JP2013163305A - 誘導加熱方法とその装置および高圧ガスタンクの製造方法 - Google Patents

誘導加熱方法とその装置および高圧ガスタンクの製造方法 Download PDF

Info

Publication number
JP2013163305A
JP2013163305A JP2012027161A JP2012027161A JP2013163305A JP 2013163305 A JP2013163305 A JP 2013163305A JP 2012027161 A JP2012027161 A JP 2012027161A JP 2012027161 A JP2012027161 A JP 2012027161A JP 2013163305 A JP2013163305 A JP 2013163305A
Authority
JP
Japan
Prior art keywords
resin layer
induction heating
fiber reinforced
reinforced resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012027161A
Other languages
English (en)
Other versions
JP5796508B2 (ja
Inventor
Sakuma Emori
作馬 江森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012027161A priority Critical patent/JP5796508B2/ja
Publication of JP2013163305A publication Critical patent/JP2013163305A/ja
Application granted granted Critical
Publication of JP5796508B2 publication Critical patent/JP5796508B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

【課題】 誘導加熱装置における被加熱物のセッティングを簡便化する。
【解決手段】 ライナー10の外周に形成された繊維強化樹脂層20を高周波誘導加熱により硬化させるに当たり、繊維強化樹脂層20の外表層側を占める最外層側樹脂層22を、最先に第1誘導加熱コイル220により高周波誘導加熱に処して、硬化させる。この最外層側樹脂層22よりライナー10の側を占める内側樹脂層21の第2誘導加熱コイル222による高周波誘導加熱は、最外層側樹脂層22の熱硬化性樹脂の硬化が始まった後に起こす。
【選択図】 図5

Description

本発明は、被加熱物を誘導加熱コイルにて高周波誘導加熱する誘導加熱方法とその装置および高圧ガスタンクの製造方法に関する。
近年では、燃料ガスの燃焼エネルギや、燃料ガスの電気化学反応によって発電された電気エネルギによって駆動する車両が開発されており、高圧ガスタンクには、天然ガスや水素等の燃料ガスが貯蔵され、車両に搭載される場合がある。このため、高圧ガスタンクの軽量化が求められており、カーボン繊維強化プラスチックや、ガラス繊維強化プラスチック(以下、これらを総称して、繊維強化樹脂層と呼ぶ)で中空のライナーを被覆したFRP(Fiber Reinforced Plastics : 繊維強化プラスチック)製の高圧ガスタンク(以下、単に高圧ガスタンクと称する)の採用が進んでいる。ライナーとしては、軽量化の観点から、通常、ガスバリア性を有する樹脂製の中空容器が用いられる。
一般に、こうした高圧ガスタンクの製造に際しては、フィラメントワインディング法(以下、FW法)が採用され、このFW法により、エポキシ樹脂等の熱硬化性樹脂を含浸した繊維をライナーの外周に繰り返し巻回して繊維強化樹脂層とする。そして、その後に、当該樹脂層に含まれる熱硬化樹脂を熱硬化させることで、ライナーを繊維強化樹脂層で被覆・補強した高圧ガスタンクが製造される(例えば、特許文献1)。
特開2009−34941号公報
FW法にて得られた高圧ガスタンクの強度や耐久性等のタンク性能は、ライナー外周の硬化済み繊維強化樹脂層における繊維体積含有率(以下、Vf)に依存することが知られている。このVfは、繊維強化樹脂層の単位体積に占める繊維の割合であり、熱硬化前の繊維強化樹脂層からの樹脂の染み出しが増えるとVfは高くなる。そして、Vfが高いと、繊維の割合が増えるために強度は増すものの、繊維同士を接着硬化する樹脂が少なくなるため、耐久性の低下を来すことが危惧される。このため、上記の特許文献は、FW法によるライナーへの繊維巻回の際に、高Vfとなることを抑制する手法が提案されている。
ところで、上述したFRP製の圧力容器を製造する際には、熱硬化性樹脂を熱硬化するために、誘導加熱コイルにて高周波誘導加熱する誘導加熱手法が用いられる場合がある。この誘導加熱手法では、熱硬化性樹脂が含浸された炭素繊維をライナーの外周に繰り返し巻き付けた当該ライナー(被加熱物)を、誘導加熱コイルの内部の空間にセットした状態で、誘導加熱コイルに高周波電流が通電される。そして導電性を有する炭素繊維が高周波誘導加熱を受けて発熱することによって、熱硬化性樹脂は加熱し硬化する。
誘導加熱コイルを用いた高周波誘導加熱は、高い効率で短時間の内に加熱できることから、繊維強化樹脂層は急速に昇温して、樹脂の粘度も大きく低下しかねない。そうすると、誘導加熱コイルを用いた繊維強化樹脂層の誘導加熱の際に、既述したVfに影響を及ぼす樹脂の染み出しが顕著となって、高Vf化をもたらしかねないことが危惧される。なお、このような課題は、上述した圧力容器としての高圧ガスタンクの製造工程において、熱硬化性樹脂を熱硬化する誘導加熱に限られず、繊維強化樹脂層を外周に有する他の被加熱物を加熱する誘導加熱に共通する課題である。
本発明は、上記した課題を踏まえ、熱硬化性樹脂を含浸した繊維を巻回して形成した繊維強化樹脂層の高Vf化の抑制をもたらす新たな誘導加熱手法を提供することを目的とする。
上記した目的の少なくとも一部を達成するために、本発明は、以下の適用例として実施することができる。
[適用例1:誘導加熱方法]
中空容器の外周に熱硬化性樹脂を含浸した導電性の繊維を巻回して形成された繊維強化樹脂層を有する被加熱物を、該被加熱物を取り囲む誘導加熱コイルにより高周波誘導加熱する誘導加熱方法であって、前記誘導加熱コイルに高周波電流を通電して高周波誘導加熱を誘起した上で、前記繊維強化樹脂層の外表層側を占める第1繊維強化樹脂層において、該第1繊維強化樹脂層より前記中空容器の側を占める第2繊維強化樹脂層より先に前記高周波誘導加熱による加熱を進める第1工程と、前記第1繊維強化樹脂層に含まれる前記熱硬化性樹脂の硬化が始まった後に、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こす第2工程とを備えることを要旨とする。
この適用例1の誘導加熱方法では、前記繊維強化樹脂層の外表層側を占める第1繊維強化樹脂層より前記中空容器の側を占める第2繊維強化樹脂層の高周波誘導加熱による加熱を、第1繊維強化樹脂層の前記熱硬化性樹脂の硬化が始まった後に起こす。これにより、第2繊維強化樹脂層に含まれる熱硬化性樹脂が加熱を受けて粘度低下を来しても、この第2繊維強化樹脂層の熱硬化性樹脂は、既に硬化を始めた第1繊維強化樹脂層に遮られて第2繊維強化樹脂層から染み出しにくくなる。この結果、適用例1の誘導加熱方法によれば、繊維強化樹脂層が高周波誘導加熱を受けて昇温する際における樹脂の染み出しを抑制することで、Vfについても、これを高Vfとなることを抑制できる。
上記した適用例1の誘導加熱方法は、次のような態様とすることができる。例えば、前記第1工程では、前記第1繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第1の誘導加熱コイルに高周波電流を通電制御し、前記第2工程では、前記第2繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第2の誘導加熱コイルに高周波電流を通電制御するようにできる。こうすれば、第1、第2の各層ごとの誘導加熱コイルへの通電切換という簡便な手法で、樹脂の染み出し抑制と高Vf化の抑制が可能となる。
また、前記第1繊維強化樹脂層を導電性フィラーを含有するものとし、前記第2工程では、前記第1繊維強化樹脂層に含有した前記導電性フィラーの挙動で起きる前記第1繊維強化樹脂層の前記繊維の通電状況の推移に基づいて、前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化が始まったと判定して、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こすようにできる。導電性フィラーを含有させると、その含有された導電性フィラーは、熱硬化性樹脂の加熱に伴う粘度低下の際には流動するものの、樹脂の硬化に伴って流動性は低下し、やがて硬化した樹脂に取り囲まれる。こうした挙動の間に、導電性フィラーは導電性の繊維の短絡を起こし、その短絡状態は樹脂硬化により固定される。第1繊維強化樹脂層は、導電性フィラーを含有することから、上記の流動による繊維の短絡が起きる。
従って、第2繊維強化樹脂層より先に加熱される第1繊維強化樹脂層では、導電性フィラーを含有する故に、誘導加熱を受けた樹脂の粘度低下とその後の硬化に伴って、導電性の繊維全体の抵抗値が大きく変化するので、通電状況についても大きな変化が起きる。この第1繊維強化樹脂層の通電状況は、導電性フィラーの流動をもたらす樹脂硬化と対応しているので、第1繊維強化樹脂層における繊維の通電状況の推移に基づいて、前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化が始まったことが判定でき、この判定結果により、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こすようにできる。こうすれば、第1繊維強化樹脂層における繊維の通電状況の推移を捉えて、第2繊維強化樹脂層の高周波誘導加熱を簡便に起こすようにできる。この場合、第1繊維強化樹脂層の繊維の抵抗変化は、導電性の繊維を電流が流れることで生じる磁束に影響し、第1繊維強化樹脂層を高周波誘導加熱する誘導加熱コイルの出力にも影響を及ぼす。よって、第1繊維強化樹脂層における繊維の通電状況は、実際に第1繊維強化樹脂層の繊維の通電状況を測定できるほか、第1の誘導加熱コイルの出力状況にて、検知できる。
また、前記第2工程を行うに当たり、前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化の進行状況と前記第1繊維強化樹脂層の前記繊維の通電状況の推移とを対応付けるパラメータを予め記憶する。その上で、このパラメータを検出し、該検出したパラメータと前記記憶したパラメータとを対比する。この対比により、検出したパラメータに対応した前記第1繊維強化樹脂層の前記繊維の通電状況、延いては、第1繊維強化樹脂層の前記熱硬化性樹脂の硬化の進行状況が判明する。よって、上記のパラメータの対比結果により前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化が始まったと判定できるので、この硬化の開始後に、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こすようにできる。こうすれば、パラメータの検出を経て、第2繊維強化樹脂層の高周波誘導加熱を簡便に起こすようにできる。
[適用例2:誘導加熱装置]
中空容器の外周に熱硬化性樹脂を含浸した導電性の繊維を巻回して形成された繊維強化樹脂層を有する被加熱物を高周波誘導加熱する誘導加熱装置であって、前記繊維強化樹脂層の外表層側を占める第1繊維強化樹脂層は、導電性フィラーを含有し、前記第1繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第1の誘導加熱コイルと、前記第1繊維強化樹脂層より前記中空容器の側を占める第2繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第2の誘導加熱コイルと、前記第1、第2の誘導加熱コイルへの高周波電流の通電を制御する制御部とを備える。前記制御部は、前記第1の誘導加熱コイルに高周波電流を通電して、前記第1繊維強化樹脂層において前記第2繊維強化樹脂層より先に前記高周波誘導加熱による加熱を進め、前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化の進行状況と前記第1繊維強化樹脂層の前記繊維の通電状況の推移とを対応付けるパラメータを予め記憶した上で、該パラメータを検出し、該検出したパラメータにて前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化が始まったとすると、該硬化が始まった後に、前記第2の誘導加熱コイルに高周波電流を通電して、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こすことを要旨とする。
上記した適用例2の誘導加熱装置によれば、第1繊維強化樹脂層の高周波誘導加熱による熱硬化性樹脂の硬化の後に、パラメータの検出を経て、第2繊維強化樹脂層の高周波誘導加熱を簡便に起こすようにできる。しかも、既述したように、高Vf化を抑制できる。
[適用例3:高圧ガスタンクの製造方法]
高圧ガスタンクの製造方法であって、タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した導電性の繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を準備する工程(a)と、該タンク中間生成品をタンク軸回りに回転させつつ、高周波誘導加熱を誘起する誘導加熱コイルを用いて前記タンク中間生成品の前記繊維強化樹脂層を誘導加熱して熱硬化させる工程(b)とを備える。前記工程(a)では、前記繊維強化樹脂層を、樹脂層の外表層側を占める第1繊維強化樹脂層と該第1繊維強化樹脂層より前記中空容器の側を占める第2繊維強化樹脂層とを重ねて形成するに当たって、前記第1繊維強化樹脂層に導電性フィラーを含有させ、前記工程(b)では、前記第1繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第1の誘導加熱コイルに高周波電流を通電して、前記第1繊維強化樹脂層において前記第2繊維強化樹脂層より先に前記高周波誘導加熱による加熱を進め、前記第1繊維強化樹脂層に含まれる前記熱硬化性樹脂の硬化の開始を、前記第1繊維強化樹脂層の前記繊維の通電状況の推移に基づいて判定し、前記硬化の開始後に、前記第2繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第2の誘導加熱コイルに高周波電流を通電して、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こすことを要旨とする。
上記した適用例3の高圧ガスタンクの製造方法によれば、高Vf化の抑制を高周波誘導加熱の間においても図った高圧ガスタンクを容易に製造できる。
本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。 この製造工程に用いるFW装置100の構成を概略的に示す説明図である。 繊維強化樹脂層の形成の様子を模式的に示す説明図である。 得られた中間生成品タンク12における繊維強化樹脂層20の内外の樹脂層における樹脂含浸カーボン繊維Wの配向の様子と導電性フィラーFの含有の様子とを模式的に示す説明図である。 第1誘導加熱コイル220および第2誘導加熱コイル222への高周波電流の通電制御を説明するフローチャートである。 最外層側樹脂層22に含まれるエポキシ樹脂EPの挙動とコイル出力との関係を示す説明図である。 誘導加熱装置200にてなされる繊維強化樹脂層20の誘導加熱によるエポキシ樹脂EPの挙動を樹脂硬化の状況と合わせて模式的に示す説明図である。
以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図、図2はこの製造工程に用いるFW装置100の構成を概略的に示す説明図、図3は繊維強化樹脂層の形成の様子を模式的に示す説明図である。本実施例では、高圧ガスタンクを、高圧水素を貯蔵する高圧水素タンクとした。
本実施例のタンク製造工程では、まず、図1(a)に示したように、水素ガスに対するガスバリア性を有する樹脂製の中空容器をライナー10として用意する。ライナー10は、半径が均一である略円筒形状のシリンダー部10aと、シリンダー部両端に設けられた凸曲面形状のドーム部10bを有する。ドーム部10bは、等張力曲面によって構成されており、その頂点に、外部配管等と接続するための口金14を有する。本実施例では、樹脂容器として、ナイロン系樹脂からなる樹脂製容器を用いるものとした。樹脂容器として、水素ガスに対するガスバリア性を有すれば、他の樹脂からなる樹脂容器を用いるものとしてもよい。
次に、図1(b)に示したように、ライナー10の外周に繊維強化樹脂層20を形成する(繊維強化樹脂層形成工程)。本実施例では、繊維強化樹脂層形成工程として、図2に示すFW装置100を用いる。このFW装置100は、ライナー10の外周に、熱硬化性樹脂としてのエポキシ樹脂を含浸したカーボン繊維を繰り返し巻回することにより、繊維強化樹脂層20としてのカーボン繊維層を形成する。これにより、ライナー10の外周に樹脂硬化前の繊維強化樹脂層20を有する中間生成品タンク12が得られる。FW装置100の構成と当該装置による繊維巻回の様子については、後述する。
繊維強化樹脂層20の形成に続いては、熱硬化を行う。熱硬化工程では、図1(c)に示す誘導加熱装置200を用いる。この誘導加熱装置200は、被加熱物としての中間生成品タンク12を高周波誘導加熱する装置である。誘導加熱装置200は、図示しない架台に、タンク両端のタンク軸支シャフト212を介して中間生成品タンク12を回転可能に軸支し、図示しないモーターにて中間生成品タンク12を加熱の過程において回転させる。
この他、誘導加熱装置200は、第1誘導加熱コイル220と、第2誘導加熱コイル222と、その高周波電源240と、コイル出力センサー242と、コイル通電切換機250とを有する。コイル通電切換機250は、制御機器230からの制御信号を受けて、高周波電源240からの高周波電流の通電対象コイルを、第1誘導加熱コイル220だけとしたり、第1誘導加熱コイル220と第2誘導加熱コイル222の両コイルにしたり、第2誘導加熱コイル222だけに切り換える。コイル出力センサー242は、第2誘導加熱コイル222に高周波電流が通電された際のコイル出力を検出し、その検出結果を制御機器230に出力する。
第1誘導加熱コイル220と第2誘導加熱コイル222の両コイルは、軸支した中間生成品タンク12を取り囲み、高周波電源240から高周波電流の通電を受けることで、磁束を形成し、中間生成品タンク12の繊維強化樹脂層20におけるカーボン繊維(樹脂含浸カーボン繊維W)を導体として繊維強化樹脂層20を誘導加熱する。この場合、第1誘導加熱コイル220は、軸支した中間生成品タンク12をタンク長手方向に沿ってタンク軸周囲にて取り囲むよう配設され、そのコイル巻き軌跡を、繊維強化樹脂層20の外表層側に形成された後述のヘリカル巻きのヘリカル層の繊維巻回軌跡に倣ってタンク軸に対して約15°程傾けている。第2誘導加熱コイル222は、軸支した中間生成品タンク12をシリンダー部10aにおいて取り囲むよう配設され、そのコイル巻き軌跡を、繊維強化樹脂層20の内層側に形成された後述のフープ巻きによるフープ層の繊維巻回軌跡に倣ってタンク軸に対して約80°程傾けている。
図1(c)に示す上記の誘導加熱装置200を用いた熱硬化工程では、誘導加熱装置200への中間生成品タンク12の搬入に先だち、繊維強化樹脂層20を形成済みの中間生成品タンク12にタンク軸支シャフト212を装着する。タンク軸支シャフト212は、中間生成品タンク12の両端の口金14に挿入され、タンク両端からシャフトを出した状態で、中間生成品タンク12を水平に軸支する。こうして中間生成品タンク12を軸支した後、誘導加熱装置200は、中間生成品タンク12を熱硬化工程に処する。この熱硬化工程では、中間生成品タンク12をタンク軸支シャフト212ごと定速で回転させ、その回転を熱硬化工程の間に亘って維持する。タンク回転と同時に、或いは、定速回転となると、誘導加熱装置200は、繊維強化樹脂層20の形成に用いた上記の熱硬化樹脂(例えば、エポキシ樹脂)の熱硬化が起きるよう、制御機器230にて第1誘導加熱コイル220と第2誘導加熱コイル222とに高周波電流を通電して繊維強化樹脂層20を誘導加熱する。これにより、中間生成品タンク12では、ライナー10の外周に形成された繊維強化樹脂層20における熱硬化樹脂の熱硬化が起きる。上記両コイルへの通電制御と、両コイルによる誘導加熱の様子については後述する。
誘導加熱装置200による上記した樹脂の熱硬化後には、加熱を受けた中間生成品タンク12は、冷却養生に処される。そして、この冷却養生を経ることで、ライナー10の外周にエポキシ樹脂を含浸して熱硬化した繊維強化樹脂層20を有する高圧水素タンク30が得られる。
ここで、FW装置100による繊維強化樹脂層20の形成の様子(図1(b))と、その後の誘導加熱装置200による繊維強化樹脂層20の熱硬化(図1(c))について順を追って説明する。図2に示すように、本実施例のFW装置100は、クリールスタンド110と、巻取部130と、樹脂含浸部120と、制御部150とを備える。
クリールスタンド110は、導電性を有するカーボン繊維CFを巻きつけた複数のボビン112を備え、固定滑車114等を用いて各ボビン112から所定の方向にカーボン繊維CFを繰り出す機能を有する。樹脂含浸部120は、樹脂容器122と、フィラー配合機124と、繊維を湾曲案内するローラー群126とを有する。樹脂容器122は、熱硬化性樹脂としてのエポキシ樹脂EPを貯め置くと共に、図示しない攪拌機器により容器内のエポキシ樹脂EPに導電性フィラーをほぼ均等に分散させる。
フィラー配合機124は、例えば所定粒径に調整された細粒状の鉄粉やカーボン短繊維等の導電性フィラーFをエポキシ樹脂溶液に分散させて貯留し、制御部150からの制御を受けて、導電性フィラー含有のエポキシ樹脂溶液(以下、フィラー含有溶液と称する)を樹脂容器122に供給する。上記構成の樹脂含浸部120は、クリールスタンド110から繰り出されたCFをローラー群126にて所定軌跡で案内しつつ、樹脂容器122における導電性フィラーFの分散済みエポキシ樹脂溶液に浸漬させる。これにより、カーボン繊維CFは、エポキシ樹脂EPを含浸した上で導電性フィラーFを含有済みの樹脂含浸カーボン繊維Wとなる。
制御部150は、繊維強化樹脂層20における樹脂含浸カーボン繊維Wの巻き付け箇所、即ちライナー10の側の内層側から樹脂層外表の側の外層側に掛けて、樹脂含浸カーボン繊維Wに含有する導電性フィラーFの含有量を、グラフ、マップ等の形態で予め記憶する。樹脂含浸部120は、制御部150からの制御を受けて、樹脂容器122における導電性フィラーFの分散量が徐々に増大するよう、フィラー配合機124から樹脂容器122にフィラー含有溶液を供給する。本実施例では、後述するように樹脂含浸カーボン繊維Wの巻回場所によって導電性フィラーFの含有量を変えるので、繊維巻回対象となるライナー10ごとに、樹脂容器122を取り替える。つまり、ライナー10への繊維巻回当初は、繊維巻回位置は内層側であることから、樹脂容器122には導電性フィラーFを含まない状態でエポキシ樹脂を貯留し、繊維巻回が進むにつれてフィラー配合機124からのフィラー含有溶液の供給量を増す。こうすることで、樹脂含浸カーボン繊維Wに含有される導電性フィラーFの含有量を、繊維巻回が進んで繊維層が積層されるにつれて増やすことができる。これにより、繊維強化樹脂層20では、その内層側ほど導電性フィラーFの含有量が少なく、外層側となるほど、導電性フィラーFの含有量が増えることになる。なお、上記のカーボン繊維に代えて、適当な強度と導電性を有するフィラメントワインディングに適した他の材料の繊維とすることもできる。また、エポキシ樹脂に代えて、熱硬化により適当な接合強度を有するフィラメントワインディングに適した熱硬化性樹脂、例えばポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂とすることもできる。導電性フィラーFにあっては、内側樹脂層21および最外層側樹脂層22の導電性を変えることができればよく、カーボン繊維CFと同程度の導電性でよく、カーボン繊維CFより低い或いは高い導電性でも良い。
樹脂含浸部120でエポキシ樹脂が含浸された樹脂含浸カーボン繊維Wは、巻取部130の働きにより樹脂含浸部120から引き出されて巻取部130へ導かれる。巻取部130は、アイクチガイド132と、ライナー10がセットされる回転駆動装置134とを備える。回転駆動装置134は、ライナー10を軸支してそのタンク軸周りにライナー10を回転駆動させる。
アイクチガイド132は、ライナー10の外周に樹脂含浸カーボン繊維Wを供給しつつ、ライナー10に樹脂含浸カーボン繊維Wが巻回される際の巻回張力を調整する。また、樹脂含浸カーボン繊維Wのフープ巻きとヘリカル巻きの使い分けにも関与する。つまり、アイクチガイド132は、樹脂含浸部120から供給された複数本の樹脂含浸カーボン繊維Wを束ねてライナー10に向かって供給する。制御部150による制御を経たアイクチガイド132のタンク軸方向に沿った往復移動と回転駆動装置134によるライナー10の回転とにより、樹脂含浸カーボン繊維Wは、ライナー10の外周に繰り返し巻回されることになる。詳細には、図3に示すように、フープ巻きとヘリカル巻きとが使い分けられて、樹脂含浸カーボン繊維Wは、ライナー両端のドーム部10bと円筒状のシリンダー部10aとの外周に繰り返し巻回される。図示するように、まず、ライナー10の略円筒状のシリンダー部10aの領域をフープ巻きにて樹脂含浸カーボン繊維Wを巻回し、その後に、シリンダー部両端のドーム部10bに掛け渡るよう、その折り返し位置に応じた角度のヘリカル巻きにて樹脂含浸カーボン繊維Wを巻回する。
図3(A)に示すように、シリンダー部10aにおいては、フープ巻きをシリンダー部両端で折り返しつつ繰り返すことで、繊維強化樹脂層20の内層側であってライナー外周側の内側樹脂層21を形成する。つまり、ライナー10をタンク中心軸AXの回りで回転させつつ、樹脂含浸カーボン繊維Wの供給元であるアイクチガイド132をタンク中心軸AXに沿って所定速度で往復動させる。これにより、繊維強化樹脂層20における内側樹脂層が樹脂含浸カーボン繊維Wにて巻回形成される。このフープ巻きでは、アイクチガイド132からの樹脂含浸カーボン繊維Wが、シリンダー部10aのタンク中心軸AXに対してほぼ垂直に近い巻き角度(繊維角α0:例えば約89°)をなすようにされる。そして、ライナー回転速度とアイクチガイド132の往復動速度を調整した上で、タンク中心軸AX方向に沿ってアイクチガイド132を往復移動させて、樹脂含浸カーボン繊維Wをシリンダー部10aに繰り返し巻回する。
こうしたフープ巻きに続き、図3(B)に示す低角度のヘリカル巻きにて樹脂含浸カーボン繊維Wを巻回する。低角度のヘリカル巻きでは、ドーム部10bの湾曲外表面領域とフープ巻き済みのシリンダー部10aを繊維巻回対象とし、ライナー10をタンク中心軸AXの回りで回転させつつ、アイクチガイド132から延びた樹脂含浸カーボン繊維Wをタンク中心軸AXに対して低角度の繊維角αLH(例えば、約11〜25°)で交差させる。そして、この状態を保持し、ライナー回転速度とアイクチガイド132の往復動速度を調整する。その上で、タンク中心軸AX方向に沿ってアイクチガイド132を往復移動させて、樹脂含浸カーボン繊維Wをシリンダー部10aの両端のドーム部10bに掛け渡るよう螺旋状に繰り返し巻回する。この場合、両側のドーム部10bでは、アイクチガイド132の往路・復路の切換に伴って繊維の巻き付け方向が折り返されると共に、タンク中心軸AXからの折り返し位置も調整される。ドーム部10bにおける巻き付け方向の折り返しを何度も繰り返すことにより、ライナー10の外周には、低角度の繊維角αLHで樹脂含浸カーボン繊維Wが網目状に張り渡された繊維巻回層が形成され、この層が繊維強化樹脂層20における外表面側の最外層側樹脂層22となる。なお、上記した低角度のヘリカル巻きを行う前に、タンク中心軸AXに対して高角度の繊維角(例えば、約30〜60°)で樹脂含浸カーボン繊維Wを巻回する高角度のヘリカル巻きを組み込むこともできる。上記したフープ巻きおよびヘリカル巻きにおいて、制御部150は、ライナー10の回転速度制御やアイクチガイド132での巻回張力調整等を行うが、本発明の要旨と直接関係しないので、その説明については省略する。
こうして樹脂含浸カーボン繊維Wのフープ巻きおよびヘリカル巻きが使い分けてなされることで、樹脂含浸カーボン繊維Wがライナー10の外周に内側樹脂層21と最外層側樹脂層22とがこの順に層状に重なった繊維強化樹脂層20が形成される。そして、樹脂含浸カーボン繊維WのFW法による巻回を経て、ライナー10の外周に繊維強化樹脂層20を形成した中間生成品タンク12が得られる(図1(b)参照)。図4は得られた中間生成品タンク12における繊維強化樹脂層20の内外の樹脂層における樹脂含浸カーボン繊維Wの配向の様子と導電性フィラーFの含有の様子とを模式的に示す説明図である。
図示するように、ライナー10の外周に形成された繊維強化樹脂層20は、ライナー10の外周側から、最内層の樹脂層と中間層の樹脂層と最外層の樹脂層に区分できる。内側樹脂層21における最内層の樹脂層は、図3(A)に示したフープ巻きによる繊維巻回層となり、繊維の配向は既述した約89°となる。内側樹脂層21と最外層側樹脂層22の境界の中間層は、フープ巻きから低角度のヘリカル巻きに推移する層であり、繊維の巻き方向である繊維の配向は89°から既述した約11〜25°に切り替わる。最外層側樹脂層22における最外層の樹脂層は、図3(B)に示した低角度のヘリカル巻きによる繊維巻回層となり、繊維の配向は既述した約11〜25°となる。そして、ライナー10の外周側のフープ巻きの樹脂層に低角度のヘリカル巻きの樹脂層を積層した繊維強化樹脂層20とすることで、最終製品たる高圧水素タンク30のタンク強度を高めることができる。
図4では、タンク中心軸AXを含んでタンクを長手方向に断面視していることから、繊維の配向が約89°の最内層〜中間層では、樹脂含浸カーボン繊維Wは繊維と交差するよう切断したほぼ円形に断面視される。その一方、繊維の配向が約11〜25°の中間層〜最外層では、樹脂含浸カーボン繊維Wは繊維長手方向に沿って切断した矩形状に断面視される。
また、既述したように、制御部150はカーボン繊維CFに含有させる導電性フィラーFの含有量を繊維巻回が進むにつれて増大している。よって、図4に模式的に示すように、内側樹脂層21から最外層側樹脂層22に掛けての樹脂層における導電性フィラーFの含有量は、繊維巻回が進んで繊維層が積層されるにつれて増え、繊維強化樹脂層20では、その内層側ほど導電性フィラーFの含有量が少なく、外層側となるほど、導電性フィラーFの含有量は多くなる。
次に、図1(c)に示した誘導加熱装置200による誘導加熱制御について説明する。図5は第1誘導加熱コイル220および第2誘導加熱コイル222への高周波電流の通電制御を説明するフローチャートである。
図5に示す通電制御は、誘導加熱装置200の炉内への中間生成品タンク12のセット、並びに軸回りの回転が定速となると開始され、制御機器230(1(c)参照)は、まず、第1誘導加熱コイル220に高周波電源240から高周波電流を通電し、これを継続する(ステップS100)。この際、制御機器230は、コイル通電切換機250に制御信号を出力して、高周波電源240の通電対象コイルを第1誘導加熱コイル220とする。この第1誘導加熱コイル220への通電により、第1誘導加熱コイル220は、磁束を形成し、中間生成品タンク12の繊維強化樹脂層20における樹脂含浸カーボン繊維Wを導体として繊維強化樹脂層20を誘導加熱する。この場合、第1誘導加熱コイル220による高周波誘導加熱は、繊維強化樹脂層20の上記最内層、中間層および最外層の各層で進むものの、各層での誘導加熱の状況は次のように相違する。
繊維強化樹脂層20の最外層側樹脂層22は、第1誘導加熱コイル220に最も近くて第1誘導加熱コイル220の発生した磁束の影響を受けやすく生じる渦電流も大きいことから、第1誘導加熱コイル220による高周波誘導加熱が最も進む。そして、第1誘導加熱コイル220から離れる中間層、最内層は、磁束の影響が受け難くなって生じる渦電流も小さくなるので、最外層ほど加熱は進まない。しかも、繊維強化樹脂層20の最外層側樹脂層22では、樹脂含浸カーボン繊維Wは低角度のヘリカル巻き軌跡であり、この繊維軌跡は、中間生成品タンク12をタンク長手方向に沿ってタンク軸周囲にて取り囲む第1誘導加熱コイル220のコイル巻き軌跡と揃うことになる。よって、最外層側樹脂層22では渦電流の流れる樹脂含浸カーボン繊維Wの範囲が増すことから、第1誘導加熱コイル220は、この最外層側樹脂層22において高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する。そうすると、最外層側樹脂層22では、これより内層側の内側樹脂層21より先に加熱が進んで、最外層側樹脂層22に含まれるエポキシ樹脂EPは粘度低下を来し、その後に、硬化を開始する。しかも、最外層側樹脂層22では、第1誘導加熱コイル220に最も近い最外表層側からエポキシ樹脂EPの硬化が始まる。
制御機器230は、第1誘導加熱コイル220への通電開始に続き、コイル出力センサー242(図1(c)参照)をスキャンして、第1誘導加熱コイル220のコイル出力を検出する(ステップS110)。このコイル出力は、次のようにして、最外層側樹脂層22におけるエポキシ樹脂EPの硬化の開始と関連付けられ、樹脂硬化の開始の判定に用いられる。
最外層側樹脂層22は、図4に示すように、高い含有量で導電性フィラーFを含有することから、エポキシ樹脂が粘度低下を来している間において、多くの導電性フィラーFが流動し、樹脂含浸カーボン繊維Wの短絡は多くの箇所で起き得る。樹脂含浸カーボン繊維Wの短絡は、最外層側樹脂層22に含まれる樹脂含浸カーボン繊維W全体の抵抗値を大きく変化させ、最外層側樹脂層22に含まれる樹脂含浸カーボン繊維Wは、繊維全体の抵抗値を大きく変化させながら第1誘導加熱コイル220の高周波誘導加熱を受ける。よって、最外層側樹脂層22に含まれる樹脂含浸カーボン繊維W全体の抵抗値変化は、電流が流れることで樹脂含浸カーボン繊維W自体に生じる磁束は元より、最外層側樹脂層22を高周波誘導加熱する第1誘導加熱コイル220の出力にも影響を及ぼす。この影響は、導電性フィラーFの含有量が多い分、顕著となる。そして、最外層側樹脂層22のエポキシ樹脂EPが硬化を始めると、導電性フィラーFは流動できなくなることから、導電性フィラーFによる繊維短絡の状況は徐々に平衡状態となる。図6は最外層側樹脂層22に含まれるエポキシ樹脂EPの挙動とコイル出力との関係を示す説明図である。
この図6に示すように、第1誘導加熱コイル220への通電が開始されると、最外層側樹脂層22に含まれるエポキシ樹脂EPは、樹脂含浸カーボン繊維Wにより加熱されてその粘度を低下させる。通電時間が経過して加熱が進むほど、粘度は大きく低下する。この粘度低下の状況下では、最外層側樹脂層22に含有済みの導電性フィラーFの流動による樹脂含浸カーボン繊維Wの短絡が多々起きるので、短絡した導電性フィラーFの分だけ抵抗が大きくなる。この影響を受けて、コイル出力は低下する。導電性フィラーFの流動に伴う短絡は、ランダムに起きるので、コイル出力は、図中に点線で示すように上下変動しながら、低下する。
最外層側樹脂層22のエポキシ樹脂EPは、加熱を継続して受けたある時点から硬化し始める。樹脂の硬化が始まると、導電性フィラーFの流動は起きがたくなるので、導電性フィラーFによる短絡は、それ以前より起きがたくなり、樹脂硬化の完了に合わせて短絡状況は収束する。このため、図示するように、最外層側樹脂層22に含まれるエポキシ樹脂EPが硬化を開始したポイント(硬化開始ポイントRP)以降では、コイル出力の低下は緩慢となり、最外層側樹脂層22に含まれるエポキシ樹脂EPのほぼ全てが硬化したポイント(硬化終了ポイントREP)以降では、コイル出力は収束する。こうしたコイル出力状況は、導電性フィラーFの挙動で定まり、最外層側樹脂層22に含有される導電性フィラーFの含有量(最大含有量)に依存する。例えば、導電性フィラーFの含有量が少なければ、導電性フィラーFの流動による短絡も起きがたくなり、図6に示した出力の推移状況は相違する。よって、本実施例では、誘導加熱装置200の制御機器230のメモリーに、図6に示すグラフに対応したマップを導電性フィラーFの含有量ごとに予め記憶し、導電性フィラーFの含有量ごとに使い分けている。
制御機器230は、上記のセンサースキャン(ステップS110)に続き、スキャン入力したコイル出力を、メモリーに記憶済みの図6のコイル出力状況を参照して、最外層側樹脂層22に含まれるエポキシ樹脂EPの硬化状況を把握する(ステップS120)。ステップS120での樹脂硬化状況の把握では、上記したようなコイル出力センサー242からのコイル出力を用いることができるほか、第1誘導加熱コイル220への電流通電を開始してからの経過時間を計測し、その経過時間に基づいて樹脂硬化状況を把握することもできる。この場合には、経過時間と樹脂の硬化状況とを対応付けたマップを予め記憶しておけばよい。
次に、制御機器230は、上記把握した樹脂硬化状況が、最外層側樹脂層22に含まれているエポキシ樹脂EPの硬化が少なくともある樹脂層部位(例えば最外表層側の層)において起きているか否かを判定する(ステップS130)。この判定は、スキャンしたコイル出力が図6の硬化開始ポイントRP以降のものであるか否かによって下すことができ、ステップS130で肯定判定するまでステップS100から処理を繰り返す。一方、ステップS130にて、最外層側樹脂層22に含まれているエポキシ樹脂EPの硬化が始まっていると肯定判定すると、制御機器230は、第2誘導加熱コイル222への高周波電流の通電を開始して、これを継続する(ステップS140)。この際、制御機器230は、コイル通電切換機250に制御信号を出力して、高周波電源240の通電対象コイルを第2誘導加熱コイル222とする。
第2誘導加熱コイル222への通電により、第2誘導加熱コイル222は、磁束を形成し、中間生成品タンク12の繊維強化樹脂層20における樹脂含浸カーボン繊維Wを導体として繊維強化樹脂層20を誘導加熱する。この場合、第2誘導加熱コイル222は、繊維強化樹脂層20の最外層側樹脂層22を取り囲むよう配設されているとはいえ、そのコイル巻き軌跡をフープ巻きの内側樹脂層21の繊維巻回軌跡と揃えていることから、最外層側樹脂層22より内層側の内側樹脂層21に優先的に高周波誘導加熱を誘起する。そうすると、内側樹脂層21では、ステップS100〜130により最外層側樹脂層22のエポキシ樹脂が硬化を始めた後に、第2誘導加熱コイル222の高周波誘導加熱を受けて加熱し、エポキシ樹脂EPの粘度低下の後に、硬化する。
ステップS140にて第2誘導加熱コイル222への電流通電を開始する場合、この通電開始をもたらすステップS130での肯定判定タイミングによって、制御機器230は、次のように第1誘導加熱コイル220への高周波電流の通電制御を行う。上記のステップS130の肯定判定が、最外層側樹脂層22に含まれているエポキシ樹脂EPの硬化が始まっている状況下のタイミングでなされたのであれば、その時点では、最外層側樹脂層22に含まれるエポキシ樹脂EPの硬化は完了していないことになる。よって、こうした状況下であれば、制御機器230は、第1誘導加熱コイル220への高周波電流の通電も継続する。つまり、この状況下では、制御機器230は、コイル通電切換機250に制御信号を出力して、高周波電源240の通電対象コイルを第1誘導加熱コイル220と第2誘導加熱コイル222の両コイルとする。そして、第1誘導加熱コイル220への通電を、最外層側樹脂層22の樹脂硬化が完了するまで継続する。上記のステップS130の肯定判定が、最外層側樹脂層22に含まれているエポキシ樹脂EPの硬化が完了しているタイミングでなされたのであれば、制御機器230は、第1誘導加熱コイル220への高周波電流の通電を停止する。第2誘導加熱コイル222については、内側樹脂層21に含まれるエポキシ樹脂EPの硬化が完了するまで、通電を継続する。
制御機器230は、先に硬化させた最外層側樹脂層22、および最外層側樹脂層22の樹脂硬化が始まった後に加熱を受ける内側樹脂層21が共に硬化すると、両コイルへの通電を停止すると共に、繊維強化樹脂層20の冷却養生を図る(ステップS150)。これにより、繊維強化樹脂層20が硬化済みの高圧水素タンク30が得られる。
以上説明したように、本実施例では、ライナー10の補強用の繊維強化樹脂層20の熱硬化性樹脂の熱硬化を図るに当たり、繊維強化樹脂層20の外表層側を占める最外層側樹脂層22と、これより内層側でライナー10の側を占める内側樹脂層21とで、異なる取扱をする。図7は誘導加熱装置200にてなされる繊維強化樹脂層20の誘導加熱によるエポキシ樹脂EPの挙動を樹脂硬化の状況と合わせて模式的に示す説明図である。
本実施例の誘導加熱装置200では、コイルへの高周波電流の通電を介した高周波誘導加熱を行うに当たり、まず、最外層側樹脂層22について、そのヘリカル巻きの繊維巻回軌跡に倣ったコイル巻き軌跡の第1誘導加熱コイル220を用いて、内側樹脂層21より先に高周波誘導加熱による加熱を進める(図5:ステップS100)。第1誘導加熱コイル220への通電当初では、繊維強化樹脂層20を構成する樹脂含浸カーボン繊維Wは、前工程におけるFW法での繊維巻回の張力(巻回張力)を受けたままであるものの、エポキシ樹脂EPの昇温がまだ進まず樹脂粘度が高いので、さほどライナー10の側に凝集することはない。最外層側樹脂層22のエポキシ樹脂EPにあっても、粘度が大きいため、繊維強化樹脂層20の外表側への染み出しをそれほど起こすことはない。
第1誘導加熱コイル220による最外層側樹脂層22の優先的な誘導加熱が進むと、最外層側樹脂層22のエポキシ樹脂EPは昇温が進んでその粘度は大きく低下する。このため、最外層側樹脂層22の樹脂含浸カーボン繊維Wは、ライナー10の側への凝集を起こすことから、この繊維凝集により、最外層側樹脂層22の樹脂には、上記した粘度低下と相まって、最外層側樹脂層22の外表側への樹脂の染み出しを起こそうとする力が働く。こうした力は、樹脂の染み出しをもたらすものの、その染み出しの程度は、既存の高周波誘導加熱手法と変わるものではないので、高Vf化にさほど影響しない。なお、誘導加熱装置200の炉内圧力を上記の力に抗することができるよう高めれば、その圧力は、樹脂を樹脂層外表側に染み出させようとする力を打ち消すよう作用するので、粘度降下の際の樹脂の染み出しを抑制できる。
本実施例の誘導加熱装置200では、上記の第1誘導加熱コイル220による最外層側樹脂層22の優先的な誘導加熱の際には、第2誘導加熱コイル222に通電を行っていない。よって、最外層側樹脂層22より内層側の内側樹脂層21では、エポキシ樹脂EPの加熱が進まず粘度低下はそれほど起きていないので、内側樹脂層21における上記の繊維凝集やこれに伴う樹脂の染み出しは抑制される。このため、内側樹脂層21での繊維凝集やこれに伴う樹脂の染み出しによる高Vf化は抑制可能となる。
第1誘導加熱コイル220による最外層側樹脂層22の優先的な誘導加熱が更に進むと、最外層側樹脂層22はより昇温して、エポキシ樹脂EPは図6に示す硬化開始ポイントRPにて硬化を始める。樹脂硬化は、最外層側樹脂層22の各層箇所で起きるものの、第1誘導加熱コイル220に最も近い最外表層側においてエポキシ樹脂EPは最先に硬化を始める。この様子は図7に示されており、最外層側樹脂層22のエポキシ樹脂EPの硬化が起き始まると、それ以前には未硬化であったエポキシ樹脂EPが硬化エポキシ樹脂EPRとなり、この硬化エポキシ樹脂EPRが最外層側樹脂層22の一部を占めるような硬化済み樹脂層22Rを形成する。その形成箇所は、既述したように最外層側樹脂層22の最外表層側となる。
本実施例の誘導加熱装置200では、こうした硬化済み樹脂層22Rの形成有無を、図5のステップS130にて判定する。よって、ステップS130での肯定判定に続く第2誘導加熱コイル222による内側樹脂層21の高周波誘導加熱による加熱は、最外層側樹脂層22において樹脂硬化が始まって硬化済み樹脂層22Rが形成された後に起きることになる。このため、内側樹脂層21に含まれるエポキシ樹脂EPが加熱を受けて粘度低下を来しても、この内側樹脂層21のエポキシ樹脂EPは、既に形成された硬化済み樹脂層22Rに遮られて当該樹脂層および最外層側樹脂層22の外表面から染み出しにくくなる。この結果、本実施例の誘導加熱装置200によれば、繊維強化樹脂層20が誘導加熱を受けて昇温する際における樹脂(エポキシ樹脂EP)の染み出しを抑制することで、高Vf化を高い実効性で抑制できる。
この場合、硬化済み樹脂層22Rより内層側の最外層側樹脂層22の内層側部位では、ステップS130での肯定判定後にも継続される第1誘導加熱コイル220の通電により、エポキシ樹脂EPは硬化する。この際、上記の内層側部位のエポキシ樹脂EPの染み出しも硬化済み樹脂層22Rに遮られる。内側樹脂層21にあっても、エポキシ樹脂EPは、硬化済み樹脂層22Rでその染み出しが遮られた状況で硬化する。こうした点からも、高Vf化の抑制の実効性が高まる。
また、本実施例の誘導加熱装置200では、第1誘導加熱コイル220のコイル巻き軌跡を最外層側樹脂層22のヘリカル巻きの繊維軌跡に揃え、第2誘導加熱コイル222のコイル巻き軌跡を内側樹脂層21のフープ巻きの繊維軌跡に揃えることで、両コイルをその軌跡が揃った樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起するものとした。その上で、第1誘導加熱コイル220への通電と、最外層側樹脂層22の樹脂硬化後の第2誘導加熱コイル222への通電とを起こせばよいので、最外層側樹脂層22と内側樹脂層21の各樹脂層ごとの誘導加熱コイルへの通電制御という簡便な手法で、樹脂の染み出し抑制と高Vf化の抑制とを達成できる。
また、本実施例の高圧水素タンク製造方法では、最外層側樹脂層22と内側樹脂層21とを共に導電性フィラーFを含有する樹脂層とした上で、導電性フィラーFの含有量を最外層側樹脂層22で多くした。こうして含有させた導電性フィラーFは、最先に加熱と樹脂硬化が起きる最外層側樹脂層22において、エポキシ樹脂EPの粘度低下とその後の硬化の間の挙動により、最外層側樹脂層22の樹脂含浸カーボン繊維Wの抵抗値を変化させる。しかも、最外層側樹脂層22では、導電性フィラーFの含有量が多いことから、こうした抵抗変化を顕著とする。このため、本実施例の高圧水素タンク製造方法では、導電性フィラーFの挙動に基づく最外層側樹脂層22の樹脂含浸カーボン繊維Wの抵抗値変化と対応した第1誘導加熱コイル220のコイル出力を検出し、その検出結果から、最外層側樹脂層22のエポキシ樹脂EPの硬化が始まったことを判定した。そして、コイル出力の検出結果から最外層側樹脂層22のエポキシ樹脂EPの硬化が始まれば、第2誘導加熱コイル222による内側樹脂層21の高周波誘導加熱による加熱を起こすようにした。
最外層側樹脂層22の優先的に高周波誘導加熱を起こす第1誘導加熱コイル220のコイル出力は、高い含有量で含有させた導電性フィラーFにより顕著に現れるので、最外層側樹脂層22のエポキシ樹脂EPの硬化検知の感度は高まる。この結果、本実施例の高圧水素タンク製造方法によれば、最外層側樹脂層22のエポキシ樹脂硬化の開始後に行う内側樹脂層21の第2誘導加熱コイル222による誘導加熱タイミングを確実に確保できると共に、コイル出力の検出を経て、内側樹脂層21の高周波誘導加熱を簡便に起こすことができる。
また、本実施例の高圧水素タンク製造方法によれば、最外層側樹脂層22の誘導加熱硬化、その硬化開始後の内側樹脂層21の加熱硬化を既述したように経ることで、高Vf化の抑制を高周波誘導加熱の間においても図った高圧水素タンク30を容易に製造できる。
以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、上記の実施例では、高圧ガスタンクは、高圧水素タンク30であるものとしたが、本発明は、これに限られない。例えば、天然ガス等、他の高圧ガスを貯蔵する高圧ガスタンクとしてもよい。
上記の実施例では、内側樹脂層21をヘリカル巻き単独の樹脂層とし、最外層側樹脂層22をフープ巻き単独の樹脂層としたが、内側樹脂層21をヘリカル巻きによるヘリカル層とフープ巻きによるフープ層とが交互に積層し、最外層側樹脂層22においてもヘリカル層とフープ層とが交互に積層した多層の樹脂層とすることもできる。内側樹脂層21と最外層側樹脂層22とをこのような多層の樹脂層とした場合には、最外層側樹脂層22の最外表層側に位置する樹脂層をフープ層とし、その内側に掛けて、ヘリカル層、フープ層、ヘリカル層の順に交互に積層させる。こうすれば、ステップS100における第1誘導加熱コイル220への通電により、当該コイルに最も近くて繊維の巻回軌跡もコイルの巻き軌跡に倣った最外表層側のフープ層が、最先に高周波誘導加熱を優先的に受けて加熱硬化する。よって、最外層側樹脂層22の最外表層側のフープ層が硬化を始めてから、その内側のヘリカル層、フープ層、ヘリカル層が加熱硬化するので、最外表層側のフープ層で樹脂の染み出しを抑制できる。これにより、樹脂の染み出しの抑制が可能となる層範囲が厚み方向に増すので、その分、樹脂の染み出し抑制の実効性が高まり、高Vf化の抑制にも有益である。
また、内側樹脂層21を多層のフープ層とし、最外層側樹脂層22を多層のヘリカル層とすることもでき、この場合には、ステップS100では、第2誘導加熱コイル222に通電する。そして、最外層側樹脂層22の樹脂硬化開始後のステップS140では、第1誘導加熱コイル220に通電することになる。
また、本実施例では、導電性フィラーFを内側樹脂層21と最外層側樹脂層22の双方に含有量に差を持たせながら含有したが、最外層側樹脂層22においてのみ、樹脂含浸カーボン繊維Wに導電性フィラーFを含有させることもできる。
10…ライナー
10a…シリンダー部
10b…ドーム部
12…中間生成品タンク
14…口金
20…繊維強化樹脂層
21…内側樹脂層
22…最外層側樹脂層
22R…硬化済み樹脂層
30…高圧水素タンク
100…FW装置
110…クリールスタンド
112…ボビン
114…固定滑車
120…樹脂含浸部
122…樹脂容器
124…フィラー配合機
126…ローラー群
130…巻取部
132…アイクチガイド
134…回転駆動装置
150…制御部
200…誘導加熱装置
212…タンク軸支シャフト
220…第1誘導加熱コイル
222…第2誘導加熱コイル
230…制御機器
240…高周波電源
242…コイル出力センサー
250…コイル通電切換機
AX…タンク中心軸
CF…カーボン繊維
W…樹脂含浸カーボン繊維
F…導電性フィラー
EP…エポキシ樹脂
RP…硬化開始ポイント
REP…硬化終了ポイント
EPR…硬化エポキシ樹脂

Claims (6)

  1. 中空容器の外周に熱硬化性樹脂を含浸した導電性の繊維を巻回して形成された繊維強化樹脂層を有する被加熱物を、該被加熱物を取り囲む誘導加熱コイルにより高周波誘導加熱する誘導加熱方法であって、
    前記誘導加熱コイルに高周波電流を通電して高周波誘導加熱を誘起した上で、
    前記繊維強化樹脂層の外表層側を占める第1繊維強化樹脂層において、該第1繊維強化樹脂層より前記中空容器の側を占める第2繊維強化樹脂層より先に前記高周波誘導加熱による加熱を進める第1工程と、
    前記第1繊維強化樹脂層に含まれる前記熱硬化性樹脂の硬化が始まった後に、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こす第2工程とを備える
    誘導加熱方法。
  2. 前記第1工程では、前記第1繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第1の誘導加熱コイルに高周波電流を通電制御し、前記第2工程では、前記第2繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第2の誘導加熱コイルに高周波電流を通電制御する請求項1に記載の誘導加熱方法。
  3. 請求項1または請求項2に記載の誘導加熱方法であって、
    前記第1繊維強化樹脂層は導電性フィラーを含有し、
    前記第2工程では、
    前記第1繊維強化樹脂層に含有した前記導電性フィラーの挙動で起きる前記第1繊維強化樹脂層の前記繊維の通電状況の推移に基づいて、前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化が始まったと判定して、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こす誘導加熱方法。
  4. 請求項3に記載の誘導加熱方法であって、
    前記第2工程では、前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化の進行状況と前記第1繊維強化樹脂層の前記繊維の通電状況の推移とを対応付けるパラメータを予め記憶した上で、該パラメータを検出し、該検出したパラメータと前記記憶したパラメータとの対比結果により前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化が始まったと判定して、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こす誘導加熱方法。
  5. 中空容器の外周に熱硬化性樹脂を含浸した導電性の繊維を巻回して形成された繊維強化樹脂層を有する被加熱物を高周波誘導加熱する誘導加熱装置であって、
    前記繊維強化樹脂層の外表層側を占める第1繊維強化樹脂層は、導電性フィラーを含有し、
    前記第1繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第1の誘導加熱コイルと、
    前記第1繊維強化樹脂層より前記中空容器の側を占める第2繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第2の誘導加熱コイルと、
    前記第1、第2の誘導加熱コイルへの高周波電流の通電を制御する制御部とを備え、
    前記制御部は、
    前記第1の誘導加熱コイルに高周波電流を通電して、前記第1繊維強化樹脂層において前記第2繊維強化樹脂層より先に前記高周波誘導加熱による加熱を進め、
    前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化の進行状況と前記第1繊維強化樹脂層の前記繊維の通電状況の推移とを対応付けるパラメータを予め記憶した上で、該パラメータを検出し、
    該検出したパラメータにて前記第1繊維強化樹脂層の前記熱硬化性樹脂の硬化が始まったとすると、該硬化が始まった後に、前記第2の誘導加熱コイルに高周波電流を通電して、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こす
    誘導加熱装置。
  6. 高圧ガスタンクの製造方法であって、
    タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した導電性の繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を準備する工程(a)と、
    該タンク中間生成品をタンク軸回りに回転させつつ、高周波誘導加熱を誘起する誘導加熱コイルを用いて前記タンク中間生成品の前記繊維強化樹脂層を誘導加熱して熱硬化させる工程(b)とを備え、
    前記工程(a)では、
    前記繊維強化樹脂層を、樹脂層の外表層側を占める第1繊維強化樹脂層と該第1繊維強化樹脂層より前記中空容器の側を占める第2繊維強化樹脂層とを重ねて形成するに当たって、前記第1繊維強化樹脂層に導電性フィラーを含有させ、
    前記工程(b)では、
    前記第1繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第1の誘導加熱コイルに高周波電流を通電して、前記第1繊維強化樹脂層において前記第2繊維強化樹脂層より先に前記高周波誘導加熱による加熱を進め、
    前記第1繊維強化樹脂層に含まれる前記熱硬化性樹脂の硬化の開始を、前記第1繊維強化樹脂層の前記繊維の通電状況の推移に基づいて判定し、前記硬化の開始後に、前記第2繊維強化樹脂層の高周波誘導加熱をコイル巻き軌跡に基づいて優先的に誘起する第2の誘導加熱コイルに高周波電流を通電して、前記第2繊維強化樹脂層において前記高周波誘導加熱による加熱を起こす
    高圧ガスタンクの製造方法。
JP2012027161A 2012-02-10 2012-02-10 誘導加熱方法とその装置および高圧ガスタンクの製造方法 Active JP5796508B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027161A JP5796508B2 (ja) 2012-02-10 2012-02-10 誘導加熱方法とその装置および高圧ガスタンクの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027161A JP5796508B2 (ja) 2012-02-10 2012-02-10 誘導加熱方法とその装置および高圧ガスタンクの製造方法

Publications (2)

Publication Number Publication Date
JP2013163305A true JP2013163305A (ja) 2013-08-22
JP5796508B2 JP5796508B2 (ja) 2015-10-21

Family

ID=49174997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027161A Active JP5796508B2 (ja) 2012-02-10 2012-02-10 誘導加熱方法とその装置および高圧ガスタンクの製造方法

Country Status (1)

Country Link
JP (1) JP5796508B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980763A (zh) * 2014-05-12 2016-09-28 宝马股份公司 具有湿法缠绕的cfk的压力容器
DE102017208542A1 (de) * 2017-05-19 2018-11-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Druckbehälters sowie Druckbehälter
CN111452392A (zh) * 2019-01-21 2020-07-28 丰田自动车株式会社 高压罐的制造方法
CN111664348A (zh) * 2019-03-07 2020-09-15 丰田自动车株式会社 罐的制造方法
US11027480B2 (en) * 2019-01-21 2021-06-08 Toyota Jidosha Kabushiki Kaisha Method for manufacturing high-pressure tank

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116129A (ja) * 1985-11-15 1987-05-27 Honda Motor Co Ltd 繊維強化樹脂管の製造方法
JPH06335973A (ja) * 1993-05-28 1994-12-06 Sekisui Chem Co Ltd 繊維強化樹脂積層体の製造方法
JP2011185360A (ja) * 2010-03-09 2011-09-22 Toyota Motor Corp 高圧ガスタンクの製造方法
JP2011255581A (ja) * 2010-06-09 2011-12-22 Toyota Motor Corp タンクの製造方法
JP2012192621A (ja) * 2011-03-16 2012-10-11 Toyota Motor Corp 成形体の加熱方法及び加熱装置
JP2013064429A (ja) * 2011-09-16 2013-04-11 Toyota Motor Corp 高圧ガスタンクの製造方法と製造装置
JP2013064430A (ja) * 2011-09-16 2013-04-11 Toyota Motor Corp 高圧ガスタンクの製造装置と製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116129A (ja) * 1985-11-15 1987-05-27 Honda Motor Co Ltd 繊維強化樹脂管の製造方法
JPH06335973A (ja) * 1993-05-28 1994-12-06 Sekisui Chem Co Ltd 繊維強化樹脂積層体の製造方法
JP2011185360A (ja) * 2010-03-09 2011-09-22 Toyota Motor Corp 高圧ガスタンクの製造方法
JP2011255581A (ja) * 2010-06-09 2011-12-22 Toyota Motor Corp タンクの製造方法
JP2012192621A (ja) * 2011-03-16 2012-10-11 Toyota Motor Corp 成形体の加熱方法及び加熱装置
JP2013064429A (ja) * 2011-09-16 2013-04-11 Toyota Motor Corp 高圧ガスタンクの製造方法と製造装置
JP2013064430A (ja) * 2011-09-16 2013-04-11 Toyota Motor Corp 高圧ガスタンクの製造装置と製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980763A (zh) * 2014-05-12 2016-09-28 宝马股份公司 具有湿法缠绕的cfk的压力容器
US10260678B2 (en) 2014-05-12 2019-04-16 Bayerische Motoren Werke Aktiengesellschaft Pressure vessel having wet-wrapped carbon-fiber-reinforced plastic
DE102017208542A1 (de) * 2017-05-19 2018-11-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Druckbehälters sowie Druckbehälter
CN111452392A (zh) * 2019-01-21 2020-07-28 丰田自动车株式会社 高压罐的制造方法
US11027480B2 (en) * 2019-01-21 2021-06-08 Toyota Jidosha Kabushiki Kaisha Method for manufacturing high-pressure tank
US11312062B2 (en) 2019-01-21 2022-04-26 Toyota Jidosha Kabushiki Kaisha High-pressure tank manufacturing method
CN111452392B (zh) * 2019-01-21 2022-06-14 丰田自动车株式会社 高压罐的制造方法
CN111664348A (zh) * 2019-03-07 2020-09-15 丰田自动车株式会社 罐的制造方法
US11148351B2 (en) 2019-03-07 2021-10-19 Toyota Jidosha Kabushiki Kaisha Manufacturing method for tank

Also Published As

Publication number Publication date
JP5796508B2 (ja) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5796508B2 (ja) 誘導加熱方法とその装置および高圧ガスタンクの製造方法
KR101489331B1 (ko) 고압 가스 탱크의 제조 방법
JP6099039B2 (ja) 複合容器の製造方法
JP2011179638A (ja) 高圧タンクの製造装置並びに製造方法
JP5630614B2 (ja) ガスタンクの製造方法
JP2013040621A (ja) 高圧ガスタンクの製造方法と製造装置
JP6337398B2 (ja) 複合容器の製造方法、及び複合容器
JP2011136491A (ja) 複合容器の製造方法
JP2013064430A (ja) 高圧ガスタンクの製造装置と製造方法
CN111664348B (zh) 罐的制造方法
CN110603721B (zh) 用于滴流浸渍电机的定子或电枢的方法
JP2013103395A (ja) 高圧ガスタンクの製造方法と製造装置
JP5825000B2 (ja) 高圧ガスタンクの製造方法と製造装置
JP5937546B2 (ja) フィラメントワインディング装置
JP2020020420A (ja) タンクの製造方法
JP2009138858A (ja) タンクの製造方法、タンクの製造設備及びタンク
JP2009028961A (ja) Frp成形体の製造方法及び製造システム
CN111630937B (zh) 加热辊以及纺丝拉伸装置
JP5716905B2 (ja) ガスタンクの製造方法及び熱硬化装置
JP5687979B2 (ja) フィラメントワインディング方法及びフィラメントワインディング装置
JP2015059123A (ja) エポキシ樹脂と高圧ガスタンクの製造方法
JP7159882B2 (ja) 高圧タンクの製造方法
JP2019120268A (ja) タンクの製造方法
JP2008307791A (ja) Frp容器の製造方法
JP2012192621A (ja) 成形体の加熱方法及び加熱装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R151 Written notification of patent or utility model registration

Ref document number: 5796508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151