JP2013129606A - プロパンの精製方法および精製システム - Google Patents

プロパンの精製方法および精製システム Download PDF

Info

Publication number
JP2013129606A
JP2013129606A JP2011278031A JP2011278031A JP2013129606A JP 2013129606 A JP2013129606 A JP 2013129606A JP 2011278031 A JP2011278031 A JP 2011278031A JP 2011278031 A JP2011278031 A JP 2011278031A JP 2013129606 A JP2013129606 A JP 2013129606A
Authority
JP
Japan
Prior art keywords
propane
adsorption
purity
low
molecular sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011278031A
Other languages
English (en)
Other versions
JP2013129606A5 (ja
JP5822299B2 (ja
Inventor
Junichi Kawakami
純一 川上
Shinichi Tai
慎一 田井
Saori Tanaka
沙織 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2011278031A priority Critical patent/JP5822299B2/ja
Priority to PCT/JP2012/075646 priority patent/WO2013094281A1/ja
Priority to KR1020147015832A priority patent/KR101928606B1/ko
Priority to US14/362,880 priority patent/US9556089B2/en
Priority to TW101144553A priority patent/TWI554497B/zh
Publication of JP2013129606A publication Critical patent/JP2013129606A/ja
Publication of JP2013129606A5 publication Critical patent/JP2013129606A5/ja
Application granted granted Critical
Publication of JP5822299B2 publication Critical patent/JP5822299B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/09Purification; Separation; Use of additives by fractional condensation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

【課題】低純度プロパンから高純度プロパンを得るための、簡便でエネルギー効率に優れた工業的に有利な方法とシステムを提供する。
【解決手段】水および二酸化炭素をプロパンよりも優先して吸着する分子篩ゼオライトと、エタン及びプロピレンをプロパンよりも優先して吸着する分子篩活性炭と、イソブタン及びノルマルブタンをプロパンよりも優先して吸着する活性炭により、気相の低純度プロパンにおける水、二酸化炭素、エタン及びプロピレンの中の少なくとも一方、イソブタン及びノルマルブタンの中の少なくとも一方を吸着する。分縮器に気相の低純度プロパンを導入することにより、窒素および酸素を気相に維持した状態でプロパンを凝縮させる。分縮器から気相の窒素および酸素を取り出す。
【選択図】図1

Description

本発明は、エタンおよびプロピレンの中の少なくとも一方、イソブタンおよびノルマルブタンの中の少なくとも一方、水、窒素、酸素、並びに二酸化炭素を、不純物として含む低純度プロパンの精製方法および精製システムに関し、低純度プロパンを例えば99.99vol %以上に高純度化するのに適する。
液化石油ガス(LPG)や火力発電用燃料等に使用されるプロパンは、一般に原料である石油を分留することで工業的に精製されている。そのため、一般に普及しているプロパンは、エタンおよびプロピレンの中の少なくとも一方、イソブタンおよびノルマルブタンの中の少なくとも一方、水、窒素、酸素、並びに二酸化炭素を不純物として含有し、その純度は低く98.5vol%程度でバラツキがある。
一方、近年においては、不純物濃度の低い高純度プロパンの必要性が高まっている。例えば、高耐圧炭化珪素(SiC)半導体の原料としてプロパンの需要が高まっている。そのような炭化珪素の高耐圧性を実現するため、プロパンの不純物それぞれの濃度を1volppm未満にすることが求められ、特に窒素濃度は0.1volppm未満にすることが要求されている。
そこで、一般に普及している純度98.5vol%程度の低純度プロパンを、蒸留することで高純度プロパンに精製することが考えられる。しかし、低純度プロパンを蒸留することで高純度プロパンを精製する場合、設備が大規模となって多大なエネルギーを要する。特にプロピレンを不純物として含む場合、プロパンとプロピレンとの沸点差が小さいため、蒸留での精製がより困難になる。なお、オレフィンであるプロピレンをパラフィンであるプロパンから分離させるため、硝酸銀を含む水溶液にプロピレンを選択的に吸収させる方法は公知である(特許文献1参照)。しかし、この方法ではパラフィンであるプロパン、エタン、イソブタン、ノルマルブタンを互いに分離できないため、この方法を採用しても高純度プロパンに精製できない。
国際公開2009/110492号
従来の精製技術では、低純度プロパンに含まれる不純物であるエタン、プロピレン、イソブタン、ノルマルブタン、水、窒素、酸素、並びに二酸化炭素は、精密蒸留技術を利用しなければ極微量とすることができない。そのため、高純度プロパンを得るには設備が大規模化し、エネルギーコストが増大するという問題がある。本発明は、このような従来技術の問題を解決できるプロパンの精製方法および精製システムを提供することを目的とする。
本件発明者は、低純度プロパンを構成するプロパン、エタン、プロピレン、イソブタン、ノルマルブタン、窒素、酸素、水、および二酸化炭素それぞれの特性に着目し、分子篩ゼオライト、分子篩活性炭、活性炭を用いた吸着操作と、分縮器を用いた分縮操作とを組み合わせることで、低純度プロパンから不純物を分離して高純度化できることを見出し、本発明を想到した。
すなわち本発明方法は、エタンおよびプロピレンの中の少なくとも一方、イソブタンおよびノルマルブタンの中の少なくとも一方、水、窒素、酸素、並びに二酸化炭素を、不純物として含む低純度プロパンの精製方法であって、水および二酸化炭素をプロパンよりも優先して吸着する分子篩ゼオライトにより、気相の低純度プロパンにおける水と二酸化炭素を吸着する吸着工程と、エタンおよびプロピレンをプロパンよりも優先して吸着する分子篩活性炭により、気相の低純度プロパンにおけるエタンおよびプロピレンの中の少なくとも一方を吸着する吸着工程と、イソブタンおよびノルマルブタンをプロパンよりも優先して吸着する活性炭により、気相の低純度プロパンにおけるイソブタンおよびノルマルブタンの中の少なくとも一方を吸着する吸着工程と、分縮器に気相の低純度プロパンを導入することにより、窒素および酸素を気相に維持した状態でプロパンを凝縮させる分縮工程と、前記分縮器から気相の窒素および酸素を、凝縮されたプロパンとは別に取り出す排気工程とを備え、前記吸着工程それぞれと、前記分縮工程と、前記排気工程とにより、低純度プロパンから不純物を分離することを特徴とする。
本発明は以下の知見に基づく。
分子篩の細孔の有効孔径を、細孔内にイソブタン、ノルマルブタンの分子を入り込ませる値に設定すると、プロパン分子も細孔内に入り込んでしまうため、分子篩のみで不純物をプロパンから分離させることはできない。一方、エタン、プロピレン、水分、二酸化炭素は、イソブタン、ノルマルブタンに比べて活性炭に吸着し難いことから、分子篩機能のない活性炭のみで不純物を吸着した場合、吸着剤にイソブタン、ノルマルブタンが優先して吸着され、エタン、プロピレン、水分、二酸化炭素の吸着が阻まれる。このため、活性炭のみで不純物をプロパンから分離させることもできない。特にエタンは、イソブタン、ノルマルブタンに比べて分子量が小さく活性炭への吸着力が弱いことから、活性炭のみでプロパンから分離させるのは困難である。さらに、窒素、酸素は他の不純物と比較して吸着剤への吸着力が著しく低いため、分子篩や活性炭により吸着するのは困難である。
本発明方法によれば、イソブタン、ノルマルブタンに比べて活性炭に吸着し難いエタン、プロピレン、水、および二酸化炭素を、分子篩ゼオライトと分子篩活性炭によってプロパンから分離させることができる。ここで、極性分子との親和性が強い親水性の分子篩ゼオライトによれば、二酸化炭素と水を効果的に吸着できる。また、エタン及びプロピレンの吸着速度が速い疎水性の分子篩活性炭によれば、エタンとプロピレンを効果的に吸着できる。また、イソブタンおよびノルマルブタンはプロパンよりも分子量が大きく、ファンデルワールス力が大きいため活性炭への吸着力が強いことから、イソブタンおよびノルマルブタンを活性炭によってプロパンから分離させることができる。さらに、窒素および酸素はプロパンに対する溶解度が著しく低いことから、分縮によってプロパンから分離させることができる。これにより、低純度プロパンを不純物の分離により高純度化できる。
本発明における吸着工程それぞれの順序は限定されない。分子篩ゼオライトによる吸着後に分子篩活性炭による吸着を行い、しかる後に活性炭による吸着を行うのが、プロパンの回収率を向上する上で好ましい。分縮工程は、全ての吸着工程の前あるいは後に行ってもよいし、何れかの吸着工程の間に行ってもよい。分縮工程を全ての吸着工程の後に行なうことで、分縮器において凝縮されたプロパンを気化することなく液相の高純度プロパンとして回収できる。
本発明方法により、低純度プロパンを純度99.995%以上に高純度化するのが、得られた高純度プロパンを炭化珪素半導体の原料として用いる上で好ましく、純度99.999%以上に高純度化するのがより好ましい。本発明方法によれば、このような高純度化を容易に行うことができる。
本発明システムは、エタンおよびプロピレンの中の少なくとも一方、イソブタンおよびノルマルブタンの中の少なくとも一方、水、窒素、酸素、並びに二酸化炭素を不純物として含む低純度プロパンの精製システムであって、水および二酸化炭素をプロパンよりも優先して吸着する分子篩ゼオライトが充填された第1の吸着部と、エタンおよびプロピレンをプロパンよりも優先して吸着する分子篩活性炭が充填された第2の吸着部と、イソブタンおよびノルマルブタンをプロパンよりも優先して吸着する活性炭が充填された第3の吸着部と、分縮器とを備え、前記第1の吸着部、前記第2の吸着部、前記第3の吸着部、および前記分縮器は、プロパン流路を形成するように直列に接続され、前記プロパン流路の一端に、低純度プロパンの供給源が接続され、前記プロパン流路の他端に、高純度化されたプロパンの回収容器が接続され、前記第1の吸着部、前記第2の吸着部、前記第3の吸着部、および前記分縮器に、気相の低純度プロパンが導入されるように、前記プロパン流路の圧力を調整する圧力調整手段が設けられ、前記分縮器において窒素および酸素が気相に維持された状態でプロパンが凝縮されるように、前記分縮器は低純度プロパンの冷却手段を有し、前記分縮器から気相の窒素および酸素を取り出すための排気流路が設けられていることを特徴とする。
本発明システムによれば、プロパン流路の圧力は、低純度プロパンが気相状態で各吸着部と分縮器に導入されるように調整される。これにより、気相の低純度プロパンはプロパン流路の一端を介して各吸着部と分縮器に導入される。各吸着部においては、大気圧を超える圧力下で、水および二酸化炭素を分子篩ゼオライトにより吸着し、エタンおよびプロピレンの中の少なくとも一方を分子篩活性炭により吸着し、イソブタンおよびノルマルブタンの中の少なくとも一方を活性炭により吸着できる。分縮器に導入された低純度プロパンは冷却され、窒素および酸素が気相に維持された状態でプロパンが凝縮される。分縮器から気相の窒素および酸素が、凝縮されたプロパンとは別に排気流路から取り出される。プロパン流路の他端から高純度化されたプロパンが流出し、回収容器に回収される。
本発明システムによれば本発明方法を実施できる。
前記分子篩ゼオライトは4A型であるのが好ましい。さらに、前記分子篩活性炭は4A型であるのが好ましい。これにより、汎用されている分子篩を用いることができる。
本発明システムにおいて、前記プロパン流路は、互いに並列に接続される複数の分岐流路を有し、前記分岐流路それぞれにおいて、前記第1の吸着部、前記第2の吸着部、および前記第3の吸着部が直列に接続され、前記第1の吸着部、前記第2の吸着部、および前記第3の吸着部における内部温度を調整する温度調整手段が設けられ、前記分岐流路それぞれの一端を、前記低純度プロパンの供給源への接続状態と、大気圧領域への接続状態とに切替可能な第1接続切替機構が設けられ、前記分岐流路それぞれの他端を、前記回収容器への接続状態と、再生用ガスの供給源への接続状態と、閉鎖状態とに切替可能な第2接続切替機構が設けられているのが好ましい。
この構成により、何れかの分岐流路における吸着部により不純物の吸着を行っている間に、残りの分岐流路における吸着部の吸着剤である分子篩ゼオライト、分子篩活性炭、および活性炭を再生できる。
すなわち、何れかの分岐流路における吸着部により不純物を吸着する際は、その分岐流路の一端を低純度プロパンの供給源への接続状態とし、他端を回収容器への接続状態とする。何れかの分岐流路における吸着部の吸着剤を再生する際は、分岐流路の一端を大気圧領域への接続状態とし、他端を閉鎖状態とし、吸着部の内部に残存するガスを大気圧領域に排気する。次に、吸着部の内部温度を上昇させ、吸着剤から不純物を脱着させる。また、分岐流路の他端を再生用ガスの供給源への接続状態とし、再生用ガスを分岐流路の一端へ向かい流し、脱着された不純物を大気圧領域へ排出する。これにより、不純物の吸着を連続的に行うことができる。
本発明システムにおいて、前記分岐流路それぞれの他端に接続される吸入口を有する圧縮機が設けられ、前記圧縮機の出口に接続される一時保存容器が設けられ、前記第1接続切替機構は、前記分岐流路それぞれの一端を、閉鎖状態と、前記一時保持容器への接続状態とに切替可能とされ、前記第2接続切替機構は、前記分岐流路それぞれの他端を、前記圧縮機の吸入口への接続状態と、大気圧領域への接続状態とに切替可能とされているのが好ましい。
この構成により、吸着工程の後に再生を行う前に、吸着部に残存するプロパンを回収できる。その回収したプロパンは、吸着工程の再開当初において吸着部に残存する再生用ガスを排出させるのに利用できる。
すなわち、分岐流路における吸着部での吸着工程の終了後に、分岐流路の一端を閉鎖状態と、他端を圧縮機への接続状態とする。これにより、吸着部に残存するプロパンを吸引して一時保存容器に保存できる。次に、吸着部での吸着剤の再生を行った後であって、吸着工程を開始する前に、分岐流路の一端を一時保存容器への接続状態とし、他端を大気圧領域への接続状態とする。これにより、吸着部に残存する再生用ガスを、一時保存容器に保存されたプロパンの流れにより大気圧領域へ排出できる。しかる後に、分岐流路の一端を低純度プロパンの供給源への接続状態とし、他端を回収容器への接続状態とすることで、低純度プロパンの精製を行うことができる。
本発明によれば、低純度プロパンから高純度プロパンを得るための、簡便でエネルギー効率に優れた工業的に有利な方法とシステムを提供でき、得られた高純度プロパンを例えば炭化珪素半導体の原料として用いることができる。
本発明の第1実施形態に係るプロパンの精製システムの構成説明図 本発明の第2実施形態に係るプロパンの精製システムの構成説明図
図1に示す第1実施形態に係るプロパンの精製システム1は吸着器2と分縮器3を備え、供給源5から供給される低純度プロパン100′を高純度化し、回収容器6に高純度プロパン100を回収するために用いられる。
精製システム1により精製される低純度プロパン100′は、エタン、プロピレン、イソブタン、ノルマルブタン、水、窒素、酸素、並びに二酸化炭素を不純物として含む。精製される低純度プロパン100′の純度は特に限定されないが、95〜99vol%とするのが好ましく、一般的に石油を分留することで工業的に精製される純度98.5vol%以下の低純度プロパンを用いることができる。本精製システム1により得られる高純度プロパン100の純度は99.99vol%以上であり、通常は99.995vol%以上にでき、99.999vol%以上にすることもできる。すなわち、炭化珪素半導体の原料として用いるのに適した高純度プロパンを容易に得ることができる。
吸着器2は、第1の吸着部として2つの第1吸着塔2a、2a′を有し、第2の吸着部として2つの第2吸着塔2b、2b′を有し、第3の吸着部として2つの第3吸着塔2c、2c′を有する。第1吸着塔2a、2a′に、水および二酸化炭素をプロパンよりも優先して吸着する分子篩ゼオライトαが充填される。第2吸着塔2b、2b′に、エタンおよびプロピレンをプロパンよりも優先して吸着する分子篩活性炭βが充填される。第3吸着塔2c、2c′に、イソブタンおよびノルマルブタンをプロパンよりも優先して吸着する活性炭γが充填される。
第1吸着塔2a、2a′に充填される分子篩ゼオライトαの細孔の有効孔径は、細孔内に水分子および二酸化炭素分子を入り込ませると共に、プロパン分子を入り込ませない値に設定される。
第2吸着塔2b、2b′に充填される分子篩活性炭βの細孔の有効孔径は、細孔内にエタン分子およびプロピレン分子を入り込ませると共に、プロパン分子を入り込ませない値に設定される。
本実施形態の分子篩ゼオライトαと分子篩活性炭βは、それぞれ4A型とされる。これにより、分子篩ゼオライトαと分子篩活性炭βぞれぞれの細孔の有効孔径は0.4nm(4Å)とされている。分子篩ゼオライトαは親水性で極性分子との親和性が強く、一方、分子篩活性炭βは疎水性でエタン及びプロピレンの吸着速度が速い。これにより、分子篩ゼオライトαにより水および二酸化炭素をプロパンよりも優先して効果的に吸着でき、また、分子篩活性炭βによりエタンとプロピレンをプロパンよりも優先して効果的に吸着できる。なお、分子篩ゼオライトαと分子篩活性炭βの形態は特に限定されず、例えば粒状やペレット状とすることができる。
分子篩ゼオライトαにおいて、細孔の有効孔径が0.3nmになると二酸化炭素分子を入り込ませることができず、0.5nmになるとイソブタン分子とノルマルブタン分子も入り込ませてしまう。分子篩活性炭βにおいて、細孔の有効孔径が0.3nmになるとエタン分子を入り込ませることができず、0.5nmになるとイソブタン分子とノルマルブタン分子も入り込ませてしまう。このため、分子篩ゼオライトαおよび分子篩活性炭βとして4A型以外のものを用いる場合、分子を寸法に応じて選別する分子篩機能を奏することができるように、細孔の有効孔径は0.3nm〜0.5nmの間の均一化された値に設定すればよい。これにより、分子篩ゼオライトαに水および二酸化炭素をプロパンよりも優先して細孔に入り込ませることができ、分子篩活性炭βにエタン分子およびプロピレン分子をプロパン分子に優先して細孔に入り込ませることができ、イソブタン分子とノルマルブタン分子が入り込むのを防ぐことができる。なお、低純度プロパン100′にエタンとプロピレンの中の一方のみが不純物として含有される場合、分子篩活性炭βの細孔の有効孔径は、その一方の分子を細孔に入り込ませると共に、プロパン分子を入り込ませない均一化された値に設定すればよいが、0.4nmとすることで4A型の分子篩活性炭βを用いることができる。
第3吸着塔2c、2c′に充填される活性炭γは、イソブタンとノルマルブタンをプロパンよりも優先して吸着させる特性を有するものであればよい。活性炭γとしては、細孔径が均一化されておらず分子篩機能がなく、細孔の平均有効孔径が0.5nm以上であるものが好ましい。
分子篩機能がない通常の活性炭は、その細孔の平均有効孔径が0.5nm以上であり、イソブタンとノルマルブタンの分子を細孔内に入り込ませることができる。また、高純度プロパンへの不純物の混入を防ぐため、活性炭γとしては酸、アルカリ等の薬品が添着されていないものを用いるのが好ましい。例えば、ヤシ殻活性炭や石炭系活性炭を用いることができる。活性炭γの形態は特に限定されず、例えば粒状やペレット状とすることができる。なお、活性炭γは、エタン、プロピレン、プロパン、イソブタン、ノルマルブタン、水、および二酸化炭素に対して分子篩機能がなければ、その細孔径は均一化されていてもよく、その場合の細孔の有効孔径はイソブタン及びノルマルブタンの各分子が細孔に入り込むことができるように0.5nm以上とするのが好ましい。
分縮器3は、低純度プロパン100′を冷却手段により冷却することで、窒素および酸素を気相に維持した状態でプロパンを凝縮できるものであればよく、工業用に使用される一般的なものを用いることができる。本実施形態の分縮器3は、シェルアンドチューブ式熱交換器3aと、冷却手段として機能する恒温流体循環装置3bを有する。恒温流体循環装置3bにより循環される恒温流体が、熱交換器3aのシェル内を流動し、分縮器3のプロパン入口3a′から熱交換器3aのチューブに導入される低純度プロパン100′を冷却する。その恒温流体は、例えば水とエタノールの混合液により構成される。これにより凝縮されたプロパンが、分縮器3のプロパン出口3a″に向かい流動するように、そのチューブの軸方向は水平方向に対して例えば1度〜5度傾けられる。なお、分縮器3においてプロパンが凝縮される領域の圧力と温度を測定するため、圧力計8と温度計9が設けられている。
分縮器3から気相の窒素および酸素を取り出すための排気流路10が設けられている。すなわち排気流路10は、分縮器25におけるプロパンの流路から分岐し、開閉弁11と流量調整器12を介して大気圧領域に接続される。これにより、分縮器3から気相の窒素および酸素を大気圧領域に排出できる。
一方の第1吸着塔2a、一方の第2吸着塔2b、および一方の第3吸着塔2cは、配管を介して直列に接続されることで第1分岐流路13aを形成する。また、他方の第1吸着塔2a′、他方の第2吸着塔2b′、および他方の第3吸着塔2c′は、配管を介して直列に接続されることで第2分岐流路13bを形成する。両分岐流路13a、13bは、配管を介して互いに並列に接続され、また、配管を介して分縮器3に直列に接続される。これにより、第1の吸着部、第2の吸着部、第3の吸着部、および分縮器3は直列に接続され、プロパン流路13を形成する。
第1分岐流路13aの一端である一方の第1吸着塔2aの入口2dと、第2分岐流路13bの一端である他方の第1吸着塔2a′の入口2d′との接続部が、プロパン流路13の一端13′とされる。
第1分岐流路13aの他端である一方の第3吸着塔2cの出口2eと、第2分岐流路13bの他端である他方の第3吸着塔2c′の出口2e′との接続部13cは、圧力計14、圧力調整弁15、開閉弁16を介し、分縮器3のプロパン入口3a′に接続される。分縮器3のプロパン出口3a″に接続されるトラップ配管17の先端が、プロパン流路13の他端13″とされる。また、接続部13cは、圧力計14、圧力調整弁15、開閉弁18を介し、大気圧領域に接続される。
プロパン流路13の一端13′は、低純度プロパン100′の供給源5に接続される。すなわち、プロパン流路13の一端13′に、開閉弁20、流量調整器21、開閉弁22、圧力調整弁23、開閉弁24が直列に接続される。開閉弁24は、供給源5を構成するタンクの上部空間に開閉弁25を介して接続されると共に、そのタンクの下部空間に気化器26および開閉弁27を介して接続される。開閉弁24から供給源5の上部空間への流路と、開閉弁24から供給源5の下部空間への流路とは並列とされる。プロパン流路13の一端13′は、開閉弁25、27の開閉により、供給源5の上部空間と下部空間とに択一的に接続可能とされている。
本実施形態の供給源5は、液相の低純度プロパン100′を貯留する。よって、供給源5の下部空間に貯留された低純度プロパン100′を、液相状態で開閉弁27を介して流出させた後に気化することも、供給源5の上部空間で気化させた後に開閉弁25を介して流出させることもできる。なお、供給源5の内圧測定用の圧力計28が接続され、供給源5の上部空間は開閉弁29を介して大気圧領域に接続され、気化器26にドレンバルブ30が接続される。開閉弁29は通常時は閉鎖されている。
プロパン流路13の他端13″は、開閉弁31を介し、高純度化されたプロパンを貯留する回収容器6に接続される。回収容器6に回収された液相の高純度プロパン100は、恒温流体循環装置35により冷却される。高純度プロパン100は、開閉弁36、圧縮機37を介して回収容器6から充填容器38に充填される。回収容器6の温度を測定する温度計39が設けられ、温度計39の測定温度に応じて恒温流体循環装置35により高純度プロパン100が冷却される。回収容器6の上部空間は、開閉弁40を介して大気圧領域に接続され、開閉弁41を介して分縮器3におけるプロパンの流路に接続されている。開閉弁40、41は通常時は閉鎖されている。
圧力調整弁23は、プロパン流路13に導入される低純度プロパン100′の圧力を、供給源5における圧力よりも低減するように調整する。圧力調整弁15は、吸着部である吸着塔2a、2a′、2b、2b′、2c、2c′の背圧を、圧力調整弁23により調整される低純度プロパン100′の圧力よりも低くなるように調整する。これにより圧力調整弁15、23は、プロパン流路13の圧力を調整する圧力調整手段として機能する。プロパン流路13の圧力を調整することで、吸着塔2a、2a′、2b、2b′、2c、2c′それぞれ及び分縮器3に、気相の低純度プロパンを導入することができる。
吸着塔2a、2a′、2b、2b′、2c、2c′それぞれの内部温度を調整するための温度調整手段として、電気ヒーター44a、44b、44c、44a′、44b′、44c′が設けられている。吸着塔2a、2a′、2b、2b′、2c、2c′それぞれの内部温度を測定するため、温度計45a、45b、45c、45a′、45b′、45c′、が設けられている。
第1分岐流路13aの一端である一方の第1吸着塔2aの入口2dは、開閉弁49を介して大気圧領域に接続され、開閉弁50を介してプロパン流路13の一端13′に接続される。第2分岐流路13bの一端である他方の第1吸着塔2a′の入口2d′は、開閉弁51を介して大気圧領域に接続され、開閉弁52を介してプロパン流路13の一端13′に接続される。プロパン流路13の一端13′は、上記のように低純度プロパン100′の供給源5に接続され、また、圧力調整弁23の入口に接続される開閉弁53を介して一時保存容器54に接続される。これによって、分岐流路13a、13bそれぞれの一端を、低純度プロパン100′の供給源5への接続状態と、大気圧領域への接続状態と、閉鎖状態と、一時保持容器54への接続状態とに切替可能な第1接続切替機構55が設けられている。
第1分岐流路13aの他端である一方の第3吸着塔2cの出口2eは、開閉弁59を介して接続部13cに接続され、流量調整器60および開閉弁61を介して再生用ガス供給源62に接続され、開閉弁63、開閉弁64を介して圧縮機65の吸入口に接続される。圧縮機65の出口は一時保存容器54に接続される。第2分岐流路13bの他端である他方の第3吸着塔2c′の出口2e′は、開閉弁66を介して接続部13cに接続され、流量調整器60′および開閉弁61′を介して再生用ガス供給源62′に接続され、開閉弁67、開閉弁64を介して圧縮機65の吸入口に接続される。上記のように接続部13cは、開閉弁16を介し回収容器6に接続され、開閉弁18を介し大気圧領域に接続される。これにより、分岐流路13a、13bそれぞれの他端を、回収容器6への接続状態と、再生用ガスの供給源62、62′への接続状態と、圧縮機65の吸入口への接続状態と、大気圧領域への接続状態とに切替可能な第2接続切替機構68が構成されている。
上記精製システム1による低純度プロパン100′の精製手順を以下に述べる。ここでは、第1分岐流路13aの吸着部である吸着塔2a、2b、2cを用いた精製手順を述べるが、第2分岐流路13bの吸着部である吸着塔2a′、2b′、2c′を用いた精製手順も同様である。
まず、初期吸着工程を行うことで、吸着塔2a、2b、2c内の圧力を低純度プロパンの導入により所定値とし、かつ、後述の再生工程で使用した再生用ガスを吸着塔2a、2b、2c内から追い出す。
初期吸着工程においては、第1分岐流路13aの一端を一時保存容器54へ接続するため、開閉弁50、開閉弁20、開閉弁22、および開閉弁53を開く。また、第1分岐流路13aの他端を大気圧領域へ接続するため、開閉弁59および開閉弁18を開く。開閉弁16、開閉弁24、開閉弁49、開閉弁52、開閉弁61、開閉弁63、および開閉弁66は閉鎖する。この際、一時保存容器54から流出する低純度プロパン100′の流量は流量調整器21により調整し、圧力は圧力調整弁23により調整する。また、吸着塔2a、2b、2c内の圧力は圧力調整弁15により吸着圧力に調整し、吸着塔2a、2b、2c内の温度は室温に調整する。圧力調整弁23により調整される低純度プロパンの圧力は、圧力調整弁15により設定される吸着器2内の吸着圧力よりも高くする。吸着圧力は、吸着剤である分子篩ゼオライトα、分子篩活性炭β、および活性炭γの吸着容量を有効活用するため、大気圧を超えると共に常温下においてプロパンが液化しない圧力に調整される。吸着圧力は、例えばゲージ圧で0.5〜0.6MPa程度に調整されるのが好ましい。これにより、吸着塔2a、2b、2c内の再生用ガスは、一時保存容器54から供給される気相の低純度プロパン100′により大気圧領域に追い出され、また、低純度プロパン100′の不純物は吸着剤α、β、γにより吸着される。この初期吸着工程により、吸着塔2a、2b、2c内を、再生用ガス濃度が100volppm以下で残りが低純度プロパン100′で満たされるようにするのが望ましい。その吸着塔2a、2b、2c内の再生用ガスは、後の吸着工程において分縮器3でプロパンから分離されるため、再生用ガスを分離する工程は不要である。
なお、システムの運転を開始する当初においては、一時保存容器54に低純度プロパン100′が保存されておらず、再生工程も行われていない。この場合、吸着塔2a、2b、2c内に予め再生用ガスを充填した後、開閉弁24を開き、開閉弁53を閉じ、開閉弁25と開閉弁27の中の一方を開くことで、一時保存容器54内の低純度プロパン100′に代えて、供給源5から供給される低純度プロパン100′を用いて初期吸着工程を行えばよい。
初期吸着工程の後に吸着工程を行う。すなわち、第1分岐流路13aの一端を低純度プロパン100′の供給源5へ接続するため、開閉弁50、開閉弁20、開閉弁22、開閉弁24、開閉弁25と開閉弁27の中の一方を開く。また、第1分岐流路13aの他端を回収容器6へ接続するため、開閉弁59、開閉弁16、および開閉弁31を開く。開閉弁18、開閉弁25と開閉弁27の中の他方、開閉弁49、開閉弁52、開閉弁53、開閉弁61、開閉弁63、および開閉弁66は閉鎖する。
これにより、低純度プロパン100′が第1分岐流路13aの各吸着塔2a、2b、2cに気相で導入される。低純度プロパン100′の流量は流量調整器21により適宜調整される。第1吸着塔2aにおいては、分子篩ゼオライトαにより、気相の低純度プロパンにおける水と二酸化炭素を吸着する吸着工程が行われる。第2吸着塔2bにおいては、分子篩活性炭βにより、気相の低純度プロパンにおけるエタンおよびプロピレンを吸着する吸着工程が行われる。第3吸着塔2cにおいては、活性炭γにより、気相の低純度プロパンにおけるイソブタンおよびノルマルブタンを吸着する吸着工程が行われる。各吸着工程での吸着圧力、低純度プロパン100′の流量、吸着塔2a、2b、2c内の温度は、初期吸着工程と同様に調整される。
低純度プロパン100′は、第1分岐流路13aを通過した後に分縮器3に気相で導入される。これにより、分縮器3において、窒素および酸素を気相に維持した状態でプロパンを凝縮させる分縮工程が行われる。この際、分縮器3の恒温流体循環装置3bにより循環される恒温流体の温度を調節することで、温度計9により計測される分縮器3のチューブ内の温度設定が行われる。この温度設定は、圧力計8により計測される圧力が圧力計14により計測される吸着部の圧力よりも低くなり、その圧力下で低純度プロパン100′の窒素および酸素が気相に維持された状態でプロパンが凝縮されるように行えばよい。
分縮器3における気相の窒素および酸素が、排気流路10から大気圧領域に排気される。これにより、分縮器3から気相の窒素および酸素を、凝縮されたプロパンから分離して取り出す排気工程が行われる。上記吸着工程それぞれと、上記分縮工程と、上記排気工程とにより、低純度プロパン100′から不純物が分離される。これにより、分縮器3において凝縮されたプロパンは、液相の高純度プロパンとして回収容器6に回収される。流量調整器12により調整される排気流路10からの排気流量は、回収容器6に回収される高純度プロパンにおける酸素濃度と窒素濃度が所望の値になるように設定すればよい。例えば、第3吸着塔2c、2c′の出口での窒素濃度が10ppmであれば、流量調整器21による調整流量に対して、流量調整器12による調整流量を5〜10vol%程度とすることで、回収容器6における高純度プロパンの窒素濃度を1ppm以下にできる。吸着工程は、吸着塔2a、2b、2cにおいて吸着剤α、β、γが所望の吸着機能を喪失して破過が開始する前に終了する。その破過開始までの時間は実験により予め求めればよい。
吸着工程の後に一時保存工程を行う。すなわち、第1分岐流路13aの一端を閉鎖するため開閉弁50を閉鎖し、第1分岐流路13aの他端を圧縮機65の吸入口に接続するため、開閉弁59を閉鎖すると共に開閉弁63、開閉弁64を開く。しかる後に、吸着塔2a、2b、2c内に残留する低純度プロパン100′を、圧縮機65により吸引して一時保存容器54内に保存する。一時保存容器54に保存される低純度プロパン100′は、供給部を通過しているので、その純度は供給源5における低純度プロパン100′の純度よりも高くなる。よって、初期吸着工程において吸着剤α、β、γに吸着される不純物を少なくできる。圧縮機65による低純度プロパン100′の吸引は、例えば吸着塔2a、2b、2cの圧力が大気圧程度になるまで行う。
一時保存工程の後に再生工程を行う。すなわち、第1分岐流路13aの一端を大気圧領域に接続し、第1分岐流路13aの他端を再生用ガスの供給源62に接続するため、開閉弁50、開閉弁59を閉鎖し、開閉弁49、開閉弁61を開く。この状態で、電気ヒーター44a、44b、44cにより吸着塔2a、2b、2cの内部温度を温度計45a、45b、45cにより確認しつつ上昇させる。また、供給源62からの再生用ガスを、流量調整器60で流量調整しつつ、第1分岐流路13aの他端から吸着塔2a、2b、2cに導入し、第1分岐流路13aの一端から大気圧領域に排出させる。その温度上昇により吸着塔2a、2b、2cにおける吸着剤α、β、γから不純物が脱着され、脱着された不純物は再生用ガスと共に大気圧領域に排出される。これにより、吸着工程における低純度プロパン100′の流動方向とは逆方向に、吸着塔2a、2b、2c内で再生用ガスを流通させる再生工程が行われる。
再生工程における吸着器2内の温度は200℃〜300℃が好ましく、250℃程度とするのがより好ましい。その温度が200℃未満では再生時間が長くなり、300℃を超えるとエネルギーコストが上昇すると共に分子篩ゼオライトα、分子篩活性炭β、および活性炭γの粉化が進行するおそれがある。第1分岐流路13aの一端から排出される再生用ガスに含まれる不純物それぞれの濃度を50ppm以下にすれば、分子篩ゼオライトα、分子篩活性炭β、および活性炭γの初期吸着容量の90%以上にまで吸着容量を回復可能である。そのように吸着容量が回復するまでの再生時間は、再生用ガスの流量、不純物の吸着量、吸着塔2a、2b、2c内の温度によって変動するため、実験的に求めるのがよい。なお、再生用ガスとしては、再生工程において接するプロパン、分子篩ゼオライトα、分子篩活性炭β、および活性炭γ、精製システム1の構造材等に対して活性の無いガス、例えばヘリウムやアルゴン等の不活性ガスを用いるのが好ましい。再生工程が終了すれば、上記初期吸着工程に戻る。
第1分岐流路13aの吸着塔2a、2b、2cおよび第2分岐流路13bの吸着塔2a′、2b′、2c′の中の一方において、初期吸着工程および吸着工程を行う間に、他方において一時保存工程と再生工程を行うことができる。これにより、低純度プロパン100′からの不純物の吸着を連続して行うことができる。
図2は第2実施形態に係るプロパンの精製システム1aを示し、第1実施形態と同様部分は同一符号で示す。第2実施形態の精製システム1aは、第1分岐流路13aにおける第1吸着塔2aと第2吸着塔2bとの間に設けられる第3接続切替機構83と、第2分岐流路13bにおける第1吸着塔2a′と第2吸着塔2b′との間に設けられる第4接続切替機構84を備える。
第3接続切替機構83は、第1吸着塔2aの出口と第2吸着塔2bの入口との間の流路に設けられる2つの開閉弁85、86と、第1吸着塔2aの出口と開閉弁85との間に接続される開閉弁87と、第2吸着塔2bの入口と開閉弁86との間に接続される開閉弁88とを有する。開閉弁87に、流量調整器89を介して再生用ガス供給源62aが接続される。開閉弁88は大気圧領域に接続される。これにより、開閉弁85、86を開き、開閉弁87、88を閉じることで、第1吸着塔2aの出口と第2吸着塔2bの入口を接続する状態に切り替えられ、開閉弁85、86を閉じ、開閉弁87、88を開くことで、第1吸着塔2aの出口を再生用ガス供給源62aに接続し、第2吸着塔の入口2bを大気圧領域に接続する状態に切り替えられ、開閉弁85、86、87、88を閉じることで、第1吸着塔2aの出口と第2吸着塔2bの入口を閉鎖する状態に切り替えられる。
第4接続切替機構84は、第1吸着塔2a′の出口と第2吸着塔2b′の入口との間の流路に設けられる2つの開閉弁90、91と、第1吸着塔2a′の出口と開閉弁90との間に接続される開閉弁92と、第2吸着塔2b′の入口と開閉弁91との間に接続される開閉弁93とを有する。開閉弁92に、流量調整器94を介して再生用ガス供給源62a′が接続される。開閉弁93は大気圧領域に接続される。これにより、開閉弁90、91を開き、開閉弁92、93を閉じることで、第1吸着塔2a′の出口と第2吸着塔2b′の入口を接続する状態に切り替えられ、開閉弁90、91を閉じ、開閉弁92、93を開くことで、第1吸着塔2a′の出口を再生用ガス供給源62a′に接続し、第2吸着塔の入口2b′を大気圧領域に接続する状態に切り替えられ、開閉弁90、91、92、93を閉じることで、第1吸着塔2a′の出口と第2吸着塔2b′の入口を閉鎖する状態に切り替えられる。
他の構成は第1実施形態と同様とされる。
第2実施形態の一時保存工程においては、第1吸着塔2aの出口と第2吸着塔2bの入口を閉鎖する。これにより、第2吸着塔2b、2b′内と第3吸着塔2c、2c′内に残留する低純度プロパン100′は、第1実施形態と同様に圧縮機65により吸引して一時保存容器54内に保存する。一方、第1吸着塔2a、2a′内に残留する低純度プロパン100′は、第1吸着塔2a、2a′の入口2d、2d′を大気圧領域に接続することで廃棄する。これは、第1吸着塔2a、2a′内に残存する低純度プロパン100′の純度が、第2、第3吸着塔2b、2b′、2c、2c′内に残存する低純度プロパン100′よりも低いことによる。
また、第2実施形態の再生工程においては、第1吸着塔2a、2a′の出口を再生用ガス供給源62a、62a′に接続し、第2吸着塔2b、2b′の入口を大気圧領域に接続する。これにより、供給源62、62′からの再生用ガスは第2、第3吸着塔2b、2b′、2c、2c′に供給され、再生用ガス供給源62a、62a′からの再生用ガスは第1吸着塔2a、2a′に供給される。
第2実施形態の初期吸着工程および吸着工程は、第1吸着塔2a、2a′の出口と第2吸着塔2b、2b′の入口が接続されることで、第1実施形態と同様に行われる。
上記各実施形態によれば、低純度プロパンに含まれる不純物の中で、イソブタン、ノルマルブタンに比べて活性炭に吸着しにくい水、二酸化炭素、エタン及びプロピレンを、分子篩ゼオライトαと分子篩活性炭βによってプロパンから分離させることができる。また、イソブタン及びノルマルブタンを、活性炭γによってプロパンから分離させることができる。さらに、分縮器3における分縮により酸素および窒素をプロパンから分離することができる。これにより、低純度プロパンを不純物の分離により高純度化できる。その分子篩ゼオライトαおよび分子篩活性炭βは4A型とされているので、汎用されているものを用いることができる。また、大気圧を超える圧力下で不純物を吸着することで吸着効率を向上でき、さらに、吸着剤α、β、γは吸着能力が低下した場合に再生することができる。
第1実施形態の精製システム1を用い、以下の条件下で低純度プロパンを精製した。
第1吸着塔2aは直径42.6mmφ、高さ1500mmの円管状とし、分子篩ゼオライトαを充填した。分子篩ゼオライトαとして直径3.0mmの粒状で4A型のもの(東ソー製、MS−4A)を用いた。第2吸着塔2bは直径95.6mm、高さ1930mmの円管状とし、分子篩活性炭βを充填した。分子篩活性炭βとして直径2.3mmの粒状で4A型のもの(日本エンバイロケミカルズ製、CMS−4A−B)を用いた。第3吸着塔2c′は直径28.4mm、高さ1800mmの円管状とし、活性炭γを充填した。活性炭γとして粒度が10〜20メッシュのヤシ殻破砕炭(クラレケミカル製、クラレコールGG)を用いた。
初期工程として、窒素2volppm、酸素0.1volppm未満、二酸化炭素0.2volppm、水2volppm、エタン4595volppm、プロピレン3volppm、イソブタン484volppm、ノルマルブタン15volppmを含有する低純度プロパンを、供給源5から吸着器2に導入した。これにより、初期工程前に大気圧とされた吸着器2内に充填されていた再生用ガスであるヘリウムを低純度プロパンと置換し、ガスクロマトグラフ熱伝導度型検出器(GC−TCD)により測定したヘリウム濃度を1vol%以下とした。また、圧力調整弁15により吸着塔2a、2b、2c内の吸着圧力をゲージ圧で0.50MPaに設定した。吸着圧力までの蓄圧に要した時間は252分であった。
次に、窒素2volppm、酸素0.1volppm未満、二酸化炭素0.2volppm、水2volppm、エタン4595volppm、プロピレン3volppm、イソブタン484volppm、ノルマルブタン15volppmを含有する気相の低純度プロパンを吸着塔2a、2b、2cおよび分縮器3に導入し、高純度プロパンを回収容器6に回収した。この際、圧力調整弁23の設定圧をゲージ圧で0.53MPa、流量調整器21の設定流量を標準状態で5L/min、分縮器3のプロパン凝縮領域における圧力を0.1MPaG、流量調整器12の設定流量を0.15L/min、各吸着塔2a、2b、2c内の温度を室温、恒温流体循環装置3bにより循環される恒温流体の温度を−30℃、精製時間を195分とした。この場合の高純度プロパンの取得量は2241g、収率は53.2wt%であった。
プロパン純度と、エタン、プロピレン、イソブタン、ノルマルブタンの濃度は、ガスクロマトグラフ水素炎イオン化型検出器(GC−FID)、酸素、窒素、二酸化炭素はガスクロマトグラフパルス放電光イオン化検出器(GC−PDD)、水については静電容量式露点計により測定した。
各不純物濃度の測定値が1volppmに達した時点を、各不純物についての吸着剤α、β、γそれぞれの破過時点であるとした場合、精製開始から190分後にイソブタンが破過した。
以下の表1に、精製開始から190分後の各吸着塔2a、2b、2cの出口と回収容器6での不純物濃度を示す。
実施例1によれば、精製時間を190分とすれば、窒素0.1volppm未満、酸素0.1volppm未満、二酸化炭素0.1volppm未満、水0.3volppm未満、エタン0.1volppm、プロピレン0.1volppm未満、イソブタン0.1volppm、ノルマルブタン0.1volppm未満を含有する純度99.999vol%以上の高純度プロパンを精製できることを確認できた。
Figure 2013129606
本発明は上記実施形態や実施例に限定されない。例えば、本発明により精製される低純度プロパンは、不純物濃度にばらつきがあることから、エタン及びプロピレンについては両者の中の少なくとも一方を不純物として含有していればよく、イソブタン及びノルマルブタンについては両者の中の少なくとも一方を不純物として含有していればよく、また、窒素、酸素、水、二酸化炭素、エタン、プロピレン、イソブタン、及びノルマルブタン以外の不純物を含有していてもよい。
上記実施形態では、プロパン流路13において上流側から第1吸着塔2a、2a′、第2吸着塔2b、2b′、第3吸着塔2c、2c′、分縮器3の順序で配置したが、配置順序は限定されず任意に変更できる。すなわち、分子篩ゼオライトαによる吸着と、分子篩活性炭βによる吸着と、活性炭γによる吸着と、分縮器3による分縮の順序は限定されない。例えば、分子篩ゼオライトαによる吸着の後に分縮器3による分縮を行い、次に活性炭γによる吸着を行い、しかる後に分子篩活性炭βによる吸着を行ってもよい。
上記実施形態では分子篩ゼオライトα、分子篩活性炭β、及び活性炭γを、互いに異なる吸着塔に充填したが、単一の吸着塔に充填してもよい。この場合、単一の吸着塔内で分子篩ゼオライトα、分子篩活性炭β、及び活性炭γを、混合することなく層状に積み重ねればよい。
上記実施形態のプロパン流路13は2つの分岐流路13a、13bを有するが、分岐流路の数は限定されず、3つ以上の分岐流路それぞれにおいて、第1の吸着部、第2の吸着部、および第3の吸着部を直列に接続してもよい。
プロパン流路が分岐流路を有することは必須ではなく、分岐流路を有さないプロパン流路において、第1の吸着部、第2の吸着部、第3の吸着部、および分縮器を直列に接続してもよい。
上記実施形態では吸着工程の後に、吸着器2に残存する低純度プロパン100′を圧縮機65と一時保存容器54を用いて回収する一時保存工程を行ったが、一時保存工程や、そのための圧縮機65や一時保存容器54は必須ではない。一時保存工程に代えて、吸着工程の後に吸着器2を大気圧領域に接続することで、吸着器2に残存する低純度プロパン100′を大気圧領域に廃棄してもよい。この場合、初期吸着工程においては、供給源5の低純度プロパン100′により吸着器2内から再生用ガスを追い出せばよい。
1、1a…精製システム、2…吸着器、2a、2a′…第1吸着塔(第1の吸着部)、2b、2b′…第2吸着塔(第2の吸着部)、2c、2c′…第3吸着塔(第3の吸着部)、3…分縮器、3b…恒温流体循環装置(冷却手段)、5…低純度プロパン供給源、6…高純度プロパン回収容器、10…排気流路、13…プロパン流路、13a…第1分岐流路、13b…第2分岐流路、15、23…圧力調整弁(圧力調整手段)、44a、44b、44c、44a′、44b′、44c′…ヒーター(温度調整手段)、54…一時保存容器、55…第1接続切替機構、62、62′、62a、62a′…再生用ガス供給源、65…圧縮機、68…第2接続切替機構

Claims (7)

  1. エタンおよびプロピレンの中の少なくとも一方、イソブタンおよびノルマルブタンの中の少なくとも一方、水、窒素、酸素、並びに二酸化炭素を、不純物として含む低純度プロパンの精製方法であって、
    水および二酸化炭素をプロパンよりも優先して吸着する分子篩ゼオライトにより、気相の低純度プロパンにおける水と二酸化炭素を吸着する吸着工程と、
    エタンおよびプロピレンをプロパンよりも優先して吸着する分子篩活性炭により、気相の低純度プロパンにおけるエタンおよびプロピレンの中の少なくとも一方を吸着する吸着工程と、
    イソブタンおよびノルマルブタンをプロパンよりも優先して吸着する活性炭により、気相の低純度プロパンにおけるイソブタンおよびノルマルブタンの中の少なくとも一方を吸着する吸着工程と、
    分縮器に気相の低純度プロパンを導入することにより、窒素および酸素を気相に維持した状態でプロパンを凝縮させる分縮工程と、
    前記分縮器から気相の窒素および酸素を、凝縮されたプロパンとは別に取り出す排気工程とを備え、
    前記吸着工程それぞれと、前記分縮工程と、前記排気工程とにより、低純度プロパンから不純物を分離することを特徴とするプロパンの精製方法。
  2. 低純度プロパンを純度99.995%以上に高純度化する請求項1に記載のプロパンの精製システム。
  3. エタンおよびプロピレンの中の少なくとも一方、イソブタンおよびノルマルブタンの中の少なくとも一方、水、窒素、酸素、並びに二酸化炭素を不純物として含む低純度プロパンの精製システムであって、
    水および二酸化炭素をプロパンよりも優先して吸着する分子篩ゼオライトが充填された第1の吸着部と、
    エタンおよびプロピレンをプロパンよりも優先して吸着する分子篩活性炭が充填された第2の吸着部と、
    イソブタンおよびノルマルブタンをプロパンよりも優先して吸着する活性炭が充填された第3の吸着部と、
    分縮器とを備え、
    前記第1の吸着部、前記第2の吸着部、前記第3の吸着部、および前記分縮器は、プロパン流路を形成するように直列に接続され、
    前記プロパン流路の一端に、低純度プロパンの供給源が接続され、
    前記プロパン流路の他端に、高純度化されたプロパンの回収容器が接続され、
    前記第1の吸着部、前記第2の吸着部、前記第3の吸着部、および前記分縮器に、気相の低純度プロパンが導入されるように、前記プロパン流路の圧力を調整する圧力調整手段が設けられ、
    前記分縮器において窒素および酸素が気相に維持された状態でプロパンが凝縮されるように、前記分縮器は低純度プロパンの冷却手段を有し、
    前記分縮器から気相の窒素および酸素を取り出すための排気流路が設けられていることを特徴とするプロパンの精製システム。
  4. 前記分子篩ゼオライトは4A型である請求項3に記載のプロパンの精製システム。
  5. 前記分子篩活性炭は4A型である請求項3又は4に記載のプロパンの精製システム。
  6. 前記プロパン流路は、互いに並列に接続される複数の分岐流路を有し、
    前記分岐流路それぞれにおいて、前記第1の吸着部、前記第2の吸着部、および前記第3の吸着部が直列に接続され、
    前記第1の吸着部、前記第2の吸着部、および前記第3の吸着部における内部温度を調整する温度調整手段が設けられ、
    前記分岐流路それぞれの一端を、前記低純度プロパンの供給源への接続状態と、大気圧領域への接続状態とに切替可能な第1接続切替機構が設けられ、
    前記分岐流路それぞれの他端を、前記回収容器への接続状態と、再生用ガスの供給源への接続状態と、閉鎖状態とに切替可能な第2接続切替機構が設けられている請求項5に記載のプロパンの精製システム。
  7. 前記分岐流路それぞれの他端に接続される吸入口を有する圧縮機が設けられ、
    前記圧縮機の出口に接続される一時保存容器が設けられ、
    前記第1接続切替機構は、前記分岐流路それぞれの一端を、閉鎖状態と、前記一時保持容器への接続状態とに切替可能とされ、
    前記第2接続切替機構は、前記分岐流路それぞれの他端を、前記圧縮機の吸入口への接続状態と、大気圧領域への接続状態とに切替可能とされている請求項6に記載のプロパンの精製システム。
JP2011278031A 2011-12-20 2011-12-20 プロパンの精製方法および精製システム Active JP5822299B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011278031A JP5822299B2 (ja) 2011-12-20 2011-12-20 プロパンの精製方法および精製システム
PCT/JP2012/075646 WO2013094281A1 (ja) 2011-12-20 2012-10-03 プロパンの精製方法および精製システム
KR1020147015832A KR101928606B1 (ko) 2011-12-20 2012-10-03 프로판의 정제 방법 및 정제 시스템
US14/362,880 US9556089B2 (en) 2011-12-20 2012-10-03 Purification method and purification system for propane
TW101144553A TWI554497B (zh) 2011-12-20 2012-11-28 丙烷之純化方法及純化系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278031A JP5822299B2 (ja) 2011-12-20 2011-12-20 プロパンの精製方法および精製システム

Publications (3)

Publication Number Publication Date
JP2013129606A true JP2013129606A (ja) 2013-07-04
JP2013129606A5 JP2013129606A5 (ja) 2014-10-09
JP5822299B2 JP5822299B2 (ja) 2015-11-24

Family

ID=48668186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278031A Active JP5822299B2 (ja) 2011-12-20 2011-12-20 プロパンの精製方法および精製システム

Country Status (5)

Country Link
US (1) US9556089B2 (ja)
JP (1) JP5822299B2 (ja)
KR (1) KR101928606B1 (ja)
TW (1) TWI554497B (ja)
WO (1) WO2013094281A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121622A1 (ja) * 2015-01-29 2016-08-04 住友精化株式会社 プロパンの製造方法およびプロパン製造装置
JP2022515052A (ja) * 2018-12-18 2022-02-17 バーゼル・ポリオレフィン・ゲーエムベーハー エチレンポリマーの気相製造プロセス
JP2023504849A (ja) * 2019-12-06 2023-02-07 ネステ オサケ ユキチュア ユルキネン バイオベースの材料をアップグレードするための方法およびアップグレードされた材料
WO2024106373A1 (ja) * 2022-11-16 2024-05-23 株式会社レゾナック 炭化水素の製造方法及び炭化ケイ素の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822299B2 (ja) * 2011-12-20 2015-11-24 住友精化株式会社 プロパンの精製方法および精製システム
WO2016160440A1 (en) * 2015-03-27 2016-10-06 Uop Llc Compound bed design with additional regeneration steps
KR102205760B1 (ko) * 2016-03-04 2021-01-21 아사히 가세이 가부시키가이샤 가스 분리용 모듈 및 가스 분리 방법
CN110368772A (zh) * 2019-01-31 2019-10-25 滨化集团股份有限公司 一种环氧丙烷、二氯丙烷装卸车过程中尾气的处理方法及其装置
CN115364821A (zh) * 2022-08-22 2022-11-22 和远潜江电子特种气体有限公司 改性吸附剂的制备方法及其在高纯乙烯合成纯化中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1375900A (ja) * 1972-06-29 1974-11-27
US4935580A (en) * 1988-06-14 1990-06-19 Uop Process for purification of hydrocarbons using metal exchanged clinoptilolite to remove carbon dioxide
JP2008513194A (ja) * 2004-09-15 2008-05-01 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Itq−29ゼオライトを使用する分離方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519343A (en) * 1946-05-03 1950-08-22 Union Oil Co Adsorption process and apparatus
US3306006A (en) * 1964-03-23 1967-02-28 Universal Oil Prod Co Separation of gas mixtures utilizing plural sorbent zones in series and parallel
KR950008454B1 (ko) * 1992-05-30 1995-07-31 삼성전자주식회사 내부전원전압 발생회로
JP5546447B2 (ja) 2008-03-07 2014-07-09 住友精化株式会社 プロピレンの精製方法および精製装置
JP5822299B2 (ja) * 2011-12-20 2015-11-24 住友精化株式会社 プロパンの精製方法および精製システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1375900A (ja) * 1972-06-29 1974-11-27
US4935580A (en) * 1988-06-14 1990-06-19 Uop Process for purification of hydrocarbons using metal exchanged clinoptilolite to remove carbon dioxide
JP2008513194A (ja) * 2004-09-15 2008-05-01 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Itq−29ゼオライトを使用する分離方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN7015001510; HERDEN, H. et al.: Journal of Colloid and Interface Science 144(2), 1991, p.477-482 *
JPN7015001511; DO, H. D. et al.: AIChE Journal 47(11), 2001, p.2515-2525 *
JPN7015001512; WANG, K. and DO, D. D.: Separation and Purification Technology 17, 1999, p.131-146 *
JPN7015001513; HABGOOD, H. W. and HANLAN, J. F.: CANADIAN JOURNAL OF CHEMISTRY 37, 1959, p.843-855 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121622A1 (ja) * 2015-01-29 2016-08-04 住友精化株式会社 プロパンの製造方法およびプロパン製造装置
KR20170109521A (ko) 2015-01-29 2017-09-29 스미토모 세이카 가부시키가이샤 프로판의 제조 방법 및 프로판 제조 장치
JPWO2016121622A1 (ja) * 2015-01-29 2017-11-09 住友精化株式会社 プロパンの製造方法およびプロパン製造装置
US10364199B2 (en) * 2015-01-29 2019-07-30 Sumitomo Seika Chemicals Co., Ltd. Propane production method and propane production apparatus
JP7142417B2 (ja) 2015-01-29 2022-09-27 住友精化株式会社 プロパンの製造方法およびプロパン製造装置
KR102447748B1 (ko) * 2015-01-29 2022-09-27 스미토모 세이카 가부시키가이샤 프로판의 제조 방법 및 프로판 제조 장치
JP2022515052A (ja) * 2018-12-18 2022-02-17 バーゼル・ポリオレフィン・ゲーエムベーハー エチレンポリマーの気相製造プロセス
JP7314275B2 (ja) 2018-12-18 2023-07-25 バーゼル・ポリオレフィン・ゲーエムベーハー エチレンポリマーの気相製造プロセス
JP2023504849A (ja) * 2019-12-06 2023-02-07 ネステ オサケ ユキチュア ユルキネン バイオベースの材料をアップグレードするための方法およびアップグレードされた材料
WO2024106373A1 (ja) * 2022-11-16 2024-05-23 株式会社レゾナック 炭化水素の製造方法及び炭化ケイ素の製造方法

Also Published As

Publication number Publication date
KR101928606B1 (ko) 2018-12-12
JP5822299B2 (ja) 2015-11-24
WO2013094281A1 (ja) 2013-06-27
US9556089B2 (en) 2017-01-31
KR20140107246A (ko) 2014-09-04
TW201332967A (zh) 2013-08-16
TWI554497B (zh) 2016-10-21
US20140343341A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5822299B2 (ja) プロパンの精製方法および精製システム
TWI491558B (zh) Ammonia purification system and ammonia purification method
KR101423090B1 (ko) 암모니아 정제 시스템
JP2013129606A5 (ja)
JP6483465B2 (ja) 塩化水素の製造方法
JP2012214325A (ja) アンモニア精製システムおよびアンモニアの精製方法
KR101805943B1 (ko) 프로판의 정제 방법 및 정제 장치
TW200902440A (en) Method and device of enriching xenon
WO2013190731A1 (ja) アンモニア精製システム
JP5815968B2 (ja) アンモニア精製システムおよびアンモニアの精製方法
US10364199B2 (en) Propane production method and propane production apparatus
JP2016188154A (ja) アンモニアの精製方法
JP2012153545A (ja) アンモニア精製システムおよびアンモニアの精製方法
WO2012132559A1 (ja) アンモニアの精製方法およびアンモニア精製システム
JP2019177314A (ja) 気体精製装置及び気体精製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151001

R150 Certificate of patent or registration of utility model

Ref document number: 5822299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250