JP2013154354A - 電子回路モジュール部品 - Google Patents

電子回路モジュール部品 Download PDF

Info

Publication number
JP2013154354A
JP2013154354A JP2012014550A JP2012014550A JP2013154354A JP 2013154354 A JP2013154354 A JP 2013154354A JP 2012014550 A JP2012014550 A JP 2012014550A JP 2012014550 A JP2012014550 A JP 2012014550A JP 2013154354 A JP2013154354 A JP 2013154354A
Authority
JP
Japan
Prior art keywords
phase
component
circuit module
electronic
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012014550A
Other languages
English (en)
Other versions
JP5978630B2 (ja
Inventor
Tsutomu Yasui
勉 安井
Masayuki Muroi
雅之 室井
Tomoko Kitamura
智子 北村
Kenichi Yoshida
健一 吉田
Toshiyuki Abe
寿之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012014550A priority Critical patent/JP5978630B2/ja
Publication of JP2013154354A publication Critical patent/JP2013154354A/ja
Application granted granted Critical
Publication of JP5978630B2 publication Critical patent/JP5978630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Powder Metallurgy (AREA)
  • Wire Bonding (AREA)

Abstract

【課題】電子回路モジュール部品が有する電子部品の端子電極と、回路基板の端子電極とを接合する接合金属の耐熱性および繰返し曲げ強度を向上させること。
【解決手段】電子部品2と、電子部品2が搭載される回路基板3と、電子部品2の端子電極2Tと回路基板3の端子電極3Tとの間には、接合金属5が介在して両者を接合する。接合金属5は、Ni−Sn合金を主成分とする主相に、BiまたはZnのいずれか一方を主成分とする第2相とが分散している。

【選択図】図4

Description

本発明は、Pbフリーはんだを用いて製造される電子回路モジュール部品に関する。
電子回路モジュール部品は、複数の電子部品をはんだによって回路基板に実装して、ひとまとまりの機能を持った電子部品としたものである。このような電子回路モジュール部品を電子機器の基板に実装する場合、電子回路モジュール部品の端子電極と電子機器の基板の端子電極とをはんだで接合する。従来は、電子部品及び電子回路モジュール部品の接合にSnPb系材料のはんだが使用されてきたが、環境問題を背景としてPbフリー化が進み、自動車関連や特殊な場合を除いてPbフリーはんだが使用されている。
はんだを用いて電子回路モジュール部品を電子機器の基板に実装する際に、はんだを溶融させるためにリフロー工程が必要になる。このリフロー工程の際に、電子回路モジュール部品内の電子部品と回路基板とを接合しているはんだが溶融して飛散したり、はんだが移動したりすることがある。これを回避するため、電子回路モジュール部品を電子機器の基板に実装する際のリフロー温度(おおよそ260℃)で溶融しない、もしくは溶融しても飛散や移動を起こさない、すなわち耐熱性を有するはんだを用いて電子回路モジュール部品内の電子部品と回路基板とを接合する必要がある。例えば、特許文献1には、Agを10質量%〜25質量%、Cuを5質量%〜10質量%、残部はSn及び不可避的不純物からなる粉末はんだ材料が記載されている。
特開2007−268569号公報
特許文献1の粉末はんだ材料は、リフロー温度で完全に溶融させず、はんだ内に固液共存領域を作ることで高温状態でのはんだの流動を抑えようとするものである。当該はんだを用いることにより、リフロー温度で完全に液状となるはんだと比較して、端子電極同士の接合強度及び接合の耐熱性も向上する。しかし、当該はんだを、電子回路モジュール部品内の電子部品と回路基板との接合部に使用する場合、はんだ中の液相すなわちはんだが溶融する部分の比率が高いが故、依然としてはんだの飛散や移動の可能性がある。また、10質量%〜25質量%のAgを必要とすることから、はんだ材料のコストアップにつながるため、積極的に利用するには至らない。
また、電子部品や電子回路モジュール部品のはんだ接合部には様々な特性を有することが求められる。例えば、電子回路モジュール部品内の回路基板は、特性検査工程の検査装置や検査冶具に接続する際に、接続用コネクタ類の抜き差しが複数回繰り返され、取扱いの度に基板に曲げる力が加わる。電子回路モジュール部品に使用される回路基板は、軽薄化の狙いから厚みの薄い基板が多く使用されており、基板の曲げ応力に対して特に変形しやすく、はんだ接合部に大きな負荷がかかる。さらに、電子回路モジュール部品が実装された携帯端末用の基板は、筐体とのクリアランスの少ない限られたスペースに収納されるため、携帯端末用の基板に曲げ応力が発生しやすく、携帯端末用の基板に実装されている電子回路モジュール部品にも曲げ応力が伝わりやすい。そのため、電子回路モジュール部品のはんだ接合部には繰返し曲げ強度を有することが求められる。
そこで本発明では、電子回路モジュール部品が有する電子部品の端子電極と、回路基板の端子電極とを接合する接合金属の耐熱性および繰り返し曲げ強度を向上させることを目的とする。
上述した課題を解決し、目的を達成するために、本発明者らはPbフリーはんだ接合組織について鋭意研究を重ねた結果、Ni−Sn合金を主成分とする主相と、BiまたはZnを主成分とする第2相とが分散する組織により、はんだ接合組織の耐熱性と繰返し曲げ強度が向上することを見出した。
本発明の電子回路モジュール部品は、電子部品と、当該電子部品が搭載される回路基板と、前記電子部品の端子電極と前記回路基板の端子電極との間に、Ni−Sn合金を主成分とする主相と、BiまたはZnのいずれか一方を主成分とする第2相と、を有する接合金属とを含むことを特徴とする電子回路モジュール部品である。
このように、電子回路モジュール部品内の接合金属が融点の高いNi−Sn合金を主相とする組織であるため、接合金属の耐熱性が向上する。その結果、電子回路モジュール部品を実装する際に行われる再度のリフロー工程の温度(おおよそ260℃)によって接合部が加熱されても、電子回路モジュール部品内の接合金属の溶融が抑制される。また、BiまたはZnのいずれか一方を主成分とする第2相の存在が接合部の補強の役目をすることにより、繰返し曲げ強度が向上する。
また、本発明の電子回路モジュール部品が有する、前記BiまたはZnのいずれか一方を主成分とする第2相の割合は、前記接合金属部の断面積の1%以上30%以下であることが好ましく、前記接合金属内において網目状に存在していることが好ましい。
主相間に、前記BiまたはZnのいずれか一方を主成分とする第2相が分散することにより、接合金属全体の硬さを緩和し、繰返し曲げ強度が向上する。さらにBiまたはZnのいずれか一方を主成分とする第2相が前記比率で存在すれば、接合金属内に網目状のより確実な分散構造が形成されるため、より一層繰返し曲げ強度が向上する。その結果、電子部品が接合された回路基板に曲げ応力が加わる場合も、電子回路モジュール部品内の接合金属の破壊を防ぐことができる。
さらに、本発明の電子回路モジュール部品は、前記接合金属に、Ni−Fe合金を主成分とする第3相を有し、前記第3相は前記Ni−Sn合金を主成分とする主相を介して前期第2相に囲繞された構造であることが好ましい。
Ni−Fe合金を主成分とする第3相は、Ni−Sn合金を主成分とする主相と同様に融点の高い組織であるため、接合金属内に共存することにより接合金属の耐熱性が更に向上する。また前記第3相より前記主相を介して、その外周部分にBiまたはZnのいずれか一方を主成分とする第2相が囲繞する構造によって、繰返し曲げ強度が更に向上する。
本発明は、電子回路モジュール部品において、その電子回路モジュール部品が有する電子部品の端子電極と回路基板の端子電極とを接合する接合金属の、耐熱性及び繰返し曲げ強度を向上させることができる。
本発明の電子回路モジュール部品の好適な実施形態を模式的に示した断面図である。 図1の電子部品と回路基板との接続部を示す拡大図である。 図1の電子回路モジュール部品を電子機器等の基板に取り付けた状態を示す側面図である。 本実施形態に係るPbフリーはんだが溶融した後、凝固した状態の組織を示す模式図である。 図4の一部分を拡大した模式図である。 本実施形態に係るPbフリーはんだの概念図である。 本実施形態の変形例に係るPbフリーはんだの概念図である。 本実施形態の変形例に係るPbフリーはんだが有する第2金属粒子の拡大図である。 本実施形態に係る電子回路モジュール部品の電子部品と回路基板の接合部を形成する方法の手順を示すフローチャートである。 リフロー時における温度の時間変化の一例を示す図である。 本実施形態に係る電子回路モジュール部品の製造方法における熱処理を説明するための図である。
以下、図面を参照して本発明の好適な実施形態を説明する。なお、本発明は下記の実施形態に限定されない。また、下記の実施形態で開示された構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態の構成要素は、適宜組み合わせることが可能である。
図1は、本実施形態に係る電子回路モジュール部品の断面図である。図2は、電子部品と回路基板との接続部を示す拡大図である。図1における電子回路モジュール部品1は、電子部品2と、電子部品2が実装される回路基板3と、電子部品2を覆う絶縁樹脂4と、を含む。図2に示すように、電子部品2の端子電極2Tと回路基板3の端子電極3Tとは、接合金属5によって接合される。接合金属5は、Pbフリーはんだが溶融した後、凝固した金属である。
図1における電子回路モジュール部品1は、複数の電子部品2を回路基板3に実装して、ひとまとまりの機能を持つ電子部品としたものである。電子部品2は、回路基板3の表面に実装されていてもよいし、回路基板3の内部に実装されていてもよい。本実施形態において、電子回路モジュール部品1が有する電子部品2としては、例えば、コイルやコンデンサ、あるいは抵抗等の受動素子があるが、ダイオードやトランジスタ等の能動素子やIC(Integral Circuit)等も電子部品2として回路基板3の表面や回路基板3の内部に実装されてもよい。また、電子部品2は、これらに限定されるものではない。
また、図1における電子回路モジュール部品1は、回路基板3の表面に実装された電子部品2が絶縁樹脂4で覆われる。電子回路モジュール部品1は、電子部品2が実装される側の回路基板3の表面(部品実装面という)も同時に絶縁樹脂4で覆われる。このように、電子回路モジュール部品1は、絶縁樹脂4で複数の電子部品2及び部品実装面を覆うことで、回路基板3及び複数の電子部品2を一体化するとともに、強度が確保される。
電子回路モジュール部品1は、例えば、次のような手順で製造される。
(1)回路基板3の端子電極3Tに本実施形態に係るPbフリーはんだを含むはんだペーストを印刷する。
(2)実装装置(マウンタ)を用いて電子部品2を回路基板3に載置する。
(3)電子部品2が搭載された回路基板3をリフロー炉に入れて前記はんだペーストを加熱することにより、前記はんだペーストに含まれるPbフリーはんだが溶融し、凝固する。そして、凝固後のPbフリーはんだ、すなわち接合金属5が、電子部品2の端子電極2Tと回路基板3の端子電極3Tとを接合する。
(4)電子部品2及び回路基板3の表面に付着したフラックスを洗浄する。
(5)絶縁樹脂4で電子部品2及び回路基板3を覆う。
電子回路モジュール部品1の回路基板3は、部品実装面の反対側に、端子電極(モジュール端子電極)6を有する。モジュール端子電極6は、電子回路モジュール部品1が備える電子部品2の端子電極2Tと電気的に接続されるとともに、図3における電子回路モジュール部品1が取り付けられる基板(例えば、電子機器の基板であり、以下、装置基板という)7の端子電極(装置基板端子電極)8とはんだ9によって接合される。このような構造により、電子回路モジュール部品1は、電子部品2と装置基板7との間で電気信号や電力をやり取りする。
図3における装置基板7は、電子回路モジュール部品1が実装される基板であり、例えば、電子機器(車載電子機器、携帯電子機器等)に搭載される。装置基板7に電子回路モジュール部品1を実装する場合、例えば、装置基板端子電極8にはんだ9を含むはんだペーストを印刷し、実装装置を用いて電子回路モジュール部品1を装置基板7に搭載する。そして、電子回路モジュール部品1が搭載された装置基板7をリフロー炉に入れて前記はんだペーストを加熱することにより、前記はんだペーストが溶融し、その後凝固することによりモジュール端子電極6と装置基板端子電極8とがはんだ9により接合される。その後、電子回路モジュール部品1や装置基板7の表面に付着したフラックスを洗浄する。
現在多く使用されているPbフリーはんだの溶融温度は約220℃であるが、リフロー工程における最高温度は240℃〜260℃程度である。電子回路モジュール部品1が有する電子部品2を回路基板3に実装する際に用いられるはんだは、電子回路モジュール部品1が装置基板7へ実装される際にもリフローされる。このため、前記リフロー工程における温度で溶融しないはんだ(高温はんだ)が使用される。
Pbを使用するはんだには、溶融温度が300℃程度の高温はんだが存在する。しかし、現在のところ、Pbフリーはんだでは溶融温度が260℃以上かつ適切な特性を有するものは存在しない。このため、Pbフリーはんだを用いる場合、電子部品2を回路基板3へ実装する際に用いるはんだと、電子回路モジュール部品1を装置基板7へ実装する際に用いるはんだとには、両者の溶融温度差が少ないものを使用せざるを得ない。
電子回路モジュール部品1が有する電子部品2の接合に用いるはんだが、電子回路モジュール部品1が装置基板7へ実装される際のリフロー工程により溶融すると、当該はんだの移動や、はんだフラッシュ(はんだの飛散)といった不具合が発生する。その結果、電極間の短絡や電子部品2の端子電極2Tと回路基板3の端子電極3Tとの接触不良を招くおそれがある。このため、電子回路モジュール部品1の電子部品2を接合するはんだには、電子回路モジュール部品1を実装する際のリフロー温度(おおよそ260℃)において溶融しないもの、又は溶融によるはんだの移動やはんだフラッシュを招かない程度であるものを使用することが望まれている。溶融温度の高いはんだの代替として導電性接着材(Agペースト等)もあるが、機械的な強度が低く、電気抵抗も高く、コストも高い等の課題があり、Pbを用いた高温はんだの代替とはなっていない。本実施形態に係る電子回路モジュール部品1が有する接合金属5は、Snを主成分としてBiまたはZnを含む第1金属粒子と、Ni−Fe合金を主成分とする第2金属粒子を含むPbフリーはんだから得られるものであり、複数回目のリフロー工程における溶融が抑制されたものである。
図4は本実施形態に係るPbフリーはんだが溶融し、凝固した接合金属5の組織を示す模式図である。図5は前記接合金属5の一部分を拡大した模式図である。接合金属5は、Snを主成分としてBiまたはZnを含む第1金属粒子及びNi−Fe合金を主成分とする第2金属粒子を含むPbフリーはんだが溶融した後、凝固することにより得られる。主成分とは、物質を構成している成分のうち、最も多く含まれている成分である(以下同様)。このPbフリーはんだについては後述する。
接合金属5の断面をEPMA(Electron Probe Micro Analyzer)により分析すると、図4に示すような組織が観察される。すなわち、接合金属5は、Ni−Sn合金(例えば、NiSn)を主成分とする主相10に、Ni−Fe合金を主成分とする第3相11と、Snを主成分とするSn相12と、BiまたはZnのいずれか一方を主成分とする第2相13が分散した組織を有している。主相10と第3相11及び第2相の溶融温度は、リフロー温度(240℃〜260℃)より高い。また、主相10は一般的なはんだと比較して硬い組織であるが、第2相13は主相10よりも柔らかい組織である。接合金属5は、このような組織を有することにより、高い耐熱性と繰返し曲げ強度を有する。このため、接合金属5によって電子部品2が回路基板3に実装された電子回路モジュール部品1は、リフロー工程によって接合金属5が加熱されても、はんだの移動やはんだフラッシュが抑制される。また接合金属5によって電子部品2が実装された回路基板3は、製造工程や製品の使用時における基板曲げ応力に対して、主相10の硬さを第2相13が応力を受け持つ構造となり、繰返し曲げ強度が向上する。
Ni−Sn相の主相10は、NiSnを主成分とするNi−Sn系合金の相からなる。Ni−Fe相を主成分とする第3相11中のNiと、Sn相12中のSnからなる金属間化合物相であり、略球状のNi−Fe相を主成分とする第3相11の外側に成長する、第3相11と略同心の略球状組織である。接合金属5にこのような主相10があると耐熱性が向上し、再びリフロー温度(おおよそ260℃)によって接合金属が加熱されても、電子回路モジュール部品1内の接合金属5の溶融が抑制される。
また接合金属5は、略球状の第3相11の周りに存在する略球状の主相10と、その縁あるいは隣り合う略球状の主相10の間に第2相13が囲繞するように分布する網目構造になっている。このような3次元構造になっているため、接合金属5にかかる応力を第2相13が受け持ち、繰返し曲げ強度が向上する。
接合金属5の断面中に、Ni−Fe相を主成分とする第3相11は見えない、あるいは拡散により消失している場合もある。また主相10は複数の第3相11を中心にそれぞれ同心状に広がるので、互いに押されて略球状になっていない部分もある。
主相10は、接合金属5の全体積に対して、50体積%以上90体積%以下が好ましく、70体積%以上90体積%以下がより好ましい。このような範囲であれば、接合金属5の耐熱性は十分に向上する。以下、各相の体積の求め方は、接合金属5の任意の断面を深さ方向に5μm間隔で研磨し、20断面に対する各相の面積を積分し求める。主相10が50体積%より少ないと、溶融温度の低いSn相12の比率が多くなり、はんだの飛散や移動が発生しやすくなる。主相10が50体積%以上であれば接合金属5の耐熱性は向上し、70体積%以上であればはんだの飛散や移動が十分に抑えられる。また、主相10が90体積%より多いと、固い組織の比率が多くなり、繰返し曲げ強度が低下する可能性がある。主相10の代表寸法、すなわち、主相10の直径は、10μm以上100μm以下が好ましい。この範囲であれば、接合金属の接合強度及び耐熱性が向上する。主相10の代表寸法は図5における接合金属5の断面より、主相が第2相13に囲繞される範囲で、第2相13を含まない内接円の直径(R10)を用いる。主相10にNi−Fe合金を主成分とする融点の高い第3相11が現れることによって、接合金属5の接合強度と耐熱性が向上する。第3相11の代表寸法は3μm以上25μm以下が好ましいが、部分的には主相10に完全に拡散してもよい。前記代表寸法がこの範囲であれば、接合金属5の接合強度と耐熱性を向上させることができる。第3相11の代表寸法は図5における接合金属5の断面より、第3相11の外接円の直径(R11)を用いる。
接合金属5の全体積に対して、Sn相12は40体積%以下であることが好ましい。Sn相12の割合がこのような範囲であれば、接合金属の耐熱性は十分に向上する。Sn相12が40体積%よりも多いと、溶融温度の低いSn相12の比率が多くなり、はんだの飛散や移動が発生しやすくなる。また前記Sn相12の代表寸法は50μm以下であることが好ましい。Sn相12の代表寸法がこのような範囲であれば、接合金属5の耐熱性を十分に確保できる。Sn相12の代表寸法は接合金属5の断面より、Sn相12の外接円の直径(R12)を用いる。
BiまたはZnのいずれか一方を主成分とする第2相13は、BiまたはZnを90質量%以上含む相であり、融点が260℃以上のため接合金属5の耐熱性が向上する。また、NiSnを主成分とする主相10よりも柔らかい組織のため、接合金属5の硬さが緩和される。
前記BiまたはZnのいずれか一方を主成分とする第2相13は、接合金属5の断面積に対して、1%以上30%以下であることが好ましく、5%以上30%以下がより好ましい。主相10よりも柔軟な相13がこのような割合であれば、接合金属5の耐熱性及び繰返し曲げ強度は十分に向上する。第2相13が1%よりも少ない場合、柔らかい組織の不足により繰り返し曲げ強度の向上傾向が少ない。第2相13が5%以上であれば、接合金属5の繰返し曲げ強度は十分に向上し、反対に30%よりも多い場合は、Bi相及びZn相の結晶粒子が大きくなり、主相10の間の網目状に存在する構造が得にくくなり、繰返し曲げ強度が低下する可能性がある。
前記第2相13の代表寸法、すなわち、結晶粒子の直径は1μm以上5μm以下であることが好ましい。このような代表寸法の第2相13が、隣り合う主相10の間に存在し、主相10を囲繞するように3次元構造を呈することで、接合金属の繰返し曲げ強度が向上する。第2相13の代表寸法は、図5の接合金属5の断面の結晶粒子の外接円の直径(R13)を用いる。
主相10、第3相11、Sn相12、第2相13の代表寸法は、接合金属5の断面の画像から求める。すなわち、接合金属5の断面の、例えば任意の3箇所を走査型電子顕微鏡(SEM)で写真撮影して得られた500倍から1000倍の画像から求めた。
前記第2相13の割合は、接合金属5の任意の断面について500倍から1000倍の視野をEPMA(Electron Probe Micro Analyzer)により分析し、BiまたはZnを主成分として90質量%以上含む相が検出された部分の比率から求めた。
以降、図4に示す実施形態に係る組織を形成するにあたり、好ましいPbフリーはんだの例、および該Pbフリーはんだを用いた製造方法について説明する。なお図4の組織を得るためのPbフリーはんだ及び製造方法は、本実施形態の記載内容に限定されない。図6は、本実施形態にかかるPbフリーはんだの概念図である。本実施形態に係るPbフリーはんだ15は、使用前(最初に溶融する前)において、Snを主成分としてBi又はZnを含む第1金属粒子15Aと、Ni−Fe合金を主成分とする第2金属粒子15Bと、を含む。本実施形態において、Pbフリーはんだ15は、第1金属粒子15Aと第2金属粒子15Bとの他にフラックスPEを含み、第1金属粒子15Aと第2金属粒子15BとがフラックスPEに混合され、分散された状態のはんだペーストである。Pbフリーはんだ15は、少なくとも第1金属粒子15Aと第2金属粒子15Bとを含んでいればよく、フラックスPEは必ずしも必要ではない。
本発明の実施形態において、第1金属粒子15Aは、Snを主成分としてBi又はZnの少なくともいずれか一つを含み、Snが80質量%以上のPbフリーはんだを用いる。例えば、第1金属粒子15Aとしては、Sn−5質量%Bi(融点210℃〜225℃)又はSn−9質量%Zn(融点199℃)を用いることができる。また、Snが80質量%以上の範囲において、Pbフリーはんだに含まれるその他の元素として、Ag、Cu、Sb、P、Ge、Inおよび不可避成分が含まれていてもよい。通常Bi及びZnはSnとの合金状態で用いるが、前記組成範囲で別途添加してもよい。
本発明の実施の形態にかかる第2金属粒子には、略球状のNi−Fe合金粒子を用いる。前記Ni−Fe合金粒子は、たとえばNi−10質量%Fe合金と不可避不純物からなる。従って、Ni−Fe合金を必須とし、この他にCo、Mo、Cu、Crのうち少なくとも一つを含んでいてもよい。また第2金属粒子中のFeの割合は、5〜16質量%の範囲であればとくに本発明の構造が得られやすく好ましい。前記Ni−Fe合金粒子は、水アトマイズ法、ガスアトマイズ法などの噴霧法によって得られるが、水アトマイズ法は一般的に粒子表面が酸化しやすく、Ni−Fe合金表面が酸化していると、溶融させた際に前記第1金属粒子とのぬれが悪く、溶融状態の第1金属表面にはじかれてしまうため、Ni−Fe合金粒子はガスアトマイズ法で得ることが望ましい。しかし、酸化したNi−Fe合金粒子や、水アトマイズ法で得たNi−Fe合金粒子であっても、例えば水素雰囲気等の還元雰囲気中でNi−Fe合金粒子表面の酸化物を還元処理することで、前記第1金属粒子にはじかれることなく用いることが可能である。
図7は、本実施形態の変形例にかかるPbフリーはんだの概念図である。図8は、本実施形態の変形例に係るPbフリーはんだが有する第2金属粒子の拡大図である。本実施形態に係るPbフリーはんだ15aは、使用前(最初に溶融する前)において、Snを主成分とする第1金属粒子15Aaと、Ni−Fe合金を主成分とする第2金属粒子15Baと、を含む。本実施形態において、Pbフリーはんだ15aは、第1金属粒子15Aaと第2金属粒子15Baの他にフラックスPEを含む。フラックスPEについては、上述したPbフリーはんだ15と同様である。図8に示すように、第2金属粒子15Baは、Ni−Fe合金を主成分とする粒子(コア粒子)15BCの表面が、Snと合金を作る金属を主成分とする被覆層15BSで覆われている。コア粒子15BCは、Ni−Fe合金を必須とし、この他にCo、Mo、Cu、Crのうち少なくとも一つを含んでいてもよい。被覆層15BSに含まれる、Snと合金を作る金属は、例えば、Cu、Ni、Au、Ag、Pd等がある。このように、第2金属粒子15Baは、コア粒子15BCと被覆層15BSとを有していてもよい。
Pbフリーはんだ15、15aが有する15A、15Aaに用いるSnを基材とした第1金属粒子は、一度溶融して凝固した後に複数回リフローをすると再溶融する。本実施形態では、Snを主成分としてBi又はZnを含む第1金属粒子15A、15Aaと、Ni−Fe合金を主成分とする第2金属粒子15B又はNi−Fe合金を主成分とするコア粒子15BCを被覆層15BSで被覆した第2金属粒子15Baとを組み合わせたPbフリーはんだ15、15aを用いる。そして、Pbフリーはんだ15、15aをリフロー処理にて溶融させ凝固させる。その後、必要に応じて凝固して得られた接合金属5に更に熱処理を施す。これによって、接合金属5は、Ni−Sn合金を主成分とする主相10に、Ni−Fe合金を主成分とするNi−Fe相11とSnを主成分とするSn相12とBi又はZnを主成分とする相13が分散した組織となり、耐熱性及び繰返し曲げ強度が向上する。
図9は、本実施形態に係る電子回路モジュール部品の電子部品2と回路基板3の接合部を形成する方法の手順を示すフローチャートである。図10は、リフロー時における温度の時間変化の一例を示す図である。図11は、本実施形態に係る電子回路モジュール部品の製造方法における熱処理を説明するための図である。以下においては、図6に示すPbフリーはんだ15を用いた例を説明するが、図7に示すPbフリーはんだ15aを用いてもよい。
本実施形態に係る電子回路モジュール部品の電子部品2と回路基板3の接合部を形成する方法により、図1に示す電子回路モジュール部品1を製造するにあたり、印刷等の手段を用いて、回路基板3の端子電極3Tの表面にPbフリーはんだ15のはんだペーストを塗布する(ステップS101)。次に、回路基板3に電子部品2を載置する(ステップS102)。その後、電子部品2が搭載された回路基板3をリフロー炉でリフローする(ステップS103)。リフロー炉内における温度変化は、例えば、図10に示すようなものである。温度θmでPbフリーはんだ15が溶融し始める。リフロー炉内の温度が最高温度θmaxに到達した後、前記温度は時間の経過とともに低下する。この過程で、溶融したPbフリーはんだ15が凝固して、図1に示す接合金属5となる。接合金属5によって、電子部品2は回路基板3に固定される。
リフローが終了したら、電子部品2が搭載された回路基板3が洗浄される(ステップS104)。その後、電子部品2の端子電極2Tと回路基板3の端子電極3Tとの間に介在する接合金属5に対して熱処理が施される(ステップS105)。熱処理は、電子部品2が搭載された回路基板3を炉に入れて、凝固したPbフリーはんだ15、すなわち接合金属5を所定の温度で所定の時間保持する処理であり、Ni−Sn合金を主成分とする主相10を増加させ、Sn相12を減少させる場合に用いる工程である。リフロー処理後に接合金属5の組織が目的の範囲にある場合はステップS105は省略することができる。次に、この熱処理について説明する。
熱処理は、例えば、図11に示すように、炉内の温度を初期温度θsから所定の温度(以下、保持温度という)θkまで上昇させた後、保持温度θkで所定の時間Δtだけ保持する。所定の時間Δtは、t1−t2である。このようにすることで、接合金属5を保持温度θkで所定の時間Δt保持する。所定の時間Δtが経過したら、炉内の温度を低下させる。また、熱処理は、接合金属5の温度を、保持温度θkまで段階的に上昇させてもよい。この熱処理により、接合金属5の組織を、Ni−Sn合金を主成分とする主相10に、Ni−Fe合金を主成分とする第3相11とSnを主成分とするSn相12とBiまたはZnのいずれかを主成分とする第2相13が分散したものにする。
本実施形態に係る電子回路モジュール部品の電子部品と回路基板とを接合するPbフリーはんだの組成、及び電子部品と回路基板の接合部を形成する熱処理の条件を変更して、耐熱性評価用サンプル(電子回路モジュール部品)と、繰り返し曲げ強度評価用サンプル(導通試験用基板)を作製し、接合金属5の耐熱性、及び繰返し曲げ強度を評価した。Pbフリーはんだの金属成分は、Pbフリーはんだ15に含まれる第1金属粒子及び第2金属粒子の種類により調整した。ここで第1金属粒子及び第2金属粒子の粒子径は最大25μmのものを使用し、第2金属粒子を添加する場合は、第2金属粒子の質量/(第1金属粒子の質量+第2金属粒子の質量)×100が一定(27質量%)となるように添加量を決めた。また、ペースト状のPbフリーはんだとして使用しやすいように、ペースト粘度が170Pa・s〜210Pa・sとなるように、フラックスPEの含有量を11.5質量%±1質量%で調整したものを用いた。
耐熱性の評価に供するサンプル(電子回路モジュール部品)は、次のような手順で20個作製し評価した。
(1)回路基板の端子電極に、後述する表1に示す各サンプルの組成のPbフリーはんだを含むはんだペーストを印刷した。
(2)実装装置を用いて電子部品としてチップ型抵抗素子を回路基板に載置した。
(3)電子部品が搭載された回路基板をリフロー炉に入れて、前記はんだペーストを加熱することにより、前記はんだペーストに含まれる第1金属粒子が溶融し、凝固する。リフロー加熱の条件は図10のような温度曲線となるように、ピーク温度θmaxが表1に示す第1金属の種類により、各融点よりも20℃高く設定し、第1金属粒子が完全に溶融するように設定した。凝固後のPbフリーはんだ、すなわち接合金属によって、電子部品の端子電極と回路基板の端子電極とを接合させた。
(4)電子部品及び回路基板の表面に付着したフラックスを洗浄した。
(5)接合金属の組織をサンプリングして観察し、目的とする組織を構成するように表1に示すような熱処理を施した。熱処理を行ったサンプルは、Bi相13又はZn相13の量および存在する厚みの影響を確認するため、図11に示す処理条件にて、θを240℃として、Δtを2min、15min、30min、90minの処理を施した。
(6)絶縁樹脂で電子部品及び回路基板を覆った。電子部品及び回路基板を被覆する絶縁樹脂は、エポキシ樹脂にシリカフィラーを添加したものを用いた。そして、絶縁樹脂で電子部品及び回路基板を覆うように塗布し、真空槽内で熱プレス硬化した。その結果、電子部品が絶縁樹脂により封止された電子回路モジュール部品を20個作製した。
繰返し曲げ強度の評価に供するサンプルは、電子回路モジュール部品の接合金属5と同等の金属組織にて、基板の繰返し曲げ試験による抵抗値変化を評価するために、導通試験用基板を作製した。導通試験用基板は、JEITA(一般社団法人、電子情報技術産業協会)規格 ET−7049/105Aの試験方法に基づいて次のような手順で20個作製し評価した。
(1)導通試験用基板の端子電極に、後述する表1に示す各サンプルの組成のPbフリーはんだを含むはんだペーストを印刷した。
(2)実装装置を用いて電気的導通の確認が可能な素子としてデイジーチェーンを導通試験用基板に載置した。
(3)デイジーチェーンが搭載された導通試験用基板をリフロー炉に入れて、前記はんだペーストを加熱することにより、前記はんだペーストに含まれる第1金属粒子が溶融し、凝固する。そして、凝固後のPbフリーはんだ、すなわち接合金属によって、デイジーチェーンの端子電極と導通試験用基板の端子電極とを接合させた。リフロー加熱の条件は図10のような温度曲線となるように、ピーク温度θmaxが表1に示す第1金属の種類により、各融点よりも20℃高く設定し、第1金属粒子が完全に溶融するように設定した。
(4)デイジーチェーン及び導通試験用基板の表面に付着したフラックスを洗浄した。(5)接合金属の組織を目的とする組織を構成するように表1に示すような熱処理を施した。熱処理を行ったサンプルは、Bi相13又はZn相13の量および存在する厚みの影響を確認するため、図11に示す処理条件にて、θを240℃として、Δtを2min、15min、30min、90minの処理を施した。
耐熱性は次のようにして評価した。評価に供するサンプル(電子回路モジュール部品)をピーク温度260℃のリフロー炉に投入する。リフロー処理後の電子回路モジュール部品を透過X線装置の100倍視野により観察し、電子部品と回路基板との接合部におけるはんだの移動を観察した。各水準20個の評価サンプルの中で、接合金属(はんだ材料)が接合部以外に離散するような状況が観察された場合には×、離散していないが接合部の基板側との接合面が変化してしまったものは○、接合部の電子部品端子側の形状が変化していないものは◎とした。
繰返し曲げ強度は次のようにして評価した。表面実装部品の搭載面が凸になるように導通試験用基板を2mmの深さに、100回繰返し曲げたときに、導通試験用基板上に実装されたデイジーチェーンの端子電極と、導通試験用基板の端子電極との接合回路の電気抵抗値を測定し、各水準20個の評価サンプルの中で、100回以内に破断を伴う不導通が発生したもの、または導通抵抗値の変化率が初期の30%を越えたものは×、導通抵抗値の変化率が5%〜30%変化したものは○、導通抵抗値の変化率が5%未満のものを◎とした。
表1に各サンプルが有する第1金属粒子及び第2金属粒子の種類、熱処理の条件、主相の種類、第2相であるBi相またはZn相の量と厚み、そして評価結果を示す。Bi相及びZn相の量については、接合金属5の任意の断面をEPMA(Electron Probe Micro Analyzer)にて成分分析し、BiまたはZnが90質量%以上である組織が接合金属5全体に占める比率である。また、Bi相及びZn相の厚みについては接合金属5の断面画像から測定した。測定方法は、断面画像中の第3相11に内接円を描き、2つの最近接する第3相11の中心線上に第2相であるBi相またはZn相が現れる長さの割合を求めた。Bi相及びZn相の厚みは(Bi相またはZn相が第3相11の中心線上に現れる距離)/(第3相11の中心間距離)である。
Figure 2013154354
比較例1、2は主相がSn相であり、第2相であるBi相またはZn相が存在しない。このような接合組織の場合、柔軟なSn相が主相のため繰返し曲げ強度は良好であるが、耐熱性評価試験ではんだ移動が発生する。
比較例3は主相がNi−Sn相であり、融点の高い相が主相であるため、比較例1、2と比較して耐熱性が向上する。このように、組織中に融点の高い相が増加することにより、接合金属の耐熱性を向上させることができる。しかし、比較例3は硬い組織となり、繰返し曲げ強度が低下する。一方、実施例1〜12は全てNi−Sn相の主相の他に第2相であるBi相またはZn相が現れており、曲げ応力に対して補強の役割をすることにより、繰返し曲げ強度が向上する。
実施例7、8、12は、実施例1、2、3、4と比較して組織中に第2相であるBi相またはZn相の量が多く、厚みが大きい。このように、析出するBi相またはZn相の量、及び厚みが多すぎると、第2相の結晶粒子が大きく成長し、主相のNi−Sn相と不規則に存在するため、それぞれの相内や粒界にクラックが入りやすく、繰り返し曲げ強度がやや低下する。
実施例9、10、11、12は、実施例1、2、3、4と同様に主相が融点の高いNi−Sn相であり、第2相としてBi相の代わりにZn相が存在する。Zn相はBi相と同様の役目をすることにより、耐熱性及び繰返し曲げ強度が向上する。これは接合金属5の組織が、融点の高い主相であるNi−Sn相と、その間に硬さの異なるZn相が現れた構造を呈したことにより、耐熱性が向上し、組織の硬さが緩和されたと考えられる。
実施例5、6、11は実施例1、2、3、4、9、10と比較して、第2相であるBi相またはZn相の量、及び厚みが少なく、融点の高いNi−Snの主相の割合も少ないため、耐熱性が少し低下する。従って、耐熱性と繰返し曲げ強度の総合評価が◎となるのは、接合金属5の主相がNi−Sn相であり、その間に第2相であるBi相またはZn相が現れ、第2相が網目状の構造を形成する実施例1、2、3、4、9、10の条件である。このとき、接合金属5の断面積に対して、第2相13の好ましい範囲は、1%以上30%以下である。また、第2相13の存在する幅として好ましい範囲は、最近接する第3相11の中心間距離の1/2以下の割合である。
以上のように、本発明に係る電子回路モジュール部品は、はんだが溶融してから凝固した後に得られる接合金属の耐熱性、及び繰返し曲げ強度を向上させることに有用である。
1 電子回路モジュール部品
2 電子部品
2T、3T 端子電極
3 回路基板
4 絶縁樹脂
5 接合金属
6 モジュール端子電極
7 装置基板
8 装置基板端子電極
9 はんだ
10 主相
11 Ni−Fe相(第3相)
12 Sn相
13 Bi相またはZn相(第2相)
R10 主相の代表寸法
R11 Ni−Fe相(第3相)の代表寸法
R12 Sn相の代表寸法
R13 Bi相またはZn相(第2相)の代表寸法
15 Pbフリーはんだ
15A、15Aa 第1金属粒子
15B、15Ba 第2金属粒子
PE フラックス
15BC コア粒子
15BS 被覆層

Claims (5)

  1. 電子部品と、当該電子部品が搭載される回路基板と、前記電子部品の端子電極と前記回路基板の端子電極との間に、Ni−Sn合金を主成分とする主相と、BiまたはZnのいずれか一方を主成分とする第2相と、を有する接合金属とを含むことを特徴とする電子回路モジュール部品。
  2. 前記BiまたはZnのいずれか一方を主成分とする第2相の割合は、前記接合金属部の断面積の1%以上30%以下であり、前記接合金属内において網目状に存在していることを特徴とする請求項1の電子回路モジュール部品。
  3. 前記接合金属に、Ni−Fe合金を主成分とする第3相を有し、前記第3相は前記主相を介して前記第2相に囲繞された構造であることを特徴とする請求項1又は2に記載の電子回路モジュール部品。
  4. 前記主相が、前記接合金属の全体積に対して、50体積%以上90体積%以下であることを特徴とする請求項1〜3のいずれか一項に記載の電子回路モジュール部品。
  5. 前記接合金属中のSn相が、前記接合金属の全体積に対して40体積%以下であることを特徴とする請求項1〜3のいずれか一項に記載の電子回路モジュール部品。
JP2012014550A 2012-01-26 2012-01-26 電子回路モジュール部品及び電子回路モジュール部品の製造方法 Active JP5978630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014550A JP5978630B2 (ja) 2012-01-26 2012-01-26 電子回路モジュール部品及び電子回路モジュール部品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014550A JP5978630B2 (ja) 2012-01-26 2012-01-26 電子回路モジュール部品及び電子回路モジュール部品の製造方法

Publications (2)

Publication Number Publication Date
JP2013154354A true JP2013154354A (ja) 2013-08-15
JP5978630B2 JP5978630B2 (ja) 2016-08-24

Family

ID=49050080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014550A Active JP5978630B2 (ja) 2012-01-26 2012-01-26 電子回路モジュール部品及び電子回路モジュール部品の製造方法

Country Status (1)

Country Link
JP (1) JP5978630B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083695A (ja) * 2014-10-29 2016-05-19 Tdk株式会社 電子回路モジュール部品
US10253395B2 (en) * 2015-10-27 2019-04-09 Tdk Corporation Electronic circuit module component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117681A (ja) * 2001-10-10 2003-04-23 Fujitsu Ltd はんだペースト、および端子間の接続構造
JP2005095977A (ja) * 2003-08-26 2005-04-14 Sanyo Electric Co Ltd 回路装置
JP2012076098A (ja) * 2010-09-30 2012-04-19 Tdk Corp 電子回路モジュール部品及び電子回路モジュール部品の製造方法
JPWO2011027659A1 (ja) * 2009-09-03 2013-02-04 株式会社村田製作所 ソルダペースト、それを用いた接合方法、および接合構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117681A (ja) * 2001-10-10 2003-04-23 Fujitsu Ltd はんだペースト、および端子間の接続構造
JP2005095977A (ja) * 2003-08-26 2005-04-14 Sanyo Electric Co Ltd 回路装置
JPWO2011027659A1 (ja) * 2009-09-03 2013-02-04 株式会社村田製作所 ソルダペースト、それを用いた接合方法、および接合構造
JP2012076098A (ja) * 2010-09-30 2012-04-19 Tdk Corp 電子回路モジュール部品及び電子回路モジュール部品の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083695A (ja) * 2014-10-29 2016-05-19 Tdk株式会社 電子回路モジュール部品
US10253395B2 (en) * 2015-10-27 2019-04-09 Tdk Corporation Electronic circuit module component

Also Published As

Publication number Publication date
JP5978630B2 (ja) 2016-08-24

Similar Documents

Publication Publication Date Title
US8896119B2 (en) Bonding material for semiconductor devices
KR100867871B1 (ko) 솔더 페이스트, 및 전자장치
TWI505899B (zh) A bonding method, a bonding structure, and a method for manufacturing the same
US20030146266A1 (en) Conductive adhesive material with metallurgically-bonded conductive particles
KR100629826B1 (ko) 접합재 및 이를 이용한 회로 장치
JP4722751B2 (ja) 粉末はんだ材料および接合材料
WO2013132942A1 (ja) 接合方法、接合構造体およびその製造方法
JP2014180690A (ja) シート状高温はんだ接合材およびこれを用いたダイボンディング方法
JP4957246B2 (ja) 車両用窓ガラス
JP4975342B2 (ja) 導電性接着剤
JP5742157B2 (ja) 電子回路モジュール部品及び電子回路モジュール部品の製造方法
JPWO2006011204A1 (ja) 鉛フリーはんだ合金
JP2014170864A (ja) 接合体およびその製造方法
JP5978630B2 (ja) 電子回路モジュール部品及び電子回路モジュール部品の製造方法
JP2004165637A (ja) 半導体装置
TW201615314A (zh) 焊料膏
JP3782743B2 (ja) ハンダ用組成物、ハンダ付け方法および電子部品
JP2016087691A (ja) Pbフリーはんだ及び電子部品内蔵モジュール
JP6089243B2 (ja) 接合構造体の製造方法
JP2006319288A (ja) 半導体装置
JP2011086717A (ja) 回路装置及びその製造方法
JP5915204B2 (ja) 電子回路モジュール部品
JP5849422B2 (ja) Pbフリーはんだ
JP2007260695A (ja) 接合材料、接合方法及び接合体
JP5742156B2 (ja) 電子回路モジュール部品及び電子回路モジュール部品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150