JP6153071B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP6153071B2
JP6153071B2 JP2013161723A JP2013161723A JP6153071B2 JP 6153071 B2 JP6153071 B2 JP 6153071B2 JP 2013161723 A JP2013161723 A JP 2013161723A JP 2013161723 A JP2013161723 A JP 2013161723A JP 6153071 B2 JP6153071 B2 JP 6153071B2
Authority
JP
Japan
Prior art keywords
mass
acid
lead
negative electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013161723A
Other languages
Japanese (ja)
Other versions
JP2015032479A (en
JP2015032479A5 (en
Inventor
賢治 山内
賢治 山内
岡本 直久
直久 岡本
誉雄 堤
誉雄 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2013161723A priority Critical patent/JP6153071B2/en
Publication of JP2015032479A publication Critical patent/JP2015032479A/en
Publication of JP2015032479A5 publication Critical patent/JP2015032479A5/ja
Application granted granted Critical
Publication of JP6153071B2 publication Critical patent/JP6153071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は制御弁式鉛蓄電池に関し、特に負極材料にカーボンブラックを多量に含有する、制御弁式鉛蓄電池に関する。   The present invention relates to a control valve type lead acid battery, and more particularly to a control valve type lead acid battery containing a large amount of carbon black in a negative electrode material.

鉛蓄電池を充電が不完全な状態で使用することにより、自動車のエネルギー効率を向上させることが行われている。例えばアイドリングストップ車では、停車の都度エンジンを停止することにより燃料消費量を小さくし、発進時に蓄電池からの電力でエンジンを起動する。このため蓄電池は充電不足の状態で使用される。アイドリングストップ車に限らず、エネルギー効率を向上させるため蓄電池への充電を避け、しかも蓄電池から取り出す電力が増しているので、蓄電池は充電不足な状態に置かれることが多い。   The use of lead-acid batteries in an incompletely charged state improves the energy efficiency of automobiles. For example, in an idling stop vehicle, the fuel consumption is reduced by stopping the engine each time the vehicle is stopped, and the engine is started with the electric power from the storage battery when starting. For this reason, the storage battery is used in a state of insufficient charge. Not only idling stop cars, but charging to storage batteries is avoided to improve energy efficiency, and more power is taken out from the storage batteries, so the storage batteries are often placed in a state of insufficient charging.

鉛蓄電池を充電不足の状態で使用する場合、還元が困難な硫酸鉛が負極材料中に蓄積し、耐久性が低下する。硫酸鉛の蓄積は、カーボンブラックを負極材料に多量に含有させることにより、抑制できることが知られている。しかしながらカーボンブラックを負極材料の海綿状鉛100mass%に対して、例えば0.5mass%を超えて含有させると、使用中にカーボンブラックが負極材料から流出する。   When a lead storage battery is used in a state of insufficient charge, lead sulfate, which is difficult to reduce, accumulates in the negative electrode material, and durability is reduced. It is known that accumulation of lead sulfate can be suppressed by containing a large amount of carbon black in the negative electrode material. However, when carbon black is contained in an amount exceeding, for example, 0.5 mass% with respect to 100 mass% of the spongy lead of the negative electrode material, the carbon black flows out from the negative electrode material during use.

特許文献1(特開2003-338285)は、制御弁式鉛蓄電池の負極材料に、ビスフェノール系縮合物と、カーボンブラックとを含有させることを開示している。ビスフェノール系縮合物は負極材料を微細化し、カーボンブラックとの相乗作用により充電受入性を向上させるとしている。しかしながら発明者の実験では、ビスフェノール系縮合物と多量のカーボンブラックとを含有する負極材料ペーストは針入度が低く、負極集電体への充填が困難になった。またカーボンブラックがガラスマット等のセパレータ中に浸透すると、短絡の原因となる。そこでセパレータへのカーボンの浸透量が僅かで、負極集電体へのペーストの充填が容易で、しかも充電不足な状態での耐久性等に優れた制御弁式鉛蓄電池を開発する必要がある。   Patent document 1 (Unexamined-Japanese-Patent No. 2003-338285) is disclosing containing the bisphenol-type condensate and carbon black in the negative electrode material of a control valve type lead acid battery. The bisphenol-based condensate refines the negative electrode material and improves the charge acceptance by synergistic action with carbon black. However, according to the inventors' experiments, the negative electrode material paste containing a bisphenol-based condensate and a large amount of carbon black has a low penetration, making it difficult to fill the negative electrode current collector. Further, when carbon black penetrates into a separator such as a glass mat, it causes a short circuit. Therefore, it is necessary to develop a control valve type lead-acid battery that has a small amount of carbon permeating into the separator, can be easily filled with paste into the negative electrode current collector, and has excellent durability in a state of insufficient charge.

特開2003-338285JP2003-338285

この発明の基本的課題は、集電体へのペーストの充填が容易で、かつ低温ハイレート放電性能と、回生充電受入性能に優れ、充電不足な状態での耐久性に優れ、さらにセパレータへのカーボンの浸透が少ない、制御弁式鉛蓄電池を提供することにある。   The basic problems of the present invention are that the current collector is easily filled with paste, is excellent in low-temperature high-rate discharge performance, regenerative charge acceptance performance, excellent durability in a state of insufficient charge, and carbon to the separator The purpose of the present invention is to provide a control valve-type lead-acid battery that has a low penetration.

この発明の制御弁式鉛蓄電池は、カーボンと、スルホン酸基を有するビスフェノール系縮合物と、アルギン酸もしくはそのアルカリ金属塩の少なくとも一方と、海綿状鉛、とを含有する負極材料と、二酸化鉛を主成分とする正極材料と、流動性が制限された状態で硫酸を保持するセパレータ、とを備え、前記負極材料は、海綿状鉛100mass%当たりの含有量で、カーボンを0.5mass%以上2.5mass%以下、スルホン酸基を有するビスフェノール系縮合物を0.1mass%以上0.9mass%以下、アルギン酸もしくはそのアルカリ金属塩の少なくとも一方を合計で0.05mass%以上0.3mass%以下含有し、かつ前記負極材料は、ポリグルタミン酸及びその塩を含まず、オレフィン系ポリカルボン酸及びその塩を含まないか、もしくは海綿状鉛100mass%当たり0.3mass%以下含有することを特徴とする。 The valve-regulated lead-acid battery of the present invention comprises carbon, a bisphenol-based condensate having a sulfonic acid group, at least one of alginic acid or an alkali metal salt thereof, and spongy lead, and lead dioxide. A positive electrode material as a main component, and a separator that holds sulfuric acid in a state in which fluidity is limited, and the negative electrode material contains carbon at 0.5 mass% or more and 2.5 mass% at a content per 100 mass% of spongy lead Not more than 0.1%, bisphenol-based condensate having a sulfonic acid group is not less than 0.1 mass% and not more than 0.9 mass%, containing at least one of alginic acid or an alkali metal salt thereof in a total of not less than 0.05 mass% and not more than 0.3 mass%, and the negative electrode material is , Not containing polyglutamic acid and its salt, not containing olefinic polycarboxylic acid and its salt, or containing 0.3 mass% or less per 100 mass% of spongy lead The

負極材料に単にカーボンを多量に含有させるだけでは、負極板からのカーボンの流出が著しく、セパレータ中にカーボンが浸透して短絡する原因となる。これに対してビスフェノール系縮合物とアルギン酸またはその塩とを負極材料に含有させると、カーボンの流出を抑制し、セパレータでの浸透短絡を抑制できる。さらにアルギン酸もしくはその塩を負極材料に含有させると、負極材料ペーストへの針入度が増し、負極集電体への充填が容易になる。カーボンとビスフェノール系縮合物とアルギン酸またはその塩とを含む負極材料を用いると上記の効果に加えて、低温ハイレート放電性能と回生充電受入性能とに優れ、充電不足な状態での耐久性にも優れた制御弁式鉛蓄電池が得られる。   If a large amount of carbon is simply contained in the negative electrode material, the outflow of carbon from the negative electrode plate is significant, which causes carbon to penetrate into the separator and cause a short circuit. On the other hand, when the negative electrode material contains a bisphenol-based condensate and alginic acid or a salt thereof, the outflow of carbon can be suppressed and an infiltration short circuit in the separator can be suppressed. Furthermore, when alginic acid or a salt thereof is contained in the negative electrode material, the penetration into the negative electrode material paste increases, and the filling into the negative electrode current collector becomes easy. Using negative electrode materials containing carbon, bisphenol-based condensate, and alginic acid or its salt, in addition to the above effects, excellent low-temperature high-rate discharge performance and regenerative charge acceptance performance, as well as durability in a state of insufficient charge A control valve type lead-acid battery is obtained.

制御弁式鉛蓄電池は、負極材料と正極材料及びセパレータ以外に、例えば、負極格子等の負極集電体と、正極格子等の正極集電体と、電槽と、制御弁等を備えている。負極材料は負極集電体に保持されて負極板を成し、正極材料は正極集電体に保持されて正極板を成す。また極板から集電体を除いた部分、即ち、活物質とその添加物とを、負極材料、正極材料等の、電極材料という。   In addition to the negative electrode material, the positive electrode material, and the separator, the control valve type lead storage battery includes, for example, a negative electrode current collector such as a negative electrode grid, a positive electrode current collector such as a positive electrode grid, a battery case, and a control valve. . The negative electrode material is held by a negative electrode current collector to form a negative electrode plate, and the positive electrode material is held by the positive electrode current collector to form a positive electrode plate. Further, a portion obtained by removing the current collector from the electrode plate, that is, the active material and its additive are referred to as electrode materials such as a negative electrode material and a positive electrode material.

セパレータ中の硫酸は、ナトリウム、リチウム等のアルカリ金属イオン、あるいはアルミニウムイオン等を含んでいても良い。またセパレータの硫酸中に、あるいは極板中にシリカを含んでいても良い。   The sulfuric acid in the separator may contain alkali metal ions such as sodium and lithium, or aluminum ions. Further, silica may be contained in the sulfuric acid of the separator or in the electrode plate.

セパレータは例えば多孔性のガラス繊維セパレータ、特に制御弁式鉛蓄電池用のマット状のガラス繊維セパレータであるが、これ以外にシリカ等のゲル化剤で硫酸をゲル化して保持するセパレータ等でも良い。即ち、セパレータは、硫酸を、流動性を低下させた状態で保持するセパレータで有ればよい。   The separator is, for example, a porous glass fiber separator, in particular, a mat-shaped glass fiber separator for a control valve type lead-acid battery, but may be a separator that gels and holds sulfuric acid with a gelling agent such as silica. That is, the separator may be a separator that holds sulfuric acid in a state where the fluidity is lowered.

ビスフェノール系縮合物は、例えばスルホン酸基を有する水溶性高分子であるが、置換基の種類、水への溶解度は任意である。ビスフェノール系縮合物は、例えば
(−(OH)(RSO3H)Ph−X−Ph(OH)(R'SO3H)CH2−)n
の化学式で表され、R,R'はメチレン基等の適宜のアルキル基、Xは例えばSO2基、アルキル基等で、Xを含まずに2個のフェニル基が直接結合していても良い。またSO3H基等の水素は、負極材料中でNaイオン等の適宜の陽イオン、特にアルカリ金属イオンにより置換されていることがある。
The bisphenol-based condensate is, for example, a water-soluble polymer having a sulfonic acid group, but the type of substituent and the solubility in water are arbitrary. Bisphenol-based condensates are, for example, (-(OH) (RSO 3 H) Ph-X-Ph (OH) (R'SO 3 H) CH 2- ) n
Wherein R and R ′ are appropriate alkyl groups such as a methylene group, X is an SO 2 group, an alkyl group, etc., and two phenyl groups may be directly bonded without containing X. . In addition, hydrogen such as SO 3 H group may be substituted with an appropriate cation such as Na + ion, particularly alkali metal ion, in the negative electrode material.

RSO3H基、R'SO3H基、CH2基等はフェニル基(Ph)のOH基に対してオルソの位置にあり、縮合物のモノマーはCH2基を介して互いに接続されている。市販のビスフェノール系縮合物はモノマー当たり2個のスルホン酸基を有するものが多いが、モノマー当たりのスルホン酸基の数は1個〜4個等のように任意である。XがSO2基の場合がビスフェノールS、Xが −C(CH32− の場合がビスフェノールAで、実施例ではビスフェノールSを用いる例を示すが、ビスフェノールAを用いても結果は同等である。ビスフェノール系縮合物の分子量は任意で、例えば4,000〜250,000程度とし、分子量の影響は小さい。ビスフェノール系縮合物は、芳香族環を含む高分子である点で、リグニンスルホン酸と類似しているが、カルボキシ基とエーテル基及びアルコール性水酸基を持たない点と、網状ではなく直鎖状の高分子である点が異なる。 RSO 3 H group, R′SO 3 H group, CH 2 group and the like are in an ortho position with respect to the OH group of the phenyl group (Ph), and the monomers of the condensate are connected to each other through the CH 2 group. . Although many commercially available bisphenol-based condensates have two sulfonic acid groups per monomer, the number of sulfonic acid groups per monomer is arbitrary, such as 1 to 4. When X is SO 2 group, bisphenol S is used, and when X is —C (CH 3 ) 2 —, bisphenol A is used. In the examples, bisphenol S is used. is there. The molecular weight of the bisphenol-based condensate is arbitrary, for example, about 4,000 to 250,000, and the influence of the molecular weight is small. A bisphenol-based condensate is similar to lignin sulfonic acid in that it is a polymer containing an aromatic ring, but does not have a carboxy group, an ether group, or an alcoholic hydroxyl group, and is not a network but a straight chain. The difference is that it is a polymer.

負極材料中のカーボン、ビスフェノール系縮合物、アルギン酸またはその塩、等の含有量は、海綿状鉛を100mass%として示す。負極材料が硫酸鉛等を含有している場合、硫酸鉛等を海綿状鉛に換算して海綿状鉛の量を定める。負極材料中の含有物の量は、例えば化成済みの段階での含有量である。化成は、塩基性硫酸鉛及び酸化鉛を、硫酸水溶液中で酸化することにより正極材料の二酸化鉛とし、同じく硫酸水溶液中で還元することにより負極材料の海綿状鉛とする工程である。   The content of carbon, bisphenol-based condensate, alginic acid or a salt thereof, etc. in the negative electrode material indicates sponge-like lead as 100 mass%. When the negative electrode material contains lead sulfate or the like, the amount of spongy lead is determined by converting lead sulfate or the like into spongy lead. The amount of the content in the negative electrode material is, for example, the content at the stage of chemical conversion. Chemical conversion is a process in which basic lead sulfate and lead oxide are oxidized in an aqueous sulfuric acid solution to form lead dioxide as a positive electrode material, and are also reduced in a sulfuric acid aqueous solution to form sponge-like lead material in the negative electrode material.

好ましくは、負極材料はさらに、オレフィン系ポリカルボン酸またはその塩を含有する。オレフィン系ポリカルボン酸には、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸等があり、これらはポリエチレン、ポリプロピレン等のポリオレフィン骨格の水素をカルボキシル基で置換した化合物である。好ましくは、オレフィン系ポリカルボン酸は、ポリアクリル酸またはその塩、あるいはポリメタクリル酸またはその塩である。ポリアクリル酸とポリメタクリル酸は化学的性質が酷似した物質で、ポリアクリル酸とその塩をポリメタクリル酸とその塩に代えても、結果は同等である。なおポリカルボン酸塩は、水溶性のアルカリ金属塩が好ましい。   Preferably, the negative electrode material further contains an olefinic polycarboxylic acid or a salt thereof. Examples of olefinic polycarboxylic acids include polyacrylic acid, polymethacrylic acid, polymaleic acid and the like, and these are compounds in which hydrogen of a polyolefin skeleton such as polyethylene and polypropylene is substituted with a carboxyl group. Preferably, the olefinic polycarboxylic acid is polyacrylic acid or a salt thereof, or polymethacrylic acid or a salt thereof. Polyacrylic acid and polymethacrylic acid are substances having very similar chemical properties, and even if polyacrylic acid and its salt are replaced with polymethacrylic acid and its salt, the results are the same. The polycarboxylate is preferably a water-soluble alkali metal salt.

ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸等のオレフィン系ポリカルボン酸は、ポリエチレン、ポリプロピレン等とのポリオレフィンとブロック共重合させることができる。ポリアクリル酸等のポリカルボン酸を含む共重合体中で実際に有効なのは、ポリカルボン酸のブロックなので、共重合体の質量をM、その内のポリカルボン酸のブロックの質量をmとすると、共重合体の含有量にm/Mを掛けたものを、ポリカルボン酸の含有量とする。またオレフィン系ポリカルボン酸の塩は、例えばリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩で、強酸性のビスフェノール系縮合物のため、負極材料中では主として酸型で存在すると考えられる。   Olefinic polycarboxylic acids such as polyacrylic acid, polymethacrylic acid and polymaleic acid can be block copolymerized with polyolefins such as polyethylene and polypropylene. In the copolymer containing polycarboxylic acid such as polyacrylic acid, it is actually a block of polycarboxylic acid, so if the mass of the copolymer is M and the mass of the block of polycarboxylic acid is m, The content of the copolymer multiplied by m / M is taken as the polycarboxylic acid content. The olefinic polycarboxylic acid salt is, for example, an alkali metal salt such as a lithium salt, a sodium salt, or a potassium salt, and is considered to exist mainly in the acid form in the negative electrode material because it is a strongly acidic bisphenol condensate.

ビスフェノール系縮合物の含有量は、海綿状鉛100mass%当たりで、0.1mass%以上が好ましく、例えば0.05mass%ではカーボンの流出を抑制する効果が小さい。またカーボン流出量はビスフェノール系縮合物が0.9mass%付近で最小となるので、含有量は0.9mass%以下が好ましい。ビスフェノール系縮合物の含有量は、特に0.1mass%以上0.9mass%以下が好ましい。   The content of the bisphenol-based condensate is preferably 0.1 mass% or more per 100 mass% of spongy lead. For example, 0.05 mass% has a small effect of suppressing the outflow of carbon. Further, since the carbon outflow amount is minimum at around 0.9 mass% for the bisphenol-based condensate, the content is preferably 0.9 mass% or less. The content of the bisphenol-based condensate is particularly preferably 0.1 mass% or more and 0.9 mass% or less.

アルギン酸またはその塩は、海綿状鉛100mass%当たり0.05mass%以上の含有量で針入度を実用的な範囲まで低下させ、含有量は0.05mass%以上が好ましい。含有量が0.3mass%を超えると、回生充電受入性能の低下等の弊害が生じるので、含有量は0.05mass%以上0.3mass%以下が特に好ましい。アルギン酸の塩はアルカリ金属塩が好ましく、不溶性のカルシウム塩では効果が小さい。   Alginic acid or a salt thereof lowers the penetration to a practical range with a content of 0.05 mass% or more per 100 mass% of spongy lead, and the content is preferably 0.05 mass% or more. If the content exceeds 0.3 mass%, adverse effects such as reduction in regenerative charge acceptance performance occur, and therefore the content is particularly preferably 0.05 mass% or more and 0.3 mass% or less. Alginic acid salts are preferably alkali metal salts, and insoluble calcium salts are less effective.

ポリアクリル酸、ポリメタクリル酸またはそれらの塩は、カーボンの流出量をさらに少なくし、海綿状鉛100mass%当たりで0.005mass%でも効果があるが、0.01mass%以上で効果が顕著になる。そして0.3mass%を超えて含有させると、回生充電受入性能の低下等の弊害が生じるので、含有量は0.01mass%以上が好ましく、0.01mass%以上0.3mass%以下が特に好ましい。   Polyacrylic acid, polymethacrylic acid or their salts further reduce the outflow of carbon and are effective even at 0.005 mass% per 100 mass% of spongy lead, but the effect becomes remarkable at 0.01 mass% or more. When the content exceeds 0.3 mass%, adverse effects such as a decrease in regenerative charge acceptance performance occur, so the content is preferably 0.01 mass% or more, and particularly preferably 0.01 mass% or more and 0.3 mass% or less.

カーボンは、黒鉛、カーボンファイバー、煤等の非晶質カーボン、等でも良いが、微細で比表面積が大きなカーボンブラックが好ましい。カーボンブラック等のカーボンの含有量は、海綿状鉛100mass%当たりで0.5mass%以上含有させると、低温ハイレート放電性能、回生充電受入性能、充電不足な状態での耐久性等が向上し、2.5mass%を超えて含有させるとカーボンの流出の抑制が困難になる。カーボン含有量は0.5mass%以上が好ましく、0.5mass%以上2.5mass%以下が特に好ましい。   The carbon may be graphite, carbon fiber, amorphous carbon such as soot, etc., but is preferably carbon black that is fine and has a large specific surface area. The carbon content of carbon black and other carbon containing 0.5 mass% or more per 100 mass% of spongy lead improves low-temperature high-rate discharge performance, regenerative charge acceptance performance, durability under insufficient charge, etc. If it is contained in excess of%, it becomes difficult to suppress the outflow of carbon. The carbon content is preferably 0.5 mass% or more, particularly preferably 0.5 mass% or more and 2.5 mass% or less.

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

アルギン酸ナトリウム(分子量約250,000)とポリアクリル酸ナトリウム(分子量約2,500,000)とを水に溶かし、カーボンブラックを加えて混練した。これに、ビスフェノールSの縮合物(分子量約100,000)と、海綿状鉛100mass%に対して0.6mass%の硫酸バリウムと、0.1mass%の合成繊維の補強材とを加えて再度混練し、カーボンペーストとした。カーボンペーストに、ボールミル法による鉛粉と、海綿状鉛100mass%に対して0.2mass%のリグニンと水と硫酸とを加えて混練し、負極材料ペーストとした。カーボンブラックの種類は、ケッチェンブラック、アセチレンブラック、オイルファーネスブラック等、任意で、カーボンブラックの種類を変えても結果はほぼ同等であった。またビスフェノールS縮合物に代えて、ビスフェノールA縮合物を用いてもほぼ同等の結果が得られた。ビスフェノールS縮合物の分子量を10,000に変えても、あるいはポリアクリル酸ナトリウムの分子量を5,000,000に変えても、結果は同等であった。また補強材と硫酸バリウム及びリグニンは加えなくても良い。なお鉛粉の種類と製造方法、格子等の集電体の種類と製造方法は任意である。アルギン酸とポリアクリル酸はリチウム塩、カリウム塩等として添加しても、あるいは酸型で添加しても良い。さらに各成分を加える順序は任意である。   Sodium alginate (molecular weight about 250,000) and sodium polyacrylate (molecular weight about 2,500,000) were dissolved in water, and carbon black was added and kneaded. To this, a bisphenol S condensate (with a molecular weight of about 100,000), 0.6 mass% barium sulfate for 100 mass% of spongy lead, and 0.1 mass% synthetic fiber reinforcing material were added and kneaded again, and carbon paste It was. The carbon paste was kneaded by adding a lead powder obtained by a ball mill method, 0.2 mass% lignin, water and sulfuric acid to 100 mass% of spongy lead to obtain a negative electrode material paste. The type of carbon black was arbitrary such as ketjen black, acetylene black, oil furnace black, etc. The results were almost the same even if the type of carbon black was changed. In addition, almost the same result was obtained when bisphenol A condensate was used instead of bisphenol S condensate. The results were the same whether the molecular weight of the bisphenol S condensate was changed to 10,000 or the molecular weight of sodium polyacrylate was changed to 5,000,000. Further, the reinforcing material, barium sulfate and lignin may not be added. The type and manufacturing method of the lead powder and the type and manufacturing method of the current collector such as a grid are arbitrary. Alginic acid and polyacrylic acid may be added as lithium salt, potassium salt or the like, or may be added in acid form. Furthermore, the order which adds each component is arbitrary.

アルギン酸ナトリウム、ポリアクリル酸ナトリウム、カーボンブラック、及びビスフェノールS縮合物の含有量等を変えて、表1,表2に示す組成の負極材料ペーストを作製した。アルギン酸とポリアクリル酸の含有量は、ナトリウム塩として表す。エキスパンドタイプでPb-Ca-Sn系合金の負極格子に負極材料ペーストを充填し、未化成の負極板とした。各負極材料ペーストに対し、JIS K 2207に従って、針入度計により針入度を測定した。針入度は負極材料ペーストの負極格子への充填の容易さを表す。   Negative electrode material pastes having compositions shown in Tables 1 and 2 were prepared by changing the contents of sodium alginate, sodium polyacrylate, carbon black, and bisphenol S condensate. The contents of alginic acid and polyacrylic acid are expressed as sodium salts. An expanded type Pb—Ca—Sn alloy negative electrode lattice was filled with a negative electrode material paste to obtain an unformed negative electrode plate. The penetration of each negative electrode material paste was measured with a penetration meter in accordance with JIS K 2207. The penetration represents the ease with which the negative electrode material paste is filled into the negative electrode lattice.

ボールミル法で製造した鉛粉100mass%と、0.1mass%の合成繊維補強材と、水と硫酸とで混練して、エキスパンドタイプでPb-Ca-Sn系合金の正極格子に充填し、未化成の正極板とした。なお鉛粉の一部を鉛丹としても良く、スズ、バリウムからなる添加剤を添加しても良い。   Kneaded with 100 mass% lead powder manufactured by the ball mill method, 0.1 mass% synthetic fiber reinforcement, water and sulfuric acid, and filled in the positive type Pb-Ca-Sn alloy positive electrode lattice, unformed A positive electrode plate was obtained. A part of the lead powder may be used as a lead, and an additive composed of tin and barium may be added.

セパレータとして、制御弁式鉛蓄電池用のマット状で多孔性のガラス繊維セパレータを用いたが、シリカゲルに硫酸を含浸したもの等の、流動性を制限した状態で硫酸を保持する他のセパレータでも良い。   As the separator, a mat-like and porous glass fiber separator for a control valve type lead-acid battery was used. However, other separators that hold sulfuric acid in a state in which fluidity is limited, such as silica gel impregnated with sulfuric acid, may be used. .

未化成の正極板、未化成の負極板、及びセパレータを、圧迫を加えた状態で電槽にセットし、硫酸を注入して電槽化成を施し、制御弁式鉛蓄電池(化成後の電解液比重1.3)とした。蓄電池は、初期性能(カーボン流出量、低温ハイレート放電性能、回生充電受入性能)の測定用では正極板が2枚、負極板が1枚で、20hR容量は11Ahで、耐久性能の測定用では正極板が7枚、負極板が8枚で、20hR容量は72Ahであった。   An unformed positive electrode plate, unformed negative electrode plate, and separator are set in a battery case under pressure, sulfuric acid is injected to form a battery case, and a control valve type lead acid battery (electrolyte after formation) Specific gravity was 1.3). The storage battery has two positive plates and one negative plate for measuring initial performance (carbon outflow, low-temperature high-rate discharge performance, regenerative charge acceptance performance), a 20 hR capacity of 11 Ah, and a positive electrode for measuring durability performance. There were 7 plates and 8 negative plates, and the 20 hR capacity was 72 Ah.

ビスフェノール系縮合物も、ポリアクリル酸等のバインダーも、アルギン酸等も含まず、カーボンブラックのみを含む負極材料に対し、0.1CA×5hの放電と、0.1CA×10hの充電とのサイクルを繰り返す過充電サイクル試験を行った。所定のサイクル数(試料間で共通)で、蓄電池を解体し、負極材料中のカーボン量を測定し、最初の含有量からの減少量を測定し、カーボン流出量とした。解体した蓄電池に対し、セパレータを貫通する浸透短絡の有無を観察し、また解体前の蓄電池で出力電圧が0V付近まで低下しているものがあれば、浸透短絡有りとした。   A negative electrode material that does not contain bisphenol-based condensate, binder such as polyacrylic acid, alginic acid, etc., and contains only carbon black, repeats a cycle of 0.1 CA × 5 h discharge and 0.1 CA × 10 h charge. A charge cycle test was conducted. The storage battery was disassembled at a predetermined number of cycles (common among samples), the amount of carbon in the negative electrode material was measured, and the amount of decrease from the initial content was measured to obtain the carbon outflow. The disassembled storage battery was observed for the presence of an osmotic short circuit penetrating the separator, and if there was a storage battery before disassembly that had an output voltage lowered to around 0 V, it was determined that there was an osmotic short circuit.

Figure 0006153071
Figure 0006153071

浸透短絡の有無とカーボンの流出量とを表1に示す。ビスフェノール系縮合物も、ポリアクリル酸等のバインダーも、アルギン酸等も含まない場合、カーボンブラック濃度が0.7mass%以上で浸透短絡が生じた。   Table 1 shows the presence or absence of osmotic short-circuiting and the outflow amount of carbon. When neither a bisphenol-based condensate nor a binder such as polyacrylic acid or alginic acid was contained, an osmotic short circuit occurred at a carbon black concentration of 0.7 mass% or more.

ビスフェノール系縮合物、ポリアクリル酸のナトリウム塩、ポリグルタミン酸のナトリウム塩、アルギン酸ナトリウム、もしくはアルギン酸カルシウム等を添加した負極材料ペーストを用いた蓄電池を作製した。これらの蓄電池に対し、表1の場合と同様に、針入度とカーボンの流出量及び浸透短絡の有無を測定した。また低温ハイレート放電性能として、-15℃で37.5Aで放電し、端子電圧が1.0Vとなるまでの放電時間を測定した。回生充電受入性能として、充電率90%の状態から2.4Vの定電圧充電(最大電流12.5A)で10秒間充電し、充電電気量を測定した。充電不足な状態での耐久性能として、50Aで60秒間の放電と、2.33Aで60秒間(最大電流50A)の定電圧充電、とから成るサイクルを繰り返し、放電時の端子電圧が1.0V未満となるまでのサイクル数を測定した。   A storage battery using a negative electrode material paste to which bisphenol-based condensate, polyacrylic acid sodium salt, polyglutamic acid sodium salt, sodium alginate, calcium alginate, or the like was added was prepared. For these storage batteries, the penetration, carbon outflow amount, and the presence or absence of permeation short circuit were measured in the same manner as in Table 1. As the low-temperature high-rate discharge performance, discharge was performed at 37.5 A at -15 ° C., and the discharge time until the terminal voltage reached 1.0 V was measured. As regenerative charge acceptance performance, the battery was charged for 10 seconds with a constant voltage charge of 2.4V (maximum current 12.5A) from a state with a charge rate of 90%, and the amount of charge was measured. Endurance performance in the state of insufficient charging is a cycle consisting of discharging at 50A for 60 seconds and constant voltage charging at 2.33A for 60 seconds (maximum current 50A), and the terminal voltage at the time of discharging is less than 1.0V. The number of cycles until was measured.

試料1を100%とする相対値で、結果を表2に示す。カーボン流出量は180%以下が好ましく、低温ハイレート放電性能と、回生充電受入性能、及び上記の耐久性能は100%以上が好ましい。またペーストへの針入度は50以上が好ましい。   The results are shown in Table 2 as relative values with Sample 1 as 100%. The carbon outflow amount is preferably 180% or less, and the low-temperature high-rate discharge performance, the regenerative charge acceptance performance, and the durability performance described above are preferably 100% or more. The penetration into the paste is preferably 50 or more.

Figure 0006153071
Figure 0006153071

ビスフェノール系縮合物を含有させることにより、カーボン流出量を抑制でき、その効果は0.1mass%以上で顕著で、0.9mass%程度で最大となることが分かる。アルギン酸ナトリウムは針入度を増加させ、0.35mass%含有させると回生充電受入性能が低下することが分かる。なおアルギン酸カルシウムでは針入度が小さく、アルギン酸の塩は水溶性の塩が好ましいことが分かる。ポリアクリル酸はカーボン流出量を少なくするが、針入度を低下させ、0.3mass%を超えて含有させると回生充電受入性能を低下させて好ましくない。またポリアクリル酸をポリグルタミン酸に変えると、カーボン流出量が増加し、好ましくない。   It can be seen that by containing a bisphenol-based condensate, the amount of carbon outflow can be suppressed, and the effect is remarkable at 0.1 mass% or more, and maximum at about 0.9 mass%. It can be seen that sodium alginate increases the penetration, and when it is contained at 0.35 mass%, the regenerative charge acceptance performance decreases. In addition, it is understood that calcium alginate has a low penetration and that a salt of alginic acid is preferably a water-soluble salt. Polyacrylic acid reduces the amount of carbon outflow, but lowering the penetration and containing more than 0.3 mass% is not preferable because it reduces regenerative charge acceptance performance. Moreover, when polyacrylic acid is changed to polyglutamic acid, the amount of carbon outflow increases, which is not preferable.

以上のように実施例では、
・ 負極材料ペーストの充填性を保ちながら、
・ 浸透短絡を減少させ、
・ 低温ハイレート放電性能と回生充電受入性能とを従来例と同等以上に保ち、
・ しかも充電不足な条件での耐久性能を向上させることができた。
As described above, in the embodiment,
・ While maintaining the filling property of the negative electrode material paste,
・ Decrease penetration short circuit,
・ Keep low-temperature high-rate discharge performance and regenerative charge acceptance performance at or above the conventional level,
・ Moreover, the durability performance under conditions of insufficient charging could be improved.

Claims (4)

カーボンと、スルホン酸基を有するビスフェノール系縮合物と、アルギン酸もしくはそのアルカリ金属塩の少なくとも一方と、海綿状鉛、とを含有する負極材料と、二酸化鉛を主成分とする正極材料と、流動性が制限された状態で硫酸を保持するセパレータ、とを備え、
前記負極材料は、海綿状鉛100mass%当たりの含有量で、カーボンを0.5mass%以上2.5mass%以下、スルホン酸基を有するビスフェノール系縮合物を0.1mass%以上0.9mass%以下、アルギン酸もしくはそのアルカリ金属塩の少なくとも一方を合計で0.05mass%以上0.3mass%以下含有し、かつ前記負極材料は、ポリグルタミン酸及びその塩を含まず、オレフィン系ポリカルボン酸及びその塩を含まないか、もしくは海綿状鉛100mass%当たり0.3mass%以下含有することを特徴とする制御弁式鉛蓄電池。
A negative electrode material containing carbon, a bisphenol-based condensate having a sulfonic acid group, at least one of alginic acid or an alkali metal salt thereof, and spongy lead; a positive electrode material mainly composed of lead dioxide; and fluidity A separator that holds sulfuric acid in a restricted state,
The negative electrode material is a content per 100 mass% of spongy lead, carbon is 0.5 mass% to 2.5 mass%, bisphenol-based condensate having a sulfonic acid group is 0.1 mass% to 0.9 mass%, alginic acid or its alkali At least one of the metal salts is contained in a total of 0.05 mass% to 0.3 mass%, and the negative electrode material does not contain polyglutamic acid and its salt, does not contain olefinic polycarboxylic acid and its salt, or is spongy A control valve type lead acid battery characterized by containing 0.3 mass% or less per 100 mass% of lead.
前記セパレータが多孔性のガラス繊維セパレータであることを特徴とする、請求項1の制御弁式鉛蓄電池。   The control valve type lead acid battery according to claim 1, wherein the separator is a porous glass fiber separator. 前記負極材料がさらに、オレフィン系ポリカルボン酸またはその塩を、海綿状鉛100mass%当たり0.005mass%以上0.3mass%以下含有することを特徴とする、請求項1または2の制御弁式鉛蓄電池。   The control valve-type lead acid battery according to claim 1 or 2, wherein the negative electrode material further contains 0.005 mass% or more and 0.3 mass% or less of olefinic polycarboxylic acid or a salt thereof per 100 mass% of spongy lead. 前記オレフィン系ポリカルボン酸またはその塩は、ポリアクリル酸、ポリメタクリル酸、またはそれらの塩であることを特徴とする、請求項3の制御弁式鉛蓄電池。   4. The valve-regulated lead-acid battery according to claim 3, wherein the olefinic polycarboxylic acid or a salt thereof is polyacrylic acid, polymethacrylic acid, or a salt thereof.
JP2013161723A 2013-08-02 2013-08-02 Control valve type lead acid battery Active JP6153071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013161723A JP6153071B2 (en) 2013-08-02 2013-08-02 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013161723A JP6153071B2 (en) 2013-08-02 2013-08-02 Control valve type lead acid battery

Publications (3)

Publication Number Publication Date
JP2015032479A JP2015032479A (en) 2015-02-16
JP2015032479A5 JP2015032479A5 (en) 2015-11-05
JP6153071B2 true JP6153071B2 (en) 2017-06-28

Family

ID=52517638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013161723A Active JP6153071B2 (en) 2013-08-02 2013-08-02 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP6153071B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189297A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery
CN107615535B (en) * 2015-05-29 2021-01-12 株式会社杰士汤浅国际 Lead-acid battery and method for manufacturing lead-acid battery
JP6750374B2 (en) * 2016-07-29 2020-09-02 株式会社Gsユアサ Lead acid battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201872A (en) * 1989-01-31 1990-08-10 Matsushita Electric Ind Co Ltd Plate for lead-acid battery
JPH11250913A (en) * 1998-03-02 1999-09-17 Aisin Seiki Co Ltd Lead-acid battery
JP2004022440A (en) * 2002-06-19 2004-01-22 Hitachi Ltd Lead-acid battery

Also Published As

Publication number Publication date
JP2015032479A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
JP6153073B2 (en) Lead acid battery
JP5884528B2 (en) Liquid lead-acid battery
JP6066119B2 (en) Liquid lead-acid battery
JP5892429B2 (en) Liquid lead-acid battery
JP6153072B2 (en) Liquid lead-acid battery
JP6153074B2 (en) Liquid lead-acid battery
JP6168138B2 (en) Liquid lead-acid battery
JP6400016B2 (en) Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte
CN103137955A (en) Lead/carbon composite for storage battery and preparation method of lead/carbon composite material
JP2017183283A (en) Positive electrode plate for lead storage battery, lead storage battery using the same, and method for manufacturing positive electrode plate for lead storage battery
JP6153071B2 (en) Control valve type lead acid battery
JP2008243489A (en) Lead acid storage battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP5396216B2 (en) Lead acid battery
JP6041221B2 (en) Liquid lead-acid battery
JP2010102922A (en) Control valve type lead-acid battery
JP5637503B2 (en) Lead acid battery
JP2016162612A (en) Control valve type lead storage battery
JP2006210059A (en) Lead acid storage battery
JP2006004636A (en) Lead acid storage battery
JP5839229B2 (en) Lead acid battery
JP6056454B2 (en) Lead acid battery
JP5708959B2 (en) Lead acid battery
JP6283996B2 (en) Negative electrode plate for lead acid battery and lead acid battery
JP5909974B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6153071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170521