JP2013123070A - シールドを備えるプロセス条件測定素子 - Google Patents

シールドを備えるプロセス条件測定素子 Download PDF

Info

Publication number
JP2013123070A
JP2013123070A JP2013012399A JP2013012399A JP2013123070A JP 2013123070 A JP2013123070 A JP 2013123070A JP 2013012399 A JP2013012399 A JP 2013012399A JP 2013012399 A JP2013012399 A JP 2013012399A JP 2013123070 A JP2013123070 A JP 2013123070A
Authority
JP
Japan
Prior art keywords
substrate portion
conductive
conductive layer
process condition
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013012399A
Other languages
English (en)
Other versions
JP5922044B2 (ja
Inventor
Wiese Lynn
ウィーゼ・リン
M Jensen Earl
イェンセン・アール・エム.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Tencor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/380,985 external-priority patent/US7540188B2/en
Application filed by KLA Tencor Corp filed Critical KLA Tencor Corp
Publication of JP2013123070A publication Critical patent/JP2013123070A/ja
Application granted granted Critical
Publication of JP5922044B2 publication Critical patent/JP5922044B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/22Connection or disconnection of sub-entities or redundant parts of a device in response to a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49007Indicating transducer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】高エネルギー電磁放射の環境下で使用可能なプロセス条件素子を提供する。
【解決手段】プロセス条件測定素子100は、二つの導電性基板102、104に挟まれた電子部品106a−dを備える。導電性経路110により、該導電性基板102、104は接続される。基板部分より自然酸化物が除去され、導電性コンタクト・パッドが形成され、該導電性コンタクト・パッドは、導電性接着剤により接合され、導電性経路110が形成される。シールドされた電子部品へと伸びる導電性リードを備えるセンサーを、プロセス条件測定素子100の外部へ設置可能である。
【選択図】図1

Description

この発明は、標的環境内、特に、加工対象物に関する自動プロセスで使用されるプロセス・システムの標的環境内でのプロセス条件の測定に関する。このような加工対象物には、半導体ウエハー、フラット・パネル・ディスプレイ向けのガラス基板、磁気メモリ向けのディスクなどが含まれる。この出願にて引用される特許、特許出願、他の文献の全ては、ここに詳述された参照文献として取り扱われる。
集積回路、ディスプレイ、またはディスク・メモリの製造では、加工対象物 (製造基板) 上に施される数多くのプロセス・ステップが要求される。個々のステップは、機能する素子を提供するために注意深く監視される。イメージング・プロセス、製膜そして膜成長プロセス、エッチングそしてマスキング・プロセスなどの工程に亘り、例えば、温度、ガス流量、真空度、圧力、化学薬品、ガスまたはプラズマの組成、そして露出距離が、特定のステップ内で注意深く制御される。ステップに要求される様々なプロセス条件への注意深い配慮は、良質な半導体または薄膜プロセスへの条件となり得る。所望のプロセス条件からの逸脱は、その後に製造される集積回路または素子が規格外となる場合があり、最悪の場合には、完全な不良品となる。
プロセス・チャンバー内で、プロセス条件は変化し得る。温度、ガス流量、及び/または、ガス組成などのプロセス条件の変化は、組成に影響を与え、それ故、集積回路のパフォーマンスに影響する。加工対象物にもたらされるプロセス条件を測定するために、プロセス・チャンバー内あるいは周辺で、センサーを設置可能である。しかしながら、センサーが加工対象物の近傍に設置された場合でも、特に、急速な温度変化などの急速に変化する環境変化内に於いて、センサーが検知する環境は、加工対象物が晒される環境と異なる場合がある。
製造基板と同じまたは同等の材料と大きさのセンサー基板に取り付けられたセンサーを用いることはプロセス条件の精確な測定をもたらす。なぜなら、測定は、センサー基板の中、もしくは表面上で実施されるからである。センサー基板の材料特性は製造基板の材料特性に類似したものである。センサーを有するセンサー基板と、関連する電子回路は、プロセス条件測定素子 (Process Condition Measuring Device (PCMD)) と見なされる。PCMDは、製造基板が晒されるプロセスと同じプロセスに晒されるため、製造基板が晒される製造プロセスを精確に見積もることが可能である。幾つかの例に於いて、電線または無線により、リアル・タイムで、データは、プロセス・システム外のユニットに送信される。或いは、プロセス条件データはPCMDのメモリに保管され、後に解析に使用され得る。
勾配と変化は、実質的に全てのプロセス条件に亘り存在する。従って、これらの勾配は、また、基板の表面に亘り存在する。一般に、特定のプロセス条件に関して複数の測定の実施が望ましい。基板に亘る複数箇所に於けるプロセス条件の測定を集計することにより、製造基板に亘るプロセス条件の勾配を見積もることが可能である。しかしながら、このような測定は、製造基板とPCMDの差異により影響を受ける場合がある。物理的特性または大きさが製造基板に類似したプロセス条件測定素子に関して、幾つかの設計が提案されている。
幾つかのアプリケーションに於いて、ある部品に損傷を与えるか、測定の障害の原因となり得る過酷な環境にPCMDが晒される場合がある。幾つかの環境に於ける高周波 (RF) または電磁放射は、例えば、測定の読み取りを阻害するノイズの原因となることで、PCMDの電子部品に影響を及ぼす場合がある。RF放射は、半導体業界 (そして他の業界) の様々なプロセスで使用される。例えば、RFプラズマは、半導体基板のエッチングに使用され、電子部品の損傷につながる場合がある。
従って、高エネルギー電磁放射の環境下で使用可能なシールドを有するPCMDが必要である。また、PCMDからの材料がエッチングされても、エッチされた材料がプロセス・システムを汚染しないPCMDが必要である。
電気的に結合された二つの導電性基板部分の間にプロセス条件測定素子 (PCMD) の電子部品が挟み込まれる。従って、基板部分は、電子部品の周辺にファラデー箱を形成し、電磁放射より電子部品をシールドする。基板部分は、製造基板と同じ大きさを有し、同じまたは類似の材料から形成される。特に、高度にドープされた導電性のシリコン基板部分を使用可能である。
リセスを形成し、溶融状態にあるインジウムまたは類似の材料をリセス内に導入し、リセス内のインジウムと基板部分のシリコンの間に存在する二酸化シリコンを物理的に剥ぎ取ることで、シリコン基板部分の上にコンタクト・パッドが形成される。これにより、インジウムはシリコンと直接接触し、オーミック・コンタクトを形成する。(金または類似の材料からなる) コンタクト・タブはインジウムへ取り付けられる。電子部品は基板部分に設置されるが、一般に、電子部品のために設けられた空洞部内に設置される。電子部品は、予め組み立てられたユニットとして取り付けられるか、或いは別々に取り付けられ、その場で接続可能である。例えば、温度センサーの周辺といった良好な熱伝導が望まれる箇所で、熱伝導性の接着剤を使用可能である。コンタクト・パッドを同じように有する第二の基板部分が第一の基板部分に取り付けられ、基板部分の間に電子部品が挟み込まれる。一方の基板部分より他の基板部分へ、コンタクト・パッドを経て電流が自由に流れるように、導電性接着剤を用いて、第一の基板部分のコンタクト・パッドと第二の基板部分が接合される。幾つかの例に於いて、良好な電気的接触を提供するために、第一の基板部分のと第二の基板部分の上に複数のコンタクト・パッドが設置される。或いは、金属層がドープされたシリコン基板と電気的に接触するように、通常のシリコン・プロセス技術を用いることで、自然酸化物が剥ぎ取られ、ドープされたシリコン基板の上に導電性金属層が直接製膜される。
幾つかの例に於いて、露出されたパッド (または他のアンテナ) とシールドされた電子部品を、センサーは使用する。電子部品が導電性基板部分の間に挟み込まれる傍ら、パッドは、基板部分の外部表面に取り付けられる。パッドから、基板部分のスルー・ホールを経て、導電性リードは電子部品へ接続される。電子部品は、個々に分離したリセスまたは空洞部に設置され、外部からの干渉のみならず、電子部品間で互いにシールドされる。
基板部分の外部表面上にパッドは設置可能であり、ここでパッドと基板部分の間に絶縁層が存在する。或いは、PCMDが平坦な表面を有するように、パッドはリセスに取り付けられる。他の例に於いて、基板部分の表面より離れるようにパッドはスタッドの上に取り付けられる。
パッドと基板部分のみが露出されるように、PCMDの全ての電子部品と導電性リードをシールド可能である。従って、PCMDより材料が侵食された場合、電子部品、或いは導電性リードへの損傷は生じない。また、電子部品と導電性リードから潜在的に汚染源となる材料は侵食されないため、プロセス・チャンバーの汚染が防止される。
プラズマ、或いは他の電磁現象に露出されるパッド (または他のアンテナ) を様々な検知回路は使用する。検知回路がシールドされる傍らで、パッドは露出される。一例に於いて、PCMDの外部に露出された二つのパッドと、PCMD内でシールドされ、パッド間に電圧を印加し、I-Vデータを収集する回路を、ダブル・ラングミュア・プローブは備える。
電子部品の両側に位置する導電性基板部分を結ぶ導電性経路を有する、本発明に係る一実施態様に準じたプロセス条件測定素子を示す説明図である。 基板部分の表面内に形成されたリセスを示す説明図である。 図2Aのリセス内でシリコン表面より自然酸化物を剥ぎ取る針を示す傍ら、インジウムがリセス内で露出されたシリコンを覆っている態様を示す説明図である。 図2Bのインジウムが、その下のシリコンと、インジウムに取り付けられた導電性タブに直接接触している態様を示す説明図である。 図2Cの基板部分に取り付けられる予め組み立てられた電子部品を示す説明図である。 図3Aの第一の基板部分と予め組み立てられた電子部品に取り付けられる第二の基板部分を示す説明図である。 図3Aと図3Bに於ける第一の基板部分と予め組み立てられた電子部品の上面図である。 シールドを備えるプロセス条件測定素子を作成する典型的プロセスのフローチャートである。 導電性層を備え、分離された第一ならびに第二のフラット・パネル・ディスプレイ基板部分を示す説明図である。 導電性経路と包含する電子部品により接続された図6の第一ならびに第二のフラット・パネル・ディスプレイ基板部分を示す説明図である。 シールドされた電子部品とシールドされていないセンサーを備えるPCMDを示す説明図である。 シールドされた電子部品とシールドされていないセンサーを備え、センサー・パッドが周囲の表面と同一平面上にあり、平坦な表面を有する別のPCMDを示す説明図である。 シールドされた電子部品とシールドされていないセンサーを備え、分離されシールドされたチャンバーが異なる電子部品に関し生成され、外部場からシールドされ、またチャンバー間でシールドされている別のPCMDを示す説明図である。 導電性部分を経て伸びている導電性リードを備える、基板に取り付けられた導電性パッドの例を示す説明図である。 基板部分と同一平面上にあり、平坦な表面を提供するように取り付けられた導電性パッドの例を示す説明図である。 基板部分に取り付けられた、基板部分の表面から離れるように位置し、基板部分をサポートしているスタッドを備える導電性パッドの例を示す説明図である。 パッドと統合的に形成されたキャパシタを有する導電性パッドの一例を示す説明図である。 基板表面に亘り誘電体層を成長させ、その後、裏側からのエッチングにより形成された統合化されたキャパシタを備える導電性パッドの一例を示す説明図である。 基板と誘電体層を裏側よりエッチングすることでパッドへのコンタクトを作成した例を示す説明図である。 プラズマ環境内のプロセス条件を測定する導電性パッドと共に使用され得る回路を示す説明図である。 露出されたアンテナとシールドされた電子部品を用いる4点プラズマ・プローブのための回路ダイアグラムを示す説明図である。
本発明の一実施態様によれば、PCMDは、電気的に結合された導電性上部と導電性下部の間に位置する電子部品を有するため、単一の電気的に連続な構造体を形成する。この電気的に連続な構造体は電子部品の周囲に拡張されているため、電磁場をシールドする。上部ならびに下部の導電性部分の両者は、製造基板に対して同等の材料と大きさを有するように形成され得る。シリコンは通常半導体とみなされるが、高濃度にドープされたシリコン (n-タイプ、また或いはp-タイプ) は導電性材料と見なされ得る。従って、PCMDは、PCMDの特性に影響を与える (金属などの) 追加の材料または (追加の層、またはカバーなどの) 追加の構造無しに、電磁場からをシールド可能である。
図1は、本発明の一実施態様として、プロセス条件の測定に使用される電子回路を包含するように結合された二つの基板部分より構成されるPCMDを示す。第一の基板部分102は、電子部品106a-dのためのリセスを有し、これら電子部品には、センサー、バッテリー、通信回路、データ・プロセス回路、そして電力伝送回路 (例えば、誘導コイル) が含まれ得る。第二の基板部分104は、第一の基板部分102と電子部品106a-dの上に横たわる。第二の基板部分104は、接着剤108により、第一の基板部分102へ接合されている。更に、第二の基板部分104は、少なくとも1つの導電性経路110により第一の基板部分102へ接合されており、第一の基板部分102から第二の基板部分104へ電流は自由に流れることができる。従って、第一の基板部分102、第二の基板部分104、そして導電性経路110は電子部品106a-dの周辺に拡張される一体の導電性シールドを形成する。電磁場からのシールドを提供するために、導電性シールドはギャップを有しても構わない。電磁場外乱の波長に対しギャップが十分に小さい場合、係るギャップは殆ど影響を与えない。図1の例では、接着剤108により第一の基板部分102と第二の基板部分104が接合された箇所に於いて、接着剤により充填されたギャップ112が存在する。接着剤108は、第一の基板部分102と第二の基板部分104と電気的に接触しない場合がある。これは、第一の基板部分102上にある自然酸化物114と、第二の基板部分104上にある同等の自然酸化物116 (そして、幾つかの場合には、接着剤108の特性) により、第一の基板部分102と第二の基板部分104により形成されたシールド内にギャップ112が存在するためである。しかしながら、ギャップ112は、通常0.001インチ(30μm)よりも小さく、これは業界の基板プロセス・システムで通常用いられる高周波の波長よりも大幅に小さい。他の例に於いて、干渉の原因となる多大なRFまたは他の電磁放射が電子部品に到達し無い範囲で、ギャップ112を大きくできる。
図1の例に於いて、PCMD 100は、シリコンなどの半導体材料で作られた製造基板に等しい直径を有する。従って、直径は、300 mm、200 mm、150 mm、または任意の他の標準サイズとすることができる。図1、または本発明に係る他の図は、原寸に比例して描くことを意図しておらず、また本発明の特徴を明確に提示するためにある特徴の相対的大きさは変更されていることに留意されたい。第一の基板部分102と第二の基板部分104は、シリコンにより形成されており、これらは、製造基板と同等な物理的特性を有する。更に、第一の基板部分102と第二の基板部分104はドープされているため、これらは導電性である。シリコン・ウエハーは、十分なドープ濃度を有し、良好な導電性を付与するために、拡散、注入、或いは、任意の他の適切な方法によりドープ可能である。一例に於いて、結晶有融液ドーピングが、一つまたは両者の基板部分102、104のドープに使用される。適切なドーパントとしては、ヒ素またはリンなどのn−タイプ、ホウ素などのp−タイプなどがある。第一の基板部分102と第二の基板部分104は、高い導電性を得るために飽和するまでドープするか、或いは、幾らか低いレベルまでドープ可能である。この例に於いて、第一の基板部分102と第二の基板部分104は、p−タイプ・ドーパントで高度にドープされており、p+ 基板部分と見なされる。PCMDの高さは、標準サイズの基板と同等とすることが可能である。しかしながら、幾つかの例に於いて、電子部品の追加により、高さはより高くなり得る。第一の基板部分102と第二の基板部分104は、シリコン基板により形成可能である。これら基板の厚みの総和は、製造基板の厚みの二倍よりも、薄いように、或いは、一例に於いては、製造基板一枚の厚みに等しくなるように、機械的、化学的、或いは、これらの組み合わせにより薄くできる。例えば、第一の基板部分を凡そ750μm(30 マイクロインチ)の厚さに、第二の基板部分を凡そ380μm(15 マイクロインチ) の厚さにすることが可能である。米国特許2004/00225462号には、あるプロセス条件測定素子、そしてそれらの作成方法と使用法に関する記述がある。
一般にシリコンは、自然酸化物 (二酸化シリコン) を生成する。自然酸化物は、空気中の酸素によるシリコンの酸化により、室温下でさえも、空気中に晒されたあらゆるシリコン表面上に形成され得る。典型的な自然酸化物の厚さは凡そ10-20 オングストロームである。二酸化シリコンは、優れた導電体ではなく、二酸化シリコン上に形成されたシリコン基板への表面接続は、一般にオーミックではない。従って、自然酸化物層114、116を除去すること無しに、単純に第一の基板部分102と第二の基板部分104を接合することは、第一の基板部分102と第二の基板部分104の間に良好な電気的結合を提供しない。従って、図1の例に於いて、良好な電気的結合を形成するため、第一の基板部分102の領域より、第一の基板部分102を覆う自然酸化物層114が除去され、第二の基板部分104の領域より、第二の基板部分104を覆う自然酸化物層116が除去される。二酸化シリコンを除去し、基板部分へ電気的結合を形成するプロセスが以下に詳述されるが、他のプロセスも使用可能である。
図2Aは、第二の基板部分104への接続以前の製造初期段階に於ける、図1の第一の基板部分102の一部を示す。図2Aは、第一の基板部分102の表面内に形成されたリセス220を示す。リセス220は、例えば、機械的研磨、または、湿式または乾式エッチングといった任意の適切な方法により形成可能である。自然酸化物層114は、リセス220の形成過程でリセス領域より除去可能であるが、自然酸化物層114は、再度速やかに成長し、リセス220の表面と第一の基板部分102の他の表面は、通常この段階で、自然酸化物層114により被覆される。一例に於いて、リセス220は、円形であり、直径は凡そ0.17インチ (4.3 mm) である。
図2Bは、製造の次段階に於ける図2Aの第一の基板部分102を示す。リセス220は、融点が凡そ156℃である溶融インジウム (In) 222により、少なくとも部分的に埋められている。ホット・プレート、または他の適切な加熱装置を用い、第一の基板部分102とインジウム222は、インジウムの融点を超えるように加熱され得る。インジウム222が依然として液体状態である内に、針224が使用され、下に存在する自然酸化物層114が剥ぎ取られる。針224が自然酸化物層114の一部を剥ぎ取るに従い、下に存在するシリコンが露出される。しかしながら、酸素、または他の酸化剤が露出されたシリコンに接していないため、自然酸化物は再形成されない。代わって、インジウム222が露出されたシリコン表面に流れ込み、第一の基板部分102のシリコンと直接のコンタクトを形成する。インジウム222は優れた導電体であり、第一の基板部分102のp−タイプ・シリコンとオーミック・コンタクトを形成する。n−タイプのシリコン基板に関しては、アンチモンが代わりに使用される。シリコンを針で引っ掻くことは、また、粗面を生成することでもあり、シリコンとインジウムの間の接触面積を増加する。一例に於いて、二酸化シリコンを効率的に除去するため、超音波歯科用ツールが針として使用される。
図2Cは、製造の次段階に於ける図2Bの第一の基板部分102を示す。導電性タブ226 (この例では金) がインジウム222に取り付けられる。通常、インジウムが液状であるうちに、導電性タブ226はインジウム222に取り付けられる。機械的な研磨は、インジウム222の上部表面にある如何なる酸化インジウムをも除去し、金属間の接触面で、金−インジウム合金が形成され得る。次に、第一の基板部分102は冷却される。一例に於いて、導電性タブは金により構成され、0.05 x 0.07 インチ (1.3 x 1.8 mm) の大きさである。図2Cは、針224による引っ掻きの結果、リセス220の底部に残留自然酸化物がない態様を示す。現実的には、この領域に幾らかの酸化物が残存する場合があるが、リセス220の底部のシリコン表面を剥ぎ取ることで、良好な電気的接触に必要とされるインジウムとシリコンが直接触する十分な領域が確保される。
図2Cの第一の基板部分102は、インジウム222を経て第一の基板部分102と良好な電気的コンタクトを形成する導電性タブ226を備える。金は酸化層を形成しないため、インジウム222上にある導電性タブ226は、追加のクリーニング無しに、後に他の部品との電気的接続の形成に使用可能なコンタクト・パッド227を形成する。一方で、インジウムのみが使用された場合、酸化インジウム層が、このようなコンタクト・パッドへの接続に影響を及ぼす可能性がある。第二の基板部分104には、図2A-2Cに示されたものと同様なプロセスが施され、コンタクト・パッドが、また形成される。
図3Aに示される如く、第一の基板部分102内に空洞部328a-dが形成され、電子部品106c-dが配置される。空洞部328a-dは電気的コンタクト・パッドのリセスの形成に用いられる方法と同様な方法、または異なる方法により形成可能である。一例に於いて、電子部品106a-d、そして電子部品106a-d間の導電体330a-cのために空洞部328a-dが形成される。幾つかの例に於いて、電子部品を収容するために第一の基板部分と第二の基板部分の両者に空洞部を形成可能である。図3Aは、電子部品106a-dと、そして第二の基板部分104への接続に用いられるコンタクト・パッド227のための、空洞部328a-dを備える第一の基板部分102を示す。また図3Aは、予め組み立てられた電子ユニット332が第一の基板部分102に取り付けられる前の第一の基板部分102を示す。幾つかの例に於いて、通常の半導体プロセス技術を用いて、第一の基板部分の中または上に電子部品が形成される。他の例に於いて、センサー、プロセス回路、そして交信回路などの部品は、第一の基板部分に個々に取り付けられ、所定位置に取り付けが終了後、接続される。
図3Aは、電子部品106a-dが容易に配置できるように、予め組み立てられたユニット332として提供された実施態様を示す。このような予め組み立てられたユニットは、米国特許2004/00225462号に記載されている。予め組み立てられたユニット332は、接着剤を用いて第一の基板部分102に取り付けることにより確実に設置され得る。一般に、接着剤は、予め組み立てられた電子ユニット332の部品により占有されていない空洞部328a-dの部分を満たすように付与される。幾つかの例に於いて、少なくとも幾つかの電子部品106a-dを第一の基板部分102に取り付けるために、熱伝導性の接着剤が使用される。熱伝導性の接着剤は、シリコンの熱特性に近い熱特性のものとすることが可能である。例えば、温度センサーは熱伝導性の接着剤を用いて取り付け可能であり、温度センサーの温度は、温度センサーが取り付けられた箇所の基板部分の温度を精確に反映する。このようにして、製造基板を経る熱エネルギーの流れと類似するように、熱エネルギーは自由にPCMD内を流れる。熱伝導性の接着剤の一例として、ダイアモンド粒子を有するエポキシがある。
予め組み立てられた電子ユニット332の取り付け後、第二の基板部分104が第一の基板部分102に取り付けられる。特に、図3Bに示される如く、それぞれのパッド227と333が向かい合うように、第一の基板部分102と第二の基板部分104が位置づけられる。導電性接着剤334がコンタクト・パッド227と333の一方または両者に付与される。例えば、銀 (Ag) エポキシを付与することが可能であり、コンタクト・パッド227と333の間にコンタクトが形成される。更に、要求に応じ、柔軟性のある接着剤108 (例えば、シリコーン・ベースの接着剤) が第一の基板部分102と第二の基板部分104の残る表面に付与され、二つの基板部分と予め組み立てられた電子ユニット332の間での良好な接着を確実なものとする。第一の基板部分102と第二の基板部分104が押し合わされるに従い、過剰な接着剤は押し出され、一般に、空隙の無い接着剤層が、第一の基板部分102と第二の基板部分104を接合する。第一の基板部分102と第二の基板部分104のコンタクト・パッド227と333は導電性接着剤334により接合され、第一の基板部分102と第二の基板部分104は電気的に接続されている。少なくとも熱伝導性の接着剤により電子部品が取り付けられた箇所に於いて、第一の基板部分102と第二の基板部分104は熱的に接続されている。第一の基板部分102と第二の基板部分104は、これら基板部分の間で良好な電気的そして熱的接触を形成できるため、同等な大きさのドープされたシリコン・ウエハーと類似した熱的そして電気的特性を有する。予め組み立てられた電子ユニット332は、第一の基板部分102と第二の基板部分104の両者に対し良好な熱的接触を有する。しかしながら、予め組み立てられた電子ユニットの導電体を絶縁するポリマー帯状物と第一の基板部分102と第二の基板部分104の上にある自然酸化物114、116により、予め組み立てられた電子ユニット332は、第一の基板部分102と第二の基板部分104より電気的に絶縁されている。幾つかの例に於いて、予め組み立てられた電子ユニットを、第一の基板部分と第二の基板部分より更に電気的に絶縁するため、第一の基板部分102と第二の基板部分104を酸化し、厚い酸化膜を形成可能である。このような酸化は、炉の中で実施可能であり、一例に於いて、2μmの厚さを有する二酸化シリコンが形成される。
予め組み立てられた電子ユニット332は、第一の基板部分102と第二の基板部分104の間にあるため、予め組み立てられた電子ユニット332は、第一の基板部分102と第二の基板部分104により電磁放射から遮蔽される。結合された第一の基板部分102と第二の基板部分は、ファラデー箱を形成し、予め組み立てられた電子ユニット332を包含し、電磁放射より遮蔽する。明らかに、電子回路を保護するこのシステムは、予め組み立てられた電子ユニットに留まらず、第一の基板部分と第二の基板部分の間に設置されるあらゆる回路をシールド可能である。電子回路のシールドのみならず、プロセス条件により損傷を受け得る非電子回路も保護可能である。
一例に於いて、予め組み立てられた電子ユニットは、幾何学的パターンに配置された複数のセンサーを有し、これらセンサーは、第一の基板部分全域に亘り幅広く分布している。このようなセンサーは、基板に上の異なる点に於いて温度または幾つかの他の条件を検知可能である。更に、予め組み立てられた電子ユニットは、マイクロプロセッサ、メモリ回路、交信回路、または他の回路などの電子部品を備え得る。絶縁体に封入された電気リードは、予め組み立てられた電子ユニットの電子部品を結合可能である。図4は、第一の基板部分102に取り付けられた予め組み立てられた電子ユニット332の上面図を示す。コンタクト・パッド227は、第一の基板部分102の中央に位置している。しかしながら、他の実施態様に於いて、第一の基板部分の中心部を他の部品 (例えば、誘導コイル、またはパワーまたは交信に関連した他の部品) に関して使用可能である。このような実施態様に於いて、少なくとも一つのコンタクト・パッドが、第一の基板部分の中心部ではない位置に設置される。一例に於いて、直径 300 mm のシリコン基板部分は、第一の基板部分の全域に亘り八つのコンタクト・パッドを有する。また、コンタクト・パッドは、第二の基板部分の対応する位置に設置され、多くの箇所で第一の基板部分と第二の基板部分が接合される。
図5は、本発明の実施態様に準じ、プロセス条件検知ウエハーを形成する流れ図を示す。第一ステップ540に於いて、コンタクト・パッドが設置される位置の第一の基板部分に於いてリセスが形成される。リセスは任意の適切な方法により形成可能である。リセスを機械加工することは、良好な接触を形成するために有益な表面粗化をもたらし得る。次に、ステップ542に於いて、インジウムがリセス内に導入され、第一の基板部分とインジウムが、インジウムの融点 (凡そ156℃) 以上に加熱される。ステップ544に於いて、インジウムと第一の基板部分のシリコンとの間の二酸化シリコンを除去するために、針が使用される。この除去により、インジウムとシリコンの間での良好な接触が形成され、更にシリコンを引っ掻くことで、接触面積は増加され、接触が改善され得る。ステップ546に於いて、導電性タブがインジウムに取り付けられる。ステップ548に於いて、第一の基板部分は室温まで冷却される。ステップ550に於いて、第二の基板部分に関し同じコンタクト・パッド形成プロセスが実施される。ステップ552に於いて、予め組み立てられたユニットが、第一の基板部分に取り付けられる。熱伝導性の接着剤が、温度センサーに少なくとも使用可能である。ステップ554に於いて、対向するコンタクト・パッドに付与された導電性接着剤により、第二の基板部分が第一の基板部分に取り付けられる。別の接着剤 (例えば、シリコーン接着剤) を第一の基板部分と第二の基板部分の残る表面領域の接着に使用可能である。
上に記載される方法で接合される基板部分を有するPCMDは、一般に、損傷無しに急速な熱サイクルに耐え得る。特に、第一の基板部分と第二の基板部分は同じ材料で作られているため、それらは、同じ率で膨張そして収縮する。また、PCMDの全領域に亘り一般に良好な熱伝導が存在するため、大きな温度差は一般に生じない。部品間に温度差が生じた場合、インジウムと金片を有するコンタクト・パッドにより幾らかの柔軟性が付与される。インジウムと金の両者は比較的柔らかい金属であり、コンタクト・パッドは第一の基板部分または第二の基板部分に大きな応力を与えること無く、代わりに、いくらか変形し、部品間での相対的変形を与える。また、第一の基板部分と第二の基板部分の間にあるシリコーン系接着剤は柔軟であり、部品間での幾らかの動きが許容される。
上の実施態様に加え、導電性経路により基板部分が接合されるように、基板部分を接合する他の様々な方法が使用可能である。インジウムの代わりに白金または金を使用可能であるが、これらは、より高い融点を有し、コンタクト・パッドの形成には、より高い温度が要求される。アンチモンをn−タイプ基板へのオーミック・コンタクトの形成に使用可能である。導電性タブは、金以外の材料により形成可能である。酸化物を形成せず、かつインジウムと合金を形成しない (或いは、下にある材料と良好な接触を形成する) あらゆる金属を使用可能である。例えば、白金、パラジウム、または同等の金属を使用可能である。或いは、導電性タブは、金、白金、またはパラジウムなどの金属で被覆し、被覆層の下には異種の材料を使用可能である。真空、或いは、不活性ガス中で二酸化シリコンを除去するために通常の半導体製造技術が使用可能であり、次に、ドープされたシリコン上に金属層が直接付与される。例えば、基板への金属層のスパッタリングを行なう以前に、その場エッチングを基板に施すことが一般的である。これは、スパッタリング以前に、基板よりあらゆる自然酸化物が直ちに除去されることを意味する。エッチングは、スパッタリングが実施されるチャンバー、あるいは同じシステムの異なるチャンバー内で実施され得る。いずれの場合に於いても、エッチングとスパッタリングの間で、基板は真空下 (或いは、不活性ガス中) に保たれ、自然酸化物は成長せず、スパッタされた金属層は、基板材料に直接接触する。このような方法の一つの利点は、リセスが必要でないことである。
本発明の一実施態様に於いて、基板部分によりシールドされる領域外にセンサーを設置可能である。例えば、プラズマのエネルギー密度を測定する箇所に於いて、或いは、エッチング・プロセスのエッチング速度を測定する箇所に於いて、電磁場に晒されるようにセンサーを設置可能である。しかしながら、シールドにより他の部品を依然として保護可能である。例えば、基板部分の外部表面上にセンサーを設置可能であるが、マイクロプロセッサやバッテリーなどの電子部品は、保護されるように、電気的に接合された基板部分の間に設置可能である。このようにして、プロセス条件を精確に測定するようにセンサーは設置される傍ら、損傷を受けやすい電子部品は保護される。幾つかのセンサーがシールドされるように設置する一方で、他のセンサーがシールドされないように配置することが可能である。例えば、エッチング速度センサーが露出される一方で、同じPCMDにある温度センサーはシールドされ得る。従って、必ずしも全ての電子部品が必然的にシールドされるわけではない。シールドが要求される部品に関しては、部品がシールドにより完全に囲まれる必要は無く、部品からシールドされるべき電磁放射の波長が開口部に対し小さい場合、シールドは開口部を有することが可能である。従って、小さな開口部は、センサーを潜在的に有害な放射に露出することなく、環境条件を精確に測定することを可能にする。例えば、開口部は、RF放射を遮断するが、フォト・センサーへ光が到達することを許容する。
上の例では、水平方向に沿って、第一の基板部分と第二の基板部分は同じ大きさ (同じ直径のシリコン基板) であるが、そうでない場合もあり得る。1つの基板が製造基板の大きさである限り、自動装置により、基板は製造基板として取り扱われ、十分に同等の物理的特性を有し得る。従って、第一の基板部分は、製造基板と同等であっても、第二の基板部分が同じ直径を有するとは限らない。第二の基板部分は、電子部品を覆うように拡張され得るが、必ずしも第一の基板部分の全領域に亘り拡張されるとは限らない。
上の例では、第一の基板部分と第二の基板部分の材料としてドープされたシリコンに言及したが、他の材料も使用可能である。例えば、ヒ化ガリウム (GaAs) 基板部分を使用可能であり、コンタクト・パッドの形成に自然酸化物の除去を必要としない場合がある。幾つかの場合、高度にドープされた導電性層をシリコン基板部分は含み得る。一方で、残る基板部分はドープされておらず、一般に非導電性である。このような導電性のドープされた層への接続はシールドを提供するために十分であり得る。幾つかの例に於いて、シリコンの代わりに、金属の基板部分が使用され得る。幾つかの測定に関し、シリコンは特に適切であるが、金属の基板部分は、電磁放射からの優れたシールドをもたらし、ある条件に於いて、使用可能である。幾つかの例に於いて、PCMD内の基板部分は異なる材料より形成可能である。シリコンの利点の一つに、シリコン製造基板を定期的にプロセスするプロセス・システム内で使用された場合、汚染の原因とならないことが挙げられる。シリコン基板部分を備えるPCMDがエッチングされた箇所に於いてさえも、露出された表面はシリコンであり、除去された材料は、製造基板と材料と同一である。この位置に於いて金属が使用された場合、エッチングにより除去された金属は、エッチング・チャンバーを汚染する可能性がある。非腐食性の環境内でガス流量などのプロセス条件が測定される場合、金属の基板部分を使用可能である。
一実施態様に於いて、電気的に絶縁性の材料より形成された基板部分は、シールドを提供するように形成された導電性層を備える。図6は、上部表面664上に形成された導電性層662を有する、ガラスにより作られたフラット・パネル・ディスプレイ (FPD) の第一の基板部分660を示す。導電性層662は (例えば、スパッタリングにより) 製膜された金属とすることができる。自然酸化物を形成しない金などの金属を用いることが有効であり、電気的コンタクトがより容易に形成され得る。また、図6は、表面664内に形成された空洞666a-dを示し、電子部品が空洞666a-d内に配置可能となる。導電性層662が堆積され、空洞666 a-dの表面を被覆する。また、この例では、FPDの第二の基板部分668が、導電性被覆670を備えるガラスより形成される。他の幾つかの例に於いて、第一の基板部分660とは異なる材料で第二の基板部分を形成可能である。先に記載された如く、第一の基板部分660と第二の基板部分668は、電子部品を挟み込むようにして、接合される。
図7は、図6の第一の基板部分660と第二の基板部分668を示す。ここで、電子部品672a-dはこれらの基板部分間に挟まれ、導電性経路674は第一の基板部分660と第二の基板部分668の導電性層662、670を接続している。この例に於ける導電性経路674は、単純に、第一の基板部分660と第二の基板部分668の間に付与される導電性接着剤とすることがを可能である。基板部分660と668の間の他の箇所には、必ずしも導電性ではない他の接着剤668が付与される。導電性層662、670の形成には、金、または同等の金属が使用されるため、導電性層662、670の表面上には酸化物は存在せず、導電性接着剤は導電性層662、670に直接の電気的コンタクトを形成する。従って、導電性層662、670の間で電流は自由に流れ、これらの導電性層は、電子部品672a-dの周辺でファラデー箱を形成する。先に記載された如く、導電性層662、670の間で非導電性接着剤が使用された箇所に於いて、シールドのギャップが存在する。しかしながら、電子部品672a-dがシールドされるべきRF波長に対し、ギャップは小さいため、RF放射は、電子部品672a-dに顕著な影響を与えない。図6と図7では、導電性層662により、第一の基板部分660の表面664の全てが覆われているが、他の例では、表面664の一部のみが被覆されていてもよい。従って、FPD基板に関しては、損傷を受けやすい部品が配置される特定の位置に導電性層を設け、他の場所には導電性層を設けないことで十分であり得る。他の実施態様に於いて、非導電性の第一の基板部分の上にある導電性層は、導電性である第二の基板部分 (金属、ドープされたシリコン、または他の導電性材料) に接続される。
一実施態様に於いて、良好な導電性の材料で形成されていないシリコン基板部分は、シールド性を付与するために、それ自身の上に形成された導電性層を備える。基板部分を形成するために、非ドープの、或いは、低度にドープされたp- タイプのシリコン・ウエハー (p- ウエハー) が使用され、その上に導電性層が形成される。先に記載された如く、導電性層と基板部分の他の箇所との接合がなされる。或いは、導電性層単独で十分なシールドがもたらされる箇所に於いては、接続が必要でない場合がある。このようなp- 材料は、スペクトルの可視、及び/または、赤外領域に於けるある波長に対して光学的に透明である。選択された放射が導電性層を通過できるように、導電性層内に開口部を設けることが可能である。例えば、赤外線センサーは、導電性層によりRF放射から保護されるように設置されるが、センサーが基板部分上の赤外入射放射線を精確に測定できるように、導電性層の開口部は赤外線を透過するウィンドウとして機能する。先に記載された如く、このような基板部分は、導電性の材料より作られた他の基盤部分に接続されるか、または導電性フィルムを備え、ファラデー箱を形成する。
一例に於いて、自然酸化物が再成長しないように基盤部分を真空下に保ちながら、スパッタリング・エッチングを用い自然酸化物を除去し、そして基盤部分上に導電性層をスパッタリングすることで形成される導電性層を基板部分は備える。通常のリソグラフィー技術により金属層はパターン化可能であり、渦電流を分断するするための開口部が形成され、電磁シールド能力を損なうことなく、導電性金属層の下にあるRF変圧器内の二次指示コイルへのカップリングが可能となる。開口部の幾何学的配置は、直流の分断が可能な程度に狭くでき、さらに、電場経路を阻止するために十分小さいように、設定できる。導電性層内のこのような開口部は、導電性層により保護されている誘導コイルと、基板近傍に配置された他の誘導コイルとの誘導結合を可能にする。このようにして、誘導コイルを備え、ファラデー箱により保護される電子部品は、導電性層を横切る誘導結合によりパワーの供給が可能である。
一例に於いて、導電性層は導電性であるが、光学的に透明なものとすることが可能である。このような導電性層は、RFなどの干渉性の放射からの保護を提供する傍ら、光学的波長の放射の透過を許容し、このような放射をセンサーにより測定することを可能にする。導電性で光学的に透明な材料としては、酸化スズ (SnO2)、インジウム・スズ酸化物 (酸化インジウムIn2O3 と酸化スズ SnO2の混合物) などが好ましい。
本発明の様々な実施態様は、プラズマを含むプロセス・チャンバーなどの過酷な環境内のプロセス条件の測定に使用可能である。一般に、過酷な環境にセンサーを晒すように設置することで、このような測定は実施される。しかしながら、PCMDの他の部品は、苛酷な環境からシールドされ得る。特に、RFプラズマ、或いは、他の潜在的に撹乱的な電磁放射を含む環境下に於いて、特定の部品は、電気的に結合された導電性の基盤部分の間に設置され、ファラデー箱を形成する。電磁場の条件 (イオン電流密度、表面電荷、または電子温度など) の検出に用いられるある種のセンサーは、パッドまたは、アンテナのように働く他の導電性素子を用い、導電性経路を経て出力を供給する。センサーは、プラズマまたは他の過酷な環境に晒され得る一方で、導電性経路と電子部品はシールドされる。
図8は、二つのセンサー803、805を備えるPCMD801の断面図を示し、それぞれのセンサーは二つのパッド803a、803b、805a、805bを有する。第一の導電性部分809の表面807上にパッド805a-b、805a-bは形成され、第一の導電性部分809とパッド803a-b、805a-bの間に絶縁層が存在する。パッド803a-b、805a-bの取り付け以前に、第一の導電性部分809には、絶縁層が堆積、または接合され得る。例えば、シリコン導電性部分は、厚く成長した二酸化シリコン層、またはスピンオンまたはCVDにより生成される誘電体層を備えることが可能である。このようにして、パッド803a-b、805a-bは、第一の導電性部分809より電気的に絶縁される。(スパッタリング、CVDなどの) 薄膜形成技術、または、個々の部品を形成し、手作業により取り付けることでパッドは形成可能である。パッドは、金属、ドープされたシリコン、または任意の適切な導電性材料とすることができる。導電性リード811は、パッド803a-b、805a-bの下部から電子部品813a-bに達している。電子部品813a-bは、パッドからの入力を受け取り、入力を処理することでデータを提供し、更にこれらデータは、解析のために保管または送信 (或いは、保管かつ送信) される。第二の導電性部分817のリセス815内には、電子部品813a-bが示されている。導電性経路819により第一の基板部分809と第二の基板部分817は電気的に接続されているため、第一の基板部分809と第二の基板部分817の外部からの放射から、電子部品813a-bは効果的にシールドされる。更に、第一の基板部分809と第二の基板部分817間のギャップ82で導電性リード811a-dは拡張されており、これらの導電性リードは、また、第一の基板部分と第二の基板部分の外部からの放射よりシールドされる。このことは、電磁信号をピックアップするアンテナとして導電性リードが作用する傾向を一般に削減、または除去する。また、導電性リード811a-dは、第一の基板部分809または第二の基板部分817内に形成されたトレンチ内に配置可能である。導電性リード811a-dがシールドされていない場合に比較して、導電性リード811a-dを経て電子部品813a-bにより受信された信号は、一般によりノイズが少ない。ホール823a-dは、第一の基板部分809を貫通し、リード811a-dをパッド803a-b、805a-bに接続する。ホールを経てPCMDの内部に顕著な量のRF放射が到達しないように、ホール823a-dの直径を小さくすることが可能である。ホールの内部表面、またはホールの表面上、またはパッドの下に入り込むリードの表面上は、第一の基板部分809の他の表面部分と同様に、酸化により形成される絶縁層により一般に被覆される。
図9は、別の実施態様によるPCMD901を示す。この実施態様に於いて、第一の基板部分907の第一表面905上の配線903a-cとして導電性リードは形成され、第一の基板部分907の第一表面とは逆側にある第二表面911上にパッド909a-cが形成される。配線903a-cは任意の適切な技術により形成可能である。一般に、第一の基板部分上に絶縁層が形成され、(金属、または適切な導電体からなる) 導電性層が形成され、パターン化され、配線が形成される。或いは、第一の基板部分をエッチングすることでトレンチが形成され、次に、絶縁層が形成され、更に該絶縁層上に導電性層が形成される。トレンチ内のみに導電性材料を残すために平坦化が実施される。第一の基板部分907内のリセス915内に電子部品913が示されている。第一の基板部分907の表面905を越えて外部に拡張されないように、電子部品913は、個々の部品として形成され、リセス915内に設置される。ワイヤー・ボンディングまたは同等の技術により、電子部品913上のパッドを配線903a-cに接続可能である。他の例に於いて、通常の半導体プロセス技術により、その場で電子部品は形成され得る。従って、シリコンの第一の基板部分が形成される場所で、通常のシリコン・プロセス技術により、第一の基板部分内に電子部品を形成可能である。導電性リード917a-cが第一の基板部分907を貫通する位置の近傍で、パッド909a-cからの導電性リード917a-cは、また、配線903a-cに接続され得る。或いは、パッドから配線へと拡張される導電性プラグを形成するために半導体プロセス技術を使用可能である。この実施態様では、パッドの上面部が第一の基板部分907の表面911と同一平面上にあるように、パッド909 a-cは形成される。このようなパッドはその場形成されるか、形成された後に所定の箇所に組み込まれる。先に記載された如く、パッド909a-cと第一の基板部分907の間に絶縁が形成されている。図9の実施態様では、配線903a-cと電子部品913は第一の基板部分907に接続されているが、これらを第二の基板部分919に接続することも可能である。幾つかの例に於いて、第一の基板部分と第二の基板部分は交換可能であり、パッド、導電性リード、そして電子部品をいずれの基板部分にも個々に接続できる。幾つかの例に於いて、少なくとも1つのセンサーを第一の基板部分に接続し、また、少なくとも1つの別のセンサーを第二の基板部分に接続可能である。
図10は、別の実施態様によるPCMD1001を示しており、センサー1005からの第一の導電性リード1003a-bは、第一のリセス1009内にある電子部品1007へ接合されている。第二の導電性リード1011により、第一の電子部品1007は、第二のリセス1015内にある第二の電子部品1013へ接合されている。センサー1005と第二の電子部品1013の間に直接の接続は無い。このようにして、第二の電子部品1013は電磁放射より更にシールドされる。特に、RF信号の幾らかが、第一の導電性リード1003a-bを経て、第一の電子部品1007に到達する場合があり得る。しかしながら、第二の電子部品1013は、第一の導電性リード1003a-bに直接接合されておらず、別のリセス内に設けられているため、この信号は、第二の電子部品1013へ到達しない (或いは減衰した形で到達する)。第一のリセス1009は第一のファラデー箱を形成し、第二のリセス1015は第二のファラデー箱を形成する考えられる。従って、別々のリセス内に別々の部品を設置することにより、ノイズを特定領域内に制限できる。一例に於いて、第一の電子部品は、フィルタ能力を備えるものであり、第一の導電性リードからのノイズの多い信号は、第一の電子部品により受信され、フィルタされた (実質的にノイズの無い) 信号は、第一の電子部品により、第二の導電性リードを経て、第二の電子部品へ送られる。例えば、第一の電子部品は、RF共鳴チョーク・フィルタを備えることができる。他の例に於いて、三つ以上のリセスを使用することで、三つ以上のファラデー箱を提供することが可能であり、電子部品は個別化され、ノイズの伝搬が低減される。また図10では、第一の基板部分1019の表面1017の上にパッド1005a-bが突出している。パッド1005a-bと、第一の基板部分1019の表面1017の間にギャップ1019が存在する。導電性経路は、先に記載された如く、第一の基板部分1019を第二の基板部分1025へ接続している。
図11A-Dは、PCMDへのパッド (または他のアンテナ) の取り付けに関する様々なオプションを示す。図11Aでは、図8に示されるパッドの如く、基板部分1107の表面1105上に広がる絶縁層1103の上にパッド1101が取り付けられている。製膜により、または手作業により取り付けられる個々の部品として、パッド1101は形成可能である。パッド1101から (ここには示されていない) 電子部品へ、導電性リード1109は伸びている。導電性リード1109は、基板部分1107内のホール1111を通過している。ホール1111は、殆どまたは全てのRFを遮断する直径を有する。ホール1111の内部表面は絶縁層1103により被覆されている。
図11Bは、別のパッド1121を示しており、図9に示されるパッドの如く、基板部分1127上の絶縁層1125の表面と同一平面上にパッドの上部表面1123がある。パッドに関連したリセス1129を基板部分1127内に形成可能である。次に、基板、またはパッド1121上に絶縁層1125が成長または堆積され、パッド1121は所定の位置に組み込まれる。一例に於いて、パッドは薄膜堆積技術により形成可能である。例えば、金属またはドープされたシリコンを一面に堆積した後に、表面の平坦化を実施可能である。パッドから伸びる導電性リード1131は導電性配線1133に接続される。
図11Cは、スタッド1142の上に設置された別のパッド1140を示し、パッド1142は、基板部分1146の上部表面1144よりも上部に位置している。スタッド1142は、パッド1140を支持する。導電性リード1148は、スタッド1142より、基板部分1146内のホール1150を通過し、電子部品に接続される。他の例に於いて、追加のサポートをパッド1140に提供可能である。例えば、スタッド1142に加え (或いは、代わり)、絶縁性のサポートを使用可能である。
図11Dは、統合化的されたキャパシタ1162を有する別の導電性パッド1160を示す。幾つかの例に於いては、キャパシタを経由して、パッドを電子部品に接続することが好ましい。図11Dの実施態様に於いて、キャパシタ1162は、パッド1160と統合化されて形成されている。ここで、パッドはキャパシタの一方の基板を形成しており、誘電体層1163は、パッド1160を下部基板1164より分離している。パッド1160は薄膜堆積技術により形成可能である。例えば、第一の導電性層を堆積し、次に誘電体層を堆積し、そして第二の導電性層を堆積可能である。図11Dの例では、パッドはキャパシタと同じ面積を有している。しかしながら、他の例に於いて、キャパシタを越えて、パッドは拡張可能である。従って、上部基板を形成するパッドよりも下部基板が小さくても差し支えない。このようにして、パッドの大きさに依存することなく、キャパシタの容量を設定可能である。先に記載された如く、リード1166は基板部分1168を貫通している。
図11Eは、基板部分1182上の薄膜1180の堆積により形成される統合化されたキャパシタを備える別のパッドを示し、ここで薄膜1180は、基板部分1182を裏側からエッチングすることで、後に懸架された膜となる。次に、懸架された膜の両側に、薄膜の導電性電極1184、1186が堆積され得る。ここで、上部電極1184はプラズマに晒され、下部電極1186は、基板部分間の空洞部にある回路に接続可能である。
図11Fは、SOIウエハー (二酸化シリコンなどの誘電体層を覆うシリコン薄膜を有するシリコン・ウエハー) を用いて実施された実施態様を示す。シリコン層のパターニングにより、パッド1190 (またはアンテナ) が定義される。ホールは、シリコン・ウエハー1192の裏側よりエッチングされ、誘電体層1194を貫通しており、パッド1190の下側へコンタクトが形成され得る。コンタクトは、金属またはシリコン・プラグといった半導体プロセス技術により作成されたもの、または手加工により作成されたものを使用可能である。
ここに示された異なる種類のパッドは、電子部品のあらゆる配置と組み合わせて使用できる。幾つかの例に於いて、異なる種類のパッドを同じPCMDに使用可能である。図8から図11Dの実施態様のいずれに於いても、外部へ露出される部品は第一の基板部分、第二の基板部分、そしてパッドのみである。少量の接着剤が端部で露出される場合があるが、このことは、一般に重要ではない。PCMDの使用に伴い、露出された表面より材料が除去される場合がある。従って、第一の基板部分とパッドは侵食され得る。しかしながら、部品を十分に厚くすることで、これらの部品は顕著な侵食に耐え得る。また、侵食は、示された設定内での導電性リードに影響を与えない。侵食される材料は、半導体プロセスで一般的に使用されるものであり、一般に、このような材料が除去されるチャンバーは、これら材料により汚染されることはない。
プラズマ内のプロセス条件を測定するために、回路内の部品として、様々なセンサー・システムは、パッド (または、他の形状を有するアンテナ) を使用する。一例は、アンテナへのバイアスを提供し、異なるバイアス電圧に関し電流の測定をおこなうシングル・ラングミュア・プローブである。この電流/電圧 (I-V) データより、プラズマの様々な特性を導き出すことが可能である。しかしながら、一般にシングル・ラングミュア・プローブは接地 (一般にプロセス・チャンバーの壁への接続) を必要とする。プロセス・チャンバー内のPCMDへこのような接地を設けることは必ずしも簡便ではない。
ダブル・ラングミュア・プローブは、二つのアンテナを用い、二つのアンテナ間にバイアスをかけた場合のI-V特性よりプロセス情報を導き出す。従って、接地または他のレファレンスは必要でない。このことは、他の装置に物理的に接続することなく使用されるPCMDとして、ダブル・ラングミュア・プローブを特に好ましいするものとする。後のダウンロード、データの無線送信のために、このようなPCMDは一般にデータをメモリに保管する。
図12は、プラズマ環境内で、パッド1202a-bよりI-Vデータを取得するダブル・ラングミュア・プローブ回路の典型例を示す。特に図12では、プラズマ1204にパッド1202a-bは晒されており、導電性リード1206a-bは、第一の基板部分1208を通過し、シールド部1210内にある電子部品へ接続される。分離のために二つのキャパシタ1212a-bが使用される。上に記載された如く、幾つかの例に於いて、これらキャパシタは、パッド1202a-bと共に統合的に形成可能である。R1とR2により形成される電圧分割器からのサンプリング電圧V1により印加されたバイアス電圧Vbiasを、図12の回路は測定する。既知の抵抗R3を経る電圧V2の測定より電流値が求められる。二つの電界効果トランジスタ (FET) 1214、1216は、パッド1202a-bに提供される電圧を制御する。第一のFET 1214への電圧V3は、パッドへ接続され、あらゆる電圧が放電され、回路はリセットされる。第二のFET 1216への電圧V4は、パッド1202a-b間にバイアス電圧Vbiasをかける。従って、パルス間で放電を行ないながら、回路にはVbiasのパルスが印加され、I-Vデータが取得される。ダブル・ラングミュア・プローブの使用は、米国特許6,830,650号に記載されており、またこの特許にはTopologically Dependent Charging (TDC) 素子 が記載されている。幾つかの実施態様に於いて、センサーの代わりにTDC素子を使用可能である。また、本発明の実施態様に於いて、ノイズが多い環境下では、導電性素子を接地するトリプル・ラングミュア・プローブ、または任意の他のプローブ或いはセンサーを使用可能である。
図13は、PCMDの外部表面に装着されたパッドを使用可能な4点プラズマ・プローブの回路ダイアグラムを示し、ここで電子部品は、PCMD内部の一つまたは複数のリセス内でシールドされている。プローブは様々な形状とすることが可能であり、一例に於いて、プローブは円形であり、同心円状に配置される。従って、中心部の電極はディスクであり、他の三つの電極は、同心円状の輪である。最外部の輪は、中心部のディスクと同じ面積である。中間部の電極は異なる大きさとすることが可能である。図13に示される如く、外部と内部の電極間に電圧が加えられ (一例に於いて矩形波が用いられる) 、飽和電流が測定可能となる。この電圧が加えられる傍ら、中間部電極の電圧が測定され、イオン・ポテンシャルViが決定される。このVi値を用い、プラズマ密度を決定可能である。
本発明の特定の実施態様と長所を示し、記述したが、添付の請求項により定義される発明の見地から逸脱することなしに様々な変更、置換、そして代替が可能であることに留意されたい。
本発明の特定の実施態様と長所を示し、記述したが、添付の請求項により定義される発明の見地から逸脱することなしに様々な変更、置換、そして代替が可能であることに留意されたい。
適用例1:標準の大きさの加工対象物を処理するプロセス・システムにおけるプロセス条件を測定するためのプロセス条件測定素子であって、第一の導電性基板部分と、第二の導電性基板部分と、前記第一の導電性基板部分と前記第二の導電性基板部分との間に挿入された電子回路を備え、前記第一の導電性基板部分と前記第二の導電性基板部分が電気的に結合され、少なくとも一方の導電性基板部分が、前記プロセス・システムにより処理される加工対象物の大きさに等しい大きさを有する電気的に連続的な構造体を形成する、
プロセス条件測定素子。
適用例2:前記第一の基板部分と前記第二の基板部分の材料はドープされたシリコンである適用例1に記載のプロセス条件測定素子。
適用例3:前記プロセス・システムにより処理される標準の大きさの加工対象物はシリコン・ウエハーであり、電気的に連続的な構造体の直径が加工対象物の直径に等しい適用例2に記載のプロセス条件測定素子。
適用例4:前記電気回路は、プロセス回路に接続された複数のセンサーを備える適用例1に記載のプロセス条件測定素子。
適用例5:前記電気回路は、前記第一の基板部分と前記第二の基板部分の間に存在しない複数のセンサーに接続されたプロセス回路を備える適用例1に記載のプロセス条件測定素子。
適用例6:前記第一の導電性基板部分と前記第二の導電性基板部分は少なくとも一つの予め設定された位置において接合され、少なくとも一つの予め設定された位置において、前記第一の導電性基板部分は、前記第一の導電性基板部分に直接接触する第一の導電性パッドを備える適用例1に記載のプロセス条件測定素子。
適用例7:導電性材料からなる第一の基板部分を形成し、前記第一の基板部分上に直接接触するように第一のコンタクト・パッドを形成し、導電性材料からなる第二の基板部分を形成し、前記第二の基板部分上に直接接触するように第二のコンタクト・パッドを形成し、電子回路を前記第一の基板部分および前記第二の基板部分に間に設置し、続いて、前記第一のコンタクト・パッドが前記第二のコンタクト・パッドに電気的に接続されるように、前記電子回路を挟み込む状態で、前記第一の基板部分と前記第二の基板部分を接続することを備える、電磁場からの保護機能を備えるプロセス条件測定素子の形成方法。
適用例8:前記導電性材料はドープされたシリコンである適用例7に記載の方法。
適用例9:前記第一のコンタクト・パッドの形成前に、前記第一の導電性基板部分から二酸化シリコンが除去され、前記第二のコンタクト・パッドの形成前に、前記第二の導電性基板部分から二酸化シリコンが除去される適用例8に記載の方法。
適用例10:前記第一の基板部分と前記第二の基板部分は前記電子回路を挟み込む状態で接続され、少なくとも一方の基板部分が、標準のシリコン・ウエハーの大きさに等しい大きさを有するアセンブリを形成する適用例7に記載の方法。
適用例11:前記アセンブリが、150 mm、200 mm、または300 mmの直径を有するディスクである適用例10に記載の方法。
適用例12:標準の大きさの加工対象物をプロセスするプロセス・システム内のプロセス条件を測定するためのプロセス条件測定素子であって、前記標準の加工対象物と同じ大きさであり、第一表面の上に堆積された第一の導電性層を有する第一の非導電性層と、少なくとも第二の導電性層を有する第二の基板部分と、前記第一の非導電性基板部分と前記第二の基板部分の間に挿入された電子回路とを備え、電気的に連続的な構造体を形成するために、第一の導電性層と少なくとも第二の導電性層が電気的に接続されるプロセス条件測定素子。
適用例13:前記第二の基板部分が、非導電性基板部分である適用例12に記載のプロセス条件測定素子。
適用例14:少なくとも第二の導電性層を備える前記第二の基板部分が導電性基板部分である適用例12に記載のプロセス条件測定素子。
適用例15:前記第一の導電性層は室温で酸化物を形成しない金属により形成される適用例12に記載のプロセス条件測定素子。
適用例16:前記標準の大きさの加工対象物はフラット・パネル・ディスプレイ向けのガラス基板であり、前記第一の非導電性基板部分はフラット・パネル・ディスプレイ向けのガラス基板である適用例12に記載のプロセス条件測定素子。
適用例17:前記電子回路は、データ・プロセス回路と交信回路を備え、前記電子回路は、前記第一の非導電性基板部分に取り付けられた少なくとも1つのセンサーに接続されている適用例12に記載のプロセス条件測定素子。
適用例18:非導電性の材料からなる第一の基板部分を形成し、第一の基板部分の第一表面上に第一の導電性層を形成し、少なくとも第二の導電性層を備える第二の基板部分を形成し、前記第一の導電性基板部分と前記第二の導電性基板部分との間に電子回路を挿入し、続いて、前記第一の基板部分の前記第一の導電性層を前記第二の基板部分の少なくとも前記第二の導電性層に接続する傍ら、前記電子回路を挟み込む状態で、前記第一の導電性層を電気的に少なくとも前記第二の導電性層に接続すること、を備える電磁場からの保護機能を備えるプロセス条件測定素子の形成方法。
適用例19:前記少なくとも第二の導電性層を備える第二の基板部分の形成は、非導電性基板部分の上に第二の導電性層を堆積することにより行われる適用例18に記載の方法。
適用例20:前記非導電性基板部分は非導電性の材料からなる適用例19に記載の方法。
適用例21:前記第一の基板部分は、フラット・パネル・ディスプレイ向けのガラス基板であり、前記第一の導電性層は、室温下で酸化しない金属により形成される適用例18に記載の方法。
適用例22:前記電子回路は、プロセス回路と交信回路を備え、前記電子回路は、前記第一の基板部分に取り付けられた少なくとも1つのセンサーに接続されている適用例18に記載の方法。

Claims (22)

  1. 標準の大きさの加工対象物を処理するプロセス・システムにおけるプロセス条件を測定するためのプロセス条件測定素子であって、
    第一の導電性基板部分と、
    第二の導電性基板部分と、
    前記第一の導電性基板部分と前記第二の導電性基板部分との間に挿入された電子回路を備え、
    前記第一の導電性基板部分と前記第二の導電性基板部分が電気的に結合され、少なくとも一方の導電性基板部分が、前記プロセス・システムにより処理される加工対象物の大きさに等しい大きさを有する電気的に連続的な構造体を形成する、
    プロセス条件測定素子。
  2. 前記第一の基板部分と前記第二の基板部分の材料はドープされたシリコンである請求項1に記載のプロセス条件測定素子。
  3. 前記プロセス・システムにより処理される標準の大きさの加工対象物はシリコン・ウエハーであり、電気的に連続的な構造体の直径が加工対象物の直径に等しい請求項2に記載のプロセス条件測定素子。
  4. 前記電気回路は、プロセス回路に接続された複数のセンサーを備える請求項1に記載のプロセス条件測定素子。
  5. 前記電気回路は、前記第一の基板部分と前記第二の基板部分の間に存在しない複数のセンサーに接続されたプロセス回路を備える請求項1に記載のプロセス条件測定素子。
  6. 前記第一の導電性基板部分と前記第二の導電性基板部分は少なくとも一つの予め設定された位置において接合され、少なくとも一つの予め設定された位置において、前記第一の導電性基板部分は、前記第一の導電性基板部分に直接接触する第一の導電性パッドを備える請求項1に記載のプロセス条件測定素子。
  7. 導電性材料からなる第一の基板部分を形成し、
    前記第一の基板部分上に直接接触するように第一のコンタクト・パッドを形成し、
    導電性材料からなる第二の基板部分を形成し、
    前記第二の基板部分上に直接接触するように第二のコンタクト・パッドを形成し、
    電子回路を前記第一の基板部分および前記第二の基板部分に間に設置し、
    続いて、前記第一のコンタクト・パッドが前記第二のコンタクト・パッドに電気的に接続されるように、前記電子回路を挟み込む状態で、前記第一の基板部分と前記第二の基板部分を接続することを備える、電磁場からの保護機能を備えるプロセス条件測定素子の形成方法。
  8. 前記導電性材料はドープされたシリコンである請求項7に記載の方法。
  9. 前記第一のコンタクト・パッドの形成前に、前記第一の導電性基板部分から二酸化シリコンが除去され、前記第二のコンタクト・パッドの形成前に、前記第二の導電性基板部分から二酸化シリコンが除去される請求項8に記載の方法。
  10. 前記第一の基板部分と前記第二の基板部分は前記電子回路を挟み込む状態で接続され、少なくとも一方の基板部分が、標準のシリコン・ウエハーの大きさに等しい大きさを有するアセンブリを形成する請求項7に記載の方法。
  11. 前記アセンブリが、150 mm、200 mm、または300 mmの直径を有するディスクである請求項10に記載の方法。
  12. 標準の大きさの加工対象物をプロセスするプロセス・システム内のプロセス条件を測定するためのプロセス条件測定素子であって、
    前記標準の加工対象物と同じ大きさであり、第一表面の上に堆積された第一の導電性層を有する第一の非導電性層と、
    少なくとも第二の導電性層を有する第二の基板部分と、
    前記第一の非導電性基板部分と前記第二の基板部分の間に挿入された電子回路とを備え、
    電気的に連続的な構造体を形成するために、第一の導電性層と少なくとも第二の導電性層が電気的に接続されるプロセス条件測定素子。
  13. 前記第二の基板部分が、非導電性基板部分である請求項12に記載のプロセス条件測定素子。
  14. 少なくとも第二の導電性層を備える前記第二の基板部分が導電性基板部分である請求項12に記載のプロセス条件測定素子。
  15. 前記第一の導電性層は室温で酸化物を形成しない金属により形成される請求項12に記載のプロセス条件測定素子。
  16. 前記標準の大きさの加工対象物はフラット・パネル・ディスプレイ向けのガラス基板であり、前記第一の非導電性基板部分はフラット・パネル・ディスプレイ向けのガラス基板である請求項12に記載のプロセス条件測定素子。
  17. 前記電子回路は、データ・プロセス回路と交信回路を備え、前記電子回路は、前記第一の非導電性基板部分に取り付けられた少なくとも1つのセンサーに接続されている請求項12に記載のプロセス条件測定素子。
  18. 非導電性の材料からなる第一の基板部分を形成し、
    第一の基板部分の第一表面上に第一の導電性層を形成し、
    少なくとも第二の導電性層を備える第二の基板部分を形成し、
    前記第一の導電性基板部分と前記第二の導電性基板部分との間に電子回路を挿入し、
    続いて、前記第一の基板部分の前記第一の導電性層を前記第二の基板部分の少なくとも前記第二の導電性層に接続する傍ら、前記電子回路を挟み込む状態で、前記第一の導電性層を電気的に少なくとも前記第二の導電性層に接続すること、
    を備える電磁場からの保護機能を備えるプロセス条件測定素子の形成方法。
  19. 前記少なくとも第二の導電性層を備える第二の基板部分の形成は、非導電性基板部分の上に第二の導電性層を堆積することにより行われる請求項18に記載の方法。
  20. 前記非導電性基板部分は非導電性の材料からなる請求項19に記載の方法。
  21. 前記第一の基板部分は、フラット・パネル・ディスプレイ向けのガラス基板であり、前記第一の導電性層は、室温下で酸化しない金属により形成される請求項18に記載の方法。
  22. 前記電子回路は、プロセス回路と交信回路を備え、前記電子回路は、前記第一の基板部分に取り付けられた少なくとも1つのセンサーに接続されている請求項18に記載の方法。
JP2013012399A 2006-05-01 2013-01-25 シールドを備えるプロセス条件測定素子 Active JP5922044B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/380,985 2006-05-01
US11/380,985 US7540188B2 (en) 2006-05-01 2006-05-01 Process condition measuring device with shielding
US11/381,992 2006-05-05
US11/381,992 US7555948B2 (en) 2006-05-01 2006-05-05 Process condition measuring device with shielding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009509930A Division JP5227953B2 (ja) 2006-05-01 2007-04-19 シールドを備えるプロセス条件測定素子

Publications (2)

Publication Number Publication Date
JP2013123070A true JP2013123070A (ja) 2013-06-20
JP5922044B2 JP5922044B2 (ja) 2016-05-24

Family

ID=38616394

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009509930A Active JP5227953B2 (ja) 2006-05-01 2007-04-19 シールドを備えるプロセス条件測定素子
JP2013012399A Active JP5922044B2 (ja) 2006-05-01 2013-01-25 シールドを備えるプロセス条件測定素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009509930A Active JP5227953B2 (ja) 2006-05-01 2007-04-19 シールドを備えるプロセス条件測定素子

Country Status (3)

Country Link
US (1) US7555948B2 (ja)
JP (2) JP5227953B2 (ja)
WO (1) WO2007130790A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050472A (ko) * 2016-11-04 2018-05-15 (주)제이디 회로 임베디드 웨이퍼 및 그의 제조 방법
KR101917832B1 (ko) * 2017-07-05 2018-11-12 (주)이노페이스 플라즈마 밀도 측정용 웨이퍼
KR101958728B1 (ko) * 2017-09-08 2019-03-18 (주)에스엔텍 플라즈마 균일도 측정 장치
KR20200013890A (ko) * 2018-07-31 2020-02-10 주식회사 에스엔텍비엠 플라즈마 균일도 추정을 위한 테스트 웨이퍼
KR20210001481A (ko) * 2019-06-28 2021-01-06 주식회사 이큐셀 반도체 공정 진단 센서 장치 및 이의 제조 방법

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006020484D1 (de) * 2005-11-28 2011-04-14 Nxp Bv Vorrichtung umfassend ein substrat mit einem elektrischen kontakt und transponder
US7540188B2 (en) * 2006-05-01 2009-06-02 Lynn Karl Wiese Process condition measuring device with shielding
US7698952B2 (en) * 2006-10-03 2010-04-20 Kla-Tencor Corporation Pressure sensing device
US7497134B2 (en) * 2006-10-03 2009-03-03 Kla-Tencor Corporation Process condition measuring device and method for measuring shear force on a surface of a substrate that undergoes a polishing or planarization process
US8217475B2 (en) * 2008-05-15 2012-07-10 Custom Sensors & Technologies, Inc. Backside controlled MEMS capacitive sensor and interface and method
US8889021B2 (en) * 2010-01-21 2014-11-18 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber
US10720350B2 (en) * 2010-09-28 2020-07-21 Kla-Tencore Corporation Etch-resistant coating on sensor wafers for in-situ measurement
TWI418004B (zh) * 2010-12-31 2013-12-01 Pixart Imaging Inc 晶片封裝結構以及晶片封裝製程
CN102593085B (zh) * 2011-01-10 2014-08-13 原相科技股份有限公司 芯片封装结构以及芯片封装制程
US20120283973A1 (en) * 2011-05-05 2012-11-08 Imec Plasma probe and method for plasma diagnostics
US8681493B2 (en) * 2011-05-10 2014-03-25 Kla-Tencor Corporation Heat shield module for substrate-like metrology device
DE102012006422B4 (de) * 2012-03-30 2015-05-28 Krohne Messtechnik Gmbh Messgerätgehäuse mit Sichtscheibe
US9304160B1 (en) 2012-05-08 2016-04-05 Kla-Tencor Corporation Defect inspection apparatus, system, and method
US8824161B2 (en) * 2012-06-15 2014-09-02 Medtronic, Inc. Integrated circuit packaging for implantable medical devices
US9222842B2 (en) * 2013-01-07 2015-12-29 Kla-Tencor Corporation High temperature sensor wafer for in-situ measurements in active plasma
US9305753B2 (en) * 2013-03-06 2016-04-05 Kla-Tencor Corporation Thickness change monitor wafer for in situ film thickness monitoring
WO2017100132A1 (en) * 2015-12-10 2017-06-15 Ioneer, Llc Apparatus and method for determining parameters of process operation
US10818561B2 (en) * 2016-01-28 2020-10-27 Applied Materials, Inc. Process monitor device having a plurality of sensors arranged in concentric circles
US20170268941A1 (en) * 2016-03-21 2017-09-21 Globalfoundries Inc. Tactile sensing intrumented wafer
US10460966B2 (en) * 2016-06-15 2019-10-29 Kla-Tencor Corporation Encapsulated instrumented substrate apparatus for acquiring measurement parameters in high temperature process applications
KR101841607B1 (ko) 2017-02-03 2018-03-26 (주)제이디 전원제어기능을 가지는 회로 임베디드 웨이퍼
WO2018199601A1 (ko) * 2017-04-28 2018-11-01 (주)에스엔텍 센서 탑재 웨이퍼
CN108508283B (zh) * 2018-06-28 2024-06-14 中国科学院电子学研究所 电场传感器封装组件及其批量化制造方法
US11315811B2 (en) * 2018-09-06 2022-04-26 Kla Corporation Process temperature measurement device fabrication techniques and methods of calibration and data interpolation of the same
US11668601B2 (en) 2020-02-24 2023-06-06 Kla Corporation Instrumented substrate apparatus
US20220338337A1 (en) * 2021-04-16 2022-10-20 Lockheed Martin Corporation Langmuir Probe Operating at Fixed Voltages
EP4376050A1 (en) 2022-11-25 2024-05-29 Impedans Ltd Shielded apparatus for ion energy analysis of plasma processes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758579A (ja) * 1993-08-10 1995-03-03 Matsushita Electric Ind Co Ltd 弾性表面波装置
JP2004507889A (ja) * 2000-08-22 2004-03-11 オンウエハー テクノロジーズ インコーポレーテッド 処理操作をおこなうため、効率的に利用するため、監視するため、及び制御するために、データを獲得する方法及び、その装置
JP2004153119A (ja) * 2002-10-31 2004-05-27 Tokyo Electron Ltd プロセスモニタ及び半導体製造装置
JP2005150443A (ja) * 2003-11-17 2005-06-09 Sharp Corp 積層型半導体装置およびその製造方法
JP2005519344A (ja) * 2002-03-08 2005-06-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マトリックス表示装置
WO2005109474A1 (en) * 2004-04-29 2005-11-17 Sensarray Corporation Integrated process condition sensing wafer and data analysis system
US6966235B1 (en) * 2000-10-06 2005-11-22 Paton Eric N Remote monitoring of critical parameters for calibration of manufacturing equipment and facilities
JP2006505940A (ja) * 2002-11-04 2006-02-16 ブリオン テクノロジーズ,インコーポレーテッド 集積回路の製造を監視する方法及び装置
JP2006513583A (ja) * 2002-12-03 2006-04-20 センサレー コーポレイション 統合化されたプロセス条件検知用ウェハおよびデータ解析システム

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32369E (en) 1980-11-17 1987-03-10 Ball Corporation Monolithic microwave integrated circuit with integral array antenna
US5262944A (en) 1992-05-15 1993-11-16 Hewlett-Packard Company Method for use of color and selective highlighting to indicate patient critical events in a centralized patient monitoring system
US5426412A (en) * 1992-10-27 1995-06-20 Matsushita Electric Works, Ltd. Infrared detecting device and infrared detecting element for use in the device
JP2969034B2 (ja) 1993-06-18 1999-11-02 東京エレクトロン株式会社 搬送方法および搬送装置
US5444637A (en) 1993-09-28 1995-08-22 Advanced Micro Devices, Inc. Programmable semiconductor wafer for sensing, recording and retrieving fabrication process conditions to which the wafer is exposed
US5435646A (en) 1993-11-09 1995-07-25 Hughes Aircraft Company Temperature measurement using ion implanted wafers
US5920984A (en) * 1993-12-10 1999-07-13 Ericsson Ge Mobile Communications Inc. Method for the suppression of electromagnetic interference in an electronic system
US6010538A (en) 1996-01-11 2000-01-04 Luxtron Corporation In situ technique for monitoring and controlling a process of chemical-mechanical-polishing via a radiative communication link
US6551844B1 (en) 1997-01-15 2003-04-22 Formfactor, Inc. Test assembly including a test die for testing a semiconductor product die
FR2759211B1 (fr) 1997-02-06 1999-04-30 Electricite De France Supercondensateur du type double couche comprenant un electrolyte organique liquide
JP3578581B2 (ja) 1997-02-28 2004-10-20 富士通株式会社 ベアチップの実装構造および実装方法およびそれに用いるインターポーザ
US5969639A (en) 1997-07-28 1999-10-19 Lockheed Martin Energy Research Corporation Temperature measuring device
US5970313A (en) 1997-12-19 1999-10-19 Advanced Micro Devices, Inc. Monitoring wafer temperature during thermal processing of wafers by measuring sheet resistance of a test wafer
US6744346B1 (en) 1998-02-27 2004-06-01 Micron Technology, Inc. Electronic device workpieces, methods of semiconductor processing and methods of sensing temperature of an electronic device workpiece
US6244121B1 (en) 1998-03-06 2001-06-12 Applied Materials, Inc. Sensor device for non-intrusive diagnosis of a semiconductor processing system
US6075909A (en) 1998-06-26 2000-06-13 Lucent Technologies, Inc. Optical monitoring system for III-V wafer processing
US6325536B1 (en) 1998-07-10 2001-12-04 Sensarray Corporation Integrated wafer temperature sensors
US6279402B1 (en) 1998-08-10 2001-08-28 Applied Materials, Inc. Device for measuring pressure in a chamber
US6140833A (en) 1998-11-16 2000-10-31 Siemens Aktiengesellschaft In-situ measurement method and apparatus for semiconductor processing
JP3455458B2 (ja) 1999-02-01 2003-10-14 東京エレクトロン株式会社 塗布、現像装置及び塗布現像処理における基板再生システム
JP2000266597A (ja) * 1999-03-16 2000-09-29 Tdk Corp 赤外線検出器
US6553277B1 (en) 1999-05-07 2003-04-22 Tokyo Electron Limited Method and apparatus for vacuum treatment
US6190040B1 (en) 1999-05-10 2001-02-20 Sensarray Corporation Apparatus for sensing temperature on a substrate in an integrated circuit fabrication tool
US6100506A (en) 1999-07-26 2000-08-08 International Business Machines Corporation Hot plate with in situ surface temperature adjustment
DE19949005A1 (de) 1999-10-11 2001-05-10 Leica Microsystems Einrichtung und Verfahren zum Einbringen verschiedener transparenter Substrate in ein hochgenaues Messgerät
TW525213B (en) 2000-02-16 2003-03-21 Hitachi Ltd Process monitoring methods in a plasma processing apparatus, monitoring units, and a sample processing method using the monitoring units
AU2001259055A1 (en) 2000-05-05 2001-11-20 Tokyo Electron Limited Measuring plasma uniformity in-situ at wafer level
US6424141B1 (en) 2000-07-13 2002-07-23 The Micromanipulator Company, Inc. Wafer probe station
US7127362B2 (en) 2000-08-22 2006-10-24 Mundt Randall S Process tolerant methods and apparatus for obtaining data
US6377130B1 (en) 2000-09-12 2002-04-23 Rockwell Collins, Inc. Temperature stabilized CMOS oscillator circuit
WO2002047139A2 (en) 2000-12-04 2002-06-13 Ebara Corporation Methode of forming a copper film on a substrate
US6995691B2 (en) 2001-02-14 2006-02-07 Heetronix Bonded structure using reacted borosilicate mixture
NL1017593C2 (nl) 2001-03-14 2002-09-17 Asm Int Inspectiesysteem ten behoeve van procesapparaten voor het behandelen van substraten, alsmede een sensor bestemd voor een dergelijk inspectiesysteem en een werkwijze voor het inspecteren van procesapparaten.
US6542835B2 (en) 2001-03-22 2003-04-01 Onwafer Technologies, Inc. Data collection methods and apparatus
US6671660B2 (en) 2001-04-19 2003-12-30 Onwafer Technologies, Inc. Methods and apparatus for power control
US7282889B2 (en) 2001-04-19 2007-10-16 Onwafer Technologies, Inc. Maintenance unit for a sensor apparatus
US6971036B2 (en) 2001-04-19 2005-11-29 Onwafer Technologies Methods and apparatus for low power delay control
US7960670B2 (en) * 2005-05-03 2011-06-14 Kla-Tencor Corporation Methods of and apparatuses for measuring electrical parameters of a plasma process
US6789034B2 (en) 2001-04-19 2004-09-07 Onwafer Technologies, Inc. Data collection methods and apparatus with parasitic correction
TW594455B (en) 2001-04-19 2004-06-21 Onwafer Technologies Inc Methods and apparatus for obtaining data for process operation, optimization, monitoring, and control
US20030077153A1 (en) 2001-10-19 2003-04-24 Applied Materials, Inc. Identification code reader integrated with substrate carrier robot
US6889568B2 (en) 2002-01-24 2005-05-10 Sensarray Corporation Process condition sensing wafer and data analysis system
US7289230B2 (en) 2002-02-06 2007-10-30 Cyberoptics Semiconductors, Inc. Wireless substrate-like sensor
US6977346B2 (en) * 2002-06-10 2005-12-20 Visteon Global Technologies, Inc. Vented circuit board for cooling power components
US6830650B2 (en) 2002-07-12 2004-12-14 Advanced Energy Industries, Inc. Wafer probe for measuring plasma and surface characteristics in plasma processing environments
US6907364B2 (en) 2002-09-16 2005-06-14 Onwafer Technologies, Inc. Methods and apparatus for deriving thermal flux data for processing a workpiece
US7212950B2 (en) 2002-09-18 2007-05-01 Onwafer Technologies, Inc. Methods and apparatus for equipment matching and characterization
US6916147B2 (en) 2002-10-25 2005-07-12 Applied Materials, Inc. Substrate storage cassette with substrate alignment feature
US6815958B2 (en) 2003-02-07 2004-11-09 Multimetrixs, Llc Method and apparatus for measuring thickness of thin films with improved accuracy
US7053355B2 (en) 2003-03-18 2006-05-30 Brion Technologies, Inc. System and method for lithography process monitoring and control
US6749253B1 (en) * 2003-03-26 2004-06-15 Honda Giken Kogyo Kabushiki Kaisha Hook and catch assembly
US7016754B2 (en) 2003-05-08 2006-03-21 Onwafer Technologies, Inc. Methods of and apparatus for controlling process profiles
JP4112484B2 (ja) * 2003-12-17 2008-07-02 株式会社東芝 無線機器及び半導体装置
KR200368618Y1 (ko) 2004-08-27 2004-11-26 주식회사 아이에스시테크놀러지 반도체소자 캐리어 겸용 테스트보드

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758579A (ja) * 1993-08-10 1995-03-03 Matsushita Electric Ind Co Ltd 弾性表面波装置
JP2004507889A (ja) * 2000-08-22 2004-03-11 オンウエハー テクノロジーズ インコーポレーテッド 処理操作をおこなうため、効率的に利用するため、監視するため、及び制御するために、データを獲得する方法及び、その装置
US6966235B1 (en) * 2000-10-06 2005-11-22 Paton Eric N Remote monitoring of critical parameters for calibration of manufacturing equipment and facilities
JP2005519344A (ja) * 2002-03-08 2005-06-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マトリックス表示装置
JP2004153119A (ja) * 2002-10-31 2004-05-27 Tokyo Electron Ltd プロセスモニタ及び半導体製造装置
JP2006505940A (ja) * 2002-11-04 2006-02-16 ブリオン テクノロジーズ,インコーポレーテッド 集積回路の製造を監視する方法及び装置
JP2006513583A (ja) * 2002-12-03 2006-04-20 センサレー コーポレイション 統合化されたプロセス条件検知用ウェハおよびデータ解析システム
JP2005150443A (ja) * 2003-11-17 2005-06-09 Sharp Corp 積層型半導体装置およびその製造方法
WO2005109474A1 (en) * 2004-04-29 2005-11-17 Sensarray Corporation Integrated process condition sensing wafer and data analysis system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050472A (ko) * 2016-11-04 2018-05-15 (주)제이디 회로 임베디드 웨이퍼 및 그의 제조 방법
KR101950884B1 (ko) 2016-11-04 2019-02-22 (주)제이디 회로 임베디드 웨이퍼 및 그의 제조 방법
KR101917832B1 (ko) * 2017-07-05 2018-11-12 (주)이노페이스 플라즈마 밀도 측정용 웨이퍼
KR101958728B1 (ko) * 2017-09-08 2019-03-18 (주)에스엔텍 플라즈마 균일도 측정 장치
KR20200013890A (ko) * 2018-07-31 2020-02-10 주식회사 에스엔텍비엠 플라즈마 균일도 추정을 위한 테스트 웨이퍼
KR102148318B1 (ko) 2018-07-31 2020-08-26 주식회사 이큐셀 플라즈마 균일도 추정을 위한 테스트 웨이퍼
KR20210001481A (ko) * 2019-06-28 2021-01-06 주식회사 이큐셀 반도체 공정 진단 센서 장치 및 이의 제조 방법
KR102229055B1 (ko) 2019-06-28 2021-03-18 주식회사 이큐셀 반도체 공정 진단 센서 장치 및 이의 제조 방법

Also Published As

Publication number Publication date
JP5922044B2 (ja) 2016-05-24
JP5227953B2 (ja) 2013-07-03
WO2007130790A3 (en) 2008-05-22
US7555948B2 (en) 2009-07-07
JP2009535855A (ja) 2009-10-01
US20070251339A1 (en) 2007-11-01
WO2007130790A2 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP5922044B2 (ja) シールドを備えるプロセス条件測定素子
US10777393B2 (en) Process condition sensing device and method for plasma chamber
US6744346B1 (en) Electronic device workpieces, methods of semiconductor processing and methods of sensing temperature of an electronic device workpiece
US7540188B2 (en) Process condition measuring device with shielding
US9029728B2 (en) Methods of and apparatuses for measuring electrical parameters of a plasma process
US6229322B1 (en) Electronic device workpiece processing apparatus and method of communicating signals within an electronic device workpiece processing apparatus
US8490495B2 (en) Capacitive pressure sensor with vertical electrical feedthroughs and method to make the same
GB2208754A (en) Method of sealing an electrical feedthrough in a semiconductor device
US7651921B2 (en) Semiconductor device having a frontside contact and vertical trench isolation and method of fabricating same
KR101807495B1 (ko) 듀얼타입 센서 탑재 웨이퍼
US7482576B2 (en) Apparatuses for and methods of monitoring optical radiation parameters for substrate processing operations
US6967497B1 (en) Wafer processing apparatuses and electronic device workpiece processing apparatuses
JP5272176B2 (ja) トレンチ絶縁コンタクト端子を有する画像センサの作製方法
US20240071737A1 (en) Plasma sensor module
KR20240071564A (ko) 반도체 공정 진단을 위한 트렌치형 플라즈마 센서 장치 및 이의 제조 방법
US20010017551A1 (en) An electronic device workpiece processing intermediate member
KR20210117828A (ko) 플라즈마 측정용 웨이퍼

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140826

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160413

R150 Certificate of patent or registration of utility model

Ref document number: 5922044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250