JP2013136224A - 空気入りタイヤの製造方法 - Google Patents

空気入りタイヤの製造方法 Download PDF

Info

Publication number
JP2013136224A
JP2013136224A JP2012067250A JP2012067250A JP2013136224A JP 2013136224 A JP2013136224 A JP 2013136224A JP 2012067250 A JP2012067250 A JP 2012067250A JP 2012067250 A JP2012067250 A JP 2012067250A JP 2013136224 A JP2013136224 A JP 2013136224A
Authority
JP
Japan
Prior art keywords
layer
inner liner
styrene
mass
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012067250A
Other languages
English (en)
Other versions
JP5373932B2 (ja
Inventor
Yoji Imoto
洋二 井本
Mutsuki Sugimoto
睦樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012067250A priority Critical patent/JP5373932B2/ja
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to EP18152207.9A priority patent/EP3326793B1/en
Priority to CN201280049273.4A priority patent/CN103842165B/zh
Priority to EP18152209.5A priority patent/EP3351372B1/en
Priority to EP18152210.3A priority patent/EP3330066B1/en
Priority to RU2014112000/05A priority patent/RU2014112000A/ru
Priority to PCT/JP2012/069157 priority patent/WO2013051325A1/ja
Priority to EP18152208.7A priority patent/EP3330065B1/en
Priority to BR112014007987A priority patent/BR112014007987A2/pt
Priority to IN3028CHN2014 priority patent/IN2014CN03028A/en
Priority to KR1020147011296A priority patent/KR20140080517A/ko
Priority to EP18152211.1A priority patent/EP3330067B1/en
Priority to EP12838681.0A priority patent/EP2749403B1/en
Priority to US14/349,369 priority patent/US20140261976A1/en
Publication of JP2013136224A publication Critical patent/JP2013136224A/ja
Application granted granted Critical
Publication of JP5373932B2 publication Critical patent/JP5373932B2/ja
Priority to US15/223,964 priority patent/US10464300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】ドラムの周上の接合部での厚さの均一性を高め、カーカスプライの接合部の剥離も軽減した空気入りタイヤの製造方法を提供する。
【解決手段】インナーライナー2の幅方向端部と未加硫ゴムシート3の幅方向端部3a、3bを幅方向に50mm〜500mmずらして貼り合わせて積層体を製造し、ドラム幅に対応する一定長さに切断して裁断シートを製造し、裁断面がドラム周方向で、インナーライナーが内面側となるように巻きつけて接合し、タイヤ内側の第1層と、第2層の複合層で構成され、第1層はスチレン−イソブチレン−スチレンブロック共重合体のスチレンブロック部分が不飽和結合を有する酸塩化物もしくは酸無水物で変性されたSIBS変性共重合体を含むエラストマー組成物で、第2層はスチレン−イソプレン−スチレンブロック共重合体およびスチレン−イソブチレンブロック共重合体の少なくともいずれかを含むエラストマー組成物よりなる。
【選択図】図4

Description

本発明は、空気入りタイヤの製造方法、特に、インナーライナーの成形方法に関し、カーカスプライなどの未加硫ゴムシートとインナーライナーとの積層体を製造して生タイヤを成形する工程を含む空気入りタイヤの製造方法に関する。
近年、車の低燃費化に対する強い社会的要請から、タイヤの軽量化が図られており、タイヤ部材のなかでも、タイヤの内部に配され、空気入りタイヤ内部から外部への空気の漏れを低減することが要請されるインナーライナーにおいても、その軽量化が求められている。
現在、空気遮断層用ゴム組成物は、たとえばブチルゴム70〜100質量%および天然ゴム30〜0質量%を含むブチルゴムを主体とするゴム配合を使用することで、タイヤの耐空気透過性を向上させることが行われている。また、ブチルゴムを主体とするゴム配合はブチレン以外に約1質量%のイソプレンを含み、これが硫黄・加硫促進剤・亜鉛華と相俟って、隣接ゴム層との分子間の共架橋を可能にしている。上記ブチル系ゴムは、通常の配合では乗用車用タイヤでは0.6〜1.0mm、トラック・バス用タイヤでは1.0〜2.0mm程度の厚みが必要となるが、タイヤの軽量化を図るために、ブチル系ゴムより耐空気透過性に優れ、空気遮断層の厚みをより薄くできるポリマーが要請されている。
空気入りタイヤの生タイヤの成形において、図7に示すように、インナーライナーPをドラム5A上で成形する際に、インナーライナーフィルムP2を、コンベア上で、未加硫インナーライナーゴムP1に、長手方向の両端縁位置を揃えて予め貼着させて積層体とし、該積層体のインナーライナーフィルムP2を内面側として、バンド上に、その全周にわたって巻き付けて、積層体の両端部を、周上の一個所で重複させて接合部PJを形成し、その後、ステッチングローラーを用いて、その積層体の接合部PJを押し付けてエアー抜きを行うのが一般的である。
かかる技術では、インナーライナーフィルムP2と、未加硫インナーライナーゴムP1とをドラム上に巻き付けるにあたって、それらの長手方向の両端縁位置を揃えて予め貼着させることから、その積層体の両端部の、ドラム上での重複接合に際し、ドラム5A上の周上に形成される接合部PJの厚みが必然的に厚くなる。このため接合部PJにステッチングローラーを施しても接合部PJ間にエアーが残留することがあり、その残留エアーが生タイヤの加硫成型によって膨張すると、積層体Pの接合部PJが剥離する虞があった。
しかも、この技術では積層体Pの端部がドラム5Aの周上の一個所で接合部を形成するため、成形された生タイヤのインナーライナーの接合部に剥離が生じた場合は、隣接するカーカスプライの損傷を招来することがある。
従来技術において、空気入りタイヤの軽量化を意図して、インナーライナーに熱可塑性エラストマーを用いることが提案されている。しかしブチル系ゴムのインナーライナーよりも薄くし、高い耐空気透過性を有する材料は、インナーライナーに隣接するインスレーションゴムやカーカスプライゴムとの加硫接着力がブチル系ゴムのインナーライナーよりも劣ることになる。
特にインナーライナーの接合部において接着力が弱いと、走行中に接合部が剥離しタイヤ内圧が低下し、タイヤのバーストを招来することがある。また前記接合部は他部材が内
面に露出する構造となるため、エアー漏れの経路となり、タイヤ内圧低下を生じやすくなる。
特許文献1(特開2009−208444号公報)には、インナーライナーフィルムと未加硫ゴムシートを、延在方向の両端を相互にずらした状態で貼り付け、この粘着体をドラム上に巻いて未加硫タイヤを成形する技術が開示されている。
しかし、延在方向の両端を相互にずらすためには、それぞれ部材を1枚ずつ定寸カットし、個別にずらして張り合わせなければならないため、生産性が低下する可能性がある。また貼り合わせ方法によっては、精度が悪くなり、フィルム間にエアーが溜まることによってタイヤ加硫時に損傷を与えることになる。
また特許文献2(特開2010−13646号公報)には、熱可塑性エラストマーであるSIBSに粘着付与剤として石油樹脂、テルペン樹脂を用いて接着力を向上することが提案されている。しかしSIBSのほかにポリアミド系ポリマーをブレンドしており、耐屈曲亀裂性が低下するという問題がある。
また特許文献3(特開2010−100675号公報)には、SIBSと硫黄架橋可能な重合体のブレンド物に粘着付与剤として、天然ロジン、テルペン、クロマンインデン樹脂、石油樹脂またはアルキルフェノール樹脂などを用いて、カーカスプライゴムの接着性を向上することが提案されている。
しかしSIBSの100重量部に対して硫黄加硫可能な重合体を10〜300重量部ブレンドする技術では、硫黄架橋可能な重合体が100重量部以下の場合、SIBSがマトリックス(海部分)で、硫黄架橋可能な重合体がドメイン構造(島部分)となり、カーカスゴムへの接触界面での接着力が向上しない。また硫黄架橋可能な重合体が100重量部以上の場合、ブチルゴム以外ではガスバリア性が低下し、ブチルゴムでは接着力が低下し、更にはブレンドする重合体によっては、粘着が高くなり厚さ600μm以下のフィルムを作製できないという問題がある。
特開2009−208444号公報 特開2010−13646号公報 特開2010−100675号公報
本発明は、インナーライナーとカーカスプライなどの未加硫ゴムシートとの積層体を成形ドラム上に巻きつけてタイヤを成形する方法において、ドラムの周上の接合部での厚さの均一性を高め、エアーの残留を防止しインナーライナーおよびカーカスプライの接合部の剥離も有効に軽減した空気入りタイヤの製造方法を提供する。
そして係る製造方法を採用して、インナーライナーの屈曲亀裂成長性を軽減し、転がり抵抗性、静的空気圧低下率、さらにユニフォミティに優れた空気入りタイヤを得ることを目的とする。
本発明はインナーライナーをタイヤ内側に備えた空気入りタイヤの製造方法において、生タイヤの成形は、
(a)インナーライナーの幅方向端部と未加硫ゴムシートの幅方向端部を幅方向に相互に50mm〜500mmずらして貼り合わせて積層体を製造するアッセンブル工程と、
(b)前記積層体を、ドラム幅に対応する一定長さに切断して、裁断シートを製造する裁断工程と、
(c)前記裁断シートを、その裁断面がドラムの周方向となり、かつインナーライナーが内面側となるようにドラム全周に巻きつけて、インナーライナーの端部と、未加硫ゴムシートの端部の位置を一定距離ずらして接合する接合工程を有し、
前記インナーライナーは、タイヤ内側に配置される第1層と、前記未加硫ゴムシートと接するように配置される第2層の複合層で構成されており、
前記第1層は、スチレン−イソブチレン−スチレンブロック共重合体のスチレンブロック部分が不飽和結合を有する酸塩化物もしくは酸無水物で変性されたSIBS変性共重合体を含むエラストマー組成物よりなり、厚さが0.05mm〜0.6mmであり、
前記第2層は、スチレン−イソプレン−スチレンブロック共重合体およびスチレン−イソブチレンブロック共重合体の少なくともいずれかを含むエラストマー組成物よりなり、厚さが0.01mm〜0.3mmであることを特徴とする空気入りタイヤの製造方法に関する。
前記アッセンブル工程において、インナーライナーの幅と未加硫ゴムシートの幅は異なっており、それらの幅方向の両端部が相互に重複しないように幅方向にずらして貼り合わされることができる。
そして、前記第1層は、SIBS変性共重合体の配合量はエラストマー成分の10質量%〜100質量%の範囲で調整されることが望ましい。また前記第2層は、SIBS変性共重合体を含み、その配合量が熱可塑性エラストマー成分の5質量%〜80質量%の範囲で調整されることが望ましい。
前記第1層は、スチレン−イソブチレン−スチレンブロック共重合体とSIBS変性共
重合体の混合物とすることができる。更に前記第1層および第2層のいずれかは、粘着付与剤が配合されることが望ましい。また前記第1層および第2層のいずれかは、ゴム成分がエラストマー成分の5〜75質量%配合されることが望ましい。
また本発明の空気入りタイヤの製造方法は、インナーライナーの第1層には、紫外線吸収剤または酸化防止剤の少なくともいずれかがエラストマー成分100質量部に対し0.5質量%〜40質量%配合されていることを特徴とする。
本発明は、インナーライナーをSIBS変性共重合体よりなる第1層とSISまたはSIBを含む第2層の複合層で構成し、未加硫ゴムシートとを幅方向に相互にずらして積層し、その積層体をインナーライナーが内面側となるようにしてドラム上に、その全周にわたって巻き付け、インナーライナーおよび未加硫ゴムシートのそれぞれの端部を、ドラムの周方向に相互に離隔した位置で接合させることにより、インナーライナーの接合部と未加硫ゴムシートの接合部における厚みの段差を緩和させることができる。そしてステッチングに際して、それらの接合部のエアーを確実に除去することができ残留エアーに起因する接合部の剥離を軽減できる。
また成形されたインナーライナーとカーカスプライなどの未加硫ゴムシートとは相互には円周方向に隔離した接合部が形成されることになることから、カーカスプライの接合部に剥離が生じても、インナーライナーによって該剥離部分は補強されるため、製品タイヤの損傷および破損は緩和されることになる。
そしてカーカスプライの接合部が剥離した場合のインナーライナーによる補強効果は高くなり、一方、インナーライナーの接合部が剥離した場合のカーカスプライによる補強効果は高くなる。
特に、上記製造方法を採用するとともに、インナーライナーを第1層および第2層の積層構造とし、第1層にSIBS変性共重合体を使用し、第2層にSISまたはSIBのいずれかを使用することで、屈曲亀裂成長性、耐久走行指数およびユニフォミティが改善される。さらに第1層に紫外線吸収剤、酸化防止剤を配合することで耐候性も向上する。
アッセンブル工程を示す概略図である。 アッセンブル工程の概略を示す斜視図である。 裁断工程を示す概略図である。 (a)は、裁断シートの断面図、(b)は裁断シートをドラムに巻き付ける状態を示す概略図である。 裁断工程を示す概略図である。 (a)は、裁断シートの断面図、(b)は裁断シートをドラムに巻き付ける状態を示す概略図である。 従来のインナーライナーの成形方法の概略図である。 空気入りタイヤの概略断面図である。 積層体の概略断面図である。
本発明はインナーライナーをタイヤ内側に備えた空気入りタイヤの製造方法であって、該製造方法は、以下の生タイヤの成形工程で行われる。
(a)インナーライナーの幅方向端部と未加硫ゴムシートの幅方向端部を、幅方向に相互に50mm〜500mmの範囲で、ずらして貼り合わせて積層体を製造するアッセンブル工程。
(b)前記積層体を、ドラム幅に対応する一定長さに切断して、裁断シートを製造する裁断工程。
(c)前記裁断シートを、その裁断面がドラム周方向となり、かつインナーライナーが内面側となるようにドラム全周に巻きつけて、インナーライナーの端部と、未加硫ゴムシートの端部の位置を一定距離ずらして接合する接合工程。
ここで、本発明の空気入りタイヤの製造方法について図を参照して説明する。
実施の形態1
<アッセンブル工程>
図1はアッセンブル工程を示す横方向概略図であり、図2はアッセンブル工程を示す斜視概略図である。図1および図2において、フィルム状のインナーライナー2は離型紙で被覆された状態で、保管ロールR1から第1駆動ローラR2を介して矢印方向に送られて剥離ローラR3,R4において離型紙と分離される。そして、インナーライナー2は、一対のカレンダーロールR7に送られる。
一方、未加硫ゴムシート3は、第2駆動ローラR6を介して、一対のカレンダーロールR7に送られる。ここでインナーライナー2と未加硫ゴムシート3は貼合されて積層体1が製造される。積層体1は、巻取ロールR8に巻き取られて一時保管されるか、若しくは、連続的にその後の裁断工程に送られる。ここで、インナーライナー2と未加硫ゴムシート3は、実質的に同じ幅のものが使用されており、これらの両端の位置は相互にずらされており、ずらし距離Lが形成されている。
ここでずらし距離Lは、50mm〜500mmの範囲、好ましくは100mm〜300mmの範囲で調整される。ずらし距離Lが、50mmより小さい場合には、未加硫ゴムシートの接合部とインナーライナーの接合部の間隔が狭くなり、接合部での接着不良が生じやすいからである。一方、ずらし距離Lが500mmを超えると、ドラム上でのタイヤ成形が困難となる。
なお、インナーライナーは、SIBS変性共重合体を含むエラストマー組成物よりなり、厚さが0.05mm〜0.6mmである第1層と、未加硫ゴムシート側に配置され、熱可塑性エラストマーよりなり厚さが0.01mm〜0.3mmである第2層の複合層で構成されている。またインナーライナーの幅はタイヤサイズによって調整される。
本発明では、インナーライナーと未加硫ゴムシートはロールを用いて圧着されるため、空気溜まりがなく、確実に密着させることができ、また効率的で生産性が良い。
<裁断工程>
図3は裁断工程を示す斜視概略図である。積層体1はベルトコンベヤによって裁断機に、巻取ロールR8から送られるか、もしくはアッセンブル工程から連続的に送られる。積層体1は、タイヤのサイズに応じて長手方向に所定の長さで裁断され、裁断シート4を製造する。なお積層体の裁断はナイフカットなどの従来の方法が採用できる。この裁断シート4の、裁断方向がドラムの円周方向に、長手方向の裁断長さがドラム5の幅方向に対応することになる。またインナーライナーの裁断長さはタイヤサイズによって、適宜、調整される。
<接合工程>
図4は、積層体を裁断した裁断シートの接合工程を示す概略図である。ここで図4(a)は、裁断シート4の断面図であり、図4(b)は、裁断シート4をドラム5上に巻きつけ方法を示す概略図である。インナーライナー2がドラム5の表面に隣接するように積層体を巻きつける。ここでインナーライナーの端部2a,2bが相互に接合されて接合部を形成する位置と、未加硫ゴムシートの端部3a,3bが相互に接合されて接合部を形成する位置は、相互にオフセットされている。
<タイヤの成形・加硫工程>
前述の如く接合工程において、インナーライナーと未加硫カーカスプライの積層体を製造し、これをドラム状で円筒状に形成する。接合工程の後、ドラム両端に位置する積層体の両端部分をビードコアの周りに巻き返した後、ビードコア同士の間隔を狭めながらインナーライナーと未加硫のカーカスプライの積層体の中央部を膨出変形させる。この作動に伴って積層体の中央部分に、ベルト部材、トレッドゴム等を貼着し、さらにサイドウォール、ビードエーペックスなどの他のゴム部材をも貼り付けて生タイヤを成形する。このように成形された生タイヤを金型に投入して、従来の方法で加硫することで製品タイヤを製造することができる。
実施の形態2
実施の形態2では、インナーライナー2の幅W2は、未加硫ゴムシート3の幅W1よりも広く形成される。
<裁断工程>
図5は裁断工程を示す概略図である。積層体1はベルトコンベヤによって裁断機に巻取ロールR8から送られるか、もしくはアッセンブル工程から連続的に送られる。積層体1はタイヤのサイズに応じて長手方向に所定の長さで裁断されて裁断シート4が製造される。なお積層体の裁断はナイフカットなどの従来の技術が採用できる。この裁断シート4の裁断方向がドラムの円周方向に、一方、長手方向の裁断長さがドラム5の幅方向に対応することになる。
<接合工程>
図6(a)は、裁断シートの断面図、図6(b)は裁断シートをドラムに巻き付ける状態を示す概略図である。ここでドラム5の上にインナーライナー2が接するように巻きつけられ、その両端2a、2bは重複するようにして接合部を形成する。その上にインスレーションなどの未加硫ゴムシート3の両端3a、3bを接合するには、未加硫ゴム片6が用いられる。この場合に接合部は2ヶ所形成されるが、前記インナーライナーとの接合部位置とはオフセットされている。
<インナーライナー>
本発明の実施の形態1,2において使用されるインナーライナーは、タイヤ内側に配置される第1層と、前記カーカスプライのゴム層と接して配置される第2層の複合層で構成されている。
前記第1層は、スチレン−イソブチレン−スチレンブロック共重合体(以下、「SIBS」ともいう。)のスチレンブロック部分が不飽和結合を有する酸塩化物もしくは酸無水物で変性されたSIBS変性共重合体を含む熱可塑性エラストマー組成物である。
また前記第2層は、スチレン−イソプレン−スチレンブロック共重合体(以下、「SIS」ともいう。)およびスチレン−イソブチレンブロック共重合体(以下、「SIB」ともいう。)の少なくともいずれかを含むエラストマー組成物である。
<第1層>
前記第1層は、SIBS変性共重合体をエラストマー成分の10質量%〜100質量%含む組成物である。ここでSIBS変性共重合体は、そのスチレンブロック部分が不飽和結合を有する酸塩化物もしくは酸無水物で変性されたものであり、分子鎖中に次の式(1)の化学構造を含んでいる。
Figure 2013136224
式中(1)において、R1は官能基を有する一価の有機基である。
本発明で変性に用いられる不飽和結合を有する酸塩化物とは、メタクリル酸クロライド、メタクリル酸ブロマイド、メタクリル酸ヨウダイド、アクリル酸クロライド、アクリル酸ブロマイド、アクリル酸ヨウダイド、クロトニル酸クロライドおよびクロトニル酸ブロマイドが例示される。特に、メタクリル酸クロライド、アクリル酸クロライドが好適である。
また酸無水物とは、無水酢酸、無水マレイン酸、無水フタル酸等が例示されるが、特に、無水酢酸が好適である。これの化合物は、二種類以上を併用することも可能である。係る変性により不飽和基がSIBSに導入されるため、架橋剤を用いた架橋を可能とすることができる。
前述の如く、SIBS変性共重合体の配合量は、エラストマー成分の10〜100質量%、好ましくは30〜100質量%の範囲である。SIBS変性共重合体の配合量が、エラストマー成分の10質量%未満の場合は、第1層と第2層およびカーカスプライゴムとの加硫接着が十分でないことがある。
SIBS変性共重合体における、不飽和結合を有する酸塩化物及び酸無水物の含量は、1%重量以上、好ましくは5重量%以上であり、30重量%以下である。SIBS変性共重合体を架橋には、従来の方法を用いることができ、例えば、加熱による熱架橋、架橋剤による架橋を行うことができる。ここで架橋剤としては、有機パーオキサイド、例えば、ジクミルパーオキサイド、ジ‐tert‐ブチルパーオキサイド、2,5‐ジメチル‐2,5‐ジ‐(tert‐ブチルパーオキシ)ヘキサンなどが使用できる。有機パーオキサ
イドの配合量は、熱可塑性エラストマー成分100質量部に対して0.1〜3.0質量部の範囲が好ましい。
本発明において第1層のエラストマー組成物は、多官能性ビニルモノマー、例えばジビニルベンゼン、トリアリルシアヌレート、又は多官能性メタクリレートモノマー、例えばエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレートを架橋剤として併用することができ、この場合、架橋後における組成物の屈曲亀裂特性の向上が期待できる。
SIBS変性共重合体は、イソブチレンブロック由来により、SIBS変性共重合体からなるフィルムは優れた耐空気透過性を有する。またSIBS変性共重合体は、不飽和基がISBSに導入されているため、熱架橋および架橋剤による架橋が可能となり、引張強度、破断時伸および永久歪などの基本特性とともに、屈曲亀裂特性および耐空気透過性が改善されインナーライナーとしての特性が改善される。
SIBS変性共重合体を含むエラストマー組成物からなるポリマーフィルムをインナーライナーに適用して空気入りタイヤを製造した場合には、耐空気透過性を確保できる。したがってハロゲン化ブチルゴム等の、従来耐空気透過性を付与するために使用されてきた高比重のハロゲン化ゴムを使用する必要がなく、使用する場合にも使用量の低減が可能である。これによってタイヤの軽量化が可能であり、燃費の向上効果が得られる。
SIBS変性共重合体の分子量は特に制限はないが、流動性、成形化工程、ゴム弾性などの観点から、GPC測定による重量平均分子量が50,000〜400,000であることが好ましい。重量平均分子量が50,000未満であると引張強度、引張伸びが低下するおそれがあり、400,000を超えると押出加工性が悪くなるおそれがあるため好ましくない。SIBS変性共重合体は耐空気透過性と耐久性をより良好にする観点から、SIBS中のスチレン成分の含有量は10〜30質量%、好ましくは14〜23質量%であることが好ましい。
該SIBSは、その共重合体において、各ブロックの重合度は、ゴム弾性と取り扱い(重合度が10,000未満では液状になる)の点からイソブチレンでは10,000〜150,000程度、またスチレンでは5,000〜30,000程度であることが好ましい。
<SIBS変性共重合体の製造>
SIBSは、一般的なビニル系化合物のリビングカチオン重合法により得ることができ。例えば、特開昭62−48704号公報および特開昭64−62308号公報には、イソブチレンと他のビニル化合物とのリビングカチオン重合が可能であり、ビニル化合物にイソブチレンと他の化合物を用いることでポリイソブチレン系のブロック共重合体を製造できることが開示されている。
SIBS変性共重合体の製造は例えば次の方法が採用できる。セパラブルフラスコにスチレン―イソブチレンースチレンブロック共重合体を入れた後、重合容器内を窒素置換する。その後モレキュラーシーブスで乾燥した、有機溶剤(例えば、n−ヘキサン及びブチルクロリド)を加え、さらにメタクリル酸クロライドを加える。最後に、溶液を攪拌しながら三塩化アルミニウムを加えて反応させる。反応開始から一定時間後に反応溶液に所定量の水を加えて攪拌して反応を終了させる。反応溶液を多量の水で数回以上水洗を行い、さらに大量のメタノールとアセトン混合溶媒にゆっくりと滴下して重合体を沈殿させ、得られた重合体を真空乾燥することにより得られる。なおSIBS変性共重合体の製法は、
例えば特許第4551005号公報に開示されている。
<SIBS変性共重合体を含むエラストマー組成物>
前記第1層はSIBS変性共重合体を含むエラストマー組成物である。即ち、エラストマー成分中にSIBS変性共重合体を10質量%以上、さらに35質量%以上含むことが好ましい。ここでエラストマー成分は、スチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマーなどが好適に使用できる。
第1層の厚さは、0.05〜0.6mmである。第1層の厚さが0.05mm未満であると、第1層と第2層よりなるポリマー積層体をインナーライナーに適用した生タイヤの加硫時に、第1層がプレス圧力で破れてしまい、得られたタイヤにおいてエアーリーク現象が生じる虞がある。一方、第1層の厚さが0.6mmを超えるとタイヤ重量が増加し、低燃費性能が低下する。第1層の厚さは、さらに0.05〜0.4mmであることが好ましい。第1層は、押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法が採用できる。
<第2層>
前記第2層は、スチレン−イソプレン−スチレンブロック共重合体(SIS)およびスチレン−イソブチレンブロック共重合体(SIB)のいずれかの熱可塑性エラストマーを含む組成物である。また第2層はSIBS変性共重合体、スチレン系熱可塑性エラストマーまたはゴム成分を含むことができる。SIBS変性共重合体は、熱可塑性エラストマー成分全体の5〜80質量%、さらに10〜80質量%の範囲が好ましい。SIBS変性体共重合体が、5質量%未満の場合は、第1層との加硫接着力が低下する可能性があり、80質量%を超えるとカーカスプライとの接着力が低下する可能性がある。
ここでスチレン系熱可塑性エラストマーは、ハードセグメントとしてスチレンブロックを含む共重合体をいう。例えば、スチレン−イソプレン−スチレンブロック共重合体(SIS)、スチレン−イソブチレンブロック共重合体(SIB)、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−イソブチレン−スチレンブロック共重合体(SIBS)、スチレン−エチレン・ブテン−スチレンブロック共重合体(SEBS)、スチレン−エチレン・プロピレン−スチレンブロック共重合体(SEPS)、スチレン−エチレン・エチレン・プロピレン−スチレンブロック共重合体(SEEPS)、スチレン−ブタジエン・ブチレン−スチレンブロック共重合体(SBBS)がある。
また、スチレン系熱可塑性エラストマーは、その分子構造において、エポキシ基を有してもよく、例えば、ダイセル化学工業(株)社製、エポフレンドA1020(重量平均分子量が10万、エポキシ当量が500)のエポキシ変性スチレン−ブタジエン−スチレン共重合体(エポキシ化SBS)が使用できる。
スチレン−イソプレン−スチレン共重合体(SIS)のイソプレンブロックはソフトセグメントであるため、SISからなるポリマーフィルムはゴム成分と加硫接着しやすい。したがって、SISからなるポリマーフィルムをインナーライナーに用いた場合、該インナーライナーは、たとえばカーカスプライのゴム層との接着性に優れているため、耐久性に優れた空気入りタイヤを得ることができる。
前記SISの分子量は特に制限はないが、ゴム弾性および成形性の観点から、GPC測定による重量平均分子量が100,000〜290,000であることが好ましい。重量平均分子量が100,000未満であると引張強度が低下するおそれがあり、290,000を超えると押出加工性が悪くなるため好ましくない。SIS中のスチレン成分の含有量は、粘着性、接着性およびゴム弾性の観点から10〜30質量%が好ましい。
本発明において、SISにおける、各ブロックの重合度は、ゴム弾性と取り扱いの観点からイソプレンでは500〜5,000程度、またスチレンでは50〜1,500程度であることが好ましい。
前記SISは、一般的なビニル系化合物の重合法により得ることができ、例えば、リビングカチオン重合法により得ることができる。SIS層は、SISを押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。
スチレン−イソブチレンブロック共重合体(SIB)のイソブチレンブロックはソフトセグメントであるため、SIBからなるフィルムはゴム成分と加硫接着しやすい。したがって、SIBからなるポリマーフィルムをインナーライナーに用いた場合、該インナーライナーは、たとえばカーカスやインスレーションを形成する隣接ゴムとの接着性に優れているため、耐久性に優れた空気入りタイヤを得ることができる。
SIBとしては、直鎖状のものを用いることがゴム弾性および接着性の観点から好ましい。SIBの分子量は特に制限はないが、ゴム弾性および成形性の観点から、GPC測定による重量平均分子量が40,000〜120,000であることが好ましい。重量平均分子量が40,000未満であると引張強度が低下するおそれがあり、120,000を超えると押出加工性が悪くなるおそれがあるため好ましくない。SIB中のスチレン成分の含有量は、粘着性、接着性およびゴム弾性の観点から10〜35質量%であることが好ましい。本発明において、SIBにおける、各ブロックの重合度は、ゴム弾性と取り扱いの観点からイソブチレンでは300〜3,000程度、またスチレンでは10〜1,500程度であることが好ましい。
前記SIBは、一般的なビニル系化合物のリビング重合法により得ることができ、例えば、攪拌機にメチルシクロヘキサン、n−ブチルクロライド、クミルクロライドを加え、−70℃に冷却した後、2時間反応させ、その後に大量のメタノールを添加して反応を停止させ、60℃で真空乾燥してSIBを得ることができる。
SIB層は、SIBを押出成形またはカレンダー成形などのスチレン系熱可塑性エラストマーをフィルム化する通常の方法によって成型できる。第2層の厚さは、0.01mm〜0.3mmが好ましい。ここで第2層がSIS層およびSIB層の複合層の場合は、合計厚さを意味する。第2層の厚さが0.01mm未満であると、複合層をインナーライナーに適用した生タイヤの加硫時に、第2層がプレス圧力で破れてしまい、加硫接着力が低下する虞がある。一方、第2層の厚さが0.3mmを超えるとタイヤ重量が増加し低燃費性能が低下する可能性がある。
<SIBSとの混合物>
本発明では第2層をSISとSIBSの混合物、またはSIBとSIBSの混合物で構成することができる。この場合、SIBSの配合量は、エラストマー成分の10〜80質量%の範囲で調整される。SIBSが10質量%より少ないと第1層との接着性が低下し、SIBSが80質量%を超えるとカーカスプライとの接着性が低下する傾向がある。
<粘着付与剤>
本発明において、前記第1層及び第2層の少なくともいずれかは、エラストマー成分100質量に対し、粘着付与剤を0.1〜100質量部の範囲で配合できる。ここで粘着付与剤とは、エラストマー組成物の粘着性を増進するための配合剤をいい、例えば次の粘着付与剤が例示される。
典型的には、C9石油樹脂、C5石油樹脂がある。ここでC9石油樹脂は、ナフサを熱分解して、エチレン、プロピレン、ブタジエンなどの有用な化合物を得ているが、それらを取り去った残りのC5〜C9留分(主としてC9留分)を混合状態のまま重合して得られた芳香族石油樹脂である。例えば、商品名として、アルコンP70、P90、P100、P125、P140、M90、M100、M115、M135(いずれも、荒川化学工業(株)社製、軟化点70〜145℃)、またアイマーブS100、S110、P100、P125、P140(いずれも出光石油化学(株)製、芳香族共重合系水添石油樹脂、軟化点100〜140℃、重量平均分子量700〜900、臭素価2.0〜6.0g/100g)、さらに、ペトコールXL(東ソー(株)製)がある。
またC5石油樹脂とは、ナフサを熱分解して、エチレン、プロピレンやブタジエンなどの有用な化合物を得ているが、それらを取り去った残りのC4〜C5留分(主としてC5留分)を混合状態のまま重合して、得られた脂肪族石油樹脂である。商品名として、ハイレッツG100(三井石油化学(株)製、軟化点が100℃)、またマルカレッツT100AS(丸善石油(株)製、軟化点100℃)、さらにエスコレッツ1102(トーネックス(株)製、軟化点が110℃)がある。
テルペン樹脂は、例えば、商品名として、YSレジンPX800N、PX1000、PX1150、PX1250、PXN1150N、クリアロンP85、P105、P115、P125、P135、P150、M105、M115、K100(いずれもヤスハラケミカル(株)製、軟化点は75〜160℃)がある。
芳香族変性テルペン樹脂は、例えば、商品名として、YSレジンTO85、TO105、TO115、TO125(いずれもヤスハラケミカル(株)製、軟化点75〜165℃)がある。
テルペンフェノール樹脂は、例えば商品名として、タマノル803L、901(荒川化学工業(株)製、軟化点120℃〜160℃)、またYSポリスターU115、U130、T80、T100、T115、T145、T160(いずれもヤスハラケミカル(株)製、軟化点75〜165℃)がある。
クマロン樹脂は、例えば、軟化点90℃のクマロン樹脂(神戸油化学工業(株)製)がある。クマロンインデンオイルは、例えば商品名として、15E(神戸油化学工業(株)製、流動点15℃)がある。
ロジンエステルは、例えば商品名として、エステルガムAAL、A、AAV、105、AT、H、HP、HD(いずれも荒川化学工業(株)製、軟化点68℃〜110℃)、またハリエスターTF、S、C、DS70L、DS90、DS130(いずれもハリマ化成(株)製、軟化点68℃〜138℃)がある。水添ロジンエステルは、例えば商品名として、スーパーエステルA75、A100、A 115、A125(いずれも荒川化学工業
(株)製、軟化点70℃〜130℃)がある。
アルキルフェノール樹脂は、例えば商品名として、タマノル510(荒川化学工業(株)製、軟化点75℃〜95℃)がある。DCPDは、商品名として、エスコレッツ5300(トーネックス(株)製、軟化点105℃)がある。
粘着付与剤は、C9石油樹脂の完全水添系石油樹脂がSIBと相溶性がよく、またガスバリア性も低下することなく、接着性を高めることができる。また粘度も下げる効果もあり、フィルム押出成形にも有利に使用できる。
前記粘着付与剤は、第1層のエラストマー成分100質量部に対して、0.1〜100質量部、好ましくは、1〜50質量部の範囲で配合される。粘着付与剤が0.1質量部未満の場合は、第2層との加硫接着力が十分でなく、一方、100質量部を超えると粘着性が高くなりすぎて、加工性、生産性を低下し、更にガスバリア性が低下することになる。
第2層は、タイヤ内側の第1層とカーカスプライの間に配置され、これら両者との接着性が要求される。そこで前記粘着付与剤は、第2層のエラストマー成分100質量部に対して、0.1〜100質量部、好ましくは、1〜50質量部の範囲で配合される。粘着付与剤が0.1質量部未満の場合は、第1層との加硫接着力が十分でなく、一方、100質量部を超えると粘着性が高くなりすぎて、加工性、生産性を低下し、更にガスバリア性が低下することになる。
<ゴム成分>
第1層または第2層のエラストマー組成物には、ゴム成分を配合することができる。ゴム成分の配合によって、隣接するカーカスプライとの未加硫状態での粘着性を付与し、加硫によりカーカスプライやインスレーションとの加硫接着性を高めることができる。
ゴム成分は天然ゴム、イソプレンゴム、クロロプレンゴムおよびブチルゴムよりなる群から選択される少なくとも1種を含みことが好ましい。ゴム成分の配合量は、エポリマー成分中、5〜75質量%の範囲が好ましい。
<紫外線吸収剤および酸化防止剤>
本発明において、エラストマー組成物は、好ましくは紫外線吸収剤を含む。紫外線吸収剤は、波長290nm以上の紫外線領域の光を吸収し高分子化合物の分子鎖の劣化を防止する。例えば、ベンゾフェノン系、サリチレート系およびベンゾトリアゾール系の紫外線吸収剤は高分子化合物が最も劣化を受けやすい波長320nm〜350nm付近の紫外線光を吸収する。この波長域の光を振動エネルギーや熱エネルギーに変換することで高分子化合物への吸収を防止する機能を有する。特に、ベンゾトリアゾール系紫外線吸収剤が幅広い紫外線光を吸収できる。ここで、紫外線吸収剤を例示すれば次のとおりである。
[ベンゾトリアゾール系紫外線吸収剤]
ベンゾトリアゾール系紫外線吸収剤として、TINUVIN P/FL(BASF社製、分子量225、融点128〜132℃、最大吸収波長341nm)(2−(2−ヒドロキシ−ベンゾトリアゾール−2−イル)−p−クレゾール)、TINUVIN 234(BASF社製、分子量447.6、融点137〜141℃、最大吸収波長343nm)(2−[2−ヒドロキシ−3,5−ビス(α、α’ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール)、TINUVIN 326/FL(BASF社製、分子量315.8、融点138〜141℃、最大吸収波長353nm)、アデカスタブLA−36((株)ADEKA製)(2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール)、TINUVIN 237(BASF社製、分子量338.4、融点139〜144℃、最大吸収波長359nm)(2,4−ジ−t−ブチル−6−(5−クロロベンゾトリアゾール−2−イル−)フェノール)、TINUVIN 328(BASF社製、分子量351.5、融点80〜88℃、最大吸収波長347nm)(2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール)およびTINUVIN 329/FL(BASF社製、分子量323、融点103〜105℃、最大吸収波長343nm)(2−(2−ヒドロキシ−ベンゾトリアゾール−2−イル)−4−tert−オクチルフェノール)が例示できる。
[液状紫外線吸収剤]
液状紫外線吸収剤として、TINUVIN 213(BASF社製、融点−40℃、最大吸収波長344nm)(5−(2−ヒドロキシ−ベンゾトリアゾール−2−イル)−4−ヒドロキシ−3−tert−ブチルベンゼンプロパン酸メチル)、TINUVIN 571(BASF社製、分子量393.6、融点−56℃、最大吸収波長343nm)(2−(2−ヒドロキシ−ベンゾトリアゾール−2−イル)−4−メチル−6−ドデシルフェノール)、[トリアジン系紫外線吸収剤]およびTINUVIN 1577FF(BASF社製、分子量425、融点148℃、最大吸収波長274nm)(2−[4,6−ジフェニル−1,3,5−トリアジン−2−イル]−5−(ヘキシルオキシ)フェノール)が例示できる。
[ベンゾフェノン系紫外線吸収剤]
ベンゾフェノン系紫外線吸収剤として、CHIMASSORB 81/FL(BASF社製、分子量326.4、融点48〜49℃)(2−ヒドロキシ−4−(オクチルオキシ)ベンゾフェノン)が例示できる。
[ベンゾエート系紫外線吸収剤]
ベンゾエート系紫外線吸収剤として、TINUVIN 120(BASF社製、分子量438.7、融点192〜197℃、最大吸収波長265nm)(2,4−ジ−tert−ブチルフェニル−3,5−ジ−tert−ブチル−4−ヒドロキシベンゾエート)が例示できる。
[ヒンダードアミン系安定剤]
ヒンダードアミン系安定剤として、CHIMASSORB 2020 FDL(BASF社製、分子量2600〜3400、融点130〜136℃)(ジブチルアミン1,3,5−トリアジン・N,N−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミン・N−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物)、CHIMASSORB 944 FDL(BASF社製、分子量2000〜3100、融点100〜135℃)(ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{2,2,6,6−テトラメチル−4−ピペリジル)イミノ}])、TINUVIN 622 LD(BASF社製、分子量3100〜4000、融点55〜70℃)(ブタン二酸1−[2−(4−ヒドロキシ−2,2,6,6−テトラメチルピペリジノ)エチル])、TINUVIN 144(BASF社製、分子量685、融点146〜150℃)(2−ブチル−2−[3,5−ジ(tert−ブチル)−4−ヒドロキシベンジル]マロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、TINUVIN 292(BASF社製、分子量509)(セバシン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル))、TINUVIN 770 DF(BASF社製、分子量481、融点81〜85℃)(セバシン酸ビス(2,2,6,6−テトラメチルピペリジン−4−イル)が例示できる。
本発明において、熱可塑性エラストマー組成物に酸化チタンを配合することにより、紫外線透過を抑制するため、紫外線照射による劣化を防ぐことができる。また酸化チタンを熱可塑性エラストマー中に配合する場合は、分散不良により耐久性が悪化する虞があるため、混合する際には均一な分散をさせることに注意する必要がある。
また、前記エラストマー組成物は、好ましくは酸化防止剤を含む。酸化防止剤は、紫外線吸収剤はラジカル補足剤として機能し、主に炭素ラジカルを補足することで、高分子の分子鎖の劣化を防止できる。特に、紫外線吸収剤と酸化防止剤の併用が好ましい。本発明に用いられる酸化防止剤を以下に例示する。
[ヒンダードフェノール系酸化防止剤]
IRGANOX1010(BASF製)、アデカスタブAO−60((株)ADEKA製)、スミライザーBP−101(住友化学(株)製)(ペンタエリスリチル・テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート])、IRGANOX1035(BASF製)(2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート])、IRGANOX1076(BASF製)(オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)、IRGANOX1098(BASF製)(N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド))、IRGANOX1135(BASF製)(イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート])、IRGANOX1330(BASF製)(1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン)、IRGANOX1726(BASF製)(4,6−ビス(ドデシルチオメチル)−O−クレゾール)、IRGANOX1425(BASF製)(ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホン酸エチル)カルシウム(50%)、ポリエチレンワックス(50%))、IRGANOX1520(BASF製)(2,4−ビス[(オクチルチオ)メチル]−O−クレゾール)、IRGANOX245(BASF製)(トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート])、IRGANOX259(BASF製)(1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート])、IRGANOX3114(BASF製)(トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト)、IRGANOX5057(BASF製)(オクチル化ジフェニルアミン)、IRGANOX565(BASF製)(2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン)、サイアノックスCY1790(サンケミカル(株)製)(1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸)、アデカスタブAO−40((株)ADEKA製)、スミライサーBBM(住友化学(株)製)(4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール))、アデカスタブAO−50((株)ADEKA製)、スミライザーBP-76(住友化学(株)製)(ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)、アデカスタブAO−80((株)ADEKA製)、スミライザーGA-80(住友化学(株)製)(3,9−ビス[1,1−ジメチル−2−[β−(3−t−ブチル−4−ヒドロキシ−5−メチルフィエニル)プロピオニルオキシ]エチル]2,4,8,10−テトラオキサスピロ[5,5]−ウンデカン)。
[リン系酸化防止剤]
リン系酸化防止剤は、過酸化物分解剤として使用され、熱加工成型時の酸化防止機能に優れており、例えば、以下のものがある。
IRGAFOS12(BASF製、分子量1462.9)(6,6’,6’’−[ニトリロトリス(エチレンオキシ)]トリス(2,4,8,10−テトラ−tert−ブチルベンゾ[d,f][1,3,2]ジオキサホスフェピン))、IRGAFOS38(BASF製、分子量514)(亜リン酸エチルビス(2,4−ジ−tert−ブチル−6−メチルフェニル))、IRGAFOS168(BASF製、分子量646)、アデカスタブ2112((株)ADEKA製)、スミライザーP−16(住友化学(株)製)(トリス(2,4−ジ−t−ブチルフェニル)フォスファイト)、アデカスタブPEP−8((株)ADEKA製)(ジステアリルペンタエリスリトールジフォスファイト)、アデカスタブPEP−36((株)ADEKA製)(サイクリックネオペンタンテトライルビス(2,6−ジ−t−ブチル−4−メチルフェイニル)フォスファイト)。
[ヒドロキシルアミン系]
IRGASTAB FS 042(BASF製)(N,N−ジオクタデシルヒドロキシルアミン)、[ヒンダードフェノール/リン混合系酸化防止剤]、IRGANOX B 225(BASF製)(IRGAFOS168:IRGANOX1010=1:1)、IRGANOX215(BASF製)(IRGAFOS168:IRGANOX1010=2:1)、IRGANOX220(BASF製)(IRGAFOS168:IRGANOX1010=3:1)、IRGANOX921(BASF製)(IRGAFOS168:IRGANOX1076=2:1)。
[酸素吸収剤]
本発明において酸化防止剤は酸素吸収剤を包含する概念である。酸素吸収剤は空気中の酸素捕捉能がある一般的な酸素吸収剤を用いることができ、例えば、鉄粉の酸化反応を利用して空気中の酸素を吸収する鉄粉末酸素吸収剤をあげることができ、通常、表面積が0.5m2/g以上の鉄粉100重量部に対し、0.1〜50重量部のハロゲン化金属、例えば塩化ナトリウム、臭化ナトリウム、塩化カルシウム、塩化マグネシウムなどのアルカリ金属またはアルカリ土類金属の塩素、臭素、ヨウ素などのハロゲン化物を組合せて用いる。これは両者の混合物として、また鉄粉表面をハロゲン化金属で被覆したものでもよい。
なお、本発明に用いる酸素吸収剤にはさらにゼオライトなどの多孔性粒子に水分を含浸させたものをさらに組合せて前記酸素による鉄の酸化をさらに促進させることができる。特に、炭素ラジカルのラジカルトラップ剤としてヒンダードフェノール系酸化防止剤が好ましい。
本発明において、上記紫外線吸収剤および酸化防止剤について、これらのうち少なくとも1種、もしくは2種以上を組合せて使用できる。特に、ベンゾトリアゾール系紫外線吸収剤とヒンダードフェノール系酸化防止剤を組合せて使うことが好ましい。
[紫外線吸収剤/酸化防止剤の配合量]
スチレン−イソブチレン−スチレンブロック共重合体を含むエラストマー組成物は、紫外線の波長290nm以上の波長領域で劣化を受けやすい。そこで紫外線吸収剤をエラストマー組成物に配合することで、最も劣化を受けやすい320nm〜350nm付近の光を吸収し、無害の振動エネルギーや熱エネルギーに変換することで、エラストマー組成物を紫外線から保護する。ここで紫外線吸収剤は光安定剤を包含する概念である。
一方、エラストマー組成物は、タイヤ走行時の屈曲疲労によってラジカルを発生し、ラジカルが主鎖を誘発し連鎖的に劣化が進行し、エラストマー組成物の亀裂発生・破壊を招来しやすい。そこで酸化防止剤を配合することで、屈曲疲労により発生したラジカルを補足し劣化を防ぐ機能を有する。
本発明において第1層のエラストマー組成物は、紫外線吸収剤および酸化防止剤の少なくともいずれかを含むが、これらの合計の配合量は、エラストマー成分の0.5〜40質量%の範囲である。0.5質量%未満では、紫外線による劣化防止、酸素による酸化劣化の防止の効果がない。一方、40質量%を超えるとエラストマー組成物の耐久性が低下することがある。紫外線吸収剤および酸化防止剤は、エラストマー成分の2.0〜20質量%の範囲が好ましい。
<第1層と第2層の複合層>
本発明において、インナーライナーは前記第1層と前記第2層の複合層で構成される。ここで第1層、第2層は熱可塑性エラストマーの組成物であり、加硫温度、例えば150℃〜180℃において、金型中で軟化状態にある。熱可塑性エラストマーは軟化状態では、分子運動性が向上し固体と液体の中間状態となる。また、軟化状態では固体状態よりも反応性が向上するため、隣接する部材と粘着、接着する。そのため、熱可塑性エラストマーの形状変化や隣接部材との粘着、融着を防止するために、タイヤの製造の際には、冷却工程を設けることが好ましい。冷却工程は、タイヤ加硫後に、10〜300秒間、50〜120℃に急冷しブラダー部内を冷却することができる。冷却媒体としては、空気、水蒸気、水およびオイルより選択される1種以上が使用される。かかる冷却工程を採用することで、0.9mm以下の薄いインナーライナーを形成することが容易となる。
<タイヤの構造>
本発明のタイヤ内側にインナーライナーを備えた空気入りタイヤを図8に基づいて説明する。図8は空気入りタイヤの右半分の概略断面図である。空気入りタイヤ11は、トレッド部12と、該トレッド部両端からトロイド形状を形成するようにサイドウォール部13とビード部14とを有している。さらに、ビード部14にはビードコア15が埋設される。また、一方のビード部14から他方のビード部に亘って設けられ、両端をビードコア15のまわりに巻き返して係止されるカーカスプライ16と、該カーカスプライ16のクラウン部外側には、少なくとも2枚のプライよりなるベルト層17とが配置されている。
前記ベルト層17は、通常、スチールコードまたはアラミド繊維等のコードよりなるプライの2枚をタイヤ周方向に対して、コードが通常5〜30°の角度になるようにプライ間で相互に交差するように配置される。なおベルト層の両端外側には、トッピングゴム層を設け、ベルト層両端の剥離を軽減することができる。またカーカスプライはポリエステル、ナイロン、アラミド等の有機繊維コードがタイヤ周方向にほぼ90°に配列されており、カーカスプライとその折り返し部に囲まれる領域には、ビードコア15の上端からサイドウォール方向に延びるビードエーペックス18が配置される。また前記カーカスプラ
イ16のタイヤ半径方向内側には一方のビード部14から他方のビード部14に亘るインナーライナー19が配置されている。
次にインナーライナーの加硫タイヤにおけるカーカスプライとの配置状態を図9において示す。図9において、複合層PLは、第1層PL1および第2層PL2から構成される。該複合層PLを空気入りタイヤのインナーライナーに適用する場合、第2層PL2がカーカスプライCに接するようにタイヤ半径方向外側に向けて設置すると、タイヤの加硫工程において、第2層PL2とカーカスCとの接着強度を高めることができる。得られた空気入りタイヤは、インナーライナーとカーカスプライCのゴム層とが良好に接着しているため、優れた耐空気透過性を有する。
<空気入りタイヤの製造方法>
本発明の空気入りタイヤの製造方法は従来の製造方法を用いることができる。前記複合層PLを用いてインナンーライナーを製造する。空気入りタイヤ11の生タイヤに前記インナーライナーを適用して他の部材とともに加硫成形することによって製造する。複合層PLを生タイヤに配置する際は、複合層PLの第2層PL2が、カーカスプライCに接するようにタイヤ半径方向外側に向けて配置する。このように配置するとタイヤ加硫工程において、第2層PL2とカーカス6との接着強度を高めることができる。得られた空気入りタイヤは、インナーライナーとカーカスプライCのゴム層とが良好に接着しているため優れた耐空気透過性を有する。
以下、本発明の空気入りタイヤの製造方法を実施例に基づき説明する。
<インナーライナー用の複合層>
本発明の第1層および第2層よりなるポリマー積層体の製造に用いた熱可塑性エラストマー成分としてSIB、SIS、SIBSおよびSIBS変性共重合体は以下のとおり調整した。
[SIB]
攪拌機付き2L反応容器に、メチルシクロヘキサン(モレキュラーシーブスで乾燥したもの)589mL、n−ブチルクロライド(モレキュラーシーブスで乾燥したもの)613ml、クミルクロライド0.550gを加えた。反応容器を−70℃に冷却した後、α−ピコリン(2−メチルピリジン)0.35mL、イソブチレン179mLを添加した。さらに四塩化チタン9.4mLを加えて重合を開始し、−70℃で溶液を攪拌しながら2.0時間反応させた。次に反応容器にスチレン59mLを添加し、さらに60分間反応を続けた後、大量のメタノールを添加して反応を停止させた。反応溶液から溶剤などを除去した後に、重合体をトルエンに溶解して2回水洗した。このトルエン溶液をメタノール混合物に加えて重合体を沈殿させ、得られた重合体を60℃で24時間乾燥することによりスチレン−イソブチレンジブロック共重合体を得た(スチレン成分含有量:15質量%、重量平均分子量:70,000)。
[SIS]
クレイトンポリマー社製のD1161JP(スチレン成分含有量15質量%、重量平均分子量:150,000)を用いた。
[SIBS]
カネカ(株)社製の「シブスターSIBSTAR 102T(ショアA硬度25、スチレン成分含有量15質量%、重量平均分子量:100,000)」を用いた。
[SIBS変性共重合体の製造]
2リットルのセパラブルフラスコにスチレン―イソブチレンブロック共重合体75g(スチレン含量30質量%、スチレンユニットのモル数0.216モル)を入れて、容器内を窒素で置換した。注射器を用いて、モレキュラーシーブスで乾燥したn−ヘキサン1200mL及びモレキュラーシーブスで乾燥したn−ブチルクロリド1800ミリリットルを加えた。
次に、シリンジを用いてメタクリル酸クロライド30g(0.291モル)を加えた。そして溶液を攪拌しながら三塩化アルミニウム39.4g(0.295モル)を加えて反応を開始した。30分の反応の後、反応溶液に約1000ミリリットルの水を加えて激しく攪拌し反応を終了させた。反応溶液を多量の水で数回水洗を行い、さらに大量のメタノールとアセトン混合溶媒(1:1)に徐々に滴下して反応生成物を沈殿させ、その後反応生成物を60℃で24時間真空乾燥して、SIBS変性共重合体(重量平均分子量:150,000、スチレン含量:20質量%、酸塩化物:1.0重量%)を得た。
Figure 2013136224
Figure 2013136224
(注1)IIR:エクソンモービル(株)社製「エクソンクロロブチル1066」。
(注2)カーボンブラック(CB):東海カーボン(株)社製「シーストV」(N660、N2SA:27m2/g)。
(注3)酸化亜鉛(ZnO):三井金属鉱業(株)社製「亜鉛華1号」。
(注4)ステアリン酸:花王(株)社製、「ステアリン酸ルナックS30」。
(注5)老化防止剤:大内新興化学社製「ノクラック6C」。
(注6)加硫促進剤:大内新興化学社製「ノクセラーDM」。
(注7)硫黄:鶴見化学工業(株)社製「粉末硫黄」。
(注8)粘着防止剤:C9石油樹脂、アルコンP140(荒川化学工業(株)社製、軟化点140℃、重量平均分子量Mw:900)。
(注9)ポリイソブチレン:新日本石油(株)社製、「テトラックス3T」(粘度平均分子量30,000、重量平均分子量、49,000)。
<インナーライナーの製造方法>
表1〜表2の配合、比較配合に基づき、SIBS変性共重合体、SIBS、SIS、SIBおよびSIBS変性共重合体などのエラストマー組成物を、2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220℃)にてペレット化した。その後、Tダイ押出機(スクリュ径:φ80mm、L/D:50、ダイリップ幅:500mm、シリンダ温度:220℃、フィルムゲージ:第1層は0.25mm、第2層は0.05mm)にてインナーライナーを作製した。
<未加硫ゴムシート>
本発明において、未加硫ゴムシートは、カーカスプライを用い、そのトッピングゴムの配合は、以下のとおりである。
<トッピングゴムの配合A>
天然ゴム(注1) 100質量部
カーボンブラック(注2) 50質量部
酸化亜鉛(注3) 3質量部
老化防止剤(注4) 0.2質量部
硫黄(注5) 1質量部
加硫促進剤(注6) 1質量部
加硫助剤 (注7) 1質量部
(注1)TSR20
(注2)東海カーボン(株)社製「シーストV」(N660、N2SA:27m2/g)
(注3)酸化亜鉛(ZnO):三井金属鉱業(株)社製「亜鉛華1号」
(注4)大内新興化学社製「ノクラック6C」
(注5)鶴見化学工業(株)社製「粉末硫黄」
(注6)大内新興化学社製「ノクセラーDM」
(注7)ステアリン酸:花王(株)社製、「ステアリン酸ルナックS30」
<空気入りタイヤの製造>
本発明の空気入りタイヤの製造を、前述のアッセンブル工程、裁断工程、接合工程に基づき実施した。詳細は表1に示すように比較例、実施例の空気入りタイヤを製造した。なお、加硫は170℃で20分間、プレス成型し、加硫金型から取り出さずに100℃で3分間冷却した後、加硫タイヤから取り出し、図8に示す基本構造を有する195/65R15サイズのものを製造した。インナーライナーの配合及びタイヤの成形方法を、タイヤの評価結果とともに表3〜表6に示す。実施例は、いずれも図5に基づきインナーライナーの長さが1300mmとしカーカスプライの寸法を変更することでずらし距離(量)Lを、それぞれ50mm、500mm、250mmと変更している。また、カーカスプライの幅(W1)は800mmで、インナーライナーの幅(W2)は1300mmである。
Figure 2013136224
Figure 2013136224
Figure 2013136224
Figure 2013136224
<性能試験>
前述の如く製造された空気入りタイヤに関し以下の性能評価を行った。
<加硫接着力>
インナーライナーと未加硫シートを、インナーライナーの第2層が未加硫シートに接するように張り合わせて170℃×20分で加硫し、加硫接着力測定用のサンプルを作製する。引張試験機により剥離力を測定することで加硫接着力とした。下記計算式により、比較例1を基準として各配合の加硫接着力を指数で表示した。なお加硫接着力の指数が大きいほど、加硫接着力が高いことを示す。
加硫接着力の指数=(各配合の加硫接着力)/(比較例1の加硫接着力)×100
<屈曲亀裂成長>
耐久走行試験はインナーライナーが割れたり剥がれたりするかどうかで評価した。試作タイヤをJIS規格リム15×6JJに組み付け、タイヤ内圧は150KPaで通常よりも低内圧に設定し、荷重は600kg、速度100km/h、走行距離20,000kmでタイヤの内部を観察し、亀裂、剥離の数を測定した。比較例1を基準として、各配合の亀裂成長性を指数で表示した。指数の値が大きいほど屈曲亀裂成長が小さいことを示す。
屈曲亀裂成長指数=(比較例1の亀裂の数)/(各配合の亀裂の数)×100
<転がり抵抗指数>
(株)神戸製鋼所製の転がり抵抗試験機を用いて、試作タイヤをJIS規格リム15×6JJに組み付け、荷重3.4kN、空気圧230kPa、速度80km/hの条件で、室温(30℃)にて走行させて転がり抵抗を測定した。そして、下記の計算式に基づき比較例1を基準100として、実施例の転がり抵抗変化率(%)を指数で表示した。転がり抵抗変化率が大きいほど、転がり抵抗が低減されていることを示す。
転がり抵抗指数=(比較例1の転がり抵抗)/(実施例の転がり抵抗)×100
<静的空気圧低下率試験>
試作タイヤをJIS規格リム15×6JJに組み付け、初期空気圧300kPaを封入し、90日間室温で放置し、空気圧の低下率を計算する。数値が小さいほど、空気圧が減りにくく好ましい。
<ユニフォミティ>
JASO−C607:2000の「自動車タイヤのユニフォミティ試験方法」に準拠し、タイヤユニフォミティ試験機を用いてラジアルフォースバリエーション(RFV)を測定した。比較例1を100とする相対値を指数表示した。指数が大きいほどユニフォミティが優れている。測定条件は、リムは8.0×17、タイヤ回転速度は60rpm、空気圧は200kPa、縦荷重は4000kNとした。
<実施例1〜24>
実施例1〜24の試験結果を表3〜表5に示す。ここで実施例1〜3は、第1層を配合1とし、第2層を配合2Aとして、ずらし量を変化させた事例である。実施例4〜13は第1層を配合2〜11とし、第2層を配合2Aとして、ずらし量を50mmの一定にした事例である。
実施例14〜17は、第1層を配合1とし、第2層を配合2A〜2Dに変化させ、ずらし量を50mmの一定にした事例である。実施例18は、第1層を配合1とし、第2層を配合2D、配合2Fの複数層とし、ずらし量を50mmとした事例である。
実施例19〜23は、第1層を配合2〜9に変化させ、第2層を配合2Aとし、ずらし量を50mmの一定にした事例である。実施例24は、第1層を配合1とし、第2層を配合2Gとし、ずらし量を50mmにした事例である。
本発明の実施例はいずれも、後述の比較例1に較べて加硫接着力、屈曲亀裂成長、転がり抵抗、静的空気圧低下率およびユニフォミティにおいて総合的に優れていることが認められる。
<比較例1〜11>
比較例1〜11の試験結果を表6に示す。ここで比較例1、2は、第1層を比較配合1、第2層を比較配合5とし、ずらし量を50mmと500mmと変化させた事例である。
比較例3、8〜11は、第1層を比較配合1、第2層を比較配合5〜9とし、ずらし量
を50mmと一定とした事例である。
比較例4は、第1層を比較配合1とし、第2層を比較配合5、比較配合6の複数層とし、ずらし量を50mmとした事例である。
<実施例25−36:紫外線吸収剤・酸化防止剤配合>
表7に示す第1層配合および表8に示す第2層配合を用いて、実施例25〜36を、前述の実施例1〜24と同様にして空気入りタイヤを製造した。その試験結果を表9に示す。
Figure 2013136224
Figure 2013136224
Figure 2013136224
表7、表8において用いた紫外線吸収剤および酸化防止剤は次のとおりである。その他の成分は、実施例1〜24で用いたものと同じである。
(注1)紫外線吸収剤は、(株)ADEKA社製のベンゾトリアゾール系紫外線吸収剤で、アデカスタブLA−36(2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール)を用いた。分子量315.8、融点138〜141℃、最大吸収波長353nmである。
(注2)酸化防止剤は、BSFA社製のヒンダードフェノール系酸化防止剤として、「IRGANOX 1010」(ペンタエリスリチル・テトラキス(3−3,5−ジ−t−ブチル−4−ヒドロキシルフェニル)プロピオネート))を用いた。分子量111.7、融点110〜125℃、比重が1.15である。
<比較例12−20>
表7に示す第1層配合および表8に示す第2層配合を用いて、比較例12〜20を、前述の比較例1〜11と同様にして空気入りタイヤを製造した。その試験結果を表10に示す。
Figure 2013136224
<性能試験>
実施例および比較例の性能試験は、以下の方法で実施した。
<耐候性指数>
タイヤインナーライナ内部について、スガ試験機(株)製サンシャインスーパーロングライフウェザーメーターを用いて、次の条件で耐候性試験を行った。槽内温度は63℃、湿度50%、60℃中で、12分間降雨の条件で60時間照射し、試験後のインナーライナーの亀裂個数を求めた。比較例1を基準として、他の比較例、実施例との亀裂個数との相対値を求め、以下の式に基づき耐候性指数を算出した。数値が大きいほど耐候性に優れている。
耐候性指数=(比較例1の亀裂個数)/(各実施例の亀裂個数)×100
<屈曲亀裂成長指数>
前述の評価方法に基づいて行った。
<弾性率変化指数>
屈曲亀裂成長試験と同様な条件で、走行する前と20,000km走行した後において、空気入りタイヤのインナーライナーを年弾性スペクトロメータVES((株)岩本製作所)を用いて、温度70℃、初期ひずみ10%、動歪2%の条件下で動的弾性率(E’)の上昇率を評価した。比較例1を基準として、各比較例、実施例の動的弾性率(E’)の値との相対値として弾性率変化指数を求めた。指数の値が大きいほど、弾性率の上昇率が小さく優れていることを示す。
弾性率の変化率=(走行後の弾性率)/(走行前の弾性率)×100
弾性率変化指数=(比較例1の弾性率の変化率)/(各実施例の弾性率の変化率)×100
<耐久走行指数>
耐久走行試験は、酸素注入下でタイヤが損傷するまでの走行距離を測定した。試作タイヤを酸素90%、相対湿度70%雰囲気下で336時間放置し、その後、リム組を行い100%酸素注入し、内圧350kPaで酸素90%、相対湿度70%の雰囲気下で336時間放置する。その後、JIS規格リム15×6JJに組み付け、100%酸素を注入しタイヤ内圧は280kPaに設定したタイヤを準備する。
走行条件は、荷重は500kg、速度170km/hで走行開始し、ならし走行を10分間行い、その後冷却して、再度、170km/hから走行開始し、20分ごとに速度を10km/hずつ増加して走行させ、タイヤが故障するまで走行速度を測定した。
各比較例、実施例の故障時の走行距離を求め、比較例1を基準として、その相対値を指数として求めた。指数値が大きいほど耐久走行速度が高く優れていることを示す。
耐久走行速度指数=(各実施例の故障時の走行速度)/(比較例1の故障時の走行速度)×100
<ユニフォミティ>
前述の試験方法に基づいて行った。
<評価結果>
本発明の実施例は、第1層および第2層のいずれにも、紫外線吸収剤および酸化防止剤を、エラストマー成分に対して、0.5〜40質量%配合しており、この範囲外の紫外線吸収剤および酸化防止剤を配合した比較例に対し、いずれも 耐気候性指数は大幅に高い値となっていることが認められる。
本発明の空気入りタイヤは、乗用車用空気入りタイヤのほか、トラック・バス用、重機用等の空気入りタイヤとして用いることができる。
11 空気入りタイヤ、12 トレッド部、13 サイドウォール部、14 ビード部、15 ビードコア、16 カーカスプライ、17 ベルト層、18 ビードエーペックス、19 インナーライナー。

Claims (8)

  1. インナーライナーをタイヤ内側に備えた空気入りタイヤの製造方法において、生タイヤの成形は、
    (a)インナーライナーの幅方向端部と未加硫ゴムシートの幅方向端部を幅方向に相互に50mm〜500mmずらして貼り合わせて積層体を製造するアッセンブル工程と、
    (b)前記積層体を、ドラム幅に対応する一定長さに切断して、裁断シートを製造する裁断工程と、
    (c)前記裁断シートを、その裁断面がドラムの周方向となり、かつインナーライナーが内面側となるようにドラム全周に巻きつけて、インナーライナーの端部と、未加硫ゴムシートの端部の位置を一定距離ずらして接合する接合工程を有し、
    前記インナーライナーは、タイヤ内側に配置される第1層と、前記未加硫ゴムシートと接するように配置される第2層の複合層で構成されており、
    前記第1層は、スチレン−イソブチレン−スチレンブロック共重合体のスチレンブロック部分が不飽和結合を有する酸塩化物もしくは酸無水物で変性されたSIBS変性共重合体を含むエラストマー組成物よりなり、厚さが0.05mm〜0.6mmであり、
    前記第2層は、スチレン−イソプレン−スチレンブロック共重合体およびスチレン−イソブチレンブロック共重合体の少なくともいずれかを含むエラストマー組成物よりなり、厚さが0.01mm〜0.3mmであることを特徴とする空気入りタイヤの製造方法。
  2. 前記アッセンブル工程において、インナーライナーの幅と未加硫ゴムシートの幅は異なっており、それらの幅方向の両端部が相互に重複しないように幅方向にずらして貼り合わされる請求項1記載の空気入りタイヤの製造方法。
  3. 前記第1層は、SIBS変性共重合体の配合量がエラストマー成分の10質量%〜100質量%の範囲である請求項1または2に記載の空気入りタイヤの製造方法。
  4. 前記第2層は、SIBS変性共重合体を含み、その配合量が熱可塑性エラストマー成分の5質量%〜80質量%の範囲である請求項1〜3のいずれかに記載の空気入りタイヤの製造方法。
  5. 前記第1層は、スチレン−イソブチレン−スチレンブロック共重合体とSIBS変性共
    重合体の混合物である請求項1〜4のいずれかに記載の空気入りタイヤの製造方法。
  6. 前記第1層および第2層のいずれかは、粘着付与剤が配合されている請求項1〜5のいずれかに記載の空気入りタイヤの製造方法。
  7. 前記第1層および第2層のいずれかは、ゴム成分がエラストマー成分の5〜75質量%配合されている請求項1〜6のいずれかに記載の空気入りタイヤの製造方法。
  8. 前記第1層には、紫外線吸収剤または酸化防止剤の少なくともいずれかがエラストマー成分100質量部に対し0.5質量%〜40質量%配合されている請求項1〜6のいずれかに記載の空気入りタイヤの製造方法。
JP2012067250A 2011-10-04 2012-03-23 空気入りタイヤの製造方法 Active JP5373932B2 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2012067250A JP5373932B2 (ja) 2011-11-29 2012-03-23 空気入りタイヤの製造方法
KR1020147011296A KR20140080517A (ko) 2011-10-04 2012-07-27 공기 타이어의 제조 방법
EP18152209.5A EP3351372B1 (en) 2011-10-04 2012-07-27 Method for manufacturing pneumatic tires
EP18152210.3A EP3330066B1 (en) 2011-10-04 2012-07-27 Method for manufacturing pneumatic tires
RU2014112000/05A RU2014112000A (ru) 2011-10-04 2012-07-27 Способ изготовления пневматической шины
PCT/JP2012/069157 WO2013051325A1 (ja) 2011-10-04 2012-07-27 空気入りタイヤの製造方法
EP18152208.7A EP3330065B1 (en) 2011-10-04 2012-07-27 Method for manufacturing pneumatic tires
BR112014007987A BR112014007987A2 (pt) 2011-10-04 2012-07-27 método para fabricar um pneumático
EP18152207.9A EP3326793B1 (en) 2011-10-04 2012-07-27 Method for manufacturing pneumatic tires
CN201280049273.4A CN103842165B (zh) 2011-10-04 2012-07-27 充气轮胎的制造方法
EP18152211.1A EP3330067B1 (en) 2011-10-04 2012-07-27 Method for manufacturing pneumatic tires
EP12838681.0A EP2749403B1 (en) 2011-10-04 2012-07-27 Method for manufacturing pneumatic tires
US14/349,369 US20140261976A1 (en) 2011-10-04 2012-07-27 Method for manufacturing pneumatic tire
IN3028CHN2014 IN2014CN03028A (ja) 2011-10-04 2012-07-27
US15/223,964 US10464300B2 (en) 2011-10-04 2016-07-29 Method for manufacturing pneumatic tire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011260390 2011-11-29
JP2011260390 2011-11-29
JP2012067250A JP5373932B2 (ja) 2011-11-29 2012-03-23 空気入りタイヤの製造方法

Publications (2)

Publication Number Publication Date
JP2013136224A true JP2013136224A (ja) 2013-07-11
JP5373932B2 JP5373932B2 (ja) 2013-12-18

Family

ID=48912399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067250A Active JP5373932B2 (ja) 2011-10-04 2012-03-23 空気入りタイヤの製造方法

Country Status (1)

Country Link
JP (1) JP5373932B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036037A (ja) * 2019-08-23 2021-03-04 Spiber株式会社 組換え構造タンパク質組成物、その製造方法及び光安定性向上方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121140A1 (ja) * 2005-05-09 2006-11-16 The Yokohama Rubber Co., Ltd. 積層体及びそれを用いた空気入りタイヤ
JP2010005986A (ja) * 2008-06-30 2010-01-14 Bridgestone Corp 生タイヤの成型方法
JP2010167829A (ja) * 2009-01-20 2010-08-05 Yokohama Rubber Co Ltd:The 空気入りタイヤ及びその製造方法
JP2010195864A (ja) * 2009-02-23 2010-09-09 Kaneka Corp イソブチレン系ブロック共重合体
JP2011051320A (ja) * 2009-09-04 2011-03-17 Sumitomo Rubber Ind Ltd ポリマー積層体およびそれをインナーライナーに用いた空気入りタイヤ
JP2012102269A (ja) * 2010-11-11 2012-05-31 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121140A1 (ja) * 2005-05-09 2006-11-16 The Yokohama Rubber Co., Ltd. 積層体及びそれを用いた空気入りタイヤ
JP2010005986A (ja) * 2008-06-30 2010-01-14 Bridgestone Corp 生タイヤの成型方法
JP2010167829A (ja) * 2009-01-20 2010-08-05 Yokohama Rubber Co Ltd:The 空気入りタイヤ及びその製造方法
JP2010195864A (ja) * 2009-02-23 2010-09-09 Kaneka Corp イソブチレン系ブロック共重合体
JP2011051320A (ja) * 2009-09-04 2011-03-17 Sumitomo Rubber Ind Ltd ポリマー積層体およびそれをインナーライナーに用いた空気入りタイヤ
JP2012102269A (ja) * 2010-11-11 2012-05-31 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036037A (ja) * 2019-08-23 2021-03-04 Spiber株式会社 組換え構造タンパク質組成物、その製造方法及び光安定性向上方法

Also Published As

Publication number Publication date
JP5373932B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5048881B1 (ja) 空気入りタイヤ
US10464300B2 (en) Method for manufacturing pneumatic tire
US20180134077A1 (en) Pneumatic tire
JP5138758B2 (ja) 空気入りタイヤ
JP5781753B2 (ja) 空気入りタイヤ
JP6367793B2 (ja) 空気入りタイヤ
JP5373932B2 (ja) 空気入りタイヤの製造方法
JP5143958B1 (ja) 空気入りタイヤ
JP5502834B2 (ja) 空気入りタイヤの製造方法
JP5342662B2 (ja) 空気入りタイヤ
JP5497829B2 (ja) 空気入りタイヤ
JP5373877B2 (ja) 空気入りタイヤの製造方法
JP5342636B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5373932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250