY方向に沿った照度分布の均一性よりも、走査方向と直交する走査直交方向すなわちX方向に沿った照度分布の均一性の方が重要である。また、静止露光領域においてY方向に沿った各点での瞳強度分布の均一性よりも、X方向に沿った各点での瞳強度分布の均一性の方が重要である。これは、静止露光領域におけるY方向に沿った照度ムラおよびY方向に沿った各点での瞳強度分布のばらつきの影響が、Y方向に沿った走査露光により平均化されるからである。
したがって、第1実施形態の照明光学装置1が露光装置に、とりわけ走査型の露光装置に適用される場合、照明領域17aにおけるX方向に沿った照度分布の均一性、および照明領域17aにおけるX方向に沿った各点での瞳強度分布の均一性を確保することが重要である。第1実施形態では、照明領域17aにおけるX方向に沿った各点での瞳強度分布を調整する瞳強度調整手段として光学ユニット14を備え、照明領域17aにおけるX方向に沿った照度分布を調整する照度調整手段として光学ユニット13を備えている。
瞳強度調整用の光学ユニット14は、照度調整用の光学ユニット13とマイクロフライアイレンズ15との間の光路中に配置された第1光学部材14aと、その後側に近接して配置された第2光学部材14bとを有する。第1光学部材14aは、Z方向に沿って直線状に延びる光軸AXと直交する平面状の入射側の面と、一方向に沿って凹凸を周期的に繰り返す凹凸曲面状(例えば正弦波曲面状)の射出面とを有する。第2光学部材14bは、一方向に沿って凹凸を周期的に繰り返す凹凸曲面状の入射側の面と、光軸AXと直交する平面状の射出面とを有する。
図1に示す基準状態では、第1光学部材14aの射出面において凹凸を周期的に繰り返す方向および第2光学部材14bの入射側の面において凹凸を周期的に繰り返す方向が、X方向と一致している。また、基準状態において、第1光学部材14aの凹部(または凸部)と第2光学部材14bの凹部(または凸部)とがX方向に沿って対応するように、第1光学部材14aと第2光学部材14bとが相対的に配置されている。
第1実施形態の照明光学装置1は、第1光学部材14aおよび第2光学部材14bを駆動する駆動部18を備えている。駆動部18は、制御系CRからの指令にしたがって、第1光学部材14aと第2光学部材14bとを基準状態から光軸AX廻りに逆向きに同じ角度だけ回転させたり、第1光学部材14aと第2光学部材14bとを光軸AXの方向に沿って一体的に移動させたりする。すなわち、第1光学部材14aおよび第2光学部材14bは、光軸AX廻りに回転可能で且つ光軸AX方向に沿って移動可能に構成されている。
照度調整用の光学ユニット13は、コリメートレンズ12と瞳強度調整用の光学ユニット14との間の光路中に配置された第3光学部材13aと、その後側に近接して配置された第4光学部材13bとを有する。第3光学部材13aおよび第4光学部材13bは、第1光学部材14aおよび第2光学部材14bと同様の構成を有する。具体的に、第3光学部材13aは、光軸AXと直交する平面状の入射側の面と、一方向に沿って凹凸を周期的に繰り返す凹凸曲面状の射出面とを有する。第4光学部材13bは、一方向に沿って凹凸を周期的に繰り返す凹凸曲面状の入射側の面と、光軸AXと直交する平面状の射出面とを有する。
図1に示す基準状態では、瞳強度調整用の光学ユニット14の場合と同様に、第3光学部材13aの射出面において凹凸を周期的に繰り返す方向および第4光学部材13bの入射側の面において凹凸を周期的に繰り返す方向が、X方向と一致している。ただし、瞳強度調整用の光学ユニット14の場合とは異なり、基準状態において、第3光学部材13aの凹部(または凸部)と第4光学部材13bの凸部(または凹部)とがX方向に沿って対応するように、第3光学部材13aと第4光学部材13bとが相対的に配置されている。
第1実施形態の照明光学装置1は、第3光学部材13aおよび第4光学部材13bを駆動する駆動部19を備えている。駆動部19は、制御系CRからの指令にしたがって、第3光学部材13aと第4光学部材13bとを基準状態からX方向に沿って逆向きに同じ距離だけ移動させる。すなわち、第3光学部材13aおよび第4光学部材13bは、X方向に沿って移動可能に構成されている。
このように、第1光学部材14aは、マイクロフライアイレンズ15の入射側の光路に配置されて、一方向に延びた第1軸上の点での屈折力が当該一方向に沿って周期的に変化している屈折力分布を有する。第2光学部材14bは、マイクロフライアイレンズ15の入射側の光路に配置されて、第1光学部材14aの屈折力分布と同じ周期の屈折力分布を有する。
同様に、第3光学部材13aは、マイクロフライアイレンズ15の入射側の光路に配置されて、一方向に延びた第1軸上の点での屈折力が当該一方向に沿って周期的に変化している屈折力分布を有する。第4光学部材13bは、マイクロフライアイレンズ15の入射側の光路に配置されて、第3光学部材13aの屈折力分布と同じ周期の屈折力分布を有する。
以下、説明を単純化するために、第1光学部材14aと第2光学部材14bとは互いに同じ構成を有し、第3光学部材13aと第4光学部材13bとは互いに同じ構成を有するものとする。また、各光学部材13a,13b,14a,14bは、基準状態において光軸AXを中心とする円形状の外形を有するものとする。
図2は、瞳強度調整用の光学ユニットにおける第1光学部材の機能を説明する図である。図2を参照すると、第1光学部材14aは、その基準状態において、屈折力がX方向に沿って周期的に変化する屈折力分布を有する。したがって、基準状態に設定された第1光学部材14aに、例えば光軸AXと平行な多数の光線で表される均一な光強度分布を有する平行光束31が入射すると、第1光学部材14aの凹凸曲面状の射出面での屈折作用(偏向作用)により、第1光学部材14aから射出される光線の密度に濃淡が生じる。
この光線の密度が光エネルギー密度に対応しているため、第1光学部材14aの射出側の仮想面32には、第1光学部材14aの凹凸曲面状の山(凸部)に対応する位置の強度が大きく且つ谷(凹部)に対応する位置の強度が小さいようなX方向に周期を持つ照度分布(光強度分布)33が形成される。第1光学部材14aと仮想面32とが近接している場合、第1光学部材14aの射出面におけるX方向に沿った屈折力分布の周期(すなわちX方向に沿って繰り返される凹凸の周期)と、仮想面32に形成される照度分布33のX方向に沿った周期とはほぼ等しい。
まず、第1光学部材14aと第2光学部材14bとを光軸AX方向に沿って一体的に移動させたときの光学ユニット14の作用を説明する。第1実施形態では、図3に示すように、第1光学部材14aの作用による照度分布33がマイクロフライアイレンズ15の入射側の面またはその近傍の位置に形成され、且つ照度分布33のX方向の周期とマイクロフライアイレンズ15の複数の微小レンズ15aのX方向に沿った配列周期とが等しくなるように構成されている。この場合、各微小レンズ15aを経た部分光束は、コンデンサー光学系16を介して被照射面17上で重畳される。すなわち、被照射面17上では互いに同じ性状を有する複数の光強度分布が重畳され、ひいては照度分布33における一周期分の光強度分布と同じ性状を有する照度分布34が照明領域17aに形成される。
このように、基準状態に設定された第1光学部材14aは、均一な光強度分布を持つ平行光束31が入射すると、X方向に沿って照度が周期的に変化している照度分布33を、第1光学部材14aの射出側に位置する仮想面32に形成する。同様に、図示を省略するが、第1光学部材14aと同じ構成を有する第2光学部材14bも、基準状態において均一な光強度分布を持つ平行光束が入射すると、第1光学部材14aにより得られる照度分布33と同位相の照度分布を、第2光学部材14bの射出側において仮想面32の近傍に位置する面に形成する。
上述したように、光学ユニット14の基準状態では、第1光学部材14aの凹部(または凸部)と第2光学部材14bの凹部(または凸部)とがX方向に沿って対応している。換言すると、第1光学部材14aの凹部の中心点(または凸部の頂点)の位置と第2光学部材14bの凹部の中心点(または凸部の頂点)の位置とがX方向に沿って一致している。したがって、基準状態に設定された第1光学部材14aおよび第2光学部材14bは、その総和的な協働作用により、第1光学部材14a単体により得られる照度分布34よりも強度差の大きい(すなわち光強度の最大値と最小値との差が大きい)照度分布を照明領域17aに形成する。
ただし、図2の左側の図を参照すると明らかなように、第1光学部材14aと第2光学部材14bとを光軸AX方向に沿って一体的に移動させると、各微小レンズ15aの入射側の面に形成される光強度分布の強度差が変化し、ひいては照明領域17aに形成される照度分布の強度差が変化する。すなわち、駆動部18が制御系CRからの指令にしたがって第1光学部材14aと第2光学部材14bとを光軸AX方向に沿って一体的に移動させることにより、その一体的な移動量に応じて、各微小レンズ15aの入射側の面に形成される光強度分布が調整される。
次に、第3光学部材13aと第4光学部材13bとを基準状態からX方向に沿って逆向きに同じ距離だけ移動させたときの光学ユニット13の作用を説明する。光学ユニット13は、その基準状態において、第3光学部材13aの凹部(または凸部)と第4光学部材13bの凸部(または凹部)とがX方向に沿って対応するように配置されている。換言すると、第3光学部材13aの凹部の中心点(または凸部の頂点)の位置と第4光学部材13bの凸部の頂点(または凹部の中心点)の位置とがX方向に沿って一致している。したがって、光学ユニット13は、その基準状態において無屈折力であり、通過する光束に対して屈折作用(偏向作用)を及ぼさない。
具体的に、基準状態に設定された第3光学部材13aは、均一な光強度分布を持つ平行光束が入射すると、X方向に沿って照度が周期的に変化している照度分布を、第3光学部材13aの射出側において仮想面32またはその近傍に位置する面に形成する。一方、第4光学部材13bは、基準状態において均一な光強度分布を持つ平行光束が入射すると、第3光学部材13aにより得られる照度分布と逆位相の照度分布を、第3光学部材13bの射出側において仮想面32の近傍に位置する面に形成する。
ただし、第3光学部材13aと第4光学部材13bとが、基準状態からX方向に沿って逆向きに同じ距離だけ、例えばX方向に沿った屈折力分布の一周期の1/4に等しい距離だけ移動すると、第3光学部材13aの凹部の中心点(または凸部の頂点)の位置と第4光学部材13bの凹部の中心点(または凸部の頂点)の位置とがX方向に沿って初めて一致する状態、すなわち第1変位状態が得られる。この第1変位状態における光学ユニット13は、基準状態における光学ユニット14と光学的に同様の作用を奏する。
すなわち、第1変位状態における光学ユニット13に均一な光強度分布を持つ平行光束が入射すると、例えば複数の微小レンズ15aのX方向に沿った配列周期にしたがって照度が変化している照度分布が、マイクロフライアイレンズ15の入射側の面に形成される。一方、基準状態における光学ユニット13に均一な光強度分布を持つ平行光束が入射すると、上述したように光学ユニット13は屈折作用を発揮しないため、X方向に沿って均一な照度分布、すなわち無限大の周期を有する照度分布が、マイクロフライアイレンズ15の入射側の面に形成される。
このことは、第3光学部材13aと第4光学部材13bとのX方向に沿った相対位置が例えば基準状態と第1変位状態との間で変化すると、その変位した距離の大きさに応じて、無限大と微小レンズ15aの配列周期との間で周期が変化し且つ零と所定の値との間で強度差が変化する照度分布が、マイクロフライアイレンズ15の入射側の面に形成されることを意味している。すなわち、駆動部19が制御系CRからの指令にしたがって第3光学部材13aと第4光学部材13bとを基準状態からX方向に沿って逆向きに同じ距離だけ移動させることにより、その変位距離の大きさに応じて、照明領域17aにおけるX方向に沿った照度分布を調整することができる。
一般的には、光学ユニット13の基準状態、すなわち第3光学部材13aおよび第4光学部材13bの基準的な位置(例えばX方向の位置)を適宜設定し、光軸AXを横切る方向(例えばX方向)に沿って第3光学部材13aと第4光学部材13bとを相対移動させることにより、その基準状態および相対移動量に応じて、照明領域17aにおけるX方向に沿った照度分布を調整することができる。
最後に、第1光学部材14aと第2光学部材14bとを基準状態から光軸AX廻りに逆向きに同じ角度だけ回転させたときの光学ユニット14の作用を説明する。図4は、マイクロフライアイレンズ15の入射側の面を光の入射側から光軸AXに沿って見た図である。図4において、光軸AXを中心として実線で描かれた円は光学部材14a,14bの外形を示し、光軸AXを中心として破線で描かれた円35はマイクロフライアイレンズ15の入射側の面に形成される円形状の照野の外形を示している。マイクロフライアイレンズ15を構成する複数の波面分割要素としての微小レンズ15aは、X方向およびY方向に沿って縦横に且つ稠密に配置され、その入射側の面(すなわち単位波面分割面)はX方向に沿って細長い矩形状である。
図5は、マイクロフライアイレンズ15の直後の照明瞳面36と被照射面17上の照明領域17aとの間の光線の対応関係を示している。照明領域17aの中心点P1に垂直入射する光線L1は、マイクロフライアイレンズ15の光軸AX上の微小レンズ15aを経て形成された小光源K1から光軸AXの方向(Z方向)に射出された光線L1に対応している。中心点P1に対してXZ平面に沿って最大角度で入射する光線L2,L3は、光軸AXからX方向に最も離れた微小レンズ15aを経て形成された小光源K2,K3から光軸AX方向に射出された光線L2,L3に対応している。
照明領域17aにおいて光軸AXから+X方向に最も離れた周辺の点P2および−X方向に最も離れた周辺の点P3に垂直入射する光線L4,L5は、光軸AX上の小光源K1からXZ平面に沿って光軸AXに対して最大角度で射出された光線L4,L5に対応している。周辺の点P2およびP3に対してXZ平面に沿って最大角度で入射する光線L6,L7およびL8,L9は、光軸AXからX方向に最も離れた小光源K2,K3からXZ平面に沿って光軸AXに対して最大角度で射出された光線L6,L7およびL8,L9に対応している。
このように、小光源K1〜K3が形成される照明瞳面36における位置情報は、コンデンサー光学系16のフーリエ変換作用により、照明領域17a(すなわち被照射面17)における角度情報に変換される。逆に、照明瞳面36における角度情報は、コンデンサー光学系16のフーリエ変換作用により、照明領域17aにおける位置情報に変換される。したがって、図示を省略するが、YZ平面における照明瞳面36と照明領域17aとの間の光線の対応関係は、図5に示すXZ平面における光線の対応関係と同様である。
図6は、照明領域17a上の各点P1,P2,P3に関する瞳強度分布H1,H2,H3について説明する図である。図5を参照して説明したように、照明領域17aの中心点P1に垂直入射する光線L1は光軸AX上の微小レンズ15aから光軸AX方向に射出された光線L1に対応している。中心点P1に最大角度で入射する光線(L2,L3など)は、光軸AXから最も離れた微小レンズ15aから光軸AX方向に射出された光線に対応している。
したがって、中心点P1に関する瞳強度分布H1の中央領域(例えば円形状の領域)の分布は、マイクロフライアイレンズ15において光軸AXを中心とした中央領域にある複数の微小レンズ15aから光軸AXに対して比較的小さい角度で射出された光線、すなわち中央領域にある複数の微小レンズ15aの入射側の面における中央領域を通過した光線により形成されている。その結果、瞳強度分布H1における中央領域の分布には、中央領域にある複数の微小レンズ15aの入射側の面上の中央領域における光強度分布が反映される。
瞳強度分布H1の周辺領域(例えば輪帯状の領域)の分布は、マイクロフライアイレンズ15において光軸AXから離れた周辺領域にある複数の微小レンズ15aから光軸AXに対して比較的小さい角度で射出された光線、すなわち周辺領域にある複数の微小レンズ15aの入射側の面における中央領域を通過した光線により形成されている。その結果、瞳強度分布H1における周辺領域の分布には、周辺領域にある複数の微小レンズ15aの入射側の面上の中央領域における光強度分布が反映される。
また、図5を参照して説明したように、照明領域17a上の周辺の点P2,P3に垂直入射する光線(L4,L5など)は、光軸AX上の微小レンズ15aから光軸AXに対して最大角度で射出された光線に対応している。周辺の点P2およびP3に最大角度で入射する光線(L6〜L9など)は、光軸AXから最も離れた微小レンズ15aから光軸AXに対して最大角度で射出された光線に対応している。
したがって、周辺の点P2,P3に関する瞳強度分布H2,H3の中央領域の分布は、中央領域にある複数の微小レンズ15aから光軸AXに対して比較的大きい角度で射出された光線、すなわち中央領域にある複数の微小レンズ15aの入射側の面における周辺領域を通過した光線により形成されている。その結果、瞳強度分布H2,H3における中央領域の分布には、中央領域にある複数の微小レンズ15aの入射側の面上の周辺領域における光強度分布が反映される。
瞳強度分布H2,H3の周辺領域の分布は、周辺領域にある複数の微小レンズ15aから光軸AXに対して比較的大きい角度で射出された光線、すなわち周辺領域にある複数の微小レンズ15aの入射側の面における周辺領域を通過した光線により形成されている。その結果、瞳強度分布H2,H3における周辺領域の分布には、周辺領域にある複数の微小レンズ15aの入射側の面上の周辺領域における光強度分布が反映される。
図3を参照して説明したように、基準状態に設定された光学ユニット14に均一な光強度分布を有する平行光束が入射すると、マイクロフライアイレンズ15の各微小レンズ15aの入射側の面には、X方向に沿って一周期分の凹凸曲線状の光強度分布が形成される。以下の説明では、一例として、図7(a)に示すように中心において強度が最も大きくX方向に沿って周辺に向かうにつれて正弦波状に強度が単調に減少するような凸状の光強度分布41が、基準状態に設定された光学ユニット14により各微小レンズ15aの入射側の面に形成されるものとする。すなわち、基準状態において第1光学部材14aの凸部の頂点と第2光学部材14bの凸部の頂点と各微小レンズ15aの入射側の面の中心点とがX方向に沿って一致しているものとする。
この場合、第1光学部材14aと第2光学部材14bとを基準状態から光軸AX廻りに逆向きに同じ角度だけ徐々に回転させると、マイクロフライアイレンズ15への入射光束の範囲内において光軸AXからY方向に沿って最も離れた微小レンズ15aの入射側の面51,52(図4を参照)の中心点と第1光学部材14aの凹部の中心点と第2光学部材14bの凹部の中心点とがX方向に沿って初めて一致する状態、すなわち第1回転状態が得られる。この第1回転状態では、図7(b)に示すように中心において強度が最も小さくX方向に沿って周辺に向かうにつれて正弦波状に強度が単調に増大するような凹状の光強度分布42が入射側の面51,52に形成される。
ただし、光学ユニット14の回転中心である光軸AX上の微小レンズ15aの入射側の面50(図4を参照)では、第1回転状態においても基準状態からの変化がほとんどなく、図7(a)に示す凸状の光強度分布41とほぼ一致した光強度分布が形成される。すなわち、第1光学部材14aと第2光学部材14bとが基準状態から第1回転状態まで光軸AX廻りに相対回転すると、光軸AXからY方向に沿って最も離れた微小レンズ15aの入射側の面51,52に形成されるX方向の光強度分布は凸状の光強度分布41から凹状の光強度分布42へ変化するが、光軸AX上の微小レンズ15aの入射側の面50に形成されるX方向の光強度分布は凸状の光強度分布41からほとんど変化しない。
したがって、例えば光軸AXを中心としてY方向に沿って帯状に延びる範囲内に位置する複数の微小レンズ15aに着目すると、その入射側の面に形成されるX方向の光強度分布は、光軸AXを通ってX方向に延びる軸線からY方向に沿って離れるにつれて、凸状の光強度分布41から凹状の光強度分布42へ近づく程度が徐々に大きくなる。こうして、第1光学部材14aと第2光学部材14bとが基準状態から第1回転状態まで光軸AX廻りに相対回転すると、光軸AXからY方向に沿って離れた周辺領域にある複数の微小レンズ15aの入射側の面に形成されるX方向の光強度分布は凸状の光強度分布41から凹状の光強度分布42へ向かって比較的大きく変化するが、光軸AXに近い中央領域にある複数の微小レンズ15aの入射側の面に形成されるX方向の光強度分布は凸状の光強度分布41からあまり変化しない。
その結果、照明領域17a上の中心点P1に関する瞳強度分布H1の中央領域の分布は、中央領域にある複数の微小レンズ15aの入射側の面上の中央領域における光強度分布が反映されるため、あまり変化しない。瞳強度分布H1の周辺領域の分布では、周辺領域にある複数の微小レンズ15aの入射側の面上の中央領域における光強度分布が反映されるため、その光強度が減少する。
一方、照明領域17a上の周辺の点P2,P3に関する瞳強度分布H2,H3の中央領域の分布は、中央領域にある複数の微小レンズ15aの入射側の面上の周辺領域における光強度分布が反映されるため、あまり変化しない。瞳強度分布H2,H3の周辺領域の分布では、周辺領域にある複数の微小レンズ15aの入射側の面上の周辺領域における光強度分布が反映されるため、その光強度が増大する。
このことは、第1光学部材14aと第2光学部材14bとが基準状態から光軸AX廻りに逆向きに同じ角度だけ回転すると、その回転角度の大きさに応じて、中心点P1に関する瞳強度分布H1と周辺の点P2,P3に関する瞳強度分布H2,H3とが互いに異なる態様にしたがって変化することを意味している。すなわち、駆動部18が制御系CRからの指令にしたがって第1光学部材14aと第2光学部材14bとを基準状態から光軸AX廻りに逆向きに同じ角度だけ回転させることにより、その回転角度の大きさに応じて、照明領域17aにおけるX方向に沿った各点での瞳強度分布を調整することができる。
一般的には、光学ユニット14の基準状態、すなわち第1光学部材14aおよび第2光学部材14bの基準的な位置(例えばX方向の位置)を適宜設定し、光軸AXと平行な所定の軸線廻りに第1光学部材14aと第2光学部材14bとを相対回転させることにより、その基準状態および相対回転量に応じて、照明領域17aにおける各点での瞳強度分布を調整することができる。
なお、上述したように、第1光学部材14aと第2光学部材14bとを光軸AX方向に沿って一体的に移動させることにより、各微小レンズ15aの入射側の面に形成される光強度分布が調整される。したがって、駆動部18が制御系CRからの指令にしたがって第1光学部材14aと第2光学部材14bとを所要の基準状態から光軸AX廻りに相対回転させたり、第1光学部材14aと第2光学部材14bとを光軸AX方向に沿って一体的に移動させたりすることにより、その相対回転量と一体的な移動量とに応じて、照明領域17aにおけるX方向に沿った各点での瞳強度分布が大きな自由度で調整される。
ただし、第1光学部材14aと第2光学部材14bとを基準状態から光軸AX廻りに相対回転させると、照明領域17aにおけるX方向に沿った照度分布が光軸AXに関して非対称に変形する。第1実施形態では、第3光学部材13aと第4光学部材13bとが所要の基準状態からX方向に沿って相対移動する光学ユニット13の照度調整作用により、第1光学部材14aと第2光学部材14bとの光軸AX廻りの相対回転により発生する照明領域17a上の照度分布の非対称変形を補償する。
第1実施形態では、瞳強度分布計測部20が、照明光学装置1の射出瞳面(マイクロフライアイレンズ15の直後の照明瞳面)における瞳強度分布を計測する。制御系CRは、瞳強度分布計測部20の計測結果に基づいて、駆動部18および19を制御する。すなわち、駆動部18および19は、瞳強度分布計測部20からの出力を用いて光学部材13a,13b,14a,14bの位置を変化させ、ひいては被照射面17上の各点での瞳強度分布をそれぞれ所要の分布に調整する。こうして、照明光学装置1では、光学ユニット14の瞳強度調整作用により、被照射面17上の各点での瞳強度分布をそれぞれ所要の分布に調整することができる。
図8は、第2実施形態にかかる照明光学装置の構成を概略的に示す図である。第2実施形態の照明光学装置1Aは、第1実施形態の照明光学装置1と類似の構成を有する。しかしながら、第2実施形態では、一対の光学ユニット13および14に代えて、光学ユニット21が設けられている点が、第1実施形態と相違している。したがって、図8では、図1に示す構成要素と同様の機能を有する要素に、図1と同じ参照符号を付している。以下、第1実施形態との相違点に着目して第2実施形態の構成および作用を説明する。
第2実施形態の照明光学装置1Aは、瞳強度調整用の光学ユニット21を備えている。光学ユニット21は、コリメートレンズ12とマイクロフライアイレンズ15との間の光路中に配置された第1光学部材21aと、その後側に近接して配置された第2光学部材21bとを有する。第1光学部材21aは、光軸AXと直交する平面状の入射側の面と、図9に示すような凹凸曲面状の射出面とを有する。
具体的に、図8に示す基準状態に設定された第1光学部材21aの射出面は、光軸AXを通ってX方向に沿って直線状に延びる境界線21cにより、+Y方向側(図9中左側)の領域21dと、−Y方向側(図9中右側)の領域21eとに区分されている。領域21dは、その基準状態において、X方向に沿って凹凸を周期的に繰り返す凹凸曲面状(例えば正弦波曲面状)に形成されている。図9においてY方向に沿って直線状に延びる実線は凸部の頂点を結ぶ線分であり、Y方向に沿って直線状に延びる破線は凹部の中心点を結ぶ線分である。
領域21eは、その基準状態において、X方向に沿って第1領域21dと同じ周期にしたがって凹凸を繰り返す凹凸曲面状に形成されている。ただし、領域21dにおいて凸部の頂点を結ぶ線分と領域21eにおいて凹部の中心点を結ぶ線分とがY方向に沿って延びる直線上にあり、領域21dにおいて凹部の中心点を結ぶ線分と領域21eにおいて凸部の中心点を結ぶ線分とがY方向に沿って延びる直線上にある。すなわち、領域21eの凹凸曲面は、領域21dの凹凸曲面をX方向に沿って半周期分だけ位置ずれさせることにより得られる。
第2光学部材21bは、その基準状態において、第1光学部材21aの射出面の面形状と補完的な面形状を有する入射側の面と、光軸AXと直交する平面状の射出面とを有する。したがって、光学ユニット21の基準状態において、第1光学部材21aの凹部(または凸部)と第2光学部材21bの凹部(または凸部)とがX方向に沿って対応するように、第1光学部材21aと第2光学部材21bとが配置されている。
第2実施形態の照明光学装置1Aは、第1光学部材21aおよび第2光学部材21bを駆動する駆動部19Aを備えている。駆動部19Aは、制御系CRからの指令にしたがって、第1光学部材21aと第2光学部材21bとを基準状態から光軸AX廻りに逆向きに同じ角度だけ回転させる。すなわち、第1光学部材21aおよび第2光学部材21bは、光軸AX廻りに回転可能に構成されている。
このように、第1光学部材21aは、マイクロフライアイレンズ15の入射側の光路に配置されて、一方向に延びた第1軸上の点での屈折力が当該一方向に沿って周期的に変化している第1屈折力分布を持つと共に、第1軸と平行な第2軸上の点での屈折力が上記一方向に沿って周期的に変化している第2屈折力分布を持つ。第1光学部材21aは第1屈折力分布を持つ第1部分(領域21dに対応)と第2屈折力分布を持つ第2部分(領域21dに対応)とを有し、第1屈折力分布と第2屈折力分布とは第1軸および第2軸と平行な方向において逆位相を有する。すなわち、第1光学部材21aの凹凸曲面状の射出面は、領域21dと領域21dとの境界線21cの一方の側と他方の側とで逆位相の面形状に形成されている。
第2光学部材21bは、マイクロフライアイレンズ15の入射側の光路に配置されて、一方向に延びた第3軸上の点での屈折力が当該一方向に沿って周期的に変化している第3屈折力分布を持つと共に、第3軸と平行な第4軸上の点での屈折力が上記一方向に沿って周期的に変化している第4屈折力分布を持つ。第2光学部材21bは第3屈折力分布を持つ第3部分(領域21dと対向する領域に対応)と第4屈折力分布を持つ第4部分(領域21eと対向する領域に対応)とを有し、第3屈折力分布と第4屈折力分布とは第3軸および第4軸と平行な方向において逆位相を有する。すなわち、第2光学部材21bの凹凸曲面状の入射側の面は、領域21dに対向する領域と領域21eに対向する領域との境界線の一方の側と他方の側とで逆位相の面形状に形成されている。以下、説明を単純化するために、第1光学部材21aと第2光学部材21bとは互いに同じ構成を有するものとする。
光学ユニット21は、その基準状態において、第1光学部材21aの凹部(または凸部)と第2光学部材21bの凸部(または凹部)とがX方向に沿って対応するように配置されている。換言すると、第1光学部材21aの凹部の中心点(または凸部の頂点)の位置と第2光学部材21bの凸部の頂点(または凹部の中心点)の位置とがX方向に沿って一致している。したがって、光学ユニット21は、その基準状態において無屈折力であり、通過する光束に対して屈折作用(偏向作用)を及ぼさない。
具体的に、基準状態に設定された第1光学部材21aの領域21dは、均一な光強度分布を持つ平行光束が入射したときに、X方向に沿って照度が周期的に変化している第1照度分布を、第1光学部材21aの射出側に位置する仮想面上の第1領域に形成する。基準状態に設定された第1光学部材21aの領域21eは、均一な光強度分布を持つ平行光束が入射したときに、第1照度分布と逆位相の第2照度分布を仮想面上の第1領域とは異なる第2領域に形成する。
基準状態に設定された第2光学部材21bにおいて第1光学部材21aの領域21dと対向する半円状の領域21f(参照符号は不図示)は、均一な光強度分布を持つ平行光束が入射したときに、X方向に沿って照度が周期的に変化している第3照度分布を、第2光学部材21bの射出側において第1照度分布が形成される仮想面の近傍に位置する面上の第3領域に形成する。基準状態に設定された第2光学部材21bにおいて第1光学部材21aの領域21eと対向する半円状の領域21g(参照符号は不図示)は、均一な光強度分布を持つ平行光束が入射したときに、第3照度分布と逆位相の第4照度分布を、第2光学部材21bの射出側において第2照度分布が形成される仮想面の近傍に位置する面上の第3領域とは異なる第4領域に形成する。光学ユニット21の基準状態にあるとき、すなわち第1光学部材21aと第2光学部材21bとの位置関係が基準状態であるとき、第1照度分布と第3照度分布とは同位相であり、第2照度分布と第4照度分布とは同位相である。
第2実施形態において、第1光学部材21aと第2光学部材21bとを基準状態から光軸AX廻りに逆向きに同じ角度だけ徐々に回転させると、マイクロフライアイレンズ15への入射光束の範囲内において光軸AXからY方向に沿って最も離れた微小レンズ15aの入射側の面51,52(図4を参照)に対応する光学ユニット21の領域において、第1光学部材21aの凸部の頂点(または凹部の中心点)と第2光学部材21bの凹部の中心点(または凸部の頂点)とがX方向に沿って位置ずれする。その結果、第1光学部材21aと第2光学部材21bとの光軸AX廻りの比較的小さい角度範囲内の相対回転により入射側の面51,52に対応する光学ユニット21の領域には回転角度に応じた屈折力が発生し、その屈折力の変化に応じて入射側の面51,52に形成される光強度分布は変化する。
一方、光学ユニット21の回転中心である光軸AX上の微小レンズ15aの入射側の面50(図4を参照)に近接した入射側の面53(図4を参照)では、第1光学部材21aと第2光学部材21bとが光軸AX廻りに比較的小さい角度範囲内で相対回転しても、入射側の面53に対応する光学ユニット21の領域には屈折力がほとんど発生することなく、入射側の面53に形成される光強度分布はほとんど変化しない。この点は、第1実施形態の光学ユニット14において第1光学部材14aと第2光学部材14bとを光軸AX廻りに相対回転させると、入射側の面51,52に形成される光強度分布は回転角度に応じて変化するが、入射側の面50に形成される光強度分布はほとんど変化しないことに対応している。
したがって、光学ユニット21においても、第1実施形態の光学ユニット14の場合と同様に、第1光学部材21aと第2光学部材21bとが基準状態から光軸AX廻りに逆向きに同じ角度だけ回転すると、その回転角度の大きさに応じて、照明領域17aにおける中心点P1に関する瞳強度分布H1と周辺の点P2,P3に関する瞳強度分布H2,H3とが互いに異なる態様にしたがって変化する。すなわち、駆動部19Aが制御系CRからの指令にしたがって第1光学部材21aと第2光学部材21bとを基準状態から光軸AX廻りに逆向きに同じ角度だけ回転させることにより、その回転角度の大きさに応じて、照明領域17aにおける照度分布に影響を及ぼすことなく、照明領域17aにおけるX方向に沿った各点での瞳強度分布を調整することができる。
一般的には、光学ユニット21の基準状態、すなわち第1光学部材21aおよび第2光学部材21bの基準的な位置(例えばX方向の位置)を適宜設定し、光軸AXと平行な所定の軸線廻りに第1光学部材21aと第2光学部材21bとを相対回転させることにより、その基準状態および相対回転量に応じて、照明領域17aにおける各点での瞳強度分布を調整することができる。
なお、光学ユニット21では、第1実施形態の光学ユニット14の場合とは異なり、第1光学部材21aと第2光学部材21bとを基準状態から光軸AX廻りに相対回転させても、照明領域17aにおけるX方向に沿った照度分布が光軸AXに関して非対称に変形することはない。したがって、第2実施形態では、第1実施形態の場合とは異なり、照度調整用の光学ユニット13を必ずしも設ける必要はない。
なお、第1実施形態では、第1光学部材14aが平面状の入射側の面と凹凸曲面状の射出面とを有し、第2光学部材14bが凹凸曲面状の入射側の面と平面状の射出面とを有する。また、第3光学部材13aが平面状の入射側の面と凹凸曲面状の射出面とを有し、第4光学部材13bが凹凸曲面状の入射側の面と平面状の射出面とを有する。しかしながら、これに限定されることなく、第1光学部材14aが凹凸曲面状の入射側の面と平面状の射出面とを有したり、第2光学部材14bが平面状の入射側の面と凹凸曲面状の射出面とを有したりしていても良い。また、第3光学部材13aが凹凸曲面状の入射側の面と平面状の射出面とを有したり、第4光学部材13bが平面状の入射側の面と凹凸曲面状の射出面とを有したりしていても良い。
また、第2実施形態では、第1光学部材21aが平面状の入射側の面と凹凸曲面状の射出面とを有し、第2光学部材21bが凹凸曲面状の入射側の面と平面状の射出面とを有する。しかしながら、これに限定されることなく、第1光学部材21aが凹凸曲面状の入射側の面と平面状の射出面とを有したり、第2光学部材21bが平面状の入射側の面と凹凸曲面状の射出面とを有したりしていても良い。
また、第1実施形態では、光学部材13a,13b,14a,14bがマイクロフライアイレンズ15の入射側の面に形成する照度分布のX方向の周期と、複数の微小レンズ15aのX方向に沿った配列周期とが等しい。しかしながら、これに限定されることなく、光学部材13a,13b,14a,14bがマイクロフライアイレンズ15の入射側の面に形成する照度分布のX方向の周期が、複数の微小レンズ15aのX方向に沿った配列周期の整数倍(2倍、3倍・・・)または整数分の1倍(1/2倍、1/3倍・・・)であっても良い。
また、第2実施形態では、光学部材21a,21bがマイクロフライアイレンズ15の入射側の面に形成する照度分布のX方向の周期と、複数の微小レンズ15aのX方向に沿った配列周期とが等しい。しかしながら、これに限定されることなく、光学部材21a,21bがマイクロフライアイレンズ15の入射側の面に形成する照度分布のX方向の周期が、複数の微小レンズ15aのX方向に沿った配列周期の整数倍(2倍、3倍・・・)または整数分の1倍(1/2倍、1/3倍・・・)であっても良い。
図10は、実施形態にかかる照明光学装置を備えた露光装置の構成を概略的に示す図である。図10において、感光性基板であるウェハWの転写面(露光面)の法線方向に沿ってZ軸を、ウェハWの転写面内において図10の紙面に平行な方向にX軸を、ウェハWの転写面内において図10の紙面に垂直な方向にY軸をそれぞれ設定している。図10に示す露光装置は、第1実施形態にかかる照明光学装置1(または第2実施形態にかかる照明光学装置1A)を備えている。
なお、照明光学装置1(1A)の露光装置への適用に際して、露光光(照明光)を供給する光源として、たとえば193nmの波長のパルス光を供給するArFエキシマレーザ光源や、248nmの波長のパルス光を供給するKrFエキシマレーザ光源などを用いることができる。この場合、コリメートレンズ12の設置を省略し、光源と光学ユニット13(21)との間の光路中に、光の入射側から順に、ビーム送光部、空間光変調器、リレー光学系などを付設することができる。また、コンデンサー光学系16と被照射面17との間の光路中に、光の入射側から順に、マスクブラインド、結像光学系などを付設することができる。
ここで、空間光変調器は、所定面内に配列されて個別に制御される複数のミラー要素と、露光装置の動作を統括的に制御する制御系CRからの制御信号に基づいて複数のミラー要素の姿勢を個別に制御駆動する駆動部とを有する。ビーム送光部は、光源からの入射光束を適切な大きさおよび形状の断面を有する光束に変換しつつ空間光変調器へ導くとともに、空間光変調器に入射する光束の位置変動および角度変動をアクティブに補正する機能を有する。
リレー光学系は、その前側焦点位置が空間光変調器の複数のミラー要素の配列面の近傍に位置し、且つその後側焦点位置がマイクロフライアイレンズ15の入射側の面の近傍に位置しており、空間光変調器の配列面とマイクロフライアイレンズ15の入射側の面とを光学的にフーリエ変換の関係に設定する。したがって、空間光変調器およびリレー光学系を経た光は、複数のミラー要素の姿勢に応じた光強度をマイクロフライアイレンズ15の入射側の面に可変的に分布させる。
照明視野絞りとしてのマスクブラインドは、コンデンサー光学系16の後側焦点位置またはその近傍に配置される。したがって、マイクロフライアイレンズ15の直後の照明瞳に形成された二次光源からの光は、コンデンサー光学系16を介して、マスクブラインドを重畳的に照明する。マスクブラインドの矩形状の開口部(光透過部)を介した光束は、結像光学系の集光作用を受けて、照明光学装置1(1A)における被照射面17の位置に配置されたマスクMを重畳的に照明し、X方向に沿って細長い矩形状の照明領域17aを形成する。
マスクステージMS上に保持されたマスクMには転写すべきパターンが形成されており、パターン領域全体のうちX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状(スリット状)のパターン領域が照明される。マスクMのパターン領域を透過した光は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。すなわち、マスクM上での矩形状の照明領域に光学的に対応するように、ウェハW上においてもX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状の静止露光領域(実効露光領域)にパターン像が形成される。
こうして、いわゆるステップ・アンド・スキャン方式にしたがって、投影光学系PLの光軸AXと直交する平面(XY平面)内において、Y方向(走査方向)に沿ってマスクステージMSとウェハステージWSとを、ひいてはマスクMとウェハWとを同期的に移動(走査)させることにより、ウェハW上には静止露光領域のX方向寸法に等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有するショット領域(露光領域)に対してマスクパターンが走査露光される。あるいは、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハステージWSを二次元的に駆動制御しながら、ひいてはウェハWを二次元的に駆動制御しながら一括露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが順次露光される。
本実施形態の露光装置は、照明光学装置1(1A)を介した光に基づいて照明光学装置1(1A)の射出瞳面における瞳強度分布を計測する第1瞳強度分布計測部DTrと、投影光学系PLを介した光に基づいて投影光学系PLの瞳面(投影光学系PLの射出瞳面)における瞳強度分布を計測する第2瞳強度分布計測部DTwと、第1および第2瞳強度分布計測部DTr,DTwのうちの少なくとも一方の計測結果に基づいて、光学ユニット13,14(21)および空間光変調器を制御し且つ露光装置の動作を統括的に制御する制御系CRとを備えている。
第1瞳強度分布計測部DTrは、照明光学装置1(1A)における瞳強度分布計測部20と同様に、例えば照明光学装置1(1A)の射出瞳位置と光学的に共役な位置に配置された光電変換面を有する撮像部を備え、照明光学装置1(1A)による被照射面上の各点に関する瞳強度分布(各点に入射する光が照明光学装置1(1A)の射出瞳位置に形成する瞳強度分布)を計測する。また、第2瞳強度分布計測部DTwは、例えば投影光学系PLの瞳位置と光学的に共役な位置に配置された光電変換面を有する撮像部を備え、投影光学系PLの像面の各点に関する瞳強度分布(各点に入射する光が投影光学系PLの瞳位置に形成する瞳強度分布)を計測する。
瞳強度分布計測部20,DTr,DTwの詳細な構成および作用については、例えば米国特許公開第2008/0030707号明細書を参照することができる。また、瞳強度分布計測部20,DTr,DTwとして、米国特許公開第2010/0020302号公報の開示を参照することもできる。
本実施形態では、マイクロフライアイレンズ15により形成される二次光源を光源として、照明光学装置1(1A)の被照射面17に配置されるマスクM(ひいてはウェハW)をケーラー照明する。このため、二次光源が形成される位置は投影光学系PLの開口絞りASの位置と光学的に共役であり、二次光源の形成面を照明光学装置1(1A)の照明瞳面と呼ぶことができる。また、この二次光源の形成面の像を照明光学装置1(1A)の射出瞳面と呼ぶことができる。典型的には、照明瞳面に対して被照射面(マスクMが配置される面、または投影光学系PLを含めて照明光学装置と考える場合にはウェハWが配置される面)が光学的なフーリエ変換面となる。
瞳強度分布とは、照明光学装置1(1A)の照明瞳面または当該照明瞳面と光学的に共役な面における光強度分布(輝度分布)である。マイクロフライアイレンズ15による波面分割数が比較的大きい場合、マイクロフライアイレンズ15の入射側の面に形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布(瞳強度分布)とが高い相関を示す。このため、マイクロフライアイレンズ15の入射側の面および当該入射側の面と光学的に共役な面も照明瞳面と呼ぶことができ、これらの面における光強度分布についても瞳強度分布と称することができる。
上述したように、照明光学装置1(1A)では、光学ユニット14(21)の瞳強度調整作用により、被照射面17上の各点での瞳強度分布をそれぞれ所要の分布に調整することができる。したがって、本実施形態の露光装置では、被照射面17と光学的に共役な位置に配置されたウェハW上の静止露光領域内の各点での瞳強度分布をそれぞれ所要の分布に調整する照明光学装置1(1A)を用いて、マスクMの微細パターンに応じた適切な照明条件のもとで良好な露光を行うことができ、ひいてはマスクMの微細パターンを露光領域の全体に亘って所望の線幅でウェハW上に正確に転写することができる。
本実施形態において、静止露光領域内の各点に関する瞳強度分布をそれぞれ所要の分布に調整する動作は、瞳強度分布計測部DTr,DTwの計測結果に基づいて行われる。具体的に、瞳強度分布計測部DTr,DTwの計測結果は、制御系CRに供給される。制御系CRは、瞳強度分布計測部DTr,DTwの計測結果に基づいて、例えば投影光学系PLの瞳面における瞳強度分布が所望の分布になるように、照明光学装置1(1A)の駆動部18,19(19A)に指令を出力する。駆動部18,19(19A)は、制御系CRからの指令に基づいて光学ユニット13,14(21)を駆動し、ウェハW上の静止露光領域内の各点に関する瞳強度分布を所要の分布に調整する。
上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含む空間光変調素子を用いることができる。空間光変調素子を用いた露光装置は、たとえば米国特許公開第2007/0296936号公報に開示されている。また、上述のような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。
上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。
次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図11は、半導体デバイスの製造工程を示すフローチャートである。図11に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の投影露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。
その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の投影露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の投影露光装置は、フォトレジストが塗布されたウェハWを、感光性基板としてパターンの転写を行う。
図12は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図12に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なパルスレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源、波長146nmのレーザ光を供給するKr2レーザ光源、波長126nmのレーザ光を供給するAr2レーザ光源などを用いることができる。また、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどのCW(Continuous Wave)光源を用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンプレットに開示されているような局所的に液体を満たす手法や、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10−303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。ここでは、国際公開第WO99/49504号パンフレット、特開平6−124873号公報および特開平10−303114号公報の教示を参照として援用する。
また、上述の実施形態において、米国公開公報第2006/0170901号及び第2007/0146676号に開示されるいわゆる偏光照明方法を適用することも可能である。ここでは、米国特許公開第2006/0170901号公報及び米国特許公開第2007/0146676号公報の教示を参照として援用する。
また、上述の実施形態では、露光装置においてマスク(またはウェハ)を照明する照明光学装置に対して本発明を適用しているが、これに限定されることなく、マスク(またはウェハ)以外の被照射面を照明する一般的な照明光学装置に対して本発明を適用することもできる。
1,1A 照明光学装置
11 光源
12 コリメートレンズ
13,14,21 光学ユニット
13a,13b,14a,14b,21a,21b 光学部材
15 マイクロフライアイレンズ(オプティカルインテグレータ)
16 コンデンサー光学系
17 被照射面
17a 照明領域
18,19,19A 駆動部
20,DTr,DTw 瞳強度分布計測部
CR 制御系
M マスク
MS マスクステージ
PL 投影光学系
W ウェハ
WS ウェハステージ

Claims (28)

  1. 光源からの光により被照射面を照明する照明光学装置において、
    並列的に配置された複数の波面分割要素を有するオプティカルインテグレータと、
    該オプティカルインテグレータの入射側の光路に配置されて、第1方向に延びた第1軸上の点での屈折力が前記第1方向に沿って周期的に変化している第1屈折力分布を持つ第1光学部材と、
    前記オプティカルインテグレータの入射側の光路に配置されて、前記第1屈折力分布と同じ周期を有する第2屈折力分布を持つ第2光学部材と、
    前記オプティカルインテグレータの入射側の光路に配置されて、前記第1軸上の点での屈折力が前記第1方向に沿って周期的に変化している第3屈折力分布を持つ第3光学部材と、
    前記オプティカルインテグレータの入射側の光路に配置されて、前記第3屈折力分布と同じ周期を有する第4屈折力分布を持つ第4光学部材とを備え、
    前記第1光学部材と前記第2光学部材とは、前記照明光学装置の光軸と平行な所定の軸線廻りに回転可能に構成され、
    前記第3光学部材と前記第4光学部材とは、前記照明光学装置の前記光軸を横切る第2方向に沿って移動可能に構成されていることを特徴とする照明光学装置。
  2. 前記第1光学部材は、均一な光強度分布を持つ平行光束が入射したときに、前記第1方向に沿った照度が周期的に変化している第1照度分布を前記第1光学部材の射出側に位置する第1面に形成し、
    前記第2光学部材は、前記第1光学部材との位置関係が基準状態である場合、前記平行光束が入射したときに、前記第1照度分布と同位相の第2照度分布を前記第2光学部材の射出側に位置する第2面に形成し、
    前記第1光学部材および前記第2光学部材を、前記軸線廻りに逆向きに回転させる第1駆動部をさらに備えていることを特徴とする請求項1に記載の照明光学装置。
  3. 前記第1光学部材および前記第2光学部材は、前記第1方向に沿って凹凸を周期的に繰り返す凹凸曲面状の入射側の面または射出面と、前記照明光学装置の光軸と直交する平面状の射出面または入射側の面とを有し、前記基準状態において前記第1光学部材の凹部と前記第2光学部材の凹部とが前記第1方向に沿って対応するように配置されていることを特徴とする請求項2に記載の照明光学装置。
  4. 前記第2光学部材は前記第1光学部材の後側に近接して配置され、前記第1光学部材は凹凸曲面状の射出面を有し、前記第2光学部材は凹凸曲面状の入射側の面を有することを特徴とする請求項3に記載の照明光学装置。
  5. 前記第1駆動部は、前記第1光学部材と前記第2光学部材とを前記基準状態から前記照明光学装置の光軸廻りに逆向きに同じ角度だけ回転させることを特徴とする請求項2乃至4のいずれか1項に記載の照明光学装置。
  6. 前記第1光学部材と前記第2光学部材とは互いに同じ構成を有することを特徴とする請求項1乃至5のいずれか1項に記載の照明光学装置。
  7. 前記第1光学部材と前記第2光学部材とは、前記照明光学装置の光軸方向に沿って一体的に移動可能に構成されていることを特徴とする請求項1乃至6のいずれか1項に記載の照明光学装置。
  8. 前記第3光学部材は、均一な光強度分布を持つ平行光束が入射したときに、前記第1方向に沿った照度が周期的に変化している第3照度分布を前記第3光学部材の射出側に位置する第3面に形成し、
    前記第4光学部材は、前記第3光学部材との位置関係が基準状態である場合、前記平行光束が入射したときに、前記第3照度分布と逆位相の第4照度分布を前記第4光学部材の射出側に位置する第4面に形成し、
    前記第3光学部材および前記第4光学部材を、前記第2方向に沿って逆向きに移動させる第2駆動部をさらに備えていることを特徴とする請求項1乃至7のいずれか1項に記載の照明光学装置。
  9. 前記第3光学部材および前記第4光学部材は、前記第1方向に沿って凹凸を周期的に繰り返す凹凸曲面状の入射側の面または射出面と、前記照明光学装置の光軸と直交する平面状の射出面または入射側の面とを有し、前記基準状態において前記第3光学部材の凹部と前記第4光学部材の凸部とが前記第1方向に沿って対応するように配置されていることを特徴とする請求項8に記載の照明光学装置。
  10. 前記第4光学部材は前記第3光学部材の後側に近接して配置され、前記第3光学部材は凹凸曲面状の射出面を有し、前記第4光学部材は凹凸曲面状の入射側の面を有することを特徴とする請求項9に記載の照明光学装置。
  11. 前記第2駆動部は、前記第3光学部材と前記第4光学部材とを前記基準状態から前記第2方向に沿って逆向きに同じ距離だけ移動させることを特徴とする請求項8乃至10のいずれか1項に記載の照明光学装置。
  12. 前記第3光学部材と前記第4光学部材とは互いに同じ構成を有することを特徴とする請求項1乃至11のいずれか1項に記載の照明光学装置。
  13. 前記第1照度分布および前記第3照度分布は、前記基準状態における前記第1方向に沿った前記複数の波面分割要素の配列周期の整数倍または整数分の1倍の周期を有することを特徴とする請求項8乃至12のいずれか1項に記載の照明光学装置。
  14. 光源からの光により被照射面を照明する照明光学装置において、
    並列的に配置された複数の波面分割要素を有するオプティカルインテグレータと、
    該オプティカルインテグレータの入射側の光路に配置されて、第1方向に延びた第1軸上の点での屈折力が前記第1方向に沿って周期的に変化している第1屈折力分布を持つと共に、前記第1軸と平行な第2軸上の点での屈折力が前記第1方向に沿って周期的に変化している第2屈折力分布を持つ第1光学部材と、
    該オプティカルインテグレータの入射側の光路に配置されて、第1方向に延びた第3軸上の点での屈折力が前記第1方向に沿って周期的に変化している第3屈折力分布を持つと共に、前記第3軸と平行な第4軸上の点での屈折力が前記第1方向に沿って周期的に変化している第4屈折力分布を持つ第2光学部材とを備え、
    前記第1光学部材は、前記第1屈折力分布を持つ第1部分と前記第2屈折力分布を持つ第2部分とを備え、
    前記第1屈折力分布と前記第2屈折力分布とは、前記第1軸および前記第2軸と平行な方向において異なる位相を有し、
    前記第2光学部材は、前記第3屈折力分布を持つ第3部分と前記第4屈折力分布を持つ第4部分とを備え、
    前記第3屈折力分布と前記第4屈折力分布とは、前記第3軸および前記第4軸と平行な方向において異なる位相を有し、
    前記第1光学部材と前記第2光学部材とは、前記照明光学装置の光軸と平行な軸線廻りに回転可能に構成されていることを特徴とする照明光学装置。
  15. 前記第1光学部材および前記第2光学部材を、前記軸線廻りに逆向きに回転させる第1駆動部をさらに備えていることを特徴とする請求項14に記載の照明光学装置。
  16. 前記第1駆動部は、前記第1光学部材と前記第2光学部材とを前記照明光学装置の光軸廻りに逆向きに同じ角度だけ回転させることを特徴とする請求項15に記載の照明光学装置。
  17. 前記第1光学部材の前記第1部分は、均一な光強度分布を持つ平行光束が入射したときに、前記第1方向に沿って照度が周期的に変化している第1照度分布を前記第1光学部材の射出側に位置する第1面上の第1領域に形成し、
    前記第1光学部材の前記第2部分は、前記平行光束が入射したときに、前記第1照度分布と逆位相の第2照度分布を前記第1面上の前記第1領域とは異なる第2領域に形成し、
    前記第2光学部材の前記第3部分は、均一な光強度分布を持つ平行光束が入射したときに、前記第1方向に沿って照度が周期的に変化している第3照度分布を前記第2光学部材の射出側に位置する第2面上の第3領域に形成し、
    前記第2光学部材の前記第4部分は、前記平行光束が入射したときに、前記第3照度分布と逆位相の第4照度分布を前記第2面上の前記第3領域とは異なる第4領域に形成することを特徴とする請求項14乃至16のいずれか1項に記載の照明光学装置。
  18. 前記第1照度分布および前記第3照度分布は、基準状態における前記第1方向に沿った前記複数の波面分割要素の配列周期の整数倍または整数分の1倍の周期を有することを特徴とする請求項17に記載の照明光学装置。
  19. 前記第1光学部材と前記第2光学部材との位置関係が基準状態であるとき、前記第1照度分布と前記第3照度分布とは同位相であり、前記第2照度分布と前記第4照度分布とは同位相であることを特徴とする請求項17または18に記載の照明光学装置。
  20. 前記第1光学部材および前記第2光学部材は、前記第1方向に沿って凹凸を周期的に繰り返す凹凸曲面状の入射側の面または射出面と、前記光軸と直交する平面状の射出面または入射側の面とを有し、前記基準状態において前記第1光学部材の凹部と前記第2光学部材の凸部とが前記第1方向に沿って対応するように配置され、
    前記凹凸曲面状の入射側の面または射出面は、前記第1部分と前記第2部分との境界線または前記第3部分と前記第4部分との境界線に対応する線の一方の側と他方の側とで逆位相の面形状に形成されていることを特徴とする請求項19に記載の照明光学装置。
  21. 前記第2光学部材は前記第1光学部材の後側に近接して配置され、前記第1光学部材は凹凸曲面状の射出面を有し、前記第2光学部材は凹凸曲面状の入射側の面を有することを特徴とする請求項20に記載の照明光学装置。
  22. 前記第1光学部材と前記第2光学部材とは互いに同じ構成を有することを特徴とする請求項14乃至21のいずれか1項に記載の照明光学装置。
  23. 前記被照射面に形成される照明領域は、基準状態における前記第1方向に沿って細長い矩形状であることを特徴とする請求項1乃至22のいずれか1項に記載の照明光学装置。
  24. 前記オプティカルインテグレータにより波面分割された複数の光束を前記被照射面で重畳させるコンデンサー光学系をさらに備えていることを特徴とする請求項1乃至23のいずれか1項に記載の照明光学装置。
  25. 前記被照射面または前記被照射面と光学的に共役な面上の所定の点に到達する光の角度方向の強度分布を計測する瞳分布計測部を備え、
    前記第1駆動部または前記第2駆動部は、前記瞳分布計測部からの出力を用いて前記光学部材の位置を変化させることを特徴とする請求項2乃至24のいずれか1項に記載の照明光学装置。
  26. 前記被照射面に設置された所定のパターンを照明するための請求項1乃至25のいずれか1項に記載の照明光学装置を備え、前記所定のパターンを基板に露光することを特徴とする露光装置。
  27. 前記所定のパターンの像を前記基板上に形成する投影光学系をさらに備え、前記被照射面に形成される照明領域は所定方向に沿って細長い矩形状であり、前記所定方向と直交する方向に沿って前記所定のパターンおよび前記基板を移動させつつ前記所定のパターンを前記基板に投影露光することを特徴とする請求項26に記載の露光装置。
  28. 請求項26または27に記載の露光装置を用いて、前記所定のパターンを前記基板に露光することと、
    前記所定のパターンが転写された前記基板を現像し、前記所定のパターンに対応する形状のマスク層を前記基板の表面に形成することと、
    前記マスク層を介して前記基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
JP2013013471A 2013-01-28 2013-01-28 照明光学装置、露光装置、およびデバイス製造方法 Pending JP2014146660A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013471A JP2014146660A (ja) 2013-01-28 2013-01-28 照明光学装置、露光装置、およびデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013471A JP2014146660A (ja) 2013-01-28 2013-01-28 照明光学装置、露光装置、およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2014146660A true JP2014146660A (ja) 2014-08-14

Family

ID=51426686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013471A Pending JP2014146660A (ja) 2013-01-28 2013-01-28 照明光学装置、露光装置、およびデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2014146660A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849966A (zh) * 2015-04-13 2015-08-19 合肥京东方光电科技有限公司 掩模板及其制备方法、曝光设备
CN104865801A (zh) * 2015-06-01 2015-08-26 京东方科技集团股份有限公司 曝光装置
WO2022038683A1 (ja) * 2020-08-18 2022-02-24 株式会社ニコン 露光装置、計測装置、計測方法、およびデバイス製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849966A (zh) * 2015-04-13 2015-08-19 合肥京东方光电科技有限公司 掩模板及其制备方法、曝光设备
CN104865801A (zh) * 2015-06-01 2015-08-26 京东方科技集团股份有限公司 曝光装置
US10007032B2 (en) 2015-06-01 2018-06-26 Boe Technology Group Co., Ltd. Exposure device
WO2022038683A1 (ja) * 2020-08-18 2022-02-24 株式会社ニコン 露光装置、計測装置、計測方法、およびデバイス製造方法

Similar Documents

Publication Publication Date Title
JP5326259B2 (ja) 照明光学装置、露光装置、およびデバイス製造方法
TWI588615B (zh) 照明光學系統、曝光裝置及元件製造方法
US10564550B2 (en) Illumination optical assembly, exposure device, and device manufacturing method
WO2009145048A1 (ja) 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
WO2009125511A1 (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
CN108107685B (zh) 曝光装置、曝光方法、器件制造方法及评价方法
WO2009087805A1 (ja) 空間光変調器、照明光学系、露光装置、およびデバイス製造方法
JP2014146660A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP2015005676A (ja) 照明光学系、照明光学装置、露光装置、およびデバイス製造方法
US10162269B2 (en) Illumination device
JP2011114041A (ja) 光束分割装置、空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5326928B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
TW201514541A (zh) 投影光學系統、投影光學系統的調整方法、曝光裝置、曝光方法以及元件製造方法
JP2014123600A (ja) オプティカルインテグレータ、照明ユニット、伝送光学系、照明光学系、露光装置、およびデバイス製造方法
JP2014146718A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP2011222841A (ja) 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2014157890A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP6103467B2 (ja) 照明光学系、照明方法、露光装置、露光方法、およびデバイス製造方法
JP5327715B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
WO2013115208A1 (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
JP6183635B2 (ja) オプティカルインテグレータ、照明ユニット、伝送光学系、照明光学系、露光装置、およびデバイス製造方法
JP5682799B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2014107309A (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
WO2014073548A1 (ja) 空間光変調光学系、照明光学系、露光装置、およびデバイス製造方法
JP2010182703A (ja) 補正ユニット、照明光学系、露光装置、およびデバイス製造方法