JP2013126508A - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP2013126508A
JP2013126508A JP2011277605A JP2011277605A JP2013126508A JP 2013126508 A JP2013126508 A JP 2013126508A JP 2011277605 A JP2011277605 A JP 2011277605A JP 2011277605 A JP2011277605 A JP 2011277605A JP 2013126508 A JP2013126508 A JP 2013126508A
Authority
JP
Japan
Prior art keywords
temperature
unit
data
magnetic field
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011277605A
Other languages
English (en)
Other versions
JP5886024B2 (ja
Inventor
Kazuhiro Sueoka
和大 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2011277605A priority Critical patent/JP5886024B2/ja
Priority to US13/719,699 priority patent/US10048332B2/en
Priority to CN2012105547627A priority patent/CN103156610A/zh
Publication of JP2013126508A publication Critical patent/JP2013126508A/ja
Application granted granted Critical
Publication of JP5886024B2 publication Critical patent/JP5886024B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34015Temperature-controlled RF coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】傾斜磁場コイルの発熱に起因した水素原子の磁気共鳴の中心周波数のシフトに拘らず、良好な画像を得る。
【解決手段】一実施形態では、MRI装置は、傾斜磁場コイルユニットの温度を計測する温度計測部と、データ記憶部と、パルス設定部と、撮像部とを備える。データ記憶部は、傾斜磁場コイルユニットの温度変化に応じて水素原子の磁気共鳴の中心周波数がどれだけシフトするかを示すと共に複数の温度領域にそれぞれ対応する複数のシフトデータを予め記憶している。パルス設定部は、温度計測部の計測結果に基づく傾斜磁場コイルユニットの温度変化分と、シフトデータとに基づいて中心周波数の推定シフト量を算出し、推定シフト量に基づいてRFパルスの中心周波数を補正する。撮像部は、補正されたRFパルスを送信後、被検体から受信した核磁気共鳴信号に基づいて画像データを生成する。
【選択図】 図6

Description

本発明の実施形態は、磁気共鳴イメージングに関する。
MRIは、静磁場中に置かれた被検体の原子核スピンをラーモア周波数のRFパルスで磁気的に励起し、この励起に伴って発生するMR信号から画像を再構成する撮像法である。なお、上記MRIは磁気共鳴イメージング(Magnetic Resonance Imaging)の意味であり、RFパルスは高周波パルス(radio frequency pulse)の意味であり、MR信号は核磁気共鳴信号(nuclear magnetic resonance signal)の意味である。
MRI装置は、撮像領域に傾斜磁場を印加することで、MR信号に空間位置情報を付加する傾斜磁場コイルをガントリ内に備える。この傾斜磁場コイルは、撮像中にパルス電流が繰り返して供給されることで大きく発熱する。傾斜磁場コイルの温度が上昇すると、撮像領域の磁場が変化するため、被検体内の水素原子の磁気共鳴の中心周波数が変化する。このような共鳴周波数の変動に関する従来技術として、特許文献1が知られている。
特許文献1では、ガントリ内に配置された温度センサの計測温度の変化に基づいて撮像断面の共鳴周波数の変動分を推定している。そして、共鳴周波数の変動分に追従するように制御系の基準クロックの周波数を修正し、修正後の基準クロックに基づいて各部を制御することで、静磁場不均一性の乱れの影響の抑制を図っている。
特開2005−288025号公報
脂肪抑制プレパルスや90°励起パルスなどのRFパルスの中心周波数は、静磁場強度に応じて決定される水素原子のラーモア周波数に基づいて、例えばプレスキャンなどの撮像準備段階で設定される。しかし、撮像準備段階でRFパルスの条件を設定後、撮像中に傾斜磁場コイルの発熱に伴って被検体内の水素原子の磁気共鳴の中心周波数がシフトすると、画質劣化の要因となる。例えば撮像時間の長いダイナミック撮像では、データ収集時刻が遅い画像ほど、傾斜磁場コイルの発熱による上記中心周波数のシフト量が大きくなるため、脂肪抑制プレパルスの効果が低下するなどにより、画質が劣化しうる。
このため、MRIにおいて、傾斜磁場コイルの発熱に起因した水素原子の磁気共鳴の中心周波数のシフトに拘らず、良好な画像が得るための新規な技術が要望されていた。
以下、本発明の実施形態が取り得る態様の数例を各態様毎に説明する。
(1)一実施形態では、MRI装置は、傾斜磁場コイルユニットと、温度計測部と、データ記憶部と、パルス設定部と、撮像部とを備える。
傾斜磁場コイルユニットは、供給電流に応じた傾斜磁場を撮像領域に発生させる。
温度計測部は、傾斜磁場コイルユニットの温度を異なるタイミングで少なくとも2回計測する。
データ記憶部は、撮像領域内の水素原子の磁気共鳴の中心周波数が傾斜磁場コイルユニットの温度変化に応じてどれだけシフトするかを示すと共に複数の温度領域にそれぞれ対応する複数のシフトデータを、温度計測部による計測前から予め記憶している。
パルス設定部は、温度計測部の計測結果により示される傾斜磁場コイルユニットの温度が含まれる温度領域に対応するシフトデータと、計測結果に基づく傾斜磁場コイルユニットの温度の変化分とに基づいて、水素原子の磁気共鳴の中心周波数の推定シフト量を算出し、推定シフト量に基づいてRFパルスの中心周波数を補正する。
撮像部は、パルス設定部により補正されたRFパルスを送信し、撮像領域の被検体から核磁気共鳴信号を受信し、核磁気共鳴信号に基づいて被検体の画像データを生成する。
(2)別の一実施形態では、MRI装置は、傾斜磁場コイルユニットと、温度計測部と、データ記憶部と、パルス設定部と、撮像部とを備える。傾斜磁場コイルユニット、温度計測部、及び、撮像部の構成は、上記(1)のMRI装置と同様である。
この構成では、データ記憶部は、撮像領域内の水素原子の磁気共鳴の中心周波数が傾斜磁場コイルユニットの温度変化に応じてどれだけシフトするかを示すデータとして、傾斜磁場コイルユニットの温度が上昇した場合に対応する第1データと、傾斜磁場コイルユニットの温度が下降した場合に対応する第2データとを、温度計測部による計測前から予め記憶している。
また、この構成では、パルス設定部は、温度計測部の計測結果に基づいて傾斜磁場コイルユニットの温度が上昇したか下降したかを判定し、第1及び第2データの内、この判定結果に対応する方と、計測結果に基づく傾斜磁場コイルユニットの温度の変化分とに基づいて、水素原子の磁気共鳴の中心周波数の推定シフト量を算出し、推定シフト量に基づいてRFパルスの中心周波数を補正する。
本実施形態に係るMRI装置の全体構成を示すブロック図。 傾斜磁場コイルユニット内における温度センサの配置の一例を示す模式的斜視図。 図2に示す傾斜磁場コイルユニットの断面模式図。 図1に示すコンピュータ58の機能ブロック図。 傾斜磁場コイルユニット内に挿入される鉄シムの透磁率の温度変化の一例を示す模式図。 第1〜第3の温度領域における各温度センサの温度係数の平均値を示すグラフ。 本実施形態のMRI装置により、造影剤の投与前後に撮像を行う場合の動作の流れの一例を示すフローチャート。 本実施形態のMRI装置の動作の別の例として、3時相のダイナミック撮像を行う場合の流れの一例を示すフローチャート。 11のパルスシーケンスを順次実行した場合の各パルスシーケンスの実行時の中心周波数について、本実施形態の手法で計算した値と、実測値とを比較した一例を示すグラフ。 図9と同じ11のパルスシーケンスを順次実行した場合の各パルスシーケンスの実行時の中心周波数について、本実施形態とは別の手法で計算した値と、実測値とを図9と同様の表記で比較した一例を示すグラフ。
以下、本発明の実施形態を添付図面に基づいて説明する。なお、各図において同一要素には同一符号を付し、重複する説明を省略する。
(本実施形態の構成)
図1は、本実施形態におけるMRI装置20の全体構成を示すブロック図である。図1に示すように、MRI装置20は、筒状の静磁場磁石22と、静磁場磁石22の内側において軸を同じにして設けられた筒状のシムコイル24と、略円筒状の傾斜磁場コイルユニット26と、RFコイル28と、制御装置30と、被検体Pが乗せられる寝台32とを備える。
ここでは一例として、装置座標系の互いに直交するX軸、Y軸、Z軸を以下のように定義する。まず、静磁場磁石22及びシムコイル24は、それらの軸方向が鉛直方向に直交するように配置されているものとし、静磁場磁石22及びシムコイル24の軸方向をZ軸方向とする。また、鉛直方向をY軸方向とし、寝台32は、その天板の載置用の面の法線方向がY軸方向となるように配置されているものとする。
制御装置30は、静磁場電源40と、シムコイル電源42と、傾斜磁場電源44と、RF送信器46と、RF受信器48と、冷却制御装置50と、寝台駆動装置52と、シーケンスコントローラ56と、コンピュータ58とを備える。
傾斜磁場電源44は、X軸傾斜磁場電源44xと、Y軸傾斜磁場電源44yと、Z軸傾斜磁場電源44zとを有する。コンピュータ58は、演算装置60と、入力装置62と、表示装置64と、記憶装置66とを有する。
静磁場磁石22は、静磁場電源40に接続され、静磁場電源40から供給された電流により撮像空間に静磁場を形成させる。上記撮像空間とは、例えば、被検体Pが置かれて、静磁場が印加されるガントリ内の空間を意味する。ガントリとは、静磁場磁石22、シムコイル24、傾斜磁場コイルユニット26、RFコイル28を含むように、例えば円筒状に形成された構造体である。なお、図1では煩雑となるので、ガントリ内の静磁場磁石22等の構成要素を図示し、ガントリ自体は図示していない。
撮像領域は、例えば、「1つの画像」又は「1セットの画像」の生成に用いるMR信号の収集範囲であって、撮像空間の一部として設定される領域の意味である。ここでの「1セットの画像」とは、例えば、マルチスライス撮像などのように、1つのパルスシーケンス内で「複数の画像」のMR信号が一括的に収集される場合の、「複数の画像」である。
静磁場磁石22は、超伝導コイルで構成される場合が多く、励磁の際に静磁場電源40に接続されて電流が供給されるが、一旦励磁された後は非接続状態とされるのが一般的である。なお、静磁場電源40を設けずに、静磁場磁石22を永久磁石で構成してもよい。
シムコイル24は、シムコイル電源42に接続され、シムコイル電源42から供給される電流により、この静磁場を均一化する。
傾斜磁場コイルユニット26は、X軸傾斜磁場コイル26mxと、Y軸傾斜磁場コイル26myと、Z軸傾斜磁場コイル26mzとを有し、静磁場磁石22の内側で筒状に形成されている。X軸傾斜磁場コイル26mx、Y軸傾斜磁場コイル26my、Z軸傾斜磁場コイル26mzはそれぞれ、X軸傾斜磁場電源44x、Y軸傾斜磁場電源44y、Z軸傾斜磁場電源44zに接続される。
X軸傾斜磁場電源44x、Y軸傾斜磁場電源44y、Z軸傾斜磁場電源44zからX軸傾斜磁場コイル26mx、Y軸傾斜磁場コイル26my、Z軸傾斜磁場コイル26mzにそれぞれ供給される電流により、X軸方向の傾斜磁場Gx、Y軸方向の傾斜磁場Gy、Z軸方向の傾斜磁場Gzが撮像領域にそれぞれ形成される。
即ち、物理軸としての3軸であるX、Y、Z方向の傾斜磁場Gx、Gy、Gzを合成して、論理軸としてのスライス選択方向傾斜磁場Gss、位相エンコード方向傾斜磁場Gpe、及び、読み出し方向(周波数エンコード方向)傾斜磁場Groの各方向を任意に設定できる。スライス選択方向、位相エンコード方向、及び、読み出し方向の各傾斜磁場は、静磁場に重畳される。
RF送信器46は、シーケンスコントローラ56から入力される制御情報に基づいて、核磁気共鳴を起こすためのラーモア周波数のRFパルス(RF電流パルス)を生成し、これを送信用のRFコイル28に送信する。RFコイル28には、ガントリに内蔵されたRFパルスの送受信用の全身用コイルや、寝台32又は被検体Pの近傍に設けられるRFパルスの受信用の局所コイルなどがある。
送信用のRFコイル28は、RF送信器46からRFパルスを受けて被検体Pに送信する。受信用のRFコイル28は、被検体Pの内部の原子核スピンがRFパルスによって励起されることで発生したMR信号(核磁気共鳴信号)を受信し、このMR信号は、RF受信器48により検出される。
RF受信器48は、検出したMR信号に各種の信号処理を施した後、A/D(analog to digital)変換を施すことで、デジタル化された複素データである生データ(raw data)を生成する。RF受信器48は、生成したMR信号の生データをシーケンスコントローラ56に入力する。
冷却制御装置50は、シーケンスコントローラ56の制御に従って、後述の冷却管76(図3参照)に冷却水又は不凍液などの冷却媒体を循環させることで、傾斜磁場コイルユニット26の発熱を抑制する。
演算装置60は、MRI装置20全体のシステム制御を行うものであり、これについては後述の図4を用いて説明する。
シーケンスコントローラ56は、演算装置60の指令に従って、傾斜磁場電源44、RF送信器46及びRF受信器48を駆動させるために必要な制御情報を記憶する。ここでの制御情報とは、例えば、傾斜磁場電源44に印加すべきパルス電流の強度や印加時間、印加タイミング等の動作制御情報を記述したシーケンス情報である。
シーケンスコントローラ56は、記憶した所定のシーケンスに従って傾斜磁場電源44、RF送信器46及びRF受信器48を駆動させることにより、X軸傾斜磁場Gx、Y軸傾斜磁場Gy、Z軸傾斜磁場Gz及びRFパルスを発生させる。また、シーケンスコントローラ56は、RF受信器48から入力されるMR信号の生データを受けて、これを演算装置60に入力する。
寝台駆動装置52は、シーケンスコントローラ56を介して演算装置60に接続される。シーケンスコントローラ56は、演算装置60の指令に従って寝台駆動装置50を制御することで寝台32の天板を移動させ、これにより例えば、moving table法やstepping-table法による撮像を行うことができる。
図2は、傾斜磁場コイルユニット26内における温度センサの配置の一例を示す模式的斜視図である。4つの温度センサ70A、70B、70C、70Dは、撮像時に磁場中心となる部分を含む装置座標系のX−Y平面の環状の一断面において、静磁場磁石22の円筒形状に沿って等間隔で配置される。温度センサ70A〜70Dは、検出した温度をシーケンスコントローラ56にそれぞれ入力する。なお、図2に示す温度センサの配置及び個数は、一例にすぎず、温度センサの数及び配置は、上記の例に限定されるものではない。
図3は、図2に示す傾斜磁場コイルユニット26の断面模式図であり、図2内の一点鎖線枠26’で囲った領域の断面である。図3に示すように、傾斜磁場コイルユニット26は、アクティブシールドを用いた多層構造である。即ち、傾斜磁場コイルユニット26は、メインコイル26mの層と、シールドコイル26sの層と、それらの間に挟まれた複数のシムトレイ72の挿入層及び複数の冷却管76の埋設層とを有する。図3において、シムトレイ72は斜線の四角い領域で示し、冷却管76は楕円状の白抜きの領域で示す。
メインコイル26mは、X軸傾斜磁場コイル26mxと、Y軸傾斜磁場コイル26myと、Z軸傾斜磁場コイル26mzとを有し、前記傾斜磁場Gx、Gy、Gzを形成する。
シールドコイル26sは、X軸シールドコイル26sxと、Y軸シールドコイル26syと、Z軸シールドコイル26szとを有し、これらは傾斜磁場電源44から供給される電流により磁場を発生させる。即ち、X軸シールドコイル26sx、Y軸シールドコイル26sy、Z軸シールドコイル26szは、X軸傾斜磁場コイル26mx、Y軸傾斜磁場コイル26my、Z軸傾斜磁場コイル26mzにそれぞれ対応した磁場をメインコイル26mの外側に発生させることで、メインコイル26mによって発生する傾斜磁場Gx、Gy、Gzを遮蔽する。
メインコイル26m側における冷却管76の埋設層と、シールドコイル26s側における冷却管76の埋設層との間の層には、複数のシムトレイ72が略等間隔で挿入される。冷却管76の中では冷却媒体が循環するため、メインコイル26m及びシールドコイル26sによって発生する熱がシムトレイ72に伝わりにくくなる。シムトレイ72は、例えば非磁性かつ非電導性の樹脂で形成され、Z軸方向に延在した概略棒状に形成される。シムトレイ72には、鉄シム(図示せず)が所定数収納される。鉄シムは、撮像空間における静磁場の磁場強度分布を均一化する作用(静磁場の不均一性を補正する作用)がある。
なお、図3の構造では、温度センサ70A〜70DはY軸傾斜磁場コイル26myの温度を検出するが、これは一例にすぎない。多数の温度センサがX軸傾斜磁場コイル26mx、Y軸傾斜磁場コイル26my、X軸シールドコイル26sx、Y軸シールドコイル26sy、Z軸シールドコイル26szの各温度をそれぞれ検出する構成でもよい。或いは、温度センサ70A〜70Dがシムトレイ72の温度を検出する構成でもよい。即ち、傾斜磁場コイルユニット26内の温度を検出する構成であればよい。
但し、撮像領域の磁場強度に直接的に関わる要素の温度を直接的かつ正確に検出する構成が望ましいので、冷却管76の内部や周囲よりも、鉄シムを含むシムトレイ72やメインコイル26mの温度を検出する方が望ましい。傾斜磁場コイルユニット26内では、冷却媒体が循環する冷却管76近傍の温度が最も低いためである。
また、温度センサ70A〜70Dとしては、赤外線放射温度計を用いてもよいし、メインコイル26mの温度をほぼ直接的に計測するサーミスタや熱電対などを用いてもよい。赤外線放射温度計は、計測対象とは非接触で温度を計測できるので、熱伝導によって計測対象と温度センサとが同温になることが望まれる計測方法とは違い、短時間で温度を計測できる利点がある。
図4は、図1に示すコンピュータ58の機能ブロック図である。コンピュータ58の演算装置60は、MPU(Micro Processor Unit)86と、システムバス88と、画像再構成部90と、画像データベース94と、画像処理部96と、表示制御部98と、データ記憶部100と、パルス設定部102とを備える。
MPU86は、本スキャンの撮像条件の設定、撮像動作及び撮像後の画像表示において、システムバス88等の配線を介してMRI装置20全体のシステム制御を行う。上記「撮像条件」とは、例えば、スピンエコーなどの内のどの種類のパルスシーケンスにより、どのような条件でRFパルス等を送信して、どのような条件で被検体からMR信号を収集するか、の意味である。「撮像条件」としては例えば、撮像空間内での位置的情報としての撮像領域、フリップ角、繰り返し時間、スライス数、撮像部位、パルスシーケンスの種類、などが挙げられる。上記撮像部位とは、例えば、頭部、胸部などの被検体のどの部分を撮像領域として画像化するか、の意味である。
また、上記「本スキャン」とは、T1強調画像などの、目的とする診断画像の撮像のためのスキャンであって、プレスキャンのような較正目的のスキャンや位置決め画像用のスキャンを含まないものとする。スキャンとは、MR信号の収集動作を指し、画像再構成を含まないものとする。上記プレスキャンとは例えば、本スキャンの撮像条件の内の未確定のものや、本スキャン後の画像再構成に用いる条件やデータなどを決定するために、本スキャン前に行われる較正用スキャンを指す。
また、MPU86は、撮像条件設定部としても機能し、入力装置62からの指示情報に基づいてスピンエコー法等のパルスシーケンスを含む撮像条件を設定し、設定した撮像条件をシーケンスコントローラ56に入力する。そのために、MPU86は、表示制御部98を制御して、撮像条件の設定用画面情報を表示装置64に表示させる。
入力装置62は、撮像条件や画像処理条件を設定する機能をユーザに提供する。
画像再構成部90は、内部にk空間データベース92を有する。画像再構成部90は、k空間データベース92に形成されたk空間において、シーケンスコントローラ56から入力されるMR信号の生データをk空間データとして配置する。画像再構成部90は、k空間データに2次元フーリエ変換などを含む画像再構成処理を施して、被検体Pの各スライスの画像データを生成する。画像再構成部90は、生成した画像データを画像データベース94に保存する。
画像処理部96は、画像データベース94から画像データを取り込み、これに所定の画像処理を施し、画像処理後の画像データを表示用画像データとして記憶装置66に記憶させる。
記憶装置66は、上記の表示用画像データに対し、その表示用画像データの生成に用いた撮像条件や被検体Pの情報(患者情報)等を付帯情報として付属させて記憶する。
表示制御部98は、MPU86の制御に従って、撮像条件の設定用画面や、撮像により生成された画像データが示す画像を表示装置64に表示させる。
データ記憶部100は、傾斜磁場コイルユニット26の温度の変化分と、水素原子の磁気共鳴の中心周波数のシフト量との対応関係を示す温度係数を記憶している。温度係数は、例えばMRI装置20の据付時に後述の温度係数取得シーケンスを実行することで算出及び記録される。なお、温度係数取得シーケンスは、据付時の据付調整の一環として行うものに限らず、例えば定期点検時に実行して上記温度係数を較正してもよい。
パルス設定部102は、シーケンスコントローラ56を介して温度センサ70A〜70Dの検出温度を取得し、傾斜磁場コイルユニット26の温度変化分を計算し、上記温度係数に基づいてRFパルスの中心周波数を設定(補正)する。ここでのRFパルスとは、例えば、脂肪抑制のプレパルスや、領域選択的プレサチュレーションパルス、データ収集用の90°励起パルスや再収束パルスなどである。
(本実施形態の原理説明)
図5は、傾斜磁場コイルユニット26内に挿入される鉄シムの透磁率の温度変化の一例を示す模式図である。図5において、縦軸は鉄シムの透磁率(ヘンリー/メートル)、横軸は温度(℃)、実線は温度上昇過程の鉄シムの透磁率、破線は温度下降過程の鉄シムの透磁率を示す。図5に示すように鉄シムの透磁率は、温度変化に対してヒステリシス特性を有するので、同じ温度であっても、温度上昇過程の鉄シムの透磁率と、温度下降過程の鉄シムの透磁率とは互いに異なる。
即ち、傾斜磁場コイルユニット26の温度(鉄シムの温度)が同じであっても、温度上昇時と、温度下降時とで、鉄シムの透磁率の違いによって撮像領域の磁場強度(テスラ)も異なる。従って、傾斜磁場コイルユニット26の温度(鉄シムの温度)が同じであっても、温度上昇時と、温度下降時とで、撮像領域内の水素原子の磁気共鳴の中心周波数も異なる。ラーモア周波数は、印加された磁場の強度に比例するからである。
そこで本実施形態では、傾斜磁場コイルユニット26の温度の変化分と、水素原子の磁気共鳴の中心周波数のシフト量との対応関係を示す温度係数群として、温度上昇過程に対応する第1データと、温度下降過程に対応する第2データとを用いる。ここでは一例として、第1の温度係数取得シーケンスの実行により第1データを取得し、第2の温度係数取得シーケンスの実行により第2データを取得する。
第1の温度係数取得シーケンスとして、例えば傾斜磁場コイルユニット26の温度が経過時間の長さにほぼ比例して上昇するパルスシーケンスを実行し、そのときの各温度センサ70A〜70Dの各検出温度を経過時刻毎の計測データとして取得する。同時に、例えば磁気共鳴スペクトロスコピーによって、MR信号の周波数スペクトラムのピーク周波数位置を検出することで、(例えば水などの)ファントム内の水素原子の磁気共鳴の中心周波数を経過時刻毎のデータとして取得する。そして、この計測結果に基づく傾斜磁場コイルユニット26内の温度の変化分に応じて、中心周波数がどれだけシフトするかを算出し、これを第1データとしてデータ記憶部100に記録する。
ここで、MRI装置20が使用される温度範囲において、鉄シムの透磁率の温度変化は1次関数的変化に完全合致するわけではない。従って、温度領域毎に第1データを取得する。本実施形態では一例として、0℃以上20℃未満の範囲である第1の温度領域と、20℃以上40℃未満の範囲である第2の温度領域と、40℃以上60℃未満の範囲である第3の温度領域とのそれぞれに対して、第1データとしての温度係数を算出する。
具体的には、冷却制御装置50は、傾斜磁場コイルユニット26内を循環する冷却媒体の温度を「0℃近くの所定温度」に下げる。冷却媒体が水である場合には、凍らないように、「0℃近くの所定温度」を例えば1℃としてもよい。
次に、各温度センサ70A〜70Dの検出温度が「0℃近くの所定温度」で収束した後、時刻t0を開始時刻として、第1の温度係数取得シーケンスを開始する。また、時刻t0において、磁気共鳴スペクトロスコピーにより、水素原子の磁気共鳴の中心周波数を「時刻t0での中心周波数」として取得する。
さらに、時刻t0以降、各温度センサ70A〜70Dに所定の時間間隔で温度計測を開始させ、経過時刻毎の計測温度をデータ記憶部100に順次入力させる。
そして、各温度センサ70A〜70Dの検出温度が第1の温度範囲の期間において、時刻を変えて例えば4回以上、磁気共鳴スペクトロスコピーで水素原子の磁気共鳴の中心周波数を経過時刻毎のデータとして取得する。
ここで、各温度センサ70A〜70D毎に感度の個体差があるから、その検出温度が単位温度(1ケルビン、即ち、1℃)上昇すると中心周波数が何Hzシフトするかの温度係数を、各温度センサ70A〜70D毎に第1データとして求める。ここでは一例として、温度変化分と温度係数との積が中心周波数のシフト量として算出されるように、温度係数の単位は、周波数単位(ヘルツ)を温度単位(ケルビン)で割った単位とする。
また、以下の計算で用いる温度係数及びグラフ傾きの符号の末尾の文字について、αは第1の温度領域、βは第2の温度領域、γは第3の温度領域をそれぞれ示す。また、温度係数及びグラフ傾きの符号の末尾から2番目の文字について、aは温度センサ70A、bは温度センサ70B、cは温度センサ70C、dは温度センサ70Dをそれぞれ示す。また、温度係数及びグラフ傾きの符号の末尾から3番目の文字について、hは温度上昇過程の場合、rは温度下降過程の場合をそれぞれ示す。
第1の温度領域における経過時刻毎の温度センサ70Aの計測温度から得られる温度上昇分をΔThaα、その温度上昇分に対応する中心周波数のシフト量をΔHhaαとするとき、データ記憶部100は、第1の温度領域における温度センサ70Aの温度係数Khaαは、Khaα=ΔHhaα/ΔThaαとして算出する。
具体的には例えば、時刻t0より後であると共に、各温度センサ70A〜70Dの計測温度が第1の温度領域である時刻t1、t2、t3、t4、t5において、MRI装置20が磁気共鳴スペクトロスコピーで中心周波数をそれぞれ取得した場合を考える。データ記憶部100は、時刻t1〜t5における温度センサ70Aの各計測温度を縦軸に、時刻t0からの時刻t1〜t5の各経過時間を横軸にプロットした第1のグラフを作成する。データ記憶部100は、第1のグラフの傾きをThaαとして、最小二乗法で算出する。
次に、データ記憶部100は、時刻t1〜t5における中心周波数の各シフト量を縦軸に、時刻t0からの時刻t1〜t5の各経過時間を横軸にプロットした第2のグラフを作成する。ここでの中心周波数のシフト量は、時刻t1〜t5における磁気共鳴スペクトロスコピーで求めた各中心周波数と、「時刻t0での中心周波数」との各差分である。データ記憶部100は、第2のグラフの傾きをHhaαとして、最小二乗法で算出する。
データ記憶部100は、第2のグラフの傾きHhaαを、第1のグラフの傾きThaαで割ることで、温度上昇過程における第1の温度領域における温度センサ70Aの温度係数Khaαを、第1データとして算出する。データ記憶部100は、温度上昇過程における第1の温度領域において、温度センサ70Bの温度係数Khbα、温度センサ70Cの温度係数Khcα、温度センサ70Dの温度係数Khdαについても、上記同様に第1データとして算出する。
この後も、第1の温度係数取得シーケンスが継続され、各温度センサ70A〜70Dの計測温度が共に第2の温度領域に上がる。そして、例えば各温度センサ70A〜70Dの計測温度が第2の温度領域である時刻t6、t7、t8、t9、t10で中心周波数を取得する。次に、時刻t6〜t10における温度センサ70Aの計測温度を縦軸に、各時刻t6〜t10の時刻t0からの経過時間を横軸にプロットしたグラフの傾きをThaβとして、最小二乗法で算出する。
次に、時刻t6〜t10における中心周波数の各シフト量を縦軸に、各時刻t6〜t10の時刻t0からの経過時間を横軸にプロットしたグラフの傾きをHhaβとして、最小二乗法で算出する。HhaβをThaβで割ることで、第2の温度領域における温度センサ70Aの温度係数Khaβを第1データとして算出できる。温度上昇過程における第2の温度領域において、温度センサ70Bの温度係数Khbβ、温度センサ70Cの温度係数Khcβ、温度センサ70Dの温度係数Khdβについても、データ記憶部100は、同様に第1データとして算出する。
この後も、第1の温度係数取得シーケンスが継続され、各温度センサ70A〜70Dの計測温度が共に第3の温度領域に上がる。そして、データ記憶部100は、上記同様に温度上昇過程における第3の温度領域での温度センサ70A、70B、70C、70Dの各温度係数Khaγ、Khbγ、Khcγ、Khdγを第1データとして算出する。このようにして、データ記憶部100は、温度上昇過程における各温度領域での各温度センサ70A〜70Dの温度係数を第1データとして算出し、記憶する。
同様にして、温度下降過程における各温度領域での各温度センサ70A〜70Dの温度係数を第2データとして算出する。具体的には、MRI装置20は、第2の温度係数取得シーケンスとして、例えば傾斜磁場コイルユニット26の温度が経過時間の長さにほぼ比例して下降するパルスシーケンスを実行する。例えば繰り返し時間を1秒以上にすることで、パルスシーケンスの実行期間における傾斜磁場の印加時間の割合を短くすればよい。これにより、傾斜磁場コイルユニット26の発熱量を低くできるので、シーケンスを実行しながら、傾斜磁場コイルユニット26の温度を(例えば低めに設定されたMRI装置20の設置室の室温程度まで)下げることができる。
具体的には、冷却制御装置50は、傾斜磁場コイルユニット26内を循環する冷却媒体の温度を略60℃に上げる。次に、各温度センサ70A〜70Dの検出温度が60℃に収束した後の時刻t0’を開始時刻として、第2の温度係数取得シーケンスを開始する。また、時刻t0’において、MRI装置20は、磁気共鳴スペクトロスコピーにより、(例えば水などの)ファントム内の水素原子の磁気共鳴の中心周波数を「時刻t0’での中心周波数」として取得する。
さらに、時刻t0’以降、各温度センサ70A〜70Dに所定の時間間隔で温度計測を開始させ、経過時刻毎の計測温度をデータ記憶部100に順次入力させる。
そして、データ記憶部100は、第1データの場合と同様に例えば、各温度センサ70A〜70Dの計測温度が第3の温度領域である時刻t1’、t2’、t3’、t4’、t5’で中心周波数を取得する。次に、データ記憶部100は、時刻t1’〜t5’における温度センサ70Aの各計測温度を縦軸に、各時刻t1’〜t5’の時刻t0’からの経過時間を横軸にプロットしたグラフの傾きをTraγとして、最小二乗法で算出する。
次に、データ記憶部100は、時刻t1’〜t5’における中心周波数の各シフト量を縦軸に、各時刻t1’〜t5’の時刻t0からの経過時間を横軸にプロットしたグラフの傾きをHraγとして、最小二乗法で算出する。ここでの中心周波数のシフト量は、時刻t1’〜t5’における磁気共鳴スペクトロスコピーで求めた各中心周波数と、「時刻t0’での中心周波数」との差分である。
次に、データ記憶部100は、HraγをTraγで割ることで、温度下降過程における第3の温度領域における温度センサ70Aの温度係数Kraγを第2データとして算出できる。温度下降過程における第3の温度領域において、温度センサ70Bの温度係数Krbγ、温度センサ70Cの温度係数Krcγ、温度センサ70Dの温度係数Krdγについても、同様に第2データとして算出する。
この後も、第2の温度係数取得シーケンスが継続され、各温度センサ70A〜70Dの計測温度が共に第2の温度領域に下がる。そして、温度下降過程における第2の温度領域において、データ記憶部100は、温度センサ70Aの温度係数Kraβ、温度センサ70Bの温度係数Krbβ、温度センサ70Cの温度係数Krcβ、温度センサ70Dの温度係数Krdβを上記同様に第2データとして算出する。
この後も、第2の温度係数取得シーケンスが継続され、各温度センサ70A〜70Dの計測温度が共に第1の温度領域に下がる。そして、温度下降過程における第1の温度領域において、データ記憶部100は、温度センサ70Aの温度係数Kraα、温度センサ70Bの温度係数Krbα、温度センサ70Cの温度係数Krcα、温度センサ70Dの温度係数Krdαを上記同様に第2データとして算出する。このようにして、データ記憶部100は、温度下降過程における各温度領域での各温度センサ70A〜70Dの温度係数が第2データとして算出し、記憶する。
上記のように取得され、データ記憶部100に記憶される第1データの温度係数は、各々の温度領域内では実質的に線形近似して算出されるものの、温度領域間で比較すると、温度変化に対する温度係数の変化は非線形なものとなる。即ち、鉄シムの透磁率の温度変化のヒステリシス特性が磁場強度に反映される結果、ヒステリシス特性に応じて温度係数も温度に対して非線形に変化する(後述の図6参照)。第2データの温度係数についても同様である。
なお、温度係数の決定方法は、上記最小二乗法に限らず、他の手法でもよい。また、中心周波数のシフト量を温度変化分で割ることで温度係数を定義したが、その逆数を温度係数としてもよい。
上記第1及び第2の温度係数取得シーケンスでは、シーケンス開始前には傾斜磁場コイルユニット26内の冷却媒体の温度が例えば0℃等の所定温度となるような制御を行い、シーケンス開始後には冷却媒体の温度制御を行わない。しかし、これは一例に過ぎない。例えば以下のように、温度センサ70A〜70Dの各検出温度と、ファントム内の水素原子の磁気共鳴の中心周波数とを経過時刻毎の計測データとして取得後、温度係数を算出してもよい。
即ち、パルスシーケンスとしての温度係数取得シーケンスを行わず、冷却制御装置50によって冷却媒体の温度を徐々に上げるか、或いは、下げる。これにより生じる傾斜磁場コイルユニット26の温度上昇又は温度下降の期間において、温度センサ70A〜70Dの各検出温度を経過時刻毎の計測データとして取得すると共に、所定の時間間隔で磁気共鳴スペクトロスコピーを行うことで水素原子の磁気共鳴の中心周波数を経過時刻毎のデータとして取得する。
また、本実施形態では、各温度センサ70A〜70Dの検出結果に基づく「温度変化分×温度係数」を全ての温度センサ70A〜70Dで合算平均し、この平均値を中心周波数のシフト量として算出するが、これは一例にすぎない。例えば、装置座標系のX、Y、Zの各軸方向に離間して、傾斜磁場コイルユニット26内に多数の温度センサを配置し、重み付け平均で中心周波数のシフト量を算出してもよい。
具体的には、撮像断面に近い温度センサほど大きい重み係数が乗じられるように、「(各温度センサが検出した)温度差と、(その温度センサの)温度係数との積」に対し、重み係数をそれぞれ乗じる。そして、重み係数が乗じられた「温度差と、温度係数との積」を温度センサの数の分だけ合算し、この合算値を温度センサの数で割ることで中心周波数のシフト量を算出する。これは、傾斜磁場コイルユニット26の大きさを考慮すると、本スキャン実行で発熱が生じれば、傾斜磁場コイルユニット26内の温度が均一にはならない点を考慮したものである。
また、人体の水組織の水素原子も、人体の脂肪組織の水素原子も、傾斜磁場コイルの温度上昇に対する中心周波数のシフト量はほぼ同じであるから、水組織と脂肪組織とで分けて考える必要はない。また、温度の上昇の仕方は、同じパルスシーケンスを実行しても、MRI装置20の個体毎に異なる固有のものである。このため、温度係数の取得シーケンスの実行及びデータ記憶部100への温度係数の記憶は、据付調整時などにおいて、MRI装置毎に行うことが望ましい。
また、0℃〜60℃の範囲を20℃毎に3つの温度領域に分けて、各温度係数を算出する例を述べたが、本発明の実施形態は、かかる態様に限定されるものではない。温度領域の分割数は、3ではなく、2でも4以上でもよい(温度領域の幅は、例えば10℃や15℃にしてもよい)。また、全温度領域の範囲は、例えば0℃〜70℃であっても、0℃〜80℃であってもよい。
図6は、第1〜第3の温度領域における各温度センサ70A〜70Dの温度係数の平均値を示すグラフである。図6において、横軸は温度(温度領域)、縦軸は温度係数、黒丸は温度上昇過程における温度係数、白丸は温度下降過程における温度係数を示す。
即ち、第1データにおける第1の温度領域の各温度センサ70A〜70Dの温度係数Khaα、Khbα、Khcα、Khdαの4つの平均値が、第1の温度領域における黒丸のプロットの縦軸の値である。第2及び第3の温度領域の黒丸のプロットについても同様である。また、第2データにおける第1の温度領域の各温度センサ70A〜70Dの温度係数Kraα、Krbα、Krcα、Krdαの4つの平均値が、第1の温度領域における白丸のプロットの縦軸の値である。第2及び第3の温度領域の白丸のプロットについても同様である。
図6の黒丸のプロットの温度係数は、図5における各温度領域の実線のヒステリシス曲線の傾きを反映した値である。図6の白丸のプロットの温度係数は、図5における各温度領域の点線のヒステリシス曲線の傾きを反映した値である。
(本実施形態の動作説明)
図7は、MRI装置20により、造影剤の投与前後に撮像を行う場合の動作の流れの一例を示すフローチャートである。以下、前述の各図を適宜参照しながら、図7に示すステップ番号に従って、MRI装置20の動作を説明する。
[ステップS1]MPU86(図4参照)は、入力装置62を介して入力された撮像条件に関する入力内容等に基づいて、MRI装置20の初期設定を行う。この初期設定において、撮像部位などの本スキャンの撮像条件の一部が設定される。寝台駆動装置52は、シーケンスコントローラ56の制御に従って被検体Pの撮像部位が磁場中心に置かれるように寝台32を移動させる。このようにして、撮像部位の位置合わせが行われる。
ここでは一例として、造影剤投与前後に空き時間が挟まれる撮像が設定されるものとする。一方、冷却制御装置50は、シーケンスコントローラ56の制御の下、冷却管76内に冷却媒体を循環させ、傾斜磁場コイルユニット26の温度が所定の温度(例えば15℃や、20℃、25℃等)となるように制御する。
傾斜磁場コイルユニット26の温度が所定の温度でほぼ収束したタイミング、例えば、次のステップS2のプレスキャン開始直前において、温度センサ70A〜70D(図2参照)はそれぞれ、傾斜磁場コイルユニット26内の温度を初期温度として検出する。ここでは一例として、温度が収束したタイミングで初期温度を計測するので、初期温度は温度センサ70A〜70Dを通して同じであるが、初期温度より後に計測される温度は、温度センサ70A〜70D毎に異なってよいものとする。温度センサ70A〜70Dによりそれぞれ検出された初期温度は、シーケンスコントローラ56を介してパルス設定部102に入力される。
なお、初期温度の計測タイミングは、プレスキャン開始直前ではなく、プレスキャン実行中、又は、プレスキャン実行直後でもよい。温度センサ70A〜70Dが傾斜磁場やRFパルスによるノイズの影響を受けやすい場合、プレスキャン開始直前又はプレスキャン実行直後に温度計測をすることで、上記ノイズの影響を回避できる。温度センサ70A〜70Dが傾斜磁場或いはRFパルスによるノイズの影響を受けにくい場合、プレスキャン実行中に温度計測をすることで、プレスキャン実行時の温度をより正確に検出できる。
[ステップS2]MRI装置20は、プレスキャンを行うことで、励起パルスなどのRFパルスの暫定的な中心周波数などを算出する。即ち、磁気共鳴スペクトロスコピーによりMR信号の周波数スペクトラムのピーク周波数が検出され、パルス設定部102は、ピーク周波数に基づいて、例えば初期温度における水素原子の磁気共鳴の中心周波数に合うようにRFパルスの暫定的な中心周波数CFrefを設定する。
[ステップS3]被検体Pの撮像部位が含まれるように、位置決め画像用のスキャンが行われる。具体的には、静磁場電源40により励磁された静磁場磁石22により撮像空間に静磁場が形成され、シムコイル電源42からシムコイル24に電流が供給されて、静磁場が均一化される。シーケンスコントローラ56は、MPU86から入力されたパルスシーケンスに従って傾斜磁場電源44、RF送信器46及びRF受信器48を駆動させることで、被検体Pがセットされた撮像領域に傾斜磁場を形成させると共に、RFコイル28からRFパルスを発生させる。
このため、被検体Pの内部の核磁気共鳴により生じたMR信号がRFコイル28により受信されて、RF受信器48により検出される。RF受信器48は、検出したMR信号に所定の信号処理を施した後、これをA/D変換することで、デジタル化したMR信号である生データを生成する。RF受信器48は、生成した生データをシーケンスコントローラ56に入力する。シーケンスコントローラ56は、生データを画像再構成部90に入力し、画像再構成部90は、k空間データベース92に形成されたk空間において生データをk空間データとして配置及び記録する。
この後、画像再構成部90は、k空間データに所定の画素再構成処理を施して位置決め画像の画像データを生成し、これを画像データベース94に入力する。画像処理部96は、画像データベース94に入力された画像データに所定の画像処理を施して表示用画像データを生成し、記憶装置66は、位置決め画像の表示用画像データを記憶する。
[ステップS4]表示制御部98は、MPU86の指令に従って位置決め画像の表示用画像データを記憶装置66から取得し、位置決め画像を表示装置64に表示させる。位置決め画像に基づいて、造影剤投与前の被検体Pに対する本スキャン(以下、第1本スキャンという)の撮像条件の一部がユーザにより設定される。
[ステップS5]寝台駆動装置50は、現在の寝台32の位置を第1本スキャン実行時の位置として記憶する。また、温度センサ70A〜70Dはそれぞれ、傾斜磁場コイルユニット26内の温度を「第1本スキャン直前温度」として計測し、シーケンスコントローラ56経由で計測温度をパルス設定部102に入力する。次に、パルス設定部102は、前記第1データ及び第2データをデータ記憶部100から読み込む。
パルス設定部102は、温度センサ70Aにより計測された「第1本スキャン直前温度」から、初期温度を引いた差分をΔTa1として算出する。同様に、パルス設定部102は、温度センサ70B〜70Dにより計測された各「第1本スキャン直前温度」から、初期温度をそれぞれ引いた差分をΔTb1、ΔTc1、ΔTd1として算出する。
次に、パルス設定部102は、ΔTa1、ΔTb1、ΔTc1、ΔTd1に基づいて、傾斜磁場コイルユニット26の温度が初期温度より上昇したか下降したかを判定する。具体的には例えば、ΔTa1、ΔTb1、ΔTc1、ΔTd1の内、3つ以上の符号が正であれば温度が上昇したと判定し、3つ以上の符号が負であれば温度が下降したと判定する。ΔTa1、ΔTb1、ΔTc1、ΔTd1の内、2つのみの符号が正である場合、例えば、ΔTa1、ΔTb1、ΔTc1、ΔTd1の平均値の符号に従って、温度が上昇したか下降したかを判定すればよい。
次に、パルス設定部102は、温度が上昇したと判定した場合には第1データを用い、温度が下降したと判定した場合には第2データを用いるように決定する。次に、パルス設定部102は、各温度センサ70A〜70Dが計測した各「第1本スキャン直前温度」の平均温度を算出する。パルス設定部102は、第1及び第2データの内、用いると決定された方において、この平均温度が属する温度領域(第1〜第3の温度領域のいずれか1つ)の温度係数を用いるように決定する。
例えば、温度が上昇したと判定され、第1データの第2温度領域における各温度センサ70A〜70Dの温度係数Khaβ、Khbβ、Khcβ、Khdβが用いると決定された場合を考える。この場合、パルス設定部102は、ΔTa1×Khaβ、ΔTb1×Khbβ、ΔTc1×Khcβ、ΔTd1×Khdβ、の4つの積の平均値を中心周波数の推定シフト量ΔCF1として算出する。温度変化分と温度係数との積が中心周波数のシフト量として算出されるように、温度係数の単位を定めているからである。
従って、パルス設定部102は、プレスキャンで暫定的に設定したRFパルスの中心周波数CFrefを、推定シフト量ΔCF1だけずらす補正をする。他の温度領域の場合、及び、温度が下降したと判定されて第2データが用いると決定された場合についても、上記同様である。
なお、温度センサ70A〜70Dにより計測された各「第1本スキャン直前温度」が初期温度と殆ど変わらない場合、プレスキャンで暫定的に設定した中心周波数CFrefを第1本スキャンでのRFパルスの中心周波数としてそのまま用いてもよい。
以下、ステップS4で決定された撮像条件に従って、位置決め画像用のスキャンと同様にMRI装置20の各部が動作して、第1本スキャンが行われる。但し、RFパルスの中心周波数は、上記補正後の値が用いられる。これにより、k空間データベース92に形成されたk空間において、第1本スキャンのk空間データが配置及び記録される。ここまでが第1本スキャンの動作である。
[ステップS6]第1本スキャンの終了直後のタイミングで、温度センサ70A〜70Dはそれぞれ、傾斜磁場コイルユニット26内の温度を「第1本スキャン終了後温度」として計測し、シーケンスコントローラ56経由で計測温度をパルス設定部102に入力する。また、寝台駆動装置52は、シーケンスコントローラ56の制御に従って、寝台32がガントリ外に出るように寝台32を移動させる。ここでは一例として、寝台32がガントリ外に出たタイミングから空き時間になるものとする。空き時間に入ると、被検体Pに対して造影剤が投与される。また、ここでは一例として、造影剤の投与から所定時間が経過した時刻を、空き時間の終了時刻とする。
また、空き時間内において、画像再構成部90は、k空間データベース92から第1本スキャンのk空間データを取り込み、これにフーリエ変換を含む画像再構成処理を施すことで第1本スキャンの画像データを再構成し、得られた画像データを画像データベース94に保存する。画像処理部96は、画像データベース94から画像データを取り込み、これに所定の画像処理を施すことで表示用画像データを生成し、第1本スキャンの表示用画像データを記憶装置66に保存する。
[ステップS7]空き時間の終了後、造影剤投与後の同一の被検体Pは、寝台32上において、第1本スキャンの実行時と同じ位置にセットされる。寝台駆動装置52は、シーケンスコントローラ56の制御に従って、この被検体Pが乗せられた寝台32をガントリ内に移動させる。具体的には、寝台駆動装置50は、ステップS5で記憶した第1本スキャン実行時の位置に、寝台32を移動させる。即ち、第1本スキャンにおける被検体Pの撮像部位が磁場中心に合致するように、位置合わせが行われる。
[ステップS8]ステップS3と同様に、被検体Pの撮像部位が含まれるように位置決め画像用のスキャンが行われる。このスキャンで収集されたMR信号のk空間データが再構成され、位置決め画像が生成され、その表示用画像データが記憶装置66に記憶される。
[ステップS9]表示制御部98は、MPU86の指令に従ってステップS8で生成された位置決め画像の表示用画像データを記憶装置66から取得し、この位置決め画像を表示装置64に表示させる。また、表示制御部98は、MPU86の指令に従って第1本スキャンの表示用画像データを記憶装置66から取得し、表示装置64に表示させる。
これら表示画像に基づいて、撮像領域が第1本スキャンと同じになるように、造影剤投与後の被検体Pに対する本スキャン(以下、第2本スキャンという)の撮像条件の一部がユーザにより設定される。
[ステップS10]温度センサ70A〜70Dはそれぞれ、傾斜磁場コイルユニット26内の温度を「第2本スキャン直前温度」として計測し、シーケンスコントローラ56経由で計測温度をパルス設定部102に入力する。
パルス設定部102は、温度センサ70Aにより計測された「第2本スキャン直前温度」から、温度センサ70Aにより計測された「第1本スキャン終了後温度」を引いた差分をΔTa2として算出する。同様に、パルス設定部102は、温度センサ70B〜70Dにより計測された各々の「第2本スキャン直前温度」から、温度センサ70B〜70Dにより計測された各々の「第1本スキャン終了後温度」を引いた差分をそれぞれΔTb2、ΔTc2、ΔTd2として算出する。
次に、パルス設定部102は、ΔTa2、ΔTb2、ΔTc2、ΔTd2に基づいて、ステップS5と同様にして傾斜磁場コイルユニット26の温度が「第1本スキャン終了後温度」より上昇したか下降したかを判定する。
このようにパルス設定部102は、第2本スキャンの実行直前の期間、即ち、空き時間において、傾斜磁場コイルユニット26の温度が上昇したか下降したかを判定する。パルス設定部102は、温度が上昇したと判定した場合には第1データを用い、温度が下降したと判定した場合には第2データを用いるように決定する。
次に、パルス設定部102は、各温度センサ70A〜70Dが計測した各「第2本スキャン直前温度」の平均温度を算出する。パルス設定部102は、第1及び第2データの内、用いると決定された方において、この平均温度が属する温度領域の温度係数を用いるように決定する。
また、パルス設定部102は、温度センサ70A〜70Dが計測した各々の「第2本スキャン直前温度」から、初期温度を引いた各差分をそれぞれΔTa3、ΔTb3、ΔTc3、ΔTd3として算出する。
例えば、温度が下降したと判定され、第2データの第1温度領域における各温度センサ70A〜70Dの温度係数Kraα、Krbα、Krcα、Krdαが用いると決定された場合を考える。この場合、パルス設定部102は、ΔTa3×Kraβ、ΔTb3×Krbα、ΔTc3×Krcα、ΔTd3×Krdα、の4つの積の平均値を中心周波数の推定シフト量ΔCF3として算出する。パルス設定部102は、プレスキャンで暫定的に設定した中心周波数CFrefを推定シフト量ΔCF3だけずらす補正をする。他の温度領域の場合、及び、第1データを用いると決定された場合も上記同様である。
なお、温度センサ70A〜70Dにより計測された各々の「第1本スキャン直前温度」が「第2本スキャン直前温度」と殆ど変わらない場合、例えば、第1本スキャンで用いた中心周波数を第2本スキャンのRFパルスの中心周波数として用いてもよい。
以下、ステップS9で決定された撮像条件に従って、位置決め画像用のスキャンと同様にMRI装置20の各部が動作して、第2本スキャンが行われる。但し、RFパルスの中心周波数は、このステップS10で補正した値が用いられる。これにより、k空間データベース92に形成されたk空間において、第2本スキャンのk空間データが配置及び記録される。
[ステップS11]画像再構成部90は、k空間データベース92から第2本スキャンのk空間データを取り込み、これに画像再構成処理を施すことで第2本スキャンの画像データを再構成し、得られた画像データを画像データベース94に保存する。画像処理部96は、画像データベース94から第2本スキャンの画像データを取り込み、これに所定の画像処理を施すこと第2本スキャンの表示用画像データを生成し、これを記憶装置66に保存する。
次に、画像処理部96は、サブトラクション画像(差分画像)を生成する。具体的には、画像処理部96は、第2本スキャン(造影剤投与後)の表示用画像データと、第1本スキャン(造影剤投与前のマスク画像)の表示用画像データとでパターンマッチングを行い、被検体Pの同じ位置に対応する画素の位置を求める。
画像処理部96は、パターンマッチングの結果に基づき、第2本スキャンの表示用画像の各画素値から、第1本スキャンの各画素値を差し引くことで、サブトラクション画像を生成し、これを記憶装置66に記憶させる。表示制御部98は、MPU86の指令に従って、サブトラクション画像の画像データを取得し、これを表示装置64に表示させる。
以上が造影剤の投与前後に撮像を行う場合の動作説明である。
図8は、MRI装置20の動作の別の例として、3時相のダイナミック撮像を行う場合の流れの一例を示すフローチャートである。以下、図8に示すステップ番号に従って、MRI装置20の動作を説明する。
[ステップS21]MPU86(図4参照)は、入力装置62に対して入力された撮像条件に関する入力内容等に基づいて、MRI装置20の初期設定を行う。この初期設定において、撮像部位などの本スキャンの撮像条件の一部が設定される。本実施形態では一例として、3時相のダイナミック撮像が本スキャンとして設定されるものとする。
各々の時相では、例えば多数のスライス用のMR信号の収集が、RFパルスの中心周波数等を除いて同じ撮像条件でそれぞれ行われる。このとき、ダイナミック撮像の各時相間の空き時間の長さも併せて設定される。なお、空き時間には、パルス送信及び被検体Pからの信号受信は一切行われない。また、時相は3時相以外でもよく、各時相のスライス数も任意に変更可能である。
この後、図7のステップS1と同様に冷却制御装置50及び温度センサ70A〜70D等は動作し、傾斜磁場コイルユニット26の温度が所定温度でほぼ収束したタイミングで、温度センサ70A〜70Dはそれぞれ、傾斜磁場コイルユニット26内の温度を初期温度として検出し、パルス設定部102に入力する。
[ステップS22]図7のステップS2と同様にプレスキャンが行われ、MPU86によりRFパルスの暫定的な中心周波数などが算出される。ここでは一例として、RFパルスには、励起パルスに加えて、脂肪組織の水素原子からのMR信号を抑制する脂肪抑制プレパルスが含まれるものとする。励起パルスの中心周波数は、CF’refとして暫定的に設定されるものとする。脂肪抑制プレパルスの中心周波数は、化学シフト(chemical shift)に基づいて、例えば所定の周波数だけ励起パルスの中心周波数CF’refからずらすことにより、CF’frefとして暫定的に設定されるものとする。
[ステップS23]図7のステップS3と同様に、位置決め画像のスキャン及び画像再構成が実行され、位置決め画像の表示用画像データが記憶装置66に記憶される。
[ステップS24]表示制御部98は、MPU86の指令に従って位置決め画像の表示用画像データを記憶装置66から取得し、位置決め画像を表示装置64に表示させる。位置決め画像に基づいて、本スキャンの撮像条件の一部がユーザにより設定される。
[ステップS25]温度センサ70A〜70Dはそれぞれ、傾斜磁場コイルユニット26内の温度を「第1時相直前温度」として計測し、シーケンスコントローラ56経由で計測温度をパルス設定部102に入力する。次に、パルス設定部102は、前記第1データ及び第2データをデータ記憶部100から読み込む。
パルス設定部102は、温度センサ70A〜70Dにより計測された各々の「第1時相直前温度」から、初期温度を引いた各差分をΔT’a1、ΔT’b1、ΔT’c1、ΔT’d1として算出する。
次に、パルス設定部102は、ΔT’a1〜ΔT’d1に基づいて、傾斜磁場コイルユニット26の温度が初期温度より上昇したか下降したかを前記ステップS5と同様に判定する。パルス設定部102は、温度が上昇したと判定した場合には第1データを用い、温度が下降したと判定した場合には第2データを用いるように決定する。
次に、パルス設定部102は、各温度センサ70A〜70Dが計測した各「第1時相直前温度」の平均温度を算出する。パルス設定部102は、第1及び第2データの内、用いると決定された方において、この平均温度が属する温度領域の4つの温度係数(温度センサ70A〜70Dにそれぞれ対応)を用いるように決定する。
パルス設定部102は、用いると決定した温度係数と、初期温度からの温度変化分(ΔT’a1〜ΔT’d1)との積を、前記ステップS5と同様に各温度センサ70A〜70D毎に算出する。パルス設定部102は、このように算出された4つの積の平均値を中心周波数の推定シフト量ΔCF’1として算出する。パルス設定部102は、プレスキャンで暫定的に設定した各RFパルスの中心周波数CF’ref、CF’frefを、推定シフト量ΔCF’1だけずらす補正をする。
なお、温度センサ70A〜70Dにより計測された各「第1時相直前温度」が初期温度と殆ど変わらない場合、プレスキャンで暫定的に設定した中心周波数CF’ref、CF’frefを第1時相の本スキャンの各RFパルスの中心周波数として用いてもよい。
以下、ステップS24で決定された撮像条件に従って、前述同様にMRI装置20の各部が動作して、第1時相の本スキャン(MR信号の収集)が行われる。但し、RFパルスの中心周波数は、このステップS25で補正された値が用いられる。これにより、k空間データベース92に形成されたk空間において、第1時相のk空間データが配置及び記録される。ここまでが第1時相のMR信号の収集動作である。
[ステップS26]第1時相のMR信号の収集後、第2時相のMR信号の収集前に、一定の空き時間が挟まれる。まず、第2時相の前の空き時間内において、温度センサ70A〜70Dはそれぞれ、傾斜磁場コイルユニット26内の温度を「第2時相直前温度」として検出し、これをシーケンスコントローラ56経由でパルス設定部102に入力する。
次に、パルス設定部102は、各温度センサ70A〜70Dが計測した「第2時相直前温度」から、各温度センサ70A〜70Dが計測した「第1時相直前温度」をそれぞれ引いた差分をΔT’a2、ΔT’b2、ΔT’c2、ΔT’d2として算出する。
次に、パルス設定部102は、第2時相開始前の期間において傾斜磁場コイルユニット26の温度が上昇したか下降したかを、ΔT’a2〜ΔT’d2に基づいて前記ステップS5と同様に判定する。パルス設定部102は、温度が上昇した場合には第1データを用い、温度が下降した場合には第2データを用いるように決定する。
次に、パルス設定部102は、各温度センサ70A〜70Dが計測した各々の「第2時相直前温度」の平均温度を算出する。パルス設定部102は、第1及び第2データの内、用いると決定された方において、この平均温度が属する温度領域の4つの温度係数を用いるように決定する。また、パルス設定部102は、各温度センサ70A〜70Dが計測した各々の「第2時相直前温度」から、初期温度をそれぞれ引いた各差分をΔT’a3、ΔT’b3、ΔT’c3、ΔT’d3として算出する。
パルス設定部102は、用いると決定した温度係数と、第2時相開始前における初期温度からの温度変化分(ΔT’a3、ΔT’b3、ΔT’c3、ΔT’d3)との積を、前記同様に各温度センサ70A〜70D毎に算出する。パルス設定部102は、このように算出された4つの積の平均値を中心周波数の推定シフト量ΔCF’2として算出する。パルス設定部102は、プレスキャンで暫定的に設定した各RFパルスの中心周波数CF’ref、CF’frefを、推定シフト量ΔCF’2だけずらす補正をする。この補正は、空き時間内に行われる。
なお、各温度センサ70A〜70Dの計測値について、「第2時相直前温度」が「第1時相直前温度」と殆ど変わらない場合、例えば、第1時相で用いた中心周波数を第2時相のRFパルスの中心周波数として用いてもよい。
そして、空き時間の経過後、ステップS24で決定された撮像条件に従って、前述同様にMRI装置20の各部が動作して、第2時相の本スキャン(MR信号の収集)が行われる。但し、RFパルスの中心周波数は、このステップS26で補正した値が用いられる。これにより、k空間データベース92に形成されたk空間において、第2時相のk空間データが配置及び記録される。
[ステップS27]第2時相のMR信号の収集後、第3時相のMR信号の収集前に、一定の空き時間が挟まれる。この第3時相前の空き時間内において、温度センサ70A〜70Dはそれぞれ、傾斜磁場コイルユニット26内の温度を「第3時相直前温度」として検出し、これをシーケンスコントローラ56経由でパルス設定部102に入力する。
次に、パルス設定部102は、温度センサ70A〜70Dが計測した各々の「第3時相直前温度」から、温度センサ70A〜70Dが計測した各々の「第2時相直前温度」をそれぞれ引いた差分をΔT’a4、ΔT’b4、ΔT’c4、ΔT’d4として算出する。
次に、パルス設定部102は、第3時相開始前の期間において傾斜磁場コイルユニット26の温度が上昇したか下降したかを、ΔT’a4〜ΔT’d4に基づいて前記ステップS5と同様に判定する。パルス設定部102は、温度が上昇した場合には第1データを用い、温度が下降した場合には第2データを用いるように決定する。
次に、パルス設定部102は、各温度センサ70A〜70Dが計測した各々の「第3時相直前温度」の平均温度を算出する。パルス設定部102は、第1及び第2データの内、用いると決定された方において、この平均温度が属する温度領域の4つの温度係数を用いるように決定する。また、パルス設定部102は、温度センサ70A〜70Dが計測した各々の「第3時相直前温度」から、初期温度をそれぞれ引いた各差分をΔT’a5、ΔT’b5、ΔT’c5、ΔT’d5として算出する。
パルス設定部102は、用いると決定した温度係数と、第3時相開始前における初期温度からの温度変化分(ΔT’a5、ΔT’b5、ΔT’c5、ΔT’d5)との積を、前記同様に各温度センサ70A〜70D毎に算出する。パルス設定部102は、このように算出された4つの積の平均値を中心周波数の推定シフト量ΔCF’3として算出する。パルス設定部102は、プレスキャンで暫定的に設定した各RFパルスの中心周波数CF’ref、CF’frefを、推定シフト量ΔCF’3だけずらす補正をする。この補正は、空き時間内に行われる。
なお、各温度センサ70A〜70Dの計測値について、「第3時相直前温度」が「第2時相直前温度」と殆ど変わらない場合、例えば、第2時相で用いた中心周波数を第3時相のRFパルスの中心周波数として用いてもよい。
そして、空き時間の経過後、ステップS24で決定された撮像条件に従って、前述同様にMRI装置20の各部が動作して、第3時相の本スキャンが行われる。但し、RFパルスの中心周波数は、このステップS27で補正した値が用いられる。これにより、k空間データベース92に形成されたk空間において、第3時相のk空間データが配置及び記録される。
[ステップS28]画像再構成部90は、k空間データベース92からk空間データを取り込み、全時相のk空間データに画像再構成処理を順次施すことで全時相の各スライスの画像データを再構成し、得られた画像データを画像データベース94に保存する。画像処理部96は、画像データベース94から全時相の各スライスの画像データを取り込み、これに所定の画像処理を順次施すことで表示用画像データを生成し、これら表示用画像データを記憶装置66に保存する。この後、全時相の全スライスの画像が例えばスルー画で表示装置64に表示される。
以上がダイナミック撮像を行う場合のMRI装置20の動作説明である。
このように本実施形態では、傾斜磁場コイルユニット26の温度変化分と、水素原子の磁気共鳴の中心周波数のシフト量との関係を規定する温度係数群を、第1及び第2データとして、予めデータ記憶部100に記憶しておく。そして、撮像時には傾斜磁場コイルユニット26の温度変化を複数のタイミングで計測し、その温度変化があった場合の水素原子の共鳴中心周波数に合致するように、RFパルスの中心周波数を温度係数に基づいてその都度補正する。
従って、傾斜磁場コイルの発熱に起因した水素原子の共鳴中心周波数のシフトに拘らず、RFパルスの中心周波数を水素原子の共鳴中心周波数にほぼ合致させるため、良好な画像が得られる。温度変化による水素原子の共鳴中心周波数のシフトに追従して、脂肪抑制プレパルス等のRFパルスの中心周波数を補正するため(ステップS25、S26、S27)、撮像時間が長くなっても、脂肪抑制プレパルス等の効果は劣化しないからである。
また、例えばダイナミック撮像のように撮像時間が長いほど、傾斜磁場コイルユニット26の温度は上昇し易いが、本実施形態では本スキャンの開始後にも温度の検出と中心周波数の補正とを繰り返すため、中心周波数補正の効果が顕著に表れる。
また、パルス設定部102は、鉄シムの透磁率の温度変化のヒステリシス特性を考慮し、温度上昇時と下降時に場合分けして予め取得された温度係数を用いて、中心周波数の推定シフト量を算出する。このため、磁気共鳴の中心周波数のより正確に計算できる。一般にはパルスシーケンスの実行継続により傾斜磁場コイルユニット26の温度は次第に上昇していくが、例えば造影剤投与前後の撮像間に挟まれる比較的長めの空き時間等によって温度下降があり得る場合に、特に有効である。
さらに本実施形態では、上記ヒステリシス特性を考慮し、温度上昇時及び下降時のそれぞれについて、複数の温度領域に分けて温度係数を予め取得し、かかる温度係数を用いて水素原子の磁気共鳴の中心周波数の推定シフト量を算出する。このため、磁気共鳴の中心周波数をさらに正確に計算できる。
このように本実施形態では、水素原子の共鳴中心周波数の変化に追従できるため、傾斜磁場コイルユニット26の冷却機能を最小限に留めることもできるので、冷却コストを削減できる。また、水素原子の共鳴中心周波数の変化に追従できるため、熱伝導性の高い(即ち、熱容量の少ない)傾斜磁場コイルユニット26を使用することもできる。
図9は、11のパルスシーケンスを順次実行した場合の各パルスシーケンスの実行時の中心周波数について、本実施形態の手法で計算した値と、実測値とを比較した一例を示すグラフである。この例では、約1.5テスラの共通の強度の静磁場が印加された下で、第1〜第11のパルスシーケンスが実行される。図9の縦軸はファントム内の水素原子の磁気共鳴の中心周波数を示し、単位はメガヘルツ(megahertz)である。図9の横軸は、第1〜第11のパルスシーケンスの実行順を示し、全パルスシーケンスの実行開始からの経過時間に相当する。図9において、白丸のプロットを繋いだ破線は実測値を示し、白抜きの四角のプロットを繋いだ実線は計算値を示す。
図10は、図9と同じ11のパルスシーケンスを順次実行した場合の各パルスシーケンスの実行時の中心周波数について、本実施形態とは別の手法で計算した値と、実測値とを図9と同様の表記で比較した一例を示すグラフである。従って、図10において白丸のプロットを繋いだ破線は、図9と同じ実測値を示す。なお、図9との区別のため、計算値を示すと共に実線で繋がれた四角のプロットは、図10では黒く塗り潰している。
上記「別の手法」では、パルスシーケンスの実行中には傾斜磁場コイルユニット26の温度が下降せずに上昇するものと仮定して、温度領域を分けずに、温度取得シーケンスにより温度センサの数だけの温度係数を取得する。この方法では、全温度範囲に亘って、温度変化に対して中心周波数のシフト量が1次関数的に線形変化すると簡略化した上で、各パルスシーケンスの開始前における初期温度からの温度変化分を温度センサ毎に算出する。そして、この温度変化分と、温度係数との積を温度センサの数だけ算出し、これら積の平均値を中心周波数の推定シフト量とする。そして、プレスキャン実行時(初期温度計測時)に暫定的に設定された中心周波数から、算出した推定シフト量をずらすことで、各パルスシーケンス実行時の中心周波数を算出したものである。
図9と図10との対比で分かるように、図10の計算手法よりも、本実施形態の手法で計算した中心周波数の方が実測値に近い。本実施形態では、鉄シムの透磁率の温度変化のヒステリシス特性を考慮し、温度上昇時と下降時に場合分けした上で、さらに複数の温度領域に分けて温度係数を予め取得するため、中心周波数をより正確に計算できるからである。
以上説明した実施形態によれば、MRIにおいて、傾斜磁場コイルの発熱に起因した水素原子の磁気共鳴の中心周波数のシフトに拘らず、良好な画像が得るための新規な技術を提供できる。
(実施形態の補足事項)
[1]図7及び図8のフローでは、後続の全ての本スキャンのシーケンスを通して、プレスキャン実行時の初期温度と現在温度との差分に温度係数を乗じることで推定シフト量を算出し、プレスキャンで暫定的に設定された中心周波数から推定シフト量だけずらす補正をする例を述べた。これは、RFパルスの中心周波数の補正方法の一例にすぎない。例えば、前回測定された温度と、現在温度との差分に温度係数を乗じることで推定シフト量を算出し、前回の本スキャンで用いられた中心周波数から推定シフト量だけずらす補正でもよい。
[2]ダイナミック撮像や、造影剤投与前後の撮像に限らず、例えば拡散強調イメージングなどの他の撮像シーケンスの場合にも、本実施形態は適用可能である。
[3]水素原子の磁気共鳴の中心周波数の推定シフト量を計算し、推定シフト量に基づいて中心周波数を補正する例を述べたが、水素原子の磁気共鳴の中心周波数自体を推定し、これに基づいて中心周波数を補正する構成としても、技術的には上記実施形態と等価である。
[4]第1及び第2の温度係数取得シーケンスの実行により、実測値に基づいて温度係数を予め取得する例を述べた。本発明の実施形態は、かかる態様に限定されるものではない。第1データの各温度領域における温度センサ70A〜70D毎の温度係数は、鉄シムの透磁率の温度変化のヒステリシス特性に応じて非線形に変化するように、ガントリの構造、X、Y、Z軸傾斜磁場コイル26mx、26my、26mzの構造、X、Y、Z軸シールドコイル26sx、26sy、26szの構造等に基づいて予めシミュレーションに取得してデータ記憶部100に記憶させてもよい。第2データの各温度領域における温度センサ70A〜70D毎の温度係数についても同様である。
[5]MRI装置20として、静磁場磁石22、シムコイル24、傾斜磁場コイルユニット26等が含まれるガントリの外にRF受信器48が存在する例を述べたが(図1参照)、RF受信器48がガントリ内に含まれる態様でもよい。具体的には例えば、RF受信器48に相当する電子回路基盤をガントリ内に配設する。そして、受信用RFコイルによって電磁波からアナログの電気信号に変換されたMR信号を、当該電子回路基盤内のプリアンプによって増幅し、デジタル信号としてガントリ外に出力し、シーケンスコントローラ56に入力してもよい。ガントリ外への出力に際しては、例えば光通信ケーブルを用いて光デジタル信号として送信すれば、外部ノイズの影響が軽減されるので、望ましい。
[6]請求項の用語と実施形態との対応関係を説明する。なお、以下に示す対応関係は、参考のために示した一解釈であり、本発明を限定するものではない。
静磁場磁石22、シムコイル24、傾斜磁場コイルユニット26、RFコイル28、制御装置30の全体(図1参照)が、傾斜磁場及びRFパルスの印加を伴ったスキャンにより被検体PからMR信号を収集する機能と、MR信号に基づいて被検体Pの画像データを生成する演算装置60の機能は、請求項記載の撮像部の一例である。
温度センサ70A〜70Dは、請求項記載の温度計測部の一例である。
温度上昇時及び温度下降時のそれぞれについて、複数の温度領域に分けて予めデータ記憶部100に記憶された温度センサ70A〜70D毎の温度係数は、請求項記載の「シフトデータ」及び「第1及び第2データとしての比率」の一例である。
第1〜第3時相の各本スキャン(MR信号の収集)は、請求項記載のデータ収集シーケンスの一例である。
[7]本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
20 MRI装置
22 静磁場磁石
24 シムコイル
26 傾斜磁場コイルユニット
26m メインコイル
26mx X軸傾斜磁場コイル
26my Y軸傾斜磁場コイル
26mz Z軸傾斜磁場コイル
26s シールドコイル
26sx X軸シールドコイル
26sy Y軸シールドコイル
26sz Z軸シールドコイル
28 RFコイル
30 制御装置
32 寝台
40 静磁場電源
42 シムコイル電源
44 傾斜磁場電源
44x X軸傾斜磁場電源
44y Y軸傾斜磁場電源
44z Z軸傾斜磁場電源
46 RF送信器
48 RF受信器
50 冷却制御装置
52 寝台駆動装置
56 シーケンスコントローラ
58 コンピュータ
60 演算装置
62 入力装置
64 表示装置
66 記憶装置
72 シムトレイ
76 冷却管
86 MPU
88 システムバス
90 画像再構成部
92 k空間データベース
94 画像データベース
96 画像処理部
98 表示制御部
100 データ記憶部
102 パルス設定部
P 被検体

Claims (8)

  1. 供給電流に応じた傾斜磁場を撮像領域に発生させる傾斜磁場コイルユニットと、
    前記傾斜磁場コイルユニットの温度を異なるタイミングで少なくとも2回計測する温度計測部と、
    前記撮像領域内の水素原子の磁気共鳴の中心周波数が前記傾斜磁場コイルユニットの温度変化に応じてどれだけシフトするかを示すと共に複数の温度領域にそれぞれ対応する複数のシフトデータが、前記温度計測部による計測前から予め記憶されたデータ記憶部と、
    前記温度計測部の計測結果により示される前記傾斜磁場コイルユニットの温度が含まれる前記温度領域に対応する前記シフトデータと、前記計測結果に基づく前記傾斜磁場コイルユニットの温度の変化分とに基づいて、前記水素原子の磁気共鳴の中心周波数の推定シフト量を算出し、前記推定シフト量に基づいてRFパルスの中心周波数を補正するパルス設定部と、
    前記パルス設定部により補正された前記RFパルスを送信し、前記撮像領域の被検体から核磁気共鳴信号を受信し、前記核磁気共鳴信号に基づいて前記被検体の画像データを生成する撮像部と
    を備えることを特徴とする磁気共鳴イメージング装置。
  2. 前記データ記憶部は、各々の前記温度領域の前記シフトデータとして、前記傾斜磁場コイルユニットの温度が上昇した場合の前記水素原子の磁気共鳴の中心周波数のシフト量を示す第1データと、前記傾斜磁場コイルユニットの温度が下降した場合の前記水素原子の磁気共鳴の中心周波数のシフト量を示す第2データとを予め記憶しており、
    前記パルス設定部は、前記温度計測部の計測結果に基づいて前記傾斜磁場コイルユニットの温度が上昇したか下降したかを判定後、前記第1及び第2データの内、判定結果に対応する方に基づいて前記推定シフト量を算出する
    ことを特徴とする請求項1記載の磁気共鳴イメージング装置。
  3. 前記複数のシフトデータは、前記温度計測部の計測温度に基づく前記傾斜磁場コイルユニットの温度の変化分と、前記水素原子の磁気共鳴の中心周波数のシフト量との比率を、前記第1及び第2データのそれぞれに対して、各々の前記温度領域毎に定めたものである
    ことを特徴とする請求項2記載の磁気共鳴イメージング装置。
  4. 前記傾斜磁場コイルユニットは、静磁場の不均一性を補正する鉄シムを内部に有し、
    前記第1及び第2データとしての前記比率は、各々の前記温度領域間において、前記鉄シムの透磁率の温度変化のヒステリシス特性に応じて非線形に変化するように定めたものである
    ことを特徴とする請求項3記載の磁気共鳴イメージング装置。
  5. 前記撮像部は、複数の画像の生成に用いられる前記核磁気共鳴信号の収集が含まれるデータ収集シーケンスを、時間順に複数回実行するように構成され、
    前記温度計測部は、各々の前記データ収集シーケンスの実行前に前記傾斜磁場コイルユニットの温度を計測するように構成され、
    前記パルス設定部は、各々の前記データ収集シーケンスの実行前に前記RFパルスの中心周波数を補正するように構成される
    ことを特徴とする請求項2乃至請求項4のいずれか1項記載の磁気共鳴イメージング装置。
  6. 前記撮像部は、複数の画像の生成に用いられる前記核磁気共鳴信号の収集が各々の時相に含まれるダイナミック撮像を、各々の前記時相同士の間に空き時間を挟んで行うように構成され、
    前記温度計測部は、前記空き時間に前記傾斜磁場コイルユニットの温度を計測するように構成され、
    前記パルス設定部は、前記空き時間に前記RFパルスの中心周波数を補正するように構成される
    ことを特徴とする請求項2乃至請求項4のいずれか1項記載の磁気共鳴イメージング装置。
  7. 前記撮像部は、造影剤投与前の前記被検体から前記核磁気共鳴信号を収集する第1のデータ収集シーケンスを実行してから、空き時間が経過後に、前記造影剤が投与された同一の前記被検体から前記核磁気共鳴信号を収集する第2のデータ収集シーケンスを実行するように構成され、
    前記温度計測部は、前記空き時間の前後に前記傾斜磁場コイルユニットの温度をそれぞれ計測するように構成され、
    前記パルス設定部は、前記第2のデータ収集シーケンスの実行直前の期間において、前記傾斜磁場コイルユニットの温度が上昇したか下降したかを判定し、この判定結果に基づいて前記RFパルスの中心周波数を補正するように構成される
    ことを特徴とする請求項2乃至請求項4のいずれか1項記載の磁気共鳴イメージング装置。
  8. 供給電流に応じた傾斜磁場を撮像領域に発生させる傾斜磁場コイルユニットと、
    前記傾斜磁場コイルユニットの温度を異なるタイミングで少なくとも2回計測する温度計測部と、
    前記撮像領域内の水素原子の磁気共鳴の中心周波数が前記傾斜磁場コイルユニットの温度変化に応じてどれだけシフトするかを示すデータとして、前記傾斜磁場コイルユニットの温度が上昇した場合に対応する第1データと、前記傾斜磁場コイルユニットの温度が下降した場合に対応する第2データとが、前記温度計測部による計測前から予め記憶されたデータ記憶部と、
    前記温度計測部の計測結果に基づいて前記傾斜磁場コイルユニットの温度が上昇したか下降したかを判定し、前記第1及び第2データの内、この判定結果に対応する方と、前記計測結果に基づく前記傾斜磁場コイルユニットの温度の変化分とに基づいて、前記水素原子の磁気共鳴の中心周波数の推定シフト量を算出し、前記推定シフト量に基づいてRFパルスの中心周波数を補正するパルス設定部と、
    前記パルス設定部により補正された前記RFパルスを送信し、前記撮像領域の被検体から核磁気共鳴信号を受信し、前記核磁気共鳴信号に基づいて前記被検体の画像データを生成する撮像部と
    を備えることを特徴とする磁気共鳴イメージング装置。
JP2011277605A 2011-12-19 2011-12-19 磁気共鳴イメージング装置 Active JP5886024B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011277605A JP5886024B2 (ja) 2011-12-19 2011-12-19 磁気共鳴イメージング装置
US13/719,699 US10048332B2 (en) 2011-12-19 2012-12-19 Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN2012105547627A CN103156610A (zh) 2011-12-19 2012-12-19 磁共振成像装置以及磁共振成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277605A JP5886024B2 (ja) 2011-12-19 2011-12-19 磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2013126508A true JP2013126508A (ja) 2013-06-27
JP5886024B2 JP5886024B2 (ja) 2016-03-16

Family

ID=48580507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277605A Active JP5886024B2 (ja) 2011-12-19 2011-12-19 磁気共鳴イメージング装置

Country Status (3)

Country Link
US (1) US10048332B2 (ja)
JP (1) JP5886024B2 (ja)
CN (1) CN103156610A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089850A (ko) * 2018-01-22 2019-07-31 라디우스 가부시키가이샤 수신 방법, 수신 장치, 송신 방법, 송신 장치, 송수신 시스템
CN110313913A (zh) * 2018-03-29 2019-10-11 通用电气公司 磁共振中心频率的校正方法及装置、磁共振成像系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638780B2 (en) * 2013-02-25 2017-05-02 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method
DE102013210652A1 (de) * 2013-06-07 2014-12-11 Siemens Aktiengesellschaft Ermittlung einer Magnetresonanzsystem-Ansteuersequenz sowie Erzeugung einer Bildfolge mittels dieser Magnetresonanzsystem-Ansteuersequenz
US10222437B2 (en) * 2013-10-21 2019-03-05 Koninklijke Philips N.V. MR imaging with temperature mapping
RU2676538C1 (ru) * 2014-12-04 2019-01-09 Конинклейке Филипс Н.В. Система магнитно-резонансной томографии с датчиками инфракрасной термометрии
US9797967B2 (en) * 2015-07-15 2017-10-24 Synaptive Medical (Barbados) Inc. Active coil to shift a volume of uniform magnetic field
TWI667487B (zh) * 2016-09-29 2019-08-01 美商超精細研究股份有限公司 射頻線圈調諧方法及裝置
CN108387856B (zh) * 2018-02-22 2019-11-05 奥泰医疗系统有限责任公司 一种磁共振中心频率和射频功率校正扫描序列及方法
CN108663640B (zh) * 2018-05-09 2021-07-13 上海东软医疗科技有限公司 一种磁共振线圈位置的确定方法和装置
DE102018212858A1 (de) * 2018-08-01 2020-02-06 Siemens Healthcare Gmbh Magnetresonanzeinrichtung, Magnetresonanzsystem und zugehöriges Betriebsverfahren
WO2020139476A2 (en) 2018-12-28 2020-07-02 Hyperfine Research, Inc. Correcting for hysteresis in magnetic resonance imaging
US11698430B2 (en) 2019-08-15 2023-07-11 Hyperfine Operations, Inc. Eddy current mitigation systems and methods
US10969451B1 (en) * 2019-09-23 2021-04-06 GE Precision Healthcare LLC Systems and methods for in-phase zero echo time magnetic resonance imaging
CN115113121B (zh) * 2022-06-24 2024-01-19 深圳市联影高端医疗装备创新研究院 频谱数据获取方法、装置及计算机设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483316A (ja) * 1990-07-25 1992-03-17 Matsushita Electric Works Ltd カレントトランス
JP2563097B2 (ja) * 1989-04-08 1996-12-11 バクームシユメルツエ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング 微結晶鉄ベース合金から成る漏電遮断器用磁心材料
JP2002530854A (ja) * 1998-11-13 2002-09-17 バクームシユメルツエ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング 変流器での使用に適した磁心、磁心の製造方法及び変流器
JP2005288025A (ja) * 2004-04-05 2005-10-20 Toshiba Corp 磁気共鳴イメージング装置
JP2006311957A (ja) * 2005-05-09 2006-11-16 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2009240765A (ja) * 2008-03-13 2009-10-22 Toshiba Corp 磁気共鳴イメージング装置および冷却装置
JP2012030051A (ja) * 2010-07-02 2012-02-16 Toshiba Corp 磁気共鳴イメージング装置、および、磁気共鳴イメージング方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303141A (ja) * 1988-06-01 1989-12-07 Toshiba Corp 永久磁石磁気共鳴イメージング装置
JPH083316A (ja) 1994-06-27 1996-01-09 Toray Ind Inc 共重合ポリエステル、組成物およびそれからなるフィルム
US20090069666A1 (en) * 2007-09-11 2009-03-12 Siemens Medical Solutions Usa, Inc. Correction of Intensity Inhomogeneity in Breast MRI
JP5554031B2 (ja) * 2008-10-03 2014-07-23 株式会社東芝 磁気共鳴イメージング装置および傾斜磁場コイル冷却制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2563097B2 (ja) * 1989-04-08 1996-12-11 バクームシユメルツエ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング 微結晶鉄ベース合金から成る漏電遮断器用磁心材料
JPH0483316A (ja) * 1990-07-25 1992-03-17 Matsushita Electric Works Ltd カレントトランス
JP2002530854A (ja) * 1998-11-13 2002-09-17 バクームシユメルツエ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング 変流器での使用に適した磁心、磁心の製造方法及び変流器
JP2005288025A (ja) * 2004-04-05 2005-10-20 Toshiba Corp 磁気共鳴イメージング装置
JP2006311957A (ja) * 2005-05-09 2006-11-16 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2009240765A (ja) * 2008-03-13 2009-10-22 Toshiba Corp 磁気共鳴イメージング装置および冷却装置
JP2012030051A (ja) * 2010-07-02 2012-02-16 Toshiba Corp 磁気共鳴イメージング装置、および、磁気共鳴イメージング方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089850A (ko) * 2018-01-22 2019-07-31 라디우스 가부시키가이샤 수신 방법, 수신 장치, 송신 방법, 송신 장치, 송수신 시스템
US10666486B2 (en) 2018-01-22 2020-05-26 Radius Co., Ltd. Receiver method, receiver, transmission method, transmitter, transmitter-receiver system, and communication apparatus
KR102120021B1 (ko) 2018-01-22 2020-06-05 라디우스 가부시키가이샤 수신 방법, 수신 장치, 송신 방법, 송신 장치, 송수신 시스템
US11108615B2 (en) 2018-01-22 2021-08-31 Radius Co., Ltd. Method for receiving an image signal and method for transmitting an image signal
CN110313913A (zh) * 2018-03-29 2019-10-11 通用电气公司 磁共振中心频率的校正方法及装置、磁共振成像系统

Also Published As

Publication number Publication date
JP5886024B2 (ja) 2016-03-16
US10048332B2 (en) 2018-08-14
CN103156610A (zh) 2013-06-19
US20130154642A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5886024B2 (ja) 磁気共鳴イメージング装置
JP6184050B2 (ja) 磁気共鳴イメージング装置
US9977106B2 (en) MR imaging with B1 mapping
CN103238082B (zh) 使用多点Dixon技术和低分辨率校准的MR成像
CN105308469B (zh) 一种mr成像方法、mr设备以及相关数据载体
US10203394B2 (en) Metal resistant MR imaging
KR101473872B1 (ko) 자기공명영상장치 및 그 제어방법
JP2012205897A (ja) 磁気共鳴画像内の位相情報の補正方法および磁気共鳴設備
EP3044604B1 (en) Metal resistant mr imaging
US20140368195A1 (en) Mr imaging with suppresion of flow artifacts
US9846215B2 (en) MRI embodiments for controlling an arrangement order of multiple echoes in a k-space
US10996301B2 (en) Dual-echo dixon-type water/fat separation MR imaging
US10126395B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
WO2012063654A1 (ja) 磁気共鳴イメージング装置、計測空間座標補正方法、及び、画像再構成方法
US20220057467A1 (en) Epi mr imaging with distortion correction
JP6181737B2 (ja) 磁気共鳴イメージング装置
JP6377378B2 (ja) 磁気共鳴イメージング装置
US11226385B2 (en) Dixon type water/fat separation MR imaging with improved fat shift correction
JP6104631B2 (ja) 磁気共鳴イメージング装置
EP3480617A1 (en) Diffusion weighted turbo spin echo mr imaging with motion compensation
JP6678214B2 (ja) 磁気共鳴イメージング装置
JP2016171848A (ja) 磁気共鳴イメージング装置
JP2016154849A (ja) 磁気共鳴イメージング装置
JP6407620B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5886024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350