JP2013131377A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2013131377A
JP2013131377A JP2011279906A JP2011279906A JP2013131377A JP 2013131377 A JP2013131377 A JP 2013131377A JP 2011279906 A JP2011279906 A JP 2011279906A JP 2011279906 A JP2011279906 A JP 2011279906A JP 2013131377 A JP2013131377 A JP 2013131377A
Authority
JP
Japan
Prior art keywords
mmol
rubidium
ions
lead
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011279906A
Other languages
Japanese (ja)
Other versions
JP5839229B2 (en
Inventor
Yuki Arai
勇貴 新井
Yuichi Okada
祐一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2011279906A priority Critical patent/JP5839229B2/en
Publication of JP2013131377A publication Critical patent/JP2013131377A/en
Application granted granted Critical
Publication of JP5839229B2 publication Critical patent/JP5839229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lead storage battery which is excellent in charging receiving performance.SOLUTION: A lead storage battery comprises an electrolyte containing a rubidium ion of 10-350 mmol/L and a sodium ion of 2-30 mmol/L.

Description

この発明は、充電受入性能に優れた鉛蓄電池に関するものである。   The present invention relates to a lead storage battery excellent in charge acceptance performance.

従来の自動車用鉛蓄電池は、エンジンの始動時に大電流で放電が行われるが、エンジンの始動後はエンジンによって駆動される発電機によって各種の電装品への電力の供給や大電流放電後の鉛蓄電池に対する充電が行われるため、過充電状態で使用されることはあっても、放電状態で使用されることはほとんどなかった。そのため、従来の鉛蓄電池では、過充電による寿命性能の低下を抑制することが寿命性能向上のポイントであった。   Conventional lead-acid batteries for automobiles are discharged with a large current when the engine is started. However, after the engine is started, power is supplied to various electrical components by a generator driven by the engine and lead after a large current is discharged. Since the storage battery is charged, it is rarely used in a discharged state even though it is used in an overcharged state. Therefore, in the conventional lead-acid battery, it was a point of improving the life performance to suppress a decrease in the life performance due to overcharging.

ところが、近時では、地球環境問題が注目されるのに伴って、自動車に対して燃費向上や排出ガス削減という課題が課せられ、自動車に搭載される鉛蓄電池の使用条件は大きく変化してきている。そのひとつに、充電制御システムを搭載した車両(充電制御車)の登場が挙げられる。充電制御車では、定められた充電レベルになると、オルタネーターの発電を停止させ、エンジンの負荷を低減し、燃費の向上を図っている。充電制御車において高燃費を実現するためには、効率的に高い充電レベルにできる鉛蓄電池、すなわち、高い充電受入性能を備えた鉛蓄電池が必要不可欠である。   Recently, however, as global environmental issues have attracted attention, automobiles have been challenged to improve fuel economy and reduce exhaust emissions, and the usage conditions for lead-acid batteries installed in automobiles have changed significantly. . One of them is the emergence of vehicles (charging control vehicles) equipped with a charging control system. In a charge control vehicle, when a predetermined charge level is reached, power generation of the alternator is stopped, the engine load is reduced, and fuel efficiency is improved. In order to achieve high fuel efficiency in a charge-controlled vehicle, a lead storage battery that can efficiently achieve a high charge level, that is, a lead storage battery with high charge acceptance performance is indispensable.

ところで、従来から鉛蓄電池では、負極活物質上に鉛が溶解析出(デンドライト析出)することに起因する浸透短絡を抑制するために、電解液にナトリウムイオンをはじめとするアルカリ金属イオンが含有されている(特許文献1)。   By the way, in the conventional lead-acid battery, alkali metal ions such as sodium ions are contained in the electrolytic solution in order to suppress penetration short circuit due to dissolution and precipitation of lead (dendritic precipitation) on the negative electrode active material. (Patent Document 1).

特開平8−64226号公報JP-A-8-64226

しかしながら、本発明者らが検討したところ、電解液中へのアルカリ金属イオンの添加は充電受入性能にも影響し、その影響はアルカリ金属イオンの種類によって大きく異なることが判明した。   However, as a result of investigations by the present inventors, it has been found that the addition of alkali metal ions into the electrolyte also affects the charge acceptance performance, and the effect varies greatly depending on the type of alkali metal ions.

そこで本発明は、上記現状に鑑み、充電受入性能に優れた鉛蓄電池を提供すべく図ったものである。   Therefore, in view of the above situation, the present invention is intended to provide a lead storage battery excellent in charge acceptance performance.

本発明者は、鋭意検討の結果、電解液中のナトリウムイオンの濃度を低く抑えつつ、ルビジウムイオンを電解液中に含有させることにより、耐浸透短絡性能を維持したまま充電受入性能を良好な状態にできることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the inventor has included a state in which the charge acceptance performance is good while maintaining the permeation-resistant short-circuit performance by containing rubidium ions in the electrolyte while keeping the concentration of sodium ions in the electrolyte low. As a result, the present invention has been completed.

すなわち本発明に係る鉛蓄電池は、10〜350mmol/Lのルビジウムイオンと2〜30mmol/Lのナトリウムイオンとを含有する電解液を備えていることを特徴とする。前記電解液は、好ましくは50〜100mmol/Lのルビジウムイオンと2〜10mmol/Lのナトリウムイオンとを含有する。   That is, the lead acid battery according to the present invention is characterized by including an electrolytic solution containing 10 to 350 mmol / L rubidium ions and 2 to 30 mmol / L sodium ions. The electrolytic solution preferably contains 50 to 100 mmol / L of rubidium ions and 2 to 10 mmol / L of sodium ions.

前記電解液が、満充電状態の硫酸濃度が35.1〜43.1質量%であるものの場合に、本発明の効果はより顕著にみられる。なかでも本発明が有効な電解液は、満充電状態の硫酸濃度が35.1〜38.6質量%であるものである。   The effect of the present invention is more noticeable when the electrolyte solution has a fully charged sulfuric acid concentration of 35.1 to 43.1% by mass. Among them, an electrolytic solution in which the present invention is effective is one having a fully charged sulfuric acid concentration of 35.1 to 38.6% by mass.

また、前記電解液が、20時間率電流で1.75Vまで放電させたときの硫酸濃度が16質量%以上であるものがより好ましい。   Further, it is more preferable that the electrolytic solution has a sulfuric acid concentration of 16% by mass or more when discharged to 1.75 V at a 20 hour rate current.

前記ルビジウムイオンは、硫酸ルビジウムに由来するものであることが好ましい。   The rubidium ion is preferably derived from rubidium sulfate.

本発明は、上述した構成よりなるので、充電制御車用に好適な充電受入性能に優れた鉛蓄電池を得ることができる。   Since this invention consists of the structure mentioned above, the lead storage battery excellent in the charge acceptance performance suitable for charge control vehicles can be obtained.

以下に、本発明に係る鉛蓄電池の実施形態について説明する。   Below, the embodiment of the lead acid battery concerning the present invention is described.

本発明に係る鉛蓄電池は、例えば、二酸化鉛を活物質の主成分とする正極板と、鉛を活物質の主成分とする負極板と、これら極板の間に介在する多孔性又は不織布状のセパレータとからなる極板群を備えた液式又は制御弁式のものであり、当該極板群が希硫酸を主成分とする電解液に浸漬されてなるものである。   The lead storage battery according to the present invention includes, for example, a positive electrode plate containing lead dioxide as a main component of an active material, a negative electrode plate containing lead as a main component of an active material, and a porous or non-woven separator interposed between these electrode plates A liquid type or control valve type equipped with an electrode plate group consisting of the following: The electrode plate group is immersed in an electrolyte containing dilute sulfuric acid as a main component.

前記負極板は、Pb−Sb系合金やPb−Ca系合金等からなる格子体を備えたものであり、当該格子体にペースト状の活物質を充填することにより形成される。一方、前記正極板は、ペースト式である場合は、負極板と同様にして形成されるが、クラッド式である場合は、ガラス繊維等からなるチューブと、鉛合金の芯金との間に活物質を充填することにより形成される。これらの各構成部材は、目的・用途に応じて適宜公知のものから選択して用いることができる。   The negative electrode plate includes a lattice body made of a Pb—Sb alloy, a Pb—Ca alloy, or the like, and is formed by filling the lattice body with a paste-like active material. On the other hand, when the positive electrode plate is a paste type, it is formed in the same manner as the negative electrode plate. However, when it is a clad type, the positive electrode plate is formed between a tube made of glass fiber or the like and a lead alloy core metal. Formed by filling material. Each of these constituent members can be appropriately selected from known ones according to the purpose and use.

本発明における電解液は、10〜350mmol/Lのルビジウムイオンと2〜30mmol/Lのナトリウムイオンとを含有するものであり、好ましくは50〜100mmol/Lのルビジウムイオンと2〜10mmol/Lのナトリウムイオンとを含有するものである。この濃度範囲でルビジウムイオンとナトリウムイオンとを電解液に含有させることにより、高い充電受入性能を有する鉛蓄電池が得られる。   The electrolytic solution in the present invention contains 10 to 350 mmol / L rubidium ion and 2 to 30 mmol / L sodium ion, preferably 50 to 100 mmol / L rubidium ion and 2 to 10 mmol / L sodium. It contains ions. By containing rubidium ions and sodium ions in the electrolyte within this concentration range, a lead storage battery having high charge acceptance performance can be obtained.

そして、ナトリウムイオン濃度が2〜30mmol/Lであり、かつ、ルビジウムイオン濃度が10mmol/L未満であると、ルビジウムイオンの含有量が不充分で正極が大きく分極するので充分な充電受入性能が得られない。一方、ナトリウムイオン濃度が2〜30mmol/Lであり、かつ、ルビジウムイオン濃度が350mmol/Lを超えると、過剰なルビジウムイオンの存在によって負極の分極が大きくなり、充電受入性能が低くなる。   When the sodium ion concentration is 2 to 30 mmol / L and the rubidium ion concentration is less than 10 mmol / L, the content of rubidium ions is insufficient and the positive electrode is largely polarized, so that sufficient charge acceptance performance is obtained. I can't. On the other hand, when the sodium ion concentration is 2 to 30 mmol / L and the rubidium ion concentration exceeds 350 mmol / L, the polarization of the negative electrode increases due to the presence of excess rubidium ions, and the charge acceptance performance decreases.

また、ルビジウムイオン濃度が10〜350mmol/Lであり、かつ、ナトリウムイオン濃度が30mmol/Lを超えると、負極の分極が大きくなり、充電受入性能が低くなる。更に、鉛蓄電池の負極にはリグニンが添加されており、当該リグニンには通常ナトリウムが含まれているので、ナトリウムイオン濃度を2mmol/L未満とすることは、リグニン量を減らすことにつながり、鉛蓄電池の性能が著しく低下することになるので実質的に困難である。   On the other hand, when the rubidium ion concentration is 10 to 350 mmol / L and the sodium ion concentration exceeds 30 mmol / L, the polarization of the negative electrode increases and the charge acceptance performance decreases. Furthermore, since lignin is added to the negative electrode of the lead storage battery, and the lignin usually contains sodium, setting the sodium ion concentration to less than 2 mmol / L leads to a decrease in the amount of lignin, and lead Since the performance of the storage battery is significantly reduced, it is substantially difficult.

ルビジウムイオンとナトリウムイオンとはいずれもアルカリ金属イオンであるが、本発明者らが検討したところ、後述する表1に示すように、同じアルカリ金属イオンであっても充電受入性能に及ぼす影響は金属イオン種によって大きく異なることが明らかとなった。すなわち、アルカリ金属イオンの中で、ルビジウムイオンは充電時の正極の分極を抑える作用を有し、リチウム、ナトリウム及びセシウムイオンには正極の分極を抑える作用がなく、カリウムイオンは正極の分極を抑える作用を有するものの、負極の分極を大きくする作用が強すぎるため、結果的にルビジウムイオンだけが充電受入性能の向上作用を有し、リチウム、ナトリウム、カリウム及びセシウムイオンを電解液に含有させると、濃度によっては充電受入性能に悪影響を及ぼすことが分かった。なお、ここで述べる充電受入性能とは、回生充電のような数秒間程度の時間内における充電受入性能のことではなく、数分間以上の比較的長い時間内における充電受入性能のことを言う。   Both the rubidium ion and the sodium ion are alkali metal ions. However, as a result of investigations by the present inventors, as shown in Table 1 described later, even if the same alkali metal ion is used, the influence on the charge acceptance performance is a metal. It was clarified that it varies greatly depending on the ion species. That is, among the alkali metal ions, rubidium ions have an action of suppressing the polarization of the positive electrode during charging, lithium, sodium and cesium ions have no action of suppressing the polarization of the positive electrode, and potassium ions suppress the polarization of the positive electrode. Although it has an action, since the action of increasing the polarization of the negative electrode is too strong, as a result, only the rubidium ion has the action of improving the charge acceptance performance, and when lithium, sodium, potassium and cesium ions are contained in the electrolyte, It was found that depending on the concentration, the charge acceptance performance was adversely affected. The charge acceptance performance described here refers to the charge acceptance performance within a relatively long time of several minutes or more, not the charge acceptance performance within a time of about several seconds such as regenerative charging.

また、充電制御車における巡航走行中のエンジンの駆動による充電を模擬して、充電受入性能を、SOC(State of charge:満充電時の充電量に対する実際の充電量の割合)90%の鉛蓄電池を12時間放置し、2.33Vの制限電圧で最大1CAの電流で定電流−定電圧充電したときの3分間に入る充電電気量と定義した。この定義に基づいて充電受入性能を評価すると、満充電時の硫酸濃度が高い電解液を用いた方が充電受入性能は低く、硫酸濃度が43.1質量%を超えると、ルビジウムイオン及びナトリウムイオンが必要量含有されていても、充分な充電受入性能が得られなかった。そして、本発明の効果がより発現しやすい硫酸濃度は35.1〜38.6質量%であった。一方、硫酸濃度が35.1質量%未満であると、ルビジウムイオン及びナトリウムイオンを含有していなくても充分な充電受入性能を得ることが可能であった。   In addition, simulation of charging by driving the engine during cruising in a charge-controlled vehicle, the charge acceptance performance is 90% SOC (State of charge: the ratio of the actual charge amount to the full charge amount) 90% lead storage battery Was defined as a charge amount of electricity entering for 3 minutes when a constant current-constant voltage charge was performed at a maximum current of 1 CA with a limit voltage of 2.33 V. When the charge acceptance performance is evaluated based on this definition, the charge acceptance performance is lower when an electrolyte solution having a higher sulfuric acid concentration at full charge is used. When the sulfuric acid concentration exceeds 43.1% by mass, rubidium ions and sodium ions are used. However, even if the necessary amount was contained, sufficient charge acceptance performance could not be obtained. And the sulfuric acid density | concentration which is easy to express the effect of this invention was 35.1-38.6 mass%. On the other hand, when the sulfuric acid concentration is less than 35.1% by mass, sufficient charge-accepting performance can be obtained without containing rubidium ions and sodium ions.

従来の鉛蓄電池の電解液には、通常、浸透短絡を抑制するために、ナトリウムイオンをはじめとするアルカリ金属イオンが30mmol/Lよりも高い濃度で含有されており、アルカリ金属イオンの含有量が低いと、充分な耐浸透短絡性能が得られにくい。一方、浸透短絡の発生原因は、硫酸濃度の低下による鉛イオン濃度の上昇であるため、放電末の硫酸濃度が高い方が浸透短絡は起こりにくい。このため、20時間率電流で1.75Vまで放電させたときの硫酸濃度が16質量%以上である電解液を用いた場合は、浸透短絡が起こりにくく好ましい。   Conventional lead-acid battery electrolytes usually contain sodium ions and other alkali metal ions at a concentration higher than 30 mmol / L in order to suppress osmotic short-circuiting, and the content of alkali metal ions is low. If it is low, it is difficult to obtain sufficient penetration resistance short-circuit performance. On the other hand, the cause of the occurrence of the osmotic short circuit is an increase in the lead ion concentration due to a decrease in the sulfuric acid concentration. Therefore, the osmotic short circuit is less likely to occur when the sulfuric acid concentration at the end of the discharge is higher. For this reason, when an electrolytic solution having a sulfuric acid concentration of 16% by mass or more when discharged to 1.75 V at a 20 hour rate current is used, it is preferable that an osmotic short circuit hardly occurs.

また、浸透短絡を抑制するためには、電解液中のルビジウムイオンは、硫酸ルビジウムとして添加することが好ましい。ルビジウムイオンを硫酸ルビジウムとして電解液中に添加することにより、深放電により電解液中の希硫酸に由来する硫酸イオンが枯渇しかけても、硫酸ルビジウムに由来する硫酸イオンが電解液に導電性を付与するので、電解液の抵抗を低く抑えて充電回復性能の低下を抑制することができる。また、硫酸イオン濃度を高くすることより電解液中への硫酸鉛の溶解を抑制することができるので、浸透短絡を防ぐことができる。   Moreover, in order to suppress an osmotic short circuit, it is preferable to add the rubidium ion in electrolyte solution as rubidium sulfate. By adding rubidium ion to the electrolyte as rubidium sulfate, even if the sulfate ion derived from dilute sulfuric acid in the electrolyte is exhausted by deep discharge, the sulfate ion derived from rubidium sulfate imparts conductivity to the electrolyte. As a result, the resistance of the electrolytic solution can be kept low, and the deterioration of the charge recovery performance can be suppressed. Moreover, since the dissolution of lead sulfate in the electrolytic solution can be suppressed by increasing the sulfate ion concentration, an osmotic short circuit can be prevented.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<試験1>各アルカリ金属イオン種の充電受入性能への影響
常法で作製される正極板1枚、負極板2枚を使用し、また、試験電池は、一般に使用されているポリエチレンセパレータ(厚み:0.65mm)で負極板を包装(セパレータの両端を熱溶着)し、正極板と負極板を交互に重ねて、圧迫のない状態で組み立てた構成とした。その後、31質量%(比重1.23相当、20℃)の希硫酸を加え正極活物質の理論電気量の300%を通電した。次いで、各アルカリ金属イオンの硫酸塩を電解液に添加し、電解液中のアルカリ金属イオン濃度が所定の値となるようにした。このときの硫酸濃度は38質量%(比重1.285相当、20℃)である。
<Test 1> Influence of each alkali metal ion species on charge acceptance performance One positive electrode plate and two negative electrode plates produced by a conventional method are used, and the test battery is a commonly used polyethylene separator (thickness : 0.65 mm), the negative electrode plate was wrapped (the two ends of the separator were thermally welded), and the positive electrode plate and the negative electrode plate were alternately stacked to assemble with no compression. Thereafter, 31% by mass (corresponding to a specific gravity of 1.23, 20 ° C.) of diluted sulfuric acid was added, and 300% of the theoretical electricity of the positive electrode active material was energized. Subsequently, the sulfate of each alkali metal ion was added to the electrolyte solution so that the alkali metal ion concentration in the electrolyte solution became a predetermined value. The sulfuric acid concentration at this time is 38% by mass (corresponding to a specific gravity of 1.285, 20 ° C.).

充電受入性試験は次の条件で実施した。
・放電:0.2CA×30min
・放置:12時間
・充電:最大電流:1CA
・制限電圧:2.33V
・充電受入性能の評価:3分間の充電電気量
The charge acceptance test was conducted under the following conditions.
・ Discharge: 0.2CA × 30min
・ Left: 12 hours ・ Charging: Maximum current: 1 CA
・ Limited voltage: 2.33V
・ Evaluation of charge acceptance performance: 3 minutes charge electricity

なお、ここでは、充電受入性能を、SOC90%の鉛蓄電池を12時間放置し、2.33Vの制限電圧で、最大1CAの電流で定電流−定電圧充電したときの3分間に入る充電電気量と定義し、この定義に基づいて、充電受入性能を評価した。得られた結果を表1に示す。なお、各サンプルの充電受入性能はアルカリ金属イオンを電解液に添加しないサンプルの充電電気量を100とする相対値で表した。   Here, the charge acceptance performance is the amount of electricity charged for 3 minutes when a 90% SOC lead acid battery is left for 12 hours and charged at a constant current-constant voltage at a maximum current of 1CA at a limit voltage of 2.33V. Based on this definition, the charge acceptance performance was evaluated. The obtained results are shown in Table 1. In addition, the charge acceptance performance of each sample was represented by the relative value which set the charge electric quantity of the sample which does not add an alkali metal ion to electrolyte solution as 100.

Figure 2013131377
Figure 2013131377

表1に示すように、10〜350mmol/Lのルビジウムイオンだけが、充電受入性能の向上作用を有することが明らかとなった。   As shown in Table 1, it was revealed that only 10 to 350 mmol / L of rubidium ion has an effect of improving the charge acceptance performance.

<試験2>ルビジウムイオン濃度及びナトリウムイオン濃度の充電受入性能への影響
常法で作製される正極板1枚、負極板2枚を使用し、また、試験電池は、一般に使用されているPEセパレータ(厚み:0.65mm)で負極板をU字巻きで包装し、正極板と負極板を交互に重ねて、圧迫力をかけずに組み立てた構成とした。その後、31質量%(比重1.23相当、20℃)の希硫酸を加え正極活物質の理論電気量の300%を通電した。次いで、ルビジウムイオン、ナトリウムイオンの硫酸塩を電解液に添加し、電解液中のそれらの濃度が所定の値となるようにした。このときの硫酸濃度は38質量%(比重1.285相当、20℃)である。
<Test 2> Effect of Rubidium Ion Concentration and Sodium Ion Concentration on Charge Receiving Performance One positive electrode plate and two negative electrode plates produced by a conventional method are used, and the test battery is a commonly used PE separator. The negative electrode plate was wrapped in a U-shape (thickness: 0.65 mm), and the positive electrode plate and the negative electrode plate were alternately stacked to assemble without applying a pressing force. Thereafter, 31% by mass (corresponding to a specific gravity of 1.23, 20 ° C.) of diluted sulfuric acid was added, and 300% of the theoretical electricity of the positive electrode active material was energized. Next, sulfates of rubidium ions and sodium ions were added to the electrolytic solution so that their concentrations in the electrolytic solution became predetermined values. The sulfuric acid concentration at this time is 38% by mass (corresponding to a specific gravity of 1.285, 20 ° C.).

充電受入性試験はつぎの条件で行なった。
・放電:0.2CA×30min
・放置:12時間
・充電:最大電流:1CA
・制限電圧:2.33V
・温度:25℃
・充電受入性能の評価:3分間の充電電気量
The charge acceptance test was performed under the following conditions.
・ Discharge: 0.2CA × 30min
・ Left: 12 hours ・ Charging: Maximum current: 1 CA
・ Limited voltage: 2.33V
・ Temperature: 25 ℃
・ Evaluation of charge acceptance performance: 3 minutes of charge electricity

得られた結果を表2に示す。なお、表2中において、充電受入性能は、電解液中のルビジウムイオン濃度が0mmol/Lで、ナトリウムイオン濃度が2mmol/Lである場合の3分間の充電電気量を100とする相対値で表し、充電受入性能が100より大きいサンプルを合格とした。   The obtained results are shown in Table 2. In Table 2, the charge acceptance performance is expressed as a relative value where the charge electricity amount for 3 minutes is 100 when the rubidium ion concentration in the electrolyte is 0 mmol / L and the sodium ion concentration is 2 mmol / L. Samples with charge acceptance performance greater than 100 were accepted.

Figure 2013131377
Figure 2013131377

表2に示すように、電解液中のイオン濃度が、ルビジウムイオンが10〜350mmol/Lでナトリウムイオンが2〜30mmol/Lである場合においてのみ、充電受入性能が良好であることが明らかになった。   As shown in Table 2, it is clear that the charge acceptance performance is good only when the ion concentration in the electrolyte is 10 to 350 mmol / L for rubidium ions and 2 to 30 mmol / L for sodium ions. It was.

Claims (6)

10〜350mmol/Lのルビジウムイオンと2〜30mmol/Lのナトリウムイオンとを含有する電解液を備えていることを特徴とする鉛蓄電池。   A lead-acid battery comprising an electrolytic solution containing 10 to 350 mmol / L rubidium ions and 2 to 30 mmol / L sodium ions. 前記電解液は、50〜100mmol/Lのルビジウムイオンと2〜10mmol/Lのナトリウムイオンとを含有している請求項1記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the electrolytic solution contains 50 to 100 mmol / L of rubidium ions and 2 to 10 mmol / L of sodium ions. 前記電解液は、満充電状態の硫酸濃度が35.1〜43.1質量%であるものである請求項1又は2記載の鉛蓄電池。   The lead acid battery according to claim 1 or 2, wherein the electrolyte solution has a fully charged sulfuric acid concentration of 35.1 to 43.1% by mass. 前記電解液は、満充電状態の硫酸濃度が35.1〜38.6質量%であるものである請求項3記載の鉛蓄電池。   The lead acid battery according to claim 3, wherein the electrolytic solution has a fully charged sulfuric acid concentration of 35.1 to 38.6 mass%. 前記電解液は、20時間率電流で1.75Vまで放電させたときの硫酸濃度が16質量%以上であるものである請求項1、2、3又は4記載の鉛蓄電池。   5. The lead acid battery according to claim 1, wherein the electrolytic solution has a sulfuric acid concentration of 16% by mass or more when discharged to 1.75 V at a 20 hour rate current. 前記ルビジウムイオンは、硫酸ルビジウムに由来するものである請求項1、2、3、4又は5記載の鉛蓄電池。   The lead acid battery according to claim 1, 2, 3, 4 or 5, wherein the rubidium ion is derived from rubidium sulfate.
JP2011279906A 2011-12-21 2011-12-21 Lead acid battery Active JP5839229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279906A JP5839229B2 (en) 2011-12-21 2011-12-21 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279906A JP5839229B2 (en) 2011-12-21 2011-12-21 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2013131377A true JP2013131377A (en) 2013-07-04
JP5839229B2 JP5839229B2 (en) 2016-01-06

Family

ID=48908776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279906A Active JP5839229B2 (en) 2011-12-21 2011-12-21 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5839229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149871A1 (en) * 2016-03-01 2017-09-08 日立化成株式会社 Resin for lead storage battery, electrode, lead storage battery, and motor vehicle
WO2020066763A1 (en) * 2018-09-25 2020-04-02 株式会社Gsユアサ Lead battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864226A (en) * 1994-08-18 1996-03-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864226A (en) * 1994-08-18 1996-03-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149871A1 (en) * 2016-03-01 2017-09-08 日立化成株式会社 Resin for lead storage battery, electrode, lead storage battery, and motor vehicle
WO2020066763A1 (en) * 2018-09-25 2020-04-02 株式会社Gsユアサ Lead battery
JPWO2020066763A1 (en) * 2018-09-25 2021-08-30 株式会社Gsユアサ Lead-acid battery
JP7331856B2 (en) 2018-09-25 2023-08-23 株式会社Gsユアサ lead acid battery

Also Published As

Publication number Publication date
JP5839229B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP6168138B2 (en) Liquid lead-acid battery
JP2008243487A (en) Lead acid battery
JP5748091B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP2008130516A (en) Liquid lead-acid storage battery
JP2014123510A (en) Lead storage battery
JP2008243493A (en) Lead acid storage battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP5839229B2 (en) Lead acid battery
CN101824562A (en) Positive grid alloy material for lead-acid storage battery
JP6137518B2 (en) Lead acid battery
JP6153071B2 (en) Control valve type lead acid battery
JP2020167079A (en) Lead-acid battery
JP5637503B2 (en) Lead acid battery
JP2011222446A (en) Lead acid storage battery
JP2013008469A (en) Lead-acid battery
JP2021111445A (en) Lead-acid battery
JP6164502B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP5909974B2 (en) Lead acid battery
JP2015022796A (en) Lead storage battery
JP5708959B2 (en) Lead acid battery
JP6677436B1 (en) Lead storage battery
JP6734456B1 (en) Lead acid battery
JP2005268061A (en) Lead storage cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151028

R150 Certificate of patent or registration of utility model

Ref document number: 5839229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150