JP2013120068A - 気水分離器及び原子炉設備 - Google Patents

気水分離器及び原子炉設備 Download PDF

Info

Publication number
JP2013120068A
JP2013120068A JP2011266671A JP2011266671A JP2013120068A JP 2013120068 A JP2013120068 A JP 2013120068A JP 2011266671 A JP2011266671 A JP 2011266671A JP 2011266671 A JP2011266671 A JP 2011266671A JP 2013120068 A JP2013120068 A JP 2013120068A
Authority
JP
Japan
Prior art keywords
barrel
steam
flow path
liquid film
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011266671A
Other languages
English (en)
Inventor
Keisuke Ishikawa
慶拓 石川
Hiroshi Ikeda
浩 池田
Yukitaka Yamazaki
之崇 山崎
Tetsuzo Yamamoto
哲三 山本
Chikako Iwaki
智香子 岩城
Miyuki Akiba
美幸 秋葉
Toshihiro Yoshii
敏浩 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011266671A priority Critical patent/JP2013120068A/ja
Publication of JP2013120068A publication Critical patent/JP2013120068A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

【課題】キャリーオーバー又はキャリーアンダーを低減可能な気水分離器を提供する。
【解決手段】実施形態によれば、第1のバレル24の外周側に設けられて第1のバレル24との間に、排水口37に通じる排水流路25を形成する第2のバレル21と、第1のバレル24の内周側に設けられて第1のバレル24の内壁面に形成される液膜26を排水流路25へと導く液膜流路27を形成する第3のバレル22とを備える。実施形態は、第3のバレル22に筒状流路31と連通する開口部32を形成し、液膜26に入った蒸気33を、液膜流路27から開口部32を通して筒状流路31に戻すようにしている。
【選択図】図1

Description

本発明の実施形態は、水と蒸気との二相流から水と蒸気を分離する気水分離器及び原子炉設備に関する。
沸騰水型原子炉においては、原子炉の炉心で発生した熱によって原子炉内で蒸気を発生させ、その蒸気によってタービンや発電機を回転駆動させている。一方、加圧水型原子炉においては、一次冷却系と二次冷却系とに分かれている。一次冷却系では、原子炉の炉心で発生した熱によって高温水を造り出し、この高温水が蒸気発生器内の熱交換器に送られる。この熱交換器で二次冷却系の水が沸騰して蒸気となり、その蒸気によってタービンや発電機を回転駆動させている。
このようにしてタービンに送られる蒸気は、湿分を除去する必要があることから、原子炉や蒸気発生器で発生した蒸気と水との二相流から水が除去される。そのため、一般的な原子炉には、気水分離器やドライヤなどが複数設けられている。
図9は一般的な沸騰水型原子炉の構成と水及び蒸気の流れを示す立断面構成図である。
図9に示すように、原子炉圧力容器1は、中央部よりやや下部に多数の燃料集合体を収納する炉心2が設置されている。この炉心2を構成するシュラウドの上端開口は、シュラウドヘッド3により閉塞されている。このシュラウドヘッド3には、気水分離器4のスタンドパイプ5が複数立設されている。この気水分離器4は、スタンドパイプ5の他、スワラー6、バレル7を備えている。この気水分離器4の上方には、ドライヤ8が配置されている。
次に、図9において太い実線で示す水の流れ9と太い破線で示す蒸気の流れ10について説明する。
図9において太い実線で示すように、給水管11から原子炉圧力容器1へ導かれた水は、シュラウドの下部から炉心2に導入される。この炉心2の熱エネルギーによって水は沸騰し、スタンドパイプ5においては水と蒸気との二相流となっている。
気水分離器4は、水と蒸気との二相流からスワラー6及びバレル7により水を遠心分離する。この遠心分離された水は、水面12下に導かれて給水管11から流入した水とともに、原子炉圧力容器1内を再循環する。
一方、気水分離器4によって大部分の水が除去された蒸気は、ドライヤ8でさらに湿分が除去された後、太い破線で示すように主蒸気管13を通って原子炉圧力容器1の外に導かれ、図示しないタービンへと送られる。
次に、図10を用いてスワラー6で遠心分離された液膜の除去方法について説明する。図10は従来の気水分離器を示す部分立断面図である。
水と蒸気との二相流は、スワラー6(図9)で遠心力を受ける。これにより、質量の大きい水は、図10に示すようにバレル7の内面に液膜14を形成する一方、このバレル7の中央は、主に蒸気15が流れる。
液膜14は、バレル7の内周側に突出したピックオフリング16を経てバレル7の外周側に形成された排水管17にかき出され、この排水管17を下降し気水分離器4の周囲の水面12(図9)に排出される。また、一部の微小水滴18は、蒸気15とともにバレル7内を上昇する。
また、沸騰水型原子炉における他の気水分離システムとしては、ピックオフリングの3段目近傍に設置した衝突板によって微小液滴を衝突させて分離する技術がある(例えば、特許文献1参照)。
なお、以下の説明では、気水分離器上部から流出する蒸気に含まれる液滴の重量比をキャリーオーバーという。また、各段のピックオフリングで気水分離した水に含まれる蒸気の重量比をキャリーアンダーという。
特開2000−153118号公報
ところで、上述したような沸騰水型原子炉及び加圧水型原子炉で従来から使用されている気水分離器において、ピックオフリング16により水と蒸気を分離させるのみでは、湿り度の低い蒸気を蒸気タービンへ流入させることが困難であった。特に、蒸気流速が速い場合には、図10に示すように蒸気15によって運ばれる微小液滴18が増加し、キャリーオーバーが増大するという問題がある。
また、複数の気水分離器を並べて設置する使用形態において、気水分離器に流入する水と蒸気との二相流のクオリティが気水分離器毎に大きく異なる場合は、クオリティが高い気水分離器において図10に示すようにピックオフリング16から排水管17に導かれる水に多くの気泡19が混入してしまうこととなる。そのため、排水管を下降する蒸気流量が増加してキャリーアンダーが大きくなるという問題もあった。ここで、上記二相流のクオリティとは、二相流状態での蒸気の質量割合である。つまり、クオリティが高いということは、蒸気が多くなり、水が少なくなることである。
本発明の実施形態が解決しようとする課題は、キャリーオーバー又はキャリーアンダーを低減可能な気水分離器及び原子炉設備を提供することを目的とする。
上記目的を達成するために、本発明の実施形態に係る気水分離器は、軸を鉛直方向とする筒状流路を形成する第1のバレルと、前記第1のバレル内に設置されて鉛直上方に流入する気液混合流を旋回させて遠心力を与える旋回羽根と、前記第1のバレルの外周側に設けられて前記第1のバレルとの間に排水流路を形成する第2のバレルと、前記第1のバレルの内周側に設けられて前記旋回羽根により前記第1のバレルの内壁面に形成される液膜を前記排水流路へと導く液膜流路を形成する第3のバレルと、を備える気水分離器において、前記第3のバレルに前記筒状流路と連通する開口部を形成し、前記第1のバレルの内壁面に形成される液膜に入った蒸気を、前記液膜流路から前記開口部を通して前記筒状流路に戻すことを特徴とする。
また、本発明の実施形態に係る気水分離器は、軸を鉛直方向とする筒状流路を形成する第1のバレルと、前記第1のバレル内に設置されて鉛直上方に流入する気液混合流を旋回させて遠心力を与える旋回羽根と、前記第1のバレルの外周側に設けられて前記第1のバレルとの間に排水口に通じる第1の排水流路を形成し、下端に開放部が設けられた仕切壁と、前記仕切壁の外周側に設けられて前記仕切壁との間に、前記排水口に通じる第2の排水流路を形成する第2のバレルと、前記第1のバレルの内周側に設けられた第3のバレルと、前記第2のバレルと前記第3のバレルを接続し、前記筒状流路に連通する連通孔が形成された上面板と、を備え、前記第1のバレルの内壁面に形成される液膜を前記第1の排水流路及び前記第2の排水流路へ導き、前記液膜に入った蒸気を前記開放部から前記連通孔を通して前記筒状流路に戻すことを特徴とする。
さらに、本発明の実施形態に係る原子炉設備は、炉心の熱エネルギーによって発生した蒸気中の水を分離する気水分離器を備えた原子炉設備であって、前記気水分離器は、軸を鉛直方向とする筒状流路を形成する第1のバレルと、前記第1のバレル内に設置されて鉛直上方に流入する気液混合流を旋回させて遠心力を与える旋回羽根と、前記第1のバレルの外周側に設けられて前記第1のバレルとの間に排水流路を形成する第2のバレルと、前記第1のバレルの内周側に設けられて前記旋回羽根により前記第1のバレルの内壁面に形成される液膜を前記排水流路へと導く液膜流路を形成する第3のバレルとを有し、前記第3のバレルに前記筒状流路と連通する開口部を形成し、前記第1のバレルの内壁面に形成される液膜に入った蒸気を、前記液膜流路から前記開口部を通して前記筒状流路に戻すことを特徴とする。
本発明の実施形態によれば、キャリーオーバー又はキャリーアンダーを低減することができる。
本発明に係る気水分離器の第1実施形態を示す部分立断面図である。 本発明に係る気水分離器の第2実施形態を示す部分立断面図である。 本発明に係る気水分離器の第3実施形態を示す部分立断面図である。 本発明に係る気水分離器の第4実施形態を内側で下方からピックオフリングの下端付近を見た状態を示す部分斜視図である。 本発明に係る気水分離器の第4実施形態の変形例におけるライザバレル及びピックオフリングの内壁の一部を示す図である。 気水分離器のピックオフリング近傍の比較例を示す断面図である。 本発明に係る気水分離器の第5実施形態においてピックオフリング近傍の構成を示す断面図である。 本発明に係る気水分離器の第6実施形態を示す部分立断面図である。 一般的な沸騰水型原子炉の構成と水及び蒸気の流れを示す立断面構成図である。 従来の気水分離器を示す部分立断面図である。
以下に、本発明に係る気水分離器の各実施形態について、図面を参照して説明する。
(第1実施形態)
図1は本発明に係る気水分離器の第1実施形態を示す部分立断面図である。
本実施形態の気水分離器は、図9に示す気水分離器と同様に、原子炉の原子炉圧力容器内に設置された炉心の熱エネルギーによって発生する蒸気と水の二相流から水と蒸気とに分離するものである。
図1に示すように、本実施形態の気水分離器は、径方向に同軸円筒状に3重管構造に構成されている。この3重管の最外周は、第2のバレルとしての円筒状のダウンカマバレル21が配設されている。このダウンカマバレル21は、3重管の最内周となる第3のバレルとしてのピックオフリング22と上面板23を介して接続されている。
ダウンカマバレル21とピックオフリング22との間には、上端が上面板23の近傍まで延びる3重管の中間となる第1のバレルとしてのライザバレル24が配設されている。
つまり、ライザバレル24は、ダウンカマバレル21の内径より小さい外径であって、ピックオフリング22の外径より大きい内径を有している。したがって、ダウンカマバレル21は、ライザバレル24の外周側に設けられている。ピックオフリング22は、ライザバレル24の内周側に設けられている。
また、ライザバレル24は、鉛直方向の長さがダウンカマバレル21より長尺に形成されている。ダウンカマバレル21は、鉛直方向の長さがピックオフリング22より長尺に形成されている。
したがって、ダウンカマバレル21とライザバレル24との間には、排水口37に通じる排水流路25が形成されている。ライザバレル24とピックオフリング22との間には、ライザバレル24の内壁面に形成される液膜26を後述する折り返し流路を経て排水流路25へ導くための液膜流路27が形成されている。この液膜流路27と排水流路25との間であって、上面板23とライザバレル24の上端との間は、折り返し流路28が形成されている。
上面板23の上面には、ライザバレル24の鉛直上方の延長線となる位置に第2ライザバレル24aが立設されている。
ライザバレル24内には、鉛直上方に流入する気液混合流29を旋回させて遠心力を与えるスワラー30が設置されている。ライザバレル24内は、軸を鉛直方向とする筒状流路31を形成している。
ピックオフリング22には、筒状流路31と連通する開口部32が形成され、ライザバレル24の内壁面に形成される液膜26に入った蒸気33を、液膜流路27から開口部32を通して筒状流路31に戻すようにしている。開口部32は、ピックオフリング22の周方向に沿って複数形成されている。
次に、本実施形態の作用を説明する。
原子炉の炉心2(図9に示す)の熱エネルギーによって発生する蒸気と水の気液混合流29は、図1に示すようにスワラー30を経て筒状流路31に流入する。この気液混合流29は、ライザバレル24の上方向に向かって流れる。このとき、気液混合流29は、スワラー30によって加えられた遠心力の効果で比重の重い液滴34と比重の軽い蒸気に粗分離される。
しかし、気液混合流29は、液相と気相が完全に分離されるわけではなく、液滴34には微量の蒸気33が含まれている。この微量の蒸気33を含む液滴34は、遠心力によって、ライザバレル24の内壁面へ向かって飛ばされてライザバレル24の内壁面に付着する。
この内壁面に付着した蒸気33を含む液滴34は、蒸気を含む液膜26を形成する。この蒸気を含む液膜26は、元々持っていた慣性力が壁面摩擦力に打ち勝つことにより、ライザバレル24の内壁面上を上方向へ移動し、液膜流路27へ導かれる。
この液膜流路27へ導かれた蒸気を含む液膜26は、そのまま液膜流路27を進み、開口部32へ至ると、表面張力の効果によって液体だけが液膜流路27に張り付き、蒸気33は開口部32を通して筒状流路31内の主流35に戻される。
また、液膜流路27に残った液体は、そのまま液膜流路27の上部を経て折り返し流路28に導かれ、次いでライザバレル24とダウンカマバレル21との間の排水流路25を通り、自由空間36へ排出される。
このように本実施形態によれば、ピックオフリング22に筒状流路31と連通する開口部32が形成され、ライザバレル24の内壁面に形成される液膜26に入った蒸気33を、液膜流路27から開口部32を通して筒状流路31に戻すようにしている。そのため、遠心分離のみを用いる気水分離器よりもキャリーアンダーを低減させることができる。
また、本実施形態によれば、液膜26に入った蒸気33を、液膜流路27から開口部32を通して筒状流路31に戻すことで、蒸気の無駄を削減することができる。
(第2実施形態)
図2は本発明に係る気水分離器の第2実施形態を示す部分立断面図である。なお、前記第1実施形態と同一又は対応する部分には、同一の符号を付して重複する説明を省略する。他の実施形態も同様とする。
図2に示すように、本実施形態では、スワラー30の入口30aからピックオフリング22の出口22aへ向かうに従って流路断面積を小さく形成している。すなわち、筒状流路31は、気液混合流29が流れる下流側に向かうに従って断面積を小さく形成している。具体的には、ダウンカマバレル21、ライザバレル24及びピックオフリング22は、気液混合流29が流れる下流側に向かうに従って縮径するように絞られている。この絞り具合は、気液混合流29の流速によるライザバレル24の内壁面への液滴34の付着量に基づいて設定される。
したがって、本実施形態では、筒状流路31に流入した気液混合流29は、ライザバレル24の上方向に向かって流れる。このとき、下流側に向かうに従って断面積が徐々に小さく形成されているので、気液混合流29は増速され、より強い旋回力が与えられる。その結果、ライザバレル24の内壁面への液滴34の付着量を多くすることができる。
このように本実施形態によれば、前記第1実施形態の効果に加えて、気液混合流29が流れる下流側に向かうに従って筒状流路31の断面積を小さく形成したことにより、軽い液滴34もライザバレル24の内壁面へ吹き飛ばされる。そのため、ライザバレル24の内壁面への液滴34の付着量が多くなり、キャリーオーバーを一段と低減させることができる。
(第3実施形態)
図3は本発明に係る気水分離器の第3実施形態を示す部分立断面図である。
図3に示すように、本実施形態は、ライザバレル24の上面板23側における端部40の断面形状が曲線で形成されている。具体的には、端部40の断面形状は、半円状に形成されている。
次に、本実施形態の作用を説明する。
図3に示すように、液滴34は、ライザバレル24の内壁面へ向かって飛ばされてライザバレル24の内壁面に付着する。そして、ライザバレル24の内壁面に設けられた液膜流路27に液膜26が流れ込む。
すると、液膜26は、開口部32で表面張力の効果によって気水分離され、液体はピックオフリング22の液膜流路27へ移動する一方、蒸気33は主流35へ向かう。
このとき、液膜流路27から排水流路25へ円滑に液膜26を導くために、ライザバレル24の液膜26が流れる下流側の端部40の断面形状を曲線で形成する。ここで、流体には、コアンダ効果と呼ばれる壁面に沿って流れる特性があるため、従来構造に比べ液膜26は、液膜流路27に侵入し、開口部32を通過する。そして、端部40における折り返し流路28で滑らかに折り返して排水流路25へ向かう。
このように本実施形態によれば、ライザバレル24の液膜26が流れる下流側の端部40の断面形状を曲線で形成したことにより、液膜26の排水性能を向上させ、より多くの液体を取り除くことで、キャリーオーバーを低減させることができる。
(第4実施形態)
図4は本発明に係る気水分離器の第4実施形態を内側で下方からピックオフリング22の下端付近を見た状態を示す部分斜視図である。
図4に示すように、本実施形態は、ライザバレル24とピックオフリング22との間の液膜流路27が三角形流路41に形成されている。この三角形流路41は、平断面形状が三角形で、かつ開口部32に開放されている部分が三角形の1辺である三角溝が周方向に複数形成されている。また、開口部32に開放されていないピックオフリング22の下端部分は、三角形の貫通孔に形成されている。なお、三角形流路41に形成されている部分は、開口部32に開放されている部分までである。
したがって、本実施形態は、液膜26が上記三角形の貫通孔を経て三角形流路41に流れ込み、開口部32において蒸気33が主流35へと逃げる構造となっている。すなわち、液膜26は、開口部32に至ると表面張力の効果により液相だけが三角形流路41に付着し、蒸気33は開口部32から主流35へと逃げるようになっている。本実施形態は、三角形流路41とすることで、水がライザバレル24の内面に付着しやすくなり、液膜中の蒸気を分離しやすくなる効果が得られる。
このように本実施形態によれば、液膜流路27は、平断面形状が三角形で、かつ開口部32に開放されている部分が三角形の1辺である三角溝が周方向に複数配置された三角形流路41に形成されている。これにより、キャリーオーバーを一段と低減させることができる。
(第4実施形態の変形例)
図5は本発明に係る気水分離器の第4実施形態の変形例におけるライザバレル及びピックオフリングの内壁の一部を示す図である。
図5に示すように、本変形例では、ライザバレル24の内壁面に形成した三角形流路41と、開口部32における三角形流路41の三角溝を、上昇する気液混合流29の旋回方向と合わせた方向に形成している。
液膜26に働く慣性力は、気水分離器4の上方向の成分と、気水分離器4の周方向の成分を有する。したがって、三角形流路41の三角溝を気液混合流29の進行方向と合わせた方向に形成したことにより、ライザバレル24の内壁に形成される液膜26が三角形流路41内を、より円滑に流れる。
このように本実施形態によれば、より多くの液膜26を三角形流路41内へ導くことができ、また表面張力を利用した気水分離を行うことで、キャリーオーバーをさらに低減させることができる。
(第5実施形態)
図6は気水分離器のピックオフリング近傍の比較例を示す断面図である。図7は本発明に係る気水分離器の第5実施形態においてピックオフリング近傍の構成を示す断面図である。
図6に示すように、比較例(従来例)では、ピックオフリング22と第2ライザバレル24aとの接続部分に段差が形成され、この段差によってキャビティ流れ43が形成される。このキャビティ流れ43には、蒸気を含んだ気液混合流29が取り込まれている。
そこで、図7に示すように、本実施形態では、キャビティ流れ43が形成されないように、ピックオフリング22と第4のバレルとしての第2ライザバレル24aとの接続部分に筒状流路31の断面積が次第に広がるような流線部44を形成している。
したがって、本実施形態では、ピックオフリング22と第2ライザバレル24aとの接続部分に流線部44を形成したことにより、ピックオフリング22と第2ライザバレル24aとの接続部分に流れる主流35が流線部44に沿った流れとなる。その結果、主流35の流れの剥離を未然に防止することができる。
このように本実施形態によれば、ピックオフリング22と第2ライザバレル24aとの間に、筒状流路31の断面積が広がるような流線部44を形成したことにより、キャビティ流れ43に取り込まれる蒸気を減らすことができ、主流35の流れを円滑にすることが可能となる。
(第6実施形態)
図8は本発明に係る気水分離器の第6実施形態を示す部分立断面図である。
図8に示すように、本実施形態では、ライザバレル24とダウンカマバレル21との間に仕切壁45が設置されている。すなわち、仕切壁45は、ライザバレル24の外周側に設けられ、ライザバレル24との間に排水口37に通じる第1の排水流路46を形成している。また、仕切壁45は、ダウンカマバレル21との間に排水口37に通じる第2の排水流路47を形成している。仕切壁45は、ダウンカマバレル21より鉛直方向に短く形成され、その下端に開放部48が形成されている。
ピックオフリング22とダウンカマバレル21を接続する上面板23には、連通孔49が形成されている。ダウンカマバレル21と第2ライザバレル24aとの間は、滑らかな流線形に形成され、その内部にはバイパス流路51が設けられている。
したがって、本実施形態では、ライザバレル24の内壁面に形成される液膜26を上昇させて折り返し流路28を経て第1の排水流路46及び第2の排水流路47へ導く。そして、液膜26に入った蒸気を開放部48から第2の排水流路47、連通孔49を通してバイパス流路51に排出する。これにより、液膜26に入った蒸気を主流35に戻すことができる。
すなわち、本実施形態では、ライザバレル24とダウンカマバレル21との間に設けた第1の排水流路46及び第2の排水流路47と、開放部48による気水分離機構によって液膜26を液体と蒸気とに粗分離する。このとき、粗分離された蒸気を、連通孔49を通してバイパス流路51に排出した後、主流35に戻すようにしている。
このように本実施形態によれば、第1の排水流路46及び第2の排水流路47と、開放部48による気水分離機構によって液膜26を液相と蒸気とに粗分離することにより、キャリーアンダーを低減させることができる。
また、本実施形態によれば、粗分離された蒸気を、連通孔49を通してバイパス流路51に排出した後、主流35に戻すようにしたので、蒸気の無駄を削減することができる。
以上のように本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、上記実施形態における開口部32は、例えば図4に示すように四角形に形成した例について説明したが、これ以外の多角形又は円形などであってもよい。また、開口部32の形状及び大きさは、気液混合流29の流速、液体の粘度などの諸条件に基づいて設定される。
1…原子炉圧力容器、2…炉心、3…シュラウドヘッド、4…気水分離器、5…スタンドパイプ、6…スワラー、7…バレル、8…ドライヤ、9…水の流れ、10…蒸気の流れ、11…給水管、12…水面、13…主蒸気管、14…液膜、15…蒸気、16…ピックオフリング、17…排水管、18…微小水滴、19…気泡、21…ダウンカマバレル(第2のバレル)、22…ピックオフリング(第3のバレル)、22a…出口、23…上面板、24…ライザバレル(第1のバレル)、24a…第2ライザバレル(第4のバレル)、25…排水流路、26…液膜、27…液膜流路、28…折り返し流路、29…気液混合流、30…スワラー(旋回羽根)、30a…入口、31…筒状流路、32…開口部、33…蒸気、34…液滴、35…主流、36…自由空間、37…排出口、40…端部、41…三角形流路、43…キャビティ流れ、44…流線部、45…仕切壁、46…第1の排水流路、47…第2の排水流路、48…開放部、49…連通孔、50…第2ライザバレル、51…バイパス流路

Claims (8)

  1. 軸を鉛直方向とする筒状流路を形成する第1のバレルと、
    前記第1のバレル内に設置されて鉛直上方に流入する気液混合流を旋回させて遠心力を与える旋回羽根と、
    前記第1のバレルの外周側に設けられて前記第1のバレルとの間に排水流路を形成する第2のバレルと、
    前記第1のバレルの内周側に設けられて前記旋回羽根により前記第1のバレルの内壁面に形成される液膜を前記排水流路へと導く液膜流路を形成する第3のバレルと、
    を備える気水分離器において、
    前記第3のバレルに前記筒状流路と連通する開口部を形成し、前記第1のバレルの内壁面に形成される液膜に入った蒸気を、前記液膜流路から前記開口部を通して前記筒状流路に戻すことを特徴とする気水分離器。
  2. 前記筒状流路は、前記気液混合流が流れる下流側に向かうに従って断面積を小さく形成したことを特徴とする請求項1に記載の気水分離器。
  3. 前記第1のバレルは、前記液膜が流れる下流側の端部の断面形状を曲線に形成したことを特徴とする1又は2に記載の気水分離器。
  4. 前記液膜流路は、平断面形状が三角形で、かつ前記開口部に開放されている部分が三角形の1辺である三角溝が周方向に複数配置された三角形流路に形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の気水分離器。
  5. 前記複数の三角溝は、前記気液混合流の旋回方向に合わせた方向に形成されていることを特徴とする請求項4に記載の気水分離器。
  6. 前記第2のバレルと前記第3のバレルとが上面板を介して接続され、この上面板に第4のバレルが立設され、この第4のバレルと前記第3のバレルとの間に、前記筒状流路の断面積が広がる流線部を形成したことを特徴とする請求項1乃至5のいずれか一項に記載の気水分離器。
  7. 軸を鉛直方向とする筒状流路を形成する第1のバレルと、
    前記第1のバレル内に設置されて鉛直上方に流入する気液混合流を旋回させて遠心力を与える旋回羽根と、
    前記第1のバレルの外周側に設けられて前記第1のバレルとの間に排水口に通じる第1の排水流路を形成し、下端に開放部が設けられた仕切壁と、
    前記仕切壁の外周側に設けられて前記仕切壁との間に、前記排水口に通じる第2の排水流路を形成する第2のバレルと、
    前記第1のバレルの内周側に設けられた第3のバレルと、
    前記第2のバレルと前記第3のバレルを接続し、前記筒状流路に連通する連通孔が形成された上面板と、を備え、
    前記第1のバレルの内壁面に形成される液膜を前記第1の排水流路及び前記第2の排水流路へ導き、前記液膜に入った蒸気を前記開放部から前記連通孔を通して前記筒状流路に戻すことを特徴とする気水分離器。
  8. 炉心の熱エネルギーによって発生した蒸気中の水を分離する気水分離器を備えた原子炉設備であって、
    前記気水分離器は、
    軸を鉛直方向とする筒状流路を形成する第1のバレルと、
    前記第1のバレル内に設置されて鉛直上方に流入する気液混合流を旋回させて遠心力を与える旋回羽根と、
    前記第1のバレルの外周側に設けられて前記第1のバレルとの間に排水流路を形成する第2のバレルと、
    前記第1のバレルの内周側に設けられて前記旋回羽根により前記第1のバレルの内壁面に形成される液膜を前記排水流路へと導く液膜流路を形成する第3のバレルとを有し、
    前記第3のバレルに前記筒状流路と連通する開口部を形成し、前記第1のバレルの内壁面に形成される液膜に入った蒸気を、前記液膜流路から前記開口部を通して前記筒状流路に戻すことを特徴とする原子炉設備。
JP2011266671A 2011-12-06 2011-12-06 気水分離器及び原子炉設備 Pending JP2013120068A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266671A JP2013120068A (ja) 2011-12-06 2011-12-06 気水分離器及び原子炉設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266671A JP2013120068A (ja) 2011-12-06 2011-12-06 気水分離器及び原子炉設備

Publications (1)

Publication Number Publication Date
JP2013120068A true JP2013120068A (ja) 2013-06-17

Family

ID=48772769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266671A Pending JP2013120068A (ja) 2011-12-06 2011-12-06 気水分離器及び原子炉設備

Country Status (1)

Country Link
JP (1) JP2013120068A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813042A (zh) * 2019-12-06 2020-02-21 中冶焦耐(大连)工程技术有限公司 一种脱硫尾气的脱氧反应塔及工作方法
JP2020512928A (ja) * 2016-12-16 2020-04-30 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH コアンダ効果湿分分離システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512928A (ja) * 2016-12-16 2020-04-30 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH コアンダ効果湿分分離システム
JP7341887B2 (ja) 2016-12-16 2023-09-11 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング コアンダ効果湿分分離システム
CN110813042A (zh) * 2019-12-06 2020-02-21 中冶焦耐(大连)工程技术有限公司 一种脱硫尾气的脱氧反应塔及工作方法
CN110813042B (zh) * 2019-12-06 2023-10-20 中冶焦耐(大连)工程技术有限公司 一种脱硫尾气的脱氧反应塔及工作方法

Similar Documents

Publication Publication Date Title
US8741014B2 (en) Multi-stage steam-water separation device and steam-water separator
JP4422691B2 (ja) 気水分離器、沸騰水型原子炉及びスワラアセンブリ
US11369906B2 (en) Vortex separation device
WO2011129063A1 (ja) 気水分離器およびそれを用いた原子炉システム
EP1458490B1 (en) Cyclone separator, liquid collecting box and pressure vessel
NO314024B1 (no) Syklonseparator
JP2013120068A (ja) 気水分離器及び原子炉設備
EP1445025B1 (en) Separating cyclone and method for separating a mixture
JP2011099748A (ja) 気水分離器
JP5663324B2 (ja) 気水分離器及びこれを用いた沸騰水型原子炉
CN205760156U (zh) 油气井测试放喷用气液分离器
JP2013039501A (ja) 多段型気水分離器
JP2013003083A (ja) 気水分離器及びそれを備えた沸騰水型原子炉
JP2012037319A (ja) 気水分離器、気水分離方法および原子炉
JP5562908B2 (ja) 気水分離器及びそれを備えた沸騰水型原子炉
JP2003307584A (ja) 気水分離装置
JP2012117857A (ja) 気水分離器
JP5089485B2 (ja) ジェットポンプ及び原子炉
JP2009257770A (ja) 気水分離器及び沸騰水型原子炉
JP2001183489A (ja) 気水分離器及び沸騰水型原子炉
JP2004245656A (ja) 気水分離器
JP2024081459A (ja) 気水分離器及びそれを備えた沸騰水型原子炉
JPH11326576A (ja) 気水分離器
JP2010210450A (ja) 気水分離器
JP2001174582A (ja) 原子炉用気水分離器

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140110