JP2013143459A - 薄形シリコン太陽電池セル - Google Patents

薄形シリコン太陽電池セル Download PDF

Info

Publication number
JP2013143459A
JP2013143459A JP2012002640A JP2012002640A JP2013143459A JP 2013143459 A JP2013143459 A JP 2013143459A JP 2012002640 A JP2012002640 A JP 2012002640A JP 2012002640 A JP2012002640 A JP 2012002640A JP 2013143459 A JP2013143459 A JP 2013143459A
Authority
JP
Japan
Prior art keywords
electrode
back surface
film
battery cell
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012002640A
Other languages
English (en)
Inventor
Toshio Joge
利男 上下
Yasuhiro Kida
康博 木田
Mitsunori Ketsusako
光紀 蕨迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRAKUSERU KK
Original Assignee
SHIRAKUSERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRAKUSERU KK filed Critical SHIRAKUSERU KK
Priority to JP2012002640A priority Critical patent/JP2013143459A/ja
Publication of JP2013143459A publication Critical patent/JP2013143459A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

【課題】 現在最も普及しているAl-BSF形太陽電池セルは裏面Al電極を有するため薄形化に限界があり200μm程度となっており、その変換効率は16〜18%である。セルの製造コストを低減するためには、更なる薄形化と高効率化が求められている。
【解決手段】 リン拡散及びホウ素拡散によって作製した薄いn+-p-p+BSF形セルにおいて、その裏面に膜厚がそれぞれ50〜150nm及び5〜40nmであるBSG及びSiNxからなる2層構成膜を形成する。さらに、裏面のパッド電極形成部以外の表面に表面被覆率が40%以下のAl電極を形成する。当該裏面2層構成膜によって内部反射率が高く、さらに、Al電極形成部に深いp++層(BSF)を形成することができるため、160μm以下の薄形でより高効率の太陽電池セルを経済的なプロセスで製造することが可能となる。
【選択図】 図7

Description

本発明は、シリコン太陽電池セルに関する。
図1を参照しながら、従来の一般的なシリコン太陽電池セル(n+-p-p+ Al−BSF形)を説明する(特許文献1及び2)。この形式のセルは、p形シリコン基板1のおもて面にリン拡散によってn+層2を形成し、リン拡散に伴って形成されるリンガラス(以下PSGという)除去及び接合分離を行い、パッシベーション膜4を形成し、反射防止膜SiNx5をコーティングした後に、おもて面Ag電極6及び裏面電極7を形成することによって製造される。
おもて面Ag電極6は、図2に示すように、フィンガー電極61とバスバー電極62で構成されるグリッド形(串形)電極である。一方、裏面電極7は、図3に示すように、裏面Al電極71と裏面Agパッド電極72で構成される。これらの電極はペーストを印刷し焼成することによって形成される。焼成はピーク温度760〜780℃で行われるが、裏面のほぼ全面に印刷したAlペースト中のAl原子が再結晶化時にシリコンに拡散し裏面電界(以下BSFという)を発生させるAlの拡散したp+層3が形成される。
このp+層3は、Al濃度は1018/cm3程度、深さは数μmで、良好なBSF層となっている。入射光の長波長成分はシリコン基板の裏面に達するが、その約60%は裏面Al電極71による内部反射が起こり太陽電池セルの変換効率向上に寄与している。一方、内部反射しない残りの約40%はAl電極に吸収されて熱となるので、太陽電池セルの温度を上昇させることになり、変換効率を低下させる要因となっている。また、当該型式の太陽電池セルは厚さ約20μmの裏面Al電極71を有することから、シリコンとAlの熱膨張係数の差から、電極焼成時の室温への冷却時に反りが起こるため、その厚さは200μm程度に制約されている。
そのため、特許文献3には、Al裏面電極にセルの反りを低減するためのスリット状の孔を設けることが提案されている。また、特許文献4には、裏面Al電極として第1裏面電極とそれよりも残留応力の小さな第2裏面電極とを併用することによって、素子全体の反りを小さくした太陽電池素子が開示されている。
次に、BSF層をAlペーストの焼成ではなく、ホウ素を熱拡散して形成するn+-p-p+ B−BSF形太陽電池セル(特許文献5〜8)について図4及び図5を用いて説明する。この型式のセルはp形シリコン基板1の一方の面にリン拡散によるn+層2、反対面にホウ素拡散によるp+層8を形成したn+-p-p+構造を有するシリコン形太陽電池セルである。この型式の太陽電池セルは裏面全面を覆う電極が不要なことから薄形化が可能で、BSF層のB濃度を1020/cm3程度に大きくすることができるので高効率化ポテンシャルの高い太陽電池セルとなり、且つ、片面受光形だけでなく両面受光形にもなるという特徴がある。
図4は当該セルの片面受光形の断面説明図である。当該片面受光セルはn+-p-p+構造のシリコン基板のおもて面にパッシベーション膜4及び反射防止膜(SiNx)5を形成し、裏面はシリコン酸化膜9を形成し、裏面電極は裏面AgAlグリッド電極10を形成している。一方、両面受光セルは、図5にその断面説明図を示すように、裏面にも反射防止膜11を形成している。両面受光セルは裏面からの光入射による変換効率を高くしなければならないので、少数キャリアの実効ライフタイムを100〜200μs(片面受光セルでは20μs程度)と大きくする特段の対策が必要である。
また、特許文献6の実施例2には、従来形のn+-p-p+ Al−BSF形太陽電池セルの特徴とn+-p-p+ B−BSF形太陽電池セルの特徴とを融合させた薄型高効率太陽電池セル(n+-p-p+ B/Al-BSF形)も開示されている。この太陽電池セルは、図4に示すシリコン酸化膜9の表面上に、さらにAl電極を多数の小さな開口部を有するパターンで形成することによって、ホウ素拡散及びAl拡散によるp++層のBSFを形成するものである。
また、太陽電池セルの裏面Al電極形成方法としては様々な技術が提案されており、特許文献9には、裏面パッシベーション膜をファイアースルーするAl電極用ペースト及びその処理プロセスが開示されている。当該太陽電池セルはn+-p-p+ Al-BSF形で裏面Al電極を格子状やドット状パターンとして部分BSFを形成し、電極形成後に裏面反射膜を形成するという特徴を有している。
特開2006−73715号公報 特開2005−136081号公報 特開2001−114556号公報 特開2009−164509号公報 特開2002−222973号公報 特開2011−129867号公報 特開2001−77386号公報 特開2009−59833号公報 特開2011−66044号公報
シリコン太陽電池セルのコストは、シリコン基板材料費が全体の約70%を占めており、コスト低減のためにはシリコン基板の薄形化と変換効率の向上が不可欠である。一般的に普及している前記の特許文献1及び2に記載のn+-p-p+ Al-BSF形太陽電池セルでは薄形化は200〜180μmが実質上の限界となっている。また、その量産ベースの変換効率は単結晶形で17〜18%、多結晶形で16〜17%程度に留まっている。従って、更なるコスト低減のためには、より薄形化(160μm)してシリコン使用量を低減し、且つ、低コストプロセスでの更なる高効率化を図った太陽電池セルの開発が課題となっている。
前記の特許文献3に記載のn+-p-p+ Al-BSF形太陽電池セルでのスリット状の孔は、セルの反り低減には効果があるものの、裏面Al電極面積が減少するため変換効率の低下が避けられない。また、前記の特許文献4に記載のn+-p-p+ Al-BSF形太陽電池セルは、低応力の裏面電極を併用しても、裏面全体にAl電極が形成されるために、セルの反り低減効果が小さいだけでなく、裏面電極の形成工程が煩雑になり、また、変換効率の向上は望めないという問題がある。
前記のn+-p-p+ B-BSF形太陽電池セルは薄形化が可能で、且つ、ホウ素(B)を拡散したp+層8はB濃度が1020/cm3と大きくより強いBSFとなることから大きな高効率化のポテンシャルを有しているといえる。当該型式の太陽電池セルにおいても、薄形化すると長波長領域の量子効率が低下するという課題が出てくるので、裏面内部反射率の高い裏面反射材が重要になってくる。なお、当該型式の太陽電池セルを両面受光形として実現するには良質のシリコン基板を使用し、且つ、製造プロセスでの実効ライフタイムを保持する諸施策等が必要であるため、汎用的に応用されるのは片面受光形である。この片面受光形の薄形化及び高効率化を図るには、良質の裏面反射材及びそれをファイアースルーしてシリコンのp+層に低抵抗でコンタクトする電極の形成が課題となる。
図6はシリコン内へ照射された太陽光と発生するキャリア(電子及び正孔)の関係を示す説明図である。シリコン内に照射された光はキャリアを発生させながら減衰してゆくが、減衰率の小さな長波長成分は裏面に到達し、更には透過してゆく。この光透過はシリコン基板が薄くなるほど大きくなることはいうまでもない。従って、長波長領域の光量子で有効的にキャリアを発生させるには、何らかの裏面反射材12によって裏面内部反射率を向上させる必要がある。
前記のn+-p-p+ Al-BSF形太陽電池セルではAl電極が裏面反射材となりその内部反射率は約60%である。この内部反射光はキャリア発生に寄与し、長波長領域(1000〜1400nm)の量子効率を向上させる。なお、残り40%の光はAl電極に吸収されて熱となり、太陽電池セルの温度上昇を招き性能低下が起こる。従って、太陽電池セルの更なる変換効率向上のためには、裏面内部反射率がより高く、且つ、光を吸収発熱しない低コストの裏面反射材が望まれる。
一方、前記の裏面パッシベーション膜をファイアースルーしてシリコンのp+層に低抵抗でコンタクトする電極の形成方法としては、例えば、前記の特許文献9に記載の方法を適用することが考えられる。前記の特許文献9には、裏面パッシベーション膜の材料は開示されていないが、膜厚は80〜120μmと記載されている。窒化シリコン(SiNx)はn層表面でのパッシベーション効果はあるがp層では機能しないので、当該パッシベーション膜はSiO2(あるいは特殊例としてAl2O3)であると推定しても差し支えないと考えられる。このパッシベーション膜(一般的には熱酸化処理で形成)は非常に硬くなるが、これをファイアースルーするAlペーストとして約10〜25重量%のガラスフリットを含有させ、且つ、焼成後に当該電極とシリコンの界面に生じたガラス層をフッ酸処理によって除去することが開示されている。また、裏面反射材を電極形成後の最終工程に形成するとしている。
一般に電極用ペーストには数%のガラスフリットが含まれ膜厚20〜30μmの印刷性能が確保されているが、前記の10〜25%のガラスフリットは一般的ではなく、1%濃度のフッ酸に浸漬すると、表面電極にも影響を与えることになる。更に、電極形成後の電極を覆う裏面反射膜の形成はモジュール化時の半田作業にも影響が出ると考えられる。また、当該太陽電池は部分Al-BSFとして反りを低減して薄形化でき、開口部は電極焼成後に裏面反射材を形成しているが、従来のn+pp+ Al-BSF形を越える変換効率は期待できない。
本発明はこれらを解決し、薄形で高効率の太陽電池セルを実現しようとするものである。
本発明者は、薄形太陽電池セルの裏面反射材について鋭意検討した結果、ボロンガラス(BSG)及び窒化シリコン(SiNx)の2層構成膜が裏面反射材として良好に機能するだけではなく、前記の2層構成膜における各層の膜厚を最適化することによって70%を超え、85%以上の高い裏面内部反射率を有することを見出し、且つ、ホウ素熱拡散によるp+層(BSF)を有する場合、キャリアの裏面表面再結合速度は比較的小さくても変換効率への影響が小さくなりBSG膜で十分なパッシベーション効果が得られることを見出し本発明に至った。
本発明は、前記のn+-p-p+ B-BSF形太陽電池セルに係わり、本発明のセルの裏面に第1層として厚さ50〜150μmのBSG膜、第2層として膜厚5〜40μmの薄いSiNx膜の2層構成膜を形成したことを特徴とするシリコン太陽電池セルである。
本発明は、好ましくは前記の2層構成膜を形成するBSG膜及びSiNx膜の膜厚がそれぞれ80〜110nm及び5〜30nmであることを特徴とするシリコン太陽電池セルである。
本発明は、さらに、前記の2層構成膜が形成された裏面のパッド電極形成部以外の表面に裏面アルミニウム(Al)電極を設け、且つ、前記の裏面Al電極の表面被覆率が40%以下であることを特徴とするシリコン太陽電池セルである。
本発明は、さらに、前記パッド電極形成部以外の裏面に設ける裏面Al電極を、前記パッド電極形成部を除く裏面全体に亘って一様なパターン形状としたことを特徴とするシリコン太陽電池セルである。
本発明は、さらに、好ましくは前記の一様なパターンが格子状パターンであることを特徴とするシリコン太陽電池セルである。
本発明は、さらに、前記の裏面Al電極形成用Alペーストとしてホウ酸塩系ガラスフリットを添加したAlペーストを使用することを特徴とするシリコン太陽電池セルである。
本発明によれば、裏面内部反射率が高いBSG膜とSiNx膜の2層構成の裏面反射材が適用でき、裏面Al電極が良好にp+層にコンタクトできる高効率の太陽電池セルで、且つ、厚さ180μm以下、特に160μm以下の薄形の太陽電池セルを実現できる。また、前記BSG膜は裏面へのホウ素熱拡散時に形成されるものであり、新たなパッシベーション膜の形成の必要もなく低コストで実現できる。
n+-p-p+ Al-BSF形太陽電池セルの断面構造説明図である。 n+-p-p+ Al-BSF形太陽電池セルの受光面用のグリッド形電極を説明する図である。 n+-p-p+ Al-BSF形太陽電池セルの裏面電極を説明する図である。 n+-p-p+ B-BSF形片面受光太陽電池セルの断面構造説明図である。 n+-p-p+ B-BSF形両面受光太陽電池セルの断面構造説明図である。 シリコン太陽電池セルの裏面反射材の機能を説明する図である。 本発明を適用した太陽電池セルの断面構造説明図である。 裏面再結合速度と変換効率の計算例を示す図である。 本発明を適用した太陽電池セルの裏面電極を説明する図である。 本発明を適用した太陽電池セルの別の裏面電極形状を説明する図である。 本発明を適用した太陽電池セルの製造プロセスフローである。 本発明を適用した太陽電池セルの裏面Al電極被覆率と変換効率の関係を計算した結果を示す図である。
以下、本発明を適用したシリコン太陽電池セルについて図を参照しながら詳細に説明する。
図7は本発明を適用した太陽電池セルの断面説明図である。p形シリコン基板1のおもて面(受光面)側にリン拡散によるn+層2、裏面側にホウ素拡散によるp+層8を形成し、前記n+層2の上にはパッシベーション膜4及び膜厚80〜90nmの反射防止膜(SiNx)5、裏面のp+層の上に、厚さ50〜150nm、好ましくは80〜110nmのBSG膜13と膜厚5〜40nm、好ましくは5〜30nmの裏面SiNx膜11を形成している。なお、裏面のBSG膜13とSiNx膜11の2層構成膜は、おもて面及び裏面にグリッド形電極を形成するn+-p-p+ B-BSF形両面受光太陽電池セルにも、裏面内部反射材及び裏面反射膜として適用しても良い。
裏面のBSG膜は高品質のシリコン酸化膜(SiO2)等に比べてシリコン表面でのキャリア再結合速度は大きくなり良質のパッシベーション膜とは云えない。しかし、発明者は、当該太陽電池セルはAl-BSFよりも強力なB-BSF層を有しているので、裏面近傍に来たキャリア(電子)を強いクーロン力で内部へ跳ね返してくれるため、裏面の表面再結合は余り問題にならないという知見を見出した。
図8はn+-p-p+ B-BSF形太陽電池セルで裏面の表面再結合速度と変換効率の関係を、B-BSFがない場合も合わせて、デバイスシミュレータPC1Dを使用して計算した1例である。同図から分かるように、B-BSFのない場合は、再結合速度は10cm/s以上になると変換効率は急に低下してゆくが、B-BSFのある場合は、105cm/sまで殆ど低下がないことが分かる。一方、BSG膜をパッシベーション膜として試作したサンプルの測定データを使用してPC1Dでフィッティング計算した再結合速度は3〜5×104cm/s であるので、裏面パッシベーション膜(裏面反射材の一層)はBSG膜で十分である。なお、n+-p-p+ Al-BSF形では、その裏面再結合速度は600cm/s程度である。
電極は、おもて面にはグリッド形のおもて面Ag電極6が形成されるが、裏面には裏面パッド電極以外の面に被覆率40%以下(開口部が60%を超える範囲)で格子状裏面電極14を形成している。本発明において、裏面Al電極の表面被覆率は次の(1)式で定義される。
Figure 2013143459
図9は、裏面電極パターンの一例を示すものであり、(a)及び(b)は、それぞれ裏面全体の電極パターン図及び該電極パターンの破線部で囲った部分の拡大図を示す。図9に示す裏面電極パターンは、格子状裏面Al電極14と裏面Agパッド電極72で構成されている。図9において16で示す部分は、格子状Al電極が形成されておらずBSGとSiNxからなる2層構成膜が露出している個所である。
これらの電極は焼成炉でピーク温度760〜800℃の温度プロファイルで同時焼成するが、格子状裏面Al電極14が覆っている部分には、図7に示すように、ホウ素(B)拡散によるp+層8にAlが拡散した深さ数μmのBとAlによるp++ 層15が形成される。
本発明において、前記の裏面Al電極の被覆率は40%以下に設定することが必要である。裏面Al電極の焼成によって形成される部分的なp++層のBSFは、ホウ素拡散によって形成されるp+層と比べて、より強く、且つ10倍程度深いので、ホウ素拡散によるp+層と相俟って大きなBSF効果が出てくる。従って、太陽電池セルの電圧・電流特性を大幅に向上させることができる。しかし、裏面Al電極の被覆率が40%を超えると、前記BSGとSiNxの2層構成膜による裏面内部反射の利用率が低下するので、太陽電池セルの変換効率を向上させる効果が薄れるためである。
本発明は、裏面Al電極パターンとして図9に示す格子状のものだけではなく、前記の裏面Al電極被覆率が40%以下、好ましくは20〜30%の範囲であれば、図10に示すような様々なパターンを使用することができる。図10の(a)は開口部を円形としたパターンの拡大図であるが、本発明は円形に限らず、楕円又は多角形にすることもできる。また、図10の(b)の拡大図に示すように、開口部を所定の角度で整列したパターンで形成しても良い。あるいはまた図10の(c)に示すように、前記格子状パターンの格子点に円形のパターンを入れても良い。本発明において形成される裏面Al電極パターンは、裏面全体に亘って一様な形状にすることが好ましい。Al電極が一様なパターンでない場合には、裏面表面層の電気特性、例えば、シート抵抗等のバラツキや受光によって発生したキャリアの再結合効率の局所的な低下等が生じて、変換効率の低下や特性の不安定化を招くおそれがある。さらに、信頼性と寿命が低下しやすくなる場合もある。また、裏面Al電極パターンとしては、電極形成時に使用される印刷用マスクの設計と製作が容易であり、且つ、表面被覆率の変更を簡単に行えることから、図9に示すような格子状パターンが好適である。
おもて面の反射防止膜5は膜厚80〜90nmのシリコン窒化膜(SiNx)であり、このSiNx膜をファイアースルーできるAgペーストを使用する。一方、格子状裏面Al電極14用のAlペーストはBSG膜とSiNx膜の厚い2層構成膜をファイアースルーしてp+層に良好なコンタクトができなければならないが、一般的にはファイアースルー性の優れたAgペーストと違って、SiO2やSiNxでのこのような厚い膜をファイアースルーするAlペーストは未だ開発段階であるといえる。本発明で該2層構成膜を容易にファイアースルーできるよう、Alペーストにホウ酸塩系ガラスフリットを添加したものとし、該2層構成膜の一部であるBSG(B2O3とSiO2の混合したガラス)と同質のガラスからくる効果を期待したものである。また、該2層構成膜の上側のSiNx膜11は5〜40nm、好ましくは5〜30nmと薄いものにしている。
以上、本発明を適用した実施例の太陽電池セルの構造上の説明と特徴について述べたが、以下、図11を参照しながら、製造プロセス面から説明する。
本発明の薄形シリコン太陽電池セルは、下記のプロセス処理にて製造する。
(1)ダメージ層除去とテクスチャーエッチング:シリコン基板の前洗浄、アルカリ溶液による基板のダメージ層除去、単結晶基板の場合はアルカリ溶液(添加材含む)でランダムピラミッド形のテクスチャーの形成を行う。多結晶基板の場合は酸によるテクスチャーエッチングでも良い。
(2)ホウ素拡散:温度900℃〜930℃でシート抵抗70〜80Ω/□のホウ素(ボロン)拡散を行なう。このときホウ素拡散面には50〜150nm、好ましくは80〜110nmのBSG膜を形成する。
(3)おもて面エッチング:(2)のホウ素拡散では、対向面への廻込み拡散が起こるので、インライン式片面エッチング装置(ローラ式搬送系に基板を水平移動し、裏面側にHF/HNO3溶液を当てる方式)を適用して、おもて面だけをHF/HNO3溶液でエッチングする。
(4)おもて面リン拡散:ボロン拡散面を対向させて拡散源としてPOCl3ガスを使用したリン拡散を行う。シート抵抗は60〜80Ω/□の拡散とする。
(5)おもて面PSG除去:インライン式片面エッチング装置を使用し、HF溶液にておもて面のPSGの除去を行い、引続きオゾン水に浸漬してパッシベーション膜4を形成する。
(6)SiNx膜形成:PE-CVDにて、400℃〜450℃で該基板1におもて面反射防止膜(SiNx)5及び裏面SiNx膜11をコーティングする。おもて面のSiNx膜5は厚さ80〜90 nm、裏面SiNx膜11は厚さ5〜40 nm、好ましくは5〜30 nmとする。
(7)おもて面電極形成:印刷・乾燥装置でおもて面Ag電極6を印刷する。膜厚は焼成後で25μm以上とする。
(8)裏面電極形成:印刷・乾燥装置は2段構成として、初段の印刷機で焼成後厚さ15〜20μmの裏面Agパッド電極(図9の72)を印刷・乾燥した後、第2段の印刷・乾燥機で格子状裏面Al電極(図7及び図9の14)を印刷・乾燥する。当該Al電極は焼成後厚さで20〜25μmとする。
(9)電極焼成:焼成炉にて、ピーク温度760〜800℃の温度プロファイルで焼成する。この焼成によって、おもて面Ag電極6は反射防止膜5をファイアースルーしてn+層にコンタクトし、裏面Al電極14は裏面SiNx膜11及びBSG膜13をファイアースルーし、BとAlの拡散したp++層を形成し、コンタクトする。
(10)接合分離:レーザスクライバーにて、セル裏面の周辺をスクライブして接合分離を行う。接合分離はプラズマエッチャーを使用して上記(4)または(5)の後に行っても良い。
(11)測定:上記の(1)〜(10)の工程を経て得られる太陽電池セルの品質チェックを行うために、セル形状及び電気的特性の測定を行う。
本発明では、製造コストを低減するために、上記の(5)PSGのエッチング除去及びパッシベーション膜形成の工程を省略することができる。しかし、PSG層は、層厚によっては低波長域(300〜500nm)の効率低下がみられる場合がある。そのため、本発明の目的である効率の一層の向上を図るためには、上記の(5)の工程を経由することが好ましい。
[実施の形態1]
前記BSG膜とSiNx膜の2層構成膜による裏面内部反射率を評価するため、前記n+-p-p+ B-BSF形両面受光セルに当該2層構成膜を形成し、前記BSG膜とSiNx膜の膜厚を変えてセルのI-V特性及び外部量子効率を測定し、デバイスシミュレータPC1Dでフィッティングにより内部反射率を求めた。この実施の形態では、おもて面は図7に示すパッシベーション膜4をシリコン酸化膜で作製し、パッシベーション膜4とSiNx膜5の厚さは、それぞれ2μm及び80μmとした。内部反射率の結果を下記の表1に示す。表1には、参考までに従来の太陽電池セルにおいてBSF層として形成されるAl電極による内部反射率を比較例4として合わせて示している。
















Figure 2013143459
表1に示すように、本発明は、裏面内部反射率がAl電極による反射率65%より向上しており、BSG及びSiNxの膜厚がそれぞれ80〜110nm及び5〜30nmの範囲において内部反射率が80%以上を示している。特に、BSG及びSiNxの膜厚がそれぞれ90〜100nm及び10〜20nmの範囲において内部反射率が85%であり、Al電極よりも20%向上することが分かった。それに対して、BSGの膜厚が50nm未満で150nmを超える場合、又はSiNxの膜厚が5nm未満で40nmを超える場合は、内部反射率がAl電極よりも低下する。また、比較例2に示すように、SiNx膜を形成しない場合は太陽電池セルの耐湿性低下がみられており、SiNx膜の均一形成による耐湿性向上の点からも、SiNx膜は厚さ5μm以上で形成することが好ましい。したがって、本発明において、BSG及びSiNxの膜厚は、それぞれ50〜150nm及び5〜40nmに設定することが必要であり、さらに80〜110nm及び5〜30nmが好適である。
また、本実施の形態は、BSG膜はホウ素拡散時に形成されるものであり、ガラス除去プロセスにおいてインライン式片面エッチング装置を使用することによって容易にPSGだけを除去できるので、追加のプロセスは不要で低コストで実現できるという特徴がある。
[実施の形態2]
本発明の太陽電池セルのVoc(開放電圧)×Jsc(短絡電流密度)、FF(曲線因子)及びEff(変換効率)を裏面Al電極の被覆率をパラメータとしてデバイスシミュレータ「PC1D」を使用して計算した。裏面Al電極はホウ酸塩系ガラスフリットを添加したAlペーストを用いて形成し、図9に示すような裏面全体に亘って一様な格子状パターンを形成した条件で評価した。また、本発明のBSGとSiNxの2層構成膜の内部反射率は85%、Al電極の内部反射率は65%として計算した。この結果を図12に示す。
図12から分かるように、Voc×JscはAl電極被覆率を100%から下げてゆくとほぼ直線状に増加してゆき、FFは被覆率90数%まで急激に低下し、約30%からさらなる低下をしている。Voc×JscがAl電極被覆率の減少とともに増加するのは、BSGとSiNxの2層構成膜の内部反射率を有効に活用できるためである。一方、FFの低下は、裏面Al電極のオーミック抵抗が増えることに起因する。この結果、変換効率Eff(=Voc×Jsc×FF)は約30%の被覆率のところでピーク値を示し、その増加分は約1%となっている。また、裏面Al電極の被覆率が100%の場合よりもEffの向上を期待できるのは、前記の被覆率が約55%以下である。さらに、本発明の太陽電池セルにおいて、Al裏面電極を形成することによってEffの向上を図ることができるのは、前記の被覆率が40%以下である。したがって、本発明において形成する裏面Al電極は、表面被覆率を40%以下に設定することが好ましい。
以上、実施例で本発明の構造、製造方法について説明したが、本発明は薄形で高効率の太陽電池セルを低コストプロセスで量産できる技術を提供することにある。このためn+-p-p+BSF形を前提に、裏面のp+層側にBSG膜とSiNx膜の2層構成膜を形成し、裏面内部反射率を大幅に向上させることによってセルの変換効率を向上させることができる。さらに裏面被覆率40%以下を有するAl電極を形成する。このことにより、裏面内部反射率の大幅な向上とともに、当該Al電極部に深いB及びAlによる部分BSF層を形成することができ、セルの変換効率を一層向上させることができるものである。
1・・・p形シリコン基板、2・・・リン拡散によるn+層、3・・・Al拡散によるp+層、4・・・パッシベーション膜、5・・・反射防止膜(SiNx)、6・・・おもて面Ag電極、61・・・フィンガー電極、62・・・バスバー電極、7・・・裏面電極、71・・・裏面Al電極、72・・・裏面Agパッド電極、8・・・ホウ素拡散によるp+層、9・・・裏面シリコン酸化膜、10・・・裏面AgAlグリッド電極、11・・・裏面SiNx膜、12・・・裏面反射材、13・・・BSG膜、14・・・格子状裏面Al電極、15・・・BとAlによるp++層、16・・・2層構成膜の露出部分。

Claims (6)

  1. p形シリコン基板の第1の面にリンを拡散し、第2の面にホウ素を拡散したn+-p-p+ B-BSF形の太陽電池セルであって、裏面となるp+層側にボロンガラスと窒化シリコン(SiNx)の2層構成膜を形成し、前記のボロンガラス及び窒化シリコンの膜厚がそれぞれ50〜150nm及び5〜40nmであることを特徴とするシリコン太陽電池セル。
  2. 請求項1のシリコン太陽電池セルにおいて、前記の2層構成膜を形成するボロンガラス及び窒化シリコンの膜厚がそれぞれ80〜110nm及び5〜30nmであることを特徴とするシリコン太陽電池セル。
  3. 請求項1又は2に記載のシリコン太陽電池セルにおいて、前記の2層構成膜が形成された裏面のパッド電極形成部以外の表面に裏面アルミニウム(Al)電極を設け、且つ、前記の裏面Al電極の表面被覆率が40%以下であることを特徴とするシリコン太陽電池セル。
  4. 請求項3に記載のシリコン太陽電池セルにおいて、前記パッド電極形成部以外の裏面に設ける裏面Al電極を、前記パッド電極形成部を除く裏面全体に亘って一様なパターン形状としたことを特徴とするシリコン太陽電池セル。
  5. 請求項4に記載のシリコン太陽電池セルにおいて、前記の一様なパターンは格子状パターンであることを特徴とするシリコン太陽電池セル。
  6. 請求項3〜5の何れかに記載の太陽電池セルにおいて、前記の裏面Al電極としてホウ酸塩系ガラスフリットを添加したAlペーストを使用したことを特徴とするシリコン太陽電池セル。
JP2012002640A 2012-01-11 2012-01-11 薄形シリコン太陽電池セル Pending JP2013143459A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002640A JP2013143459A (ja) 2012-01-11 2012-01-11 薄形シリコン太陽電池セル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002640A JP2013143459A (ja) 2012-01-11 2012-01-11 薄形シリコン太陽電池セル

Publications (1)

Publication Number Publication Date
JP2013143459A true JP2013143459A (ja) 2013-07-22

Family

ID=49039866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002640A Pending JP2013143459A (ja) 2012-01-11 2012-01-11 薄形シリコン太陽電池セル

Country Status (1)

Country Link
JP (1) JP2013143459A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165531A (ja) * 2014-03-03 2015-09-17 三菱電機株式会社 太陽電池および太陽電池の製造方法
JP2016127294A (ja) * 2014-12-31 2016-07-11 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール及びその製造方法
JP2016532320A (ja) * 2013-09-27 2016-10-13 サンパワー コーポレイション 水分バリアを有するエピタキシャルシリコン太陽電池
JP2016219544A (ja) * 2015-05-18 2016-12-22 信越化学工業株式会社 太陽電池セル及び太陽電池セルの製造方法
WO2018079648A1 (ja) * 2016-10-26 2018-05-03 京セラ株式会社 太陽電池素子
WO2018109878A1 (ja) * 2016-12-14 2018-06-21 三菱電機株式会社 太陽電池および太陽電池の製造方法
CN113690334A (zh) * 2021-08-11 2021-11-23 浙江中晶新能源股份有限公司 一种p型异质结全背电极接触晶硅光伏电池及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532320A (ja) * 2013-09-27 2016-10-13 サンパワー コーポレイション 水分バリアを有するエピタキシャルシリコン太陽電池
JP2015165531A (ja) * 2014-03-03 2015-09-17 三菱電機株式会社 太陽電池および太陽電池の製造方法
JP2016127294A (ja) * 2014-12-31 2016-07-11 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール及びその製造方法
US9818891B2 (en) 2014-12-31 2017-11-14 Lg Electronics Inc. Solar cell module and method for manufacturing the same
JP2016219544A (ja) * 2015-05-18 2016-12-22 信越化学工業株式会社 太陽電池セル及び太陽電池セルの製造方法
WO2018079648A1 (ja) * 2016-10-26 2018-05-03 京セラ株式会社 太陽電池素子
JP6353624B1 (ja) * 2016-10-26 2018-07-04 京セラ株式会社 太陽電池素子
WO2018109878A1 (ja) * 2016-12-14 2018-06-21 三菱電機株式会社 太陽電池および太陽電池の製造方法
CN113690334A (zh) * 2021-08-11 2021-11-23 浙江中晶新能源股份有限公司 一种p型异质结全背电极接触晶硅光伏电池及其制备方法

Similar Documents

Publication Publication Date Title
JP5277485B2 (ja) 太陽電池の製造方法
JP2013143459A (ja) 薄形シリコン太陽電池セル
WO2012008061A1 (ja) ボロン拡散層を有するシリコン太陽電池セル及びその製造方法
TWI718703B (zh) 太陽能電池及其製造方法
EP2581950A2 (en) Method of manufacturing a photoelectric device
JP5737204B2 (ja) 太陽電池及びその製造方法
JP2012054609A (ja) シリコン太陽電池セルの製造方法
JP2007266262A (ja) インターコネクタ付き太陽電池、太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2008034543A (ja) 光電変換素子およびその製造方法
JP5991945B2 (ja) 太陽電池および太陽電池モジュール
JP5777798B2 (ja) 太陽電池セルの製造方法
JP2016122749A (ja) 太陽電池素子および太陽電池モジュール
KR20130048948A (ko) 양면수광형 태양전지 및 그 제조방법
CN105161569A (zh) Mwt太阳能电池及其制备方法
KR101165915B1 (ko) 태양전지의 제조방법
JP2010251343A (ja) 太陽電池およびその製造方法
JP2013115258A (ja) 光電変換素子および光電変換素子の製造方法
JP2011142210A (ja) 太陽電池およびその製造方法
KR20100089473A (ko) 고효율 후면 전극형 태양전지 및 그 제조방법
KR100420030B1 (ko) 태양 전지의 제조 방법
KR101198430B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
JP2012019029A (ja) 太陽電池セルの製造方法
KR101198438B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
JP6405292B2 (ja) 太陽電池の製造方法及び太陽電池
JP2013115256A (ja) 光電変換素子および光電変換素子の製造方法