JP2013115144A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2013115144A
JP2013115144A JP2011258100A JP2011258100A JP2013115144A JP 2013115144 A JP2013115144 A JP 2013115144A JP 2011258100 A JP2011258100 A JP 2011258100A JP 2011258100 A JP2011258100 A JP 2011258100A JP 2013115144 A JP2013115144 A JP 2013115144A
Authority
JP
Japan
Prior art keywords
oxide film
semiconductor
locos oxide
semiconductor device
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011258100A
Other languages
Japanese (ja)
Other versions
JP5994238B2 (en
Inventor
Hidemiki Tomita
英幹 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011258100A priority Critical patent/JP5994238B2/en
Publication of JP2013115144A publication Critical patent/JP2013115144A/en
Application granted granted Critical
Publication of JP5994238B2 publication Critical patent/JP5994238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device in which field concentration just under an edge part of a LOCOS oxide film is easily alleviated, and which can achieve an excellent breakdown voltage and excellent resistance in a semiconductor layer just under the LOCOS oxide film.SOLUTION: A semiconductor device (1) has a profile in which at least a part (22a, 22b) of edges (22a, 22b) of a LOCOS oxide film (22), which terminate in a lateral direction with respect to a surface of a semiconductor substrate terminates by being sandwiched by a top face and an undersurface at an angle (θ) of not less than 15 degrees and not more than 30 degrees.

Description

本発明は、LOCOS(Local Oxidation of Silicon:局所酸化膜)酸化膜を有する半導体装置に係り、特に高電界を緩和する構造に関する。   The present invention relates to a semiconductor device having a LOCOS (Local Oxidation of Silicon) oxide film, and more particularly to a structure for relaxing a high electric field.

車載電子システムの構築に不可欠な制御用統合ICを実現するCMOSトランジスタ、バイポーラトランジスタ、パワーMOSトランジスタ等からなる半導体複合デバイスにおいて、そのパワー素子として用いられるDMOS(Double Diffused MOS:二重拡散MOS)トランジスタ、LDMOS(Lateral Diffused MOS:横型二重拡散MOS)トランジスタ、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)には、高耐圧を確保しつつ低オン抵抗を有することが求められる。素子分離に用いられるLOCOS酸化膜は、LDMOSトランジスタや横型IGBT等の横型パワー半導体素子においてゲートフィールドプレート効果をアシストする目的に用いられている。この目的を有するLOCOS酸化膜は、上記横型パワー半導体素子のドリフト層上に設けられ、ゲート・ドレイン間やゲート・コレクタ間の電界を緩和する。これにより、素子が高耐圧化される効果が得られる。   DMOS (Double Diffused MOS) transistors used as power elements in semiconductor composite devices consisting of CMOS transistors, bipolar transistors, power MOS transistors, etc. that realize integrated ICs for control that are indispensable for the construction of in-vehicle electronic systems LDMOS (Lateral Diffused MOS) transistors and IGBTs (Insulated Gate Bipolar Transistors) are required to have a low on-resistance while ensuring a high breakdown voltage. The LOCOS oxide film used for element isolation is used for the purpose of assisting the gate field plate effect in a lateral power semiconductor element such as an LDMOS transistor or a lateral IGBT. The LOCOS oxide film having this purpose is provided on the drift layer of the lateral power semiconductor element and relaxes the electric field between the gate and the drain or between the gate and the collector. Thereby, an effect of increasing the breakdown voltage of the element can be obtained.

特許文献1では、図10(a)・(b)に示すように、MOSトランジスタのドレイン近傍の電界分布について論じられている。図10(a)・(b)の両構造とも、ドレイン近傍のゲート酸化膜は、LOCOS酸化膜によって1μm程度に厚く形成されている。図10(a)の構造では、上記LOCOS酸化膜以外の部分のゲート酸化膜は20nm程度に薄く形成されており、LOCOS酸化膜のチャネル側端部の直下付近で電界強度が最大値をとる。図10(b)の構造では、上記LOCOS酸化膜以外の部分のゲート酸化膜は200nm程度に厚く形成されており、LOCOS酸化膜のチャネル側端部直下でやはり電界強度が最大値をとるが、図10(a)の構造における最大値よりも小さい。電界が大きい箇所ではインパクトイオンが発生しやすいが、図10(b)の構造のようにゲート酸化膜を200nm程度に厚く形成すると、LOCOS酸化膜のチャネル側端部の直下付近の電界が緩和されるので、インパクトイオン化がある程度抑制される。従って、インパクトイオン化を抑制しやすい図10(b)の構造は、図10(a)の構造よりも、素子の高耐圧化に有利となる。   In Patent Document 1, as shown in FIGS. 10A and 10B, the electric field distribution near the drain of the MOS transistor is discussed. In both the structures of FIGS. 10A and 10B, the gate oxide film in the vicinity of the drain is formed to be about 1 μm thick by the LOCOS oxide film. In the structure of FIG. 10A, the gate oxide film other than the LOCOS oxide film is formed to be as thin as about 20 nm, and the electric field strength has a maximum value near the channel side end of the LOCOS oxide film. In the structure of FIG. 10B, the gate oxide film other than the LOCOS oxide film is formed to be as thick as about 200 nm, and the electric field strength also has a maximum value immediately below the channel side end of the LOCOS oxide film. It is smaller than the maximum value in the structure of FIG. Impact ions are likely to be generated at locations where the electric field is large. However, if the gate oxide film is formed as thick as about 200 nm as in the structure of FIG. 10B, the electric field near the channel side end of the LOCOS oxide film is relaxed. Therefore, impact ionization is suppressed to some extent. Therefore, the structure of FIG. 10B in which impact ionization is easily suppressed is more advantageous for increasing the breakdown voltage of the device than the structure of FIG.

しかし、特許文献1は、上述の電界分布に基づき、LOCOS酸化膜のチャネル側端部の直下付近で発生する電界の集中をさらに緩和するため、互いに形状の異なる低耐圧領域用のLOCOS酸化膜と高耐圧領域用のLOCOS酸化膜とを、2回の選択酸化により形成することを開示している。図11(a)に示すようにソース領域およびドレイン領域の注入を終えた後に、図11(b)に示すように1回目の選択酸化により低耐圧領域用のゲート絶縁膜2cが形成される。ゲート絶縁膜2c上に窒化シリコン膜8を形成して窓開けを行い、図11(c)に示すように窓を通して2回目の選択酸化により高耐圧用のゲート絶縁膜2bが形成される。ゲート絶縁膜2bは、ゲート絶縁膜2cの厚みとチャネル領域中央部のゲート絶縁膜の厚みとの中間の厚みを有する。   However, in Patent Document 1, based on the electric field distribution described above, in order to further alleviate the concentration of the electric field generated near the channel side end of the LOCOS oxide film, It discloses that a LOCOS oxide film for a high breakdown voltage region is formed by two selective oxidations. After completing the implantation of the source region and the drain region as shown in FIG. 11A, the gate insulating film 2c for the low breakdown voltage region is formed by the first selective oxidation as shown in FIG. 11B. A silicon nitride film 8 is formed on the gate insulating film 2c to open a window, and a high-breakdown-voltage gate insulating film 2b is formed by second selective oxidation through the window as shown in FIG. 11C. The gate insulating film 2b has an intermediate thickness between the thickness of the gate insulating film 2c and the thickness of the gate insulating film at the center of the channel region.

また、特許文献2には、図12に示すように、シリコン基板101中に凹部を形成してLOCOS酸化膜105で埋め込むことにより、平坦な基板表面を得る技術が開示されている。   Patent Document 2 discloses a technique for obtaining a flat substrate surface by forming a recess in a silicon substrate 101 and embedding it with a LOCOS oxide film 105 as shown in FIG.

特許第3230184号公報Japanese Patent No. 3230184 特開平8−213449号公報JP-A-8-213449

ゲートフィールドプレート効果をアシストする目的を持つLOCOS酸化膜の形成によって高電界を緩和することができれば、その分だけパワー素子のドリフト層の抵抗を下げることによって、ある程度はオン抵抗を低減し得る。しかしながら、特許文献1に記載されたように2回の選択酸化によって高電界を緩和しようとすると工程数が多いために製造コストが増大してしまう。また、特許文献1の発明は、ゲートに低電圧を印加しながらドレイン・ソース間に高電圧を印加することを可能とするためになされたものである。従って、より高いゲート電圧が印加される横型パワー半導体素子の通常の構造に対して最適な耐圧構造が開示されているわけではない。   If the high electric field can be relaxed by forming a LOCOS oxide film with the purpose of assisting the gate field plate effect, the on-resistance can be reduced to some extent by lowering the resistance of the drift layer of the power element accordingly. However, as described in Patent Document 1, if the high electric field is relieved by two selective oxidations, the number of steps increases, resulting in an increase in manufacturing cost. The invention of Patent Document 1 is made in order to make it possible to apply a high voltage between the drain and the source while applying a low voltage to the gate. Therefore, an optimum withstand voltage structure is not disclosed for a normal structure of a lateral power semiconductor element to which a higher gate voltage is applied.

また、特許文献2は、いわゆるリセスLOCOS膜についての発明を開示しているが、LOCOS酸化膜端部の直下に電界集中が発生しやすいので、素子の耐圧は低い。   Further, Patent Document 2 discloses an invention relating to a so-called recess LOCOS film, but since the electric field concentration is likely to occur immediately below the end of the LOCOS oxide film, the breakdown voltage of the element is low.

本発明は、上記課題を解決するものであり、LOCOS酸化膜端部の直下の電界集中が容易に緩和され、LOCOS酸化膜直下の半導体導電層の良好な耐圧および抵抗を実現することのできる半導体装置およびその製造方法を提供することを目的とする。
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-described problem, and a semiconductor in which electric field concentration immediately below the end portion of the LOCOS oxide film is easily relaxed and a good breakdown voltage and resistance of the semiconductor conductive layer immediately below the LOCOS oxide film can be realized. An object is to provide an apparatus and a method for manufacturing the same.
The purpose is to provide.

本発明の第1の局面は、表層に半導体導電層を備える半導体基板と、前記半導体導電層上に形成されたLOCOS酸化膜とを備えた半導体装置であって、前記LOCOS酸化膜の前記半導体基板の表面に対してラテラル方向に終端しているエッジの少なくとも一部が、上面と下面とに15度以上30度以下の角度で挟まれて終端するプロファイルを有している。   1st aspect of this invention is a semiconductor device provided with the semiconductor substrate provided with the semiconductor conductive layer in the surface layer, and the LOCOS oxide film formed on the said semiconductor conductive layer, Comprising: The said semiconductor substrate of the said LOCOS oxide film At least a part of the edge that terminates laterally with respect to the surface of the surface has a profile that is sandwiched between the upper surface and the lower surface at an angle of 15 degrees or more and 30 degrees or less and terminates.

本発明の第2の局面は、上記第1の局面において、前記半導体導電層および前記LOCOS酸化膜を一部に有する横型二重拡散MOSトランジスタを備え、前記半導体導電層は前記横型二重拡散MOSトランジスタのドリフト層であり、前記エッジの少なくとも一部は、前記LOCOS酸化膜の、前記横型二重拡散MOSトランジスタのチャネル領域と隣接している側のエッジを含んでいる。   According to a second aspect of the present invention, in the first aspect, the semiconductor device includes a lateral double diffusion MOS transistor having the semiconductor conductive layer and the LOCOS oxide film in part, and the semiconductor conductive layer is the lateral double diffusion MOS. It is a drift layer of a transistor, and at least a part of the edge includes an edge of the LOCOS oxide film adjacent to a channel region of the lateral double diffusion MOS transistor.

本発明の第3の局面は、上記第1の局面において、前記半導体導電層および前記LOCOS酸化膜を一部に有する横型絶縁ゲートバイポーラトランジスタであり、前記半導体導電層は前記横型絶縁ゲートバイポーラトランジスタのドリフト層であり、前記エッジの少なくとも一部は、前記LOCOS酸化膜の、前記横型絶縁ゲートバイポーラトランジスタのチャネル領域と隣接している側のエッジを含んでいる。   According to a third aspect of the present invention, there is provided a lateral insulated gate bipolar transistor having the semiconductor conductive layer and the LOCOS oxide film as a part thereof in the first aspect, wherein the semiconductor conductive layer is formed of the lateral insulated gate bipolar transistor. It is a drift layer, and at least a part of the edge includes an edge of the LOCOS oxide film adjacent to the channel region of the lateral insulated gate bipolar transistor.

本発明の第4の局面は、上記第1の局面から上記第3の局面までのいずれか1つにおいて、前記半導体導電層および前記LOCOS酸化膜を構造に用いた1つ以上の第1の半導体素子と、前記第1の半導体素子以外の1つ以上の第2の半導体素子とが、前記半導体基板にモノリシックに形成されている。   According to a fourth aspect of the present invention, in any one of the first to third aspects, one or more first semiconductors using the semiconductor conductive layer and the LOCOS oxide film as a structure An element and one or more second semiconductor elements other than the first semiconductor element are formed monolithically on the semiconductor substrate.

本発明の第5の局面は、上記第4の局面において、前記第1の半導体素子と前記第2の半導体素子とは、互いに耐圧が異なる。   According to a fifth aspect of the present invention, in the fourth aspect, the first semiconductor element and the second semiconductor element have different withstand voltages.

本発明の第6の局面は、上記第1の局面から上記第5の局面までのいずれか1つにおいて、前記プロファイルを有するエッジを備えた素子分離膜を備えている。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects, an element isolation film including an edge having the profile is provided.

本発明の第7の局面は、半導体導電層上にLOCOS酸化膜を形成する半導体装置の製造方法であって、表層に前記半導体導電層を有する半導体基板の前記半導体導電層上にバッファ熱酸化膜を形成する工程と、前記バッファ熱酸化膜上にシリコン窒化膜を形成する工程と、形成された前記シリコン窒化膜と前記バッファ熱酸化膜とを貫通して前記半導体導電層の表面を露出させる窓開けを行う工程と、前記窓開けにより形成された窓を通して前記半導体導電層をエッチングすることなく選択熱酸化する工程と、前記半導体導電層の選択熱酸化後に前記シリコン窒化膜および前記バッファ熱酸化膜を除去する工程と、を経ることにより、前記LOCOS酸化膜の前記半導体基板の表面に対してラテラル方向に終端する少なくとも1つのエッジが、上面と下面とに15度以上30度以下の角度で挟まれて終端するプロファイルを有するように、前記LOCOS酸化膜を形成する。   7th aspect of this invention is a manufacturing method of the semiconductor device which forms a LOCOS oxide film on a semiconductor conductive layer, Comprising: The buffer thermal oxide film on the said semiconductor conductive layer of the semiconductor substrate which has the said semiconductor conductive layer in a surface layer Forming a silicon nitride film on the buffer thermal oxide film, and exposing the surface of the semiconductor conductive layer through the formed silicon nitride film and the buffer thermal oxide film A step of performing opening, a step of selectively thermally oxidizing the semiconductor conductive layer without etching through the window formed by opening the window, and the silicon nitride film and the buffer thermal oxide film after selective thermal oxidation of the semiconductor conductive layer And removing at least one edge that terminates in a lateral direction with respect to the surface of the semiconductor substrate of the LOCOS oxide film. , Sandwiched by upper and lower surfaces and a 15 degrees 30 degrees from to have a profile that end, to form the LOCOS oxide film.

本発明の第8の局面は、上記第7の局面において、前記バッファ熱酸化膜を60nm〜100nmの範囲の膜厚に形成し、前記シリコン窒化膜を150nm〜200nmの範囲の膜厚に形成する。   According to an eighth aspect of the present invention, in the seventh aspect, the buffer thermal oxide film is formed to a thickness of 60 nm to 100 nm, and the silicon nitride film is formed to a thickness of 150 nm to 200 nm. .

本発明の第9の局面は、上記第7の局面または上記第8の局面において、前記LOCOS酸化膜を250nm〜400nmの範囲の膜厚に形成する。   In a ninth aspect of the present invention, in the seventh aspect or the eighth aspect, the LOCOS oxide film is formed to a thickness in the range of 250 nm to 400 nm.

上記第1の局面によれば、LOCOS酸化膜の15度以上30度以下の角度で終端するエッジの付近の半導体導電層内ではインパクトイオン化が抑制される。従って、半導体導電層上に前記LOCOS酸化膜を形成するだけで、LOCOS酸化膜端部の直下の電界集中が容易に緩和され、コスト増加を伴うことなくLOCOS酸化膜直下の半導体導電層の良好な耐圧および抵抗を得ることができる。   According to the first aspect, impact ionization is suppressed in the semiconductor conductive layer near the edge that terminates at an angle of 15 degrees or more and 30 degrees or less of the LOCOS oxide film. Therefore, by forming the LOCOS oxide film on the semiconductor conductive layer, the electric field concentration just below the end of the LOCOS oxide film can be easily relaxed, and the semiconductor conductive layer directly under the LOCOS oxide film can be improved without increasing the cost. Withstand voltage and resistance can be obtained.

上記第2の局面によれば、LOCOS酸化膜端部の直下のドリフト層内で電界集中が緩和され、高耐圧および低オン抵抗のLDMOSを得ることができる。   According to the second aspect, the electric field concentration is relaxed in the drift layer immediately below the end of the LOCOS oxide film, and a high breakdown voltage and low on-resistance LDMOS can be obtained.

上記第3の局面によれば、LOCOS酸化膜端部の直下のドリフト層内で電界集中が緩和され、高耐圧および低オン抵抗の横型絶縁ゲートバイポーラトランジスタを得ることができる。   According to the third aspect, the electric field concentration is relaxed in the drift layer immediately below the end of the LOCOS oxide film, and a lateral insulated gate bipolar transistor having a high breakdown voltage and a low on-resistance can be obtained.

上記第4の局面によれば、パワー素子とその制御を行うロジック回路とを含むICのように、複数種類の素子を含む半導体装置において、複数種類の素子を同時に作り込みながら第1の半導体素子の耐圧およびオン抵抗を向上させることができる。   According to the fourth aspect, in a semiconductor device including a plurality of types of elements, such as an IC including a power element and a logic circuit for controlling the power element, the first semiconductor element is formed while simultaneously forming a plurality of types of elements. It is possible to improve the withstand voltage and the on-resistance.

上記第5の局面によれば、第1の半導体素子の耐圧および抵抗を第2の半導体素子に対して選択的に向上させた、複数種類の素子および複数種類の耐圧素子を含む半導体装置を提供することができる。   According to the fifth aspect, there is provided a semiconductor device including a plurality of types of elements and a plurality of types of breakdown voltage elements, wherein the breakdown voltage and resistance of the first semiconductor element are selectively improved with respect to the second semiconductor element. can do.

上記第6の局面によれば、前記LOCOS酸化膜と同じプロセスによって素子分離膜を形成することができ、プロセスの効率が向上する。   According to the sixth aspect, the element isolation film can be formed by the same process as the LOCOS oxide film, and the process efficiency is improved.

上記第7の局面によれば、15度以上30度以下の角度で終端するエッジを有するLOCOS酸化膜を作製することができる。そして、LOCOS酸化膜の15度以上30度以下の角度で終端するエッジの付近の半導体導電層内ではインパクトイオン化が抑制される。従って、半導体導電層に前記LOCOS酸化膜を形成するだけで、LOCOS酸化膜端部の直下の電界集中が容易に緩和され、LOCOS酸化膜直下の半導体導電層の良好な耐圧および抵抗を得ることができる。   According to the seventh aspect, a LOCOS oxide film having an edge that terminates at an angle of 15 degrees or greater and 30 degrees or less can be produced. Impact ionization is suppressed in the semiconductor conductive layer near the edge that terminates at an angle of 15 degrees or more and 30 degrees or less of the LOCOS oxide film. Therefore, by forming the LOCOS oxide film on the semiconductor conductive layer, the electric field concentration immediately below the end of the LOCOS oxide film can be easily relaxed, and a good breakdown voltage and resistance of the semiconductor conductive layer immediately below the LOCOS oxide film can be obtained. it can.

上記第8の局面によれば、バッファ熱酸化膜の膜厚とシリコン窒化膜の膜厚の膜厚とを前記範囲で変えることにより、エッジのプロファイルが15度以上30度以下の角度で終端するように調整することができる。   According to the eighth aspect, by changing the thickness of the buffer thermal oxide film and the thickness of the silicon nitride film within the above ranges, the edge profile terminates at an angle of 15 degrees to 30 degrees. Can be adjusted as follows.

上記第9の局面によれば、LOCOS酸化膜の膜厚を前記範囲で変えることにより、エッジのプロファイルが15度以上30度以下の角度で終端するように調整することができる。   According to the ninth aspect, by changing the thickness of the LOCOS oxide film within the above range, the edge profile can be adjusted to terminate at an angle of 15 degrees or more and 30 degrees or less.

本発明の実施形態を示すものであり、半導体装置の構成を示す断面図Sectional drawing which shows embodiment of this invention and shows the structure of a semiconductor device LOCOS酸化膜のオフ耐圧とオン抵抗との関係を示すグラフA graph showing the relationship between the off breakdown voltage and the on resistance of the LOCOS oxide film LOCOS酸化膜のエッジ角度とオフ耐圧との関係を示すグラフGraph showing the relationship between the edge angle of the LOCOS oxide film and the off breakdown voltage LOCOS酸化膜のエッジ角度と規格化オン抵抗との関係を示すグラフGraph showing the relationship between the edge angle of the LOCOS oxide film and the normalized on-resistance (a)および(b)はLOCOS酸化膜の製法の相違によるエッジ角度の相違を説明する断面図(A) And (b) is sectional drawing explaining the difference in edge angle by the difference in the manufacturing method of a LOCOS oxide film (a)ないし(c)は、図1の半導体装置の第1の製造工程を示す断面図(A) thru | or (c) are sectional drawings which show the 1st manufacturing process of the semiconductor device of FIG. (a)ないし(c)は、図1の半導体装置の第2の製造工程を示す断面図(A) thru | or (c) is sectional drawing which shows the 2nd manufacturing process of the semiconductor device of FIG. (a)ないし(c)は、図1の半導体装置の第3の製造工程を示す断面図(A) thru | or (c) are sectional drawings which show the 3rd manufacturing process of the semiconductor device of FIG. 本実施形態を示すものであり、変形例に係る半導体装置の構成を示す断面図Sectional drawing which shows this embodiment and shows the structure of the semiconductor device which concerns on a modification 従来技術を示すものであり、(a)および(b)は電界分布を説明する断面図である。The prior art is shown, (a) And (b) is sectional drawing explaining electric field distribution. 従来技術を示すものであり、(a)ないし(c)は、2回の選択酸化を行う工程を示す断面図FIG. 2A is a cross-sectional view showing a process of performing selective oxidation twice, showing a conventional technique. 従来技術を示すものであり、リセスLOCOS酸化膜の構成を示す断面図Sectional drawing which shows a prior art and shows the structure of a recess LOCOS oxide film

本発明の実施形態について図1ないし図9を用いて説明すれば以下の通りである。   The embodiment of the present invention will be described with reference to FIGS. 1 to 9 as follows.

(半導体装置の構成)
図1に、本実施形態に係る半導体装置1の断面構成を示す。
半導体装置1は、シリコン基板11、BOX層(Buried Oxide:埋め込み酸化膜)12、N+埋め込み層13、N-活性層14、P型ボディ層15、LVPW(Low Voltage P-Well:低電圧P型ウェル)16、N+ソース領域17、P+バックゲートコンタクト層18、N型ドリフト層19、LVNW(Low Voltage N-well:低電圧N型ウェル)20、N+ドレイン領域21、LOCOS酸化膜22、ゲート絶縁膜23、ゲート電極24、および、サイドウォール25を備えている。図1の断面図はLDMOSトランジスタの構成を示している。
(Configuration of semiconductor device)
FIG. 1 shows a cross-sectional configuration of a semiconductor device 1 according to this embodiment.
The semiconductor device 1 includes a silicon substrate 11, a BOX layer (Buried Oxide: buried oxide film) 12, an N + buried layer 13, an N active layer 14, a P-type body layer 15, an LVPW (Low Voltage P-Well). Type well) 16, N + source region 17, P + back gate contact layer 18, N type drift layer 19, LVNW (Low Voltage N-well) 20, N + drain region 21, LOCOS oxide film 22, a gate insulating film 23, a gate electrode 24, and sidewalls 25 are provided. The cross-sectional view of FIG. 1 shows the configuration of the LDMOS transistor.

シリコン基板11上に、BOX層12、N+埋め込み層13、および、N-活性層14が順にこの順に配置されている。シリコン基板11、BOX層12、N+埋め込み層13、および、N-活性層14により、半導体基板としてのSOI基板が構成されている。 On the silicon substrate 11, a BOX layer 12, an N + buried layer 13, and an N active layer 14 are arranged in this order. The silicon substrate 11, the BOX layer 12, the N + buried layer 13, and the N active layer 14 constitute an SOI substrate as a semiconductor substrate.

P型ボディ層15およびN型ドリフト層19は、N-活性層14中の、半導体基板の表層に形成されている。LVPW16はP型ボディ層15中に形成されており、LVNW20はN型ドリフト層19中に形成されている。N+ソース領域17は、LVPW16中に半導体基板表面から深さ方向に形成されている。N+ソース領域17とN型ドリフト層19との間の基板表面から深さ方向に、P型ボディ層15の一部領域、あるいは、P型ボディ層15とLVPW16との一部領域が挟まれており、当該一部領域の半導体基板表面近傍がチャネル領域となる。P+バックゲートコンタクト層18は、LVPW16中で、N+ソース領域17に対してチャネル領域と反対側に位置するように、半導体基板表面から深さ方向に形成されている。N+ドレイン領域21は、LVNW20中に半導体基板表面から深さ方向に形成されている。 P type body layer 15 and N type drift layer 19 are formed in the surface layer of the semiconductor substrate in N active layer 14. The LVPW 16 is formed in the P-type body layer 15, and the LVNW 20 is formed in the N-type drift layer 19. The N + source region 17 is formed in the LVPW 16 in the depth direction from the surface of the semiconductor substrate. A partial region of P-type body layer 15 or a partial region of P-type body layer 15 and LVPW 16 is sandwiched in the depth direction from the substrate surface between N + source region 17 and N-type drift layer 19. The vicinity of the surface of the semiconductor substrate in the partial region is a channel region. The P + back gate contact layer 18 is formed in the depth direction from the surface of the semiconductor substrate so as to be positioned on the opposite side of the channel region with respect to the N + source region 17 in the LVPW 16. The N + drain region 21 is formed in the LVNW 20 in the depth direction from the surface of the semiconductor substrate.

LOCOS酸化膜22は、N型ドリフト層19上でゲート絶縁膜23とN+ドレイン領域21との間の半導体基板表面に形成されている。ゲート絶縁膜23は、例えばシリコン酸化膜からなり、少なくとも、チャネル領域およびN型ドリフト層19のLOCOS酸化膜22に覆われていない領域上を覆うように形成されている。ゲート電極24は、例えばポリシリコンからなり、ゲート絶縁膜23と、ゲート絶縁膜23に隣接する側のLOCOS酸化膜22の一部を覆うように形成されている。サイドウォール25はゲート電極24の側面を覆うように形成されている。 The LOCOS oxide film 22 is formed on the surface of the semiconductor substrate between the gate insulating film 23 and the N + drain region 21 on the N-type drift layer 19. The gate insulating film 23 is made of, for example, a silicon oxide film, and is formed so as to cover at least the channel region and the region not covered with the LOCOS oxide film 22 of the N-type drift layer 19. The gate electrode 24 is made of polysilicon, for example, and is formed so as to cover the gate insulating film 23 and a part of the LOCOS oxide film 22 on the side adjacent to the gate insulating film 23. The sidewall 25 is formed so as to cover the side surface of the gate electrode 24.

ゲート電極24は半導体装置1のゲート端子Gに接続されている。N+ソース領域17およびP+バックゲートコンタクト層18は、ソース電極およびソース配線を介して半導体装置1のソース端子Sに接続されている。N+ドレイン領域21は、ドレイン電極およびドレイン配線を介して半導体装置1のドレイン端子Dに接続されている。 The gate electrode 24 is connected to the gate terminal G of the semiconductor device 1. N + source region 17 and P + back gate contact layer 18 are connected to source terminal S of semiconductor device 1 through a source electrode and a source wiring. N + drain region 21 is connected to drain terminal D of semiconductor device 1 through a drain electrode and a drain wiring.

(LOCOS酸化膜の形状)
上記LOCOS酸化膜22は、前記半導体基板の表面に対してラテラル方向に終端しているエッジを有している。当該エッジには、少なくとも、LOCOS酸化膜22がチャネル領域と隣接してゲート幅方向に延伸するエッジ22aと、LOCOS酸化膜22がN+ドレイン領域21と隣接してドレイン幅方向に延伸するエッジ22bとが含まれている。
(Shape of LOCOS oxide film)
The LOCOS oxide film 22 has an edge that terminates in a lateral direction with respect to the surface of the semiconductor substrate. The edges include at least an edge 22a in which the LOCOS oxide film 22 extends in the gate width direction adjacent to the channel region, and an edge 22b in which the LOCOS oxide film 22 extends in the drain width direction adjacent to the N + drain region 21. And are included.

エッジ22aは、上面と下面とに15度以上30度以下の範囲の角度θで挟まれて終端するプロファイルを有している。すなわち、LOCOS酸化膜22を、エッジ22aの延伸するゲート幅方向に対して垂直な面で切断した断面プロファイルが角度θで終端する形状をなしている。ここでは、エッジ22bもエッジ22aと同じプロファイルを有しているが、エッジ22aとは異なるプロファイルを有していてよく、15度以上30度以下の範囲にない角度θを有していてよい。   The edge 22a has a profile that is sandwiched between an upper surface and a lower surface at an angle θ ranging from 15 degrees to 30 degrees and ends. That is, a cross-sectional profile obtained by cutting the LOCOS oxide film 22 along a plane perpendicular to the gate width direction in which the edge 22a extends is shaped to terminate at an angle θ. Here, the edge 22b also has the same profile as the edge 22a, but may have a different profile from the edge 22a, and may have an angle θ that is not in the range of 15 degrees to 30 degrees.

図2に、角度θをパラメータとして、半導体装置1のオフ耐圧BVoff(横軸)と規格化オン抵抗RonA(縦軸)との関係を示す。破線で示す直線Cはシミュレーション結果によるものであり、縦軸および横軸は、素子寸法の相違およびドリフト層のキャリア濃度等のプロセス条件の相違を吸収できるように任意単位で規格化してある。このように、角度θを変化させると、オフ耐圧BVoffと規格化オン抵抗RonAとは、オフ耐圧BVoffが増加すると規格化オン抵抗RonAが減少する方向に直線的に変化する。実際に、角度θ=20.0度、22.5度、25.0度、および、31.0度のそれぞれについて半導体装置1を作製したところ、図に示すプロットが得られ、シミュレーション結果を検証することができた。グラフ中、右下に向うにつれ、性能が良くなる。但し、角度θ=20.0度、22.5度、および、25.0度の半導体装置1については、後述の製造工程に従ってLOCOS酸化膜22を作製し、角度θ=31.0度の半導体装置については、θの値が大きいことからリセスLOCOS酸化法によりLOCOS酸化膜を作製した。   FIG. 2 shows the relationship between the off breakdown voltage BVoff (horizontal axis) and the normalized on-resistance RonA (vertical axis) of the semiconductor device 1 using the angle θ as a parameter. A straight line C indicated by a broken line is based on a simulation result, and the vertical axis and the horizontal axis are normalized in arbitrary units so that differences in element dimensions and differences in process conditions such as carrier concentration of the drift layer can be absorbed. As described above, when the angle θ is changed, the off breakdown voltage BVoff and the normalized on resistance RonA change linearly in a direction in which the normalized on resistance RonA decreases as the off breakdown voltage BVoff increases. Actually, when the semiconductor device 1 was manufactured for each of the angles θ = 20.0 degrees, 22.5 degrees, 25.0 degrees, and 31.0 degrees, the plot shown in the figure was obtained, and the simulation result was verified. We were able to. In the graph, the performance improves as it goes to the lower right. However, for the semiconductor device 1 with the angles θ = 20.0 degrees, 22.5 degrees, and 25.0 degrees, the LOCOS oxide film 22 is formed according to the manufacturing process described later, and the semiconductor with the angle θ = 31.0 degrees. Regarding the apparatus, since the value of θ was large, a LOCOS oxide film was produced by the recess LOCOS oxidation method.

また、図3に、図2のプロットを、横軸を角度θ、縦軸をオフ耐圧BVoffとしてプロットし直したものを示す。さらに、図4に、横軸を角度θ、縦軸を規格化オン抵抗RonAとしてプロットし直したものを示す。図2に示すようなオフ耐圧BVoffと規格化オン抵抗RonAとのリニアな関係を考慮して、すなわち、一方が好適値であれば他方も好適値であることを考慮して、図3および図4から、好ましいオフ耐圧BVoffと規格化オン抵抗RonAとを同時に満たす角度θの範囲θpは、15度以上30度以下と求まる。   FIG. 3 is a plot of the plot of FIG. 2, with the horizontal axis representing the angle θ and the vertical axis representing the off breakdown voltage BVoff. Further, FIG. 4 shows a plot obtained by re-plotting the horizontal axis as the angle θ and the vertical axis as the normalized on-resistance RonA. 3 and FIG. 3 in consideration of the linear relationship between the off breakdown voltage BVoff and the normalized on-resistance RonA as shown in FIG. 2, that is, if one is a preferred value, the other is also a preferred value. 4, the range θp of the angle θ that simultaneously satisfies the preferable off breakdown voltage BVoff and the normalized on-resistance RonA is found to be 15 degrees or more and 30 degrees or less.

30度を超える角度θの範囲θlは、リセスLOCOS酸化膜やSTI(Shallow Trench Isolation:シャロー・トレンチ・アイソレーション)酸化膜を含む素子分離用LOCOS酸化膜で一般に使用されている角度を包含するような、半導体基板面に対して急峻な角度の範囲である。図5(a)にゲートフィールドプレート効果をアシストする効果を持たせたLOCOS酸化膜22が有する、範囲θp内の角度θを示し、図5(b)に素子分離用LOCOS酸化膜が有する、範囲θl内の角度θとの相違を示す。リセスLOCOS酸化膜やSTI酸化膜では、角度θが90度に近い、非常に急峻なものとなる。LOCOS酸化膜22の角度θを範囲θlの値に設定したとすると、図1のエッジ22a付近のN型ドリフト層19中の点Pにおいてインパクトイオン化が顕著になる。リセスLOCOS酸化膜やSTI酸化膜のような素子分離用LOCOS酸化膜は、従来、ロジック回路を主体とする回路パターンのプロセスに用いられるものであるので、そのエッジ形状にはインパクトイオン化を抑制することが考慮されていない。   The range θl of the angle θ exceeding 30 degrees includes an angle generally used in a LOCOS oxide film for element isolation including a recess LOCOS oxide film and an STI (Shallow Trench Isolation) oxide film. In addition, it is a range of a steep angle with respect to the semiconductor substrate surface. FIG. 5A shows the angle θ within the range θp of the LOCOS oxide film 22 that has the effect of assisting the gate field plate effect, and FIG. 5B shows the range of the element isolation LOCOS oxide film. The difference from the angle θ within θl is shown. The recess LOCOS oxide film and the STI oxide film are very steep with an angle θ close to 90 degrees. If the angle θ of the LOCOS oxide film 22 is set to a value in the range θl, impact ionization becomes significant at the point P in the N-type drift layer 19 near the edge 22a in FIG. Element isolation LOCOS oxide films, such as recess LOCOS oxide films and STI oxide films, are conventionally used in circuit pattern processes mainly composed of logic circuits, so that the edge shape suppresses impact ionization. Is not taken into account.

また、15度未満の角度θの範囲θsを採用したとすると、LOCOS酸化膜22のエッジ22a・22bからバーズビークが伸びやすい。従って、N-活性層14の上方部分、とりわけチャネル領域がバーズビークによって覆われてしまい、半導体装置1がLDMOSとして機能するのに支障が生じる。 Further, if a range θs of an angle θ of less than 15 degrees is adopted, the bird's beak is likely to extend from the edges 22a and 22b of the LOCOS oxide film 22. Therefore, the upper portion of the N active layer 14, particularly the channel region, is covered with bird's beaks, which hinders the semiconductor device 1 from functioning as an LDMOS.

なお、N型ドリフト層19およびLOCOS酸化膜22を構造に用いたLDMOSトランジスタを第1の半導体素子とすると、1つ以上の第1の半導体素子と、第1の半導体素子以外の1つ以上の第2の半導体素子とが、半導体基板にモノリシックに形成されていてもよい。これにより、パワー素子とその制御を行うロジック回路とを含むICのように、複数種類の素子を含む半導体装置において、複数種類の素子を同時に作り込みながら第1の半導体素子の耐圧およびオン抵抗を向上させることができる。   If the LDMOS transistor using the N-type drift layer 19 and the LOCOS oxide film 22 in the structure is a first semiconductor element, one or more first semiconductor elements and one or more other than the first semiconductor elements are used. The second semiconductor element may be formed monolithically on the semiconductor substrate. Accordingly, in a semiconductor device including a plurality of types of elements, such as an IC including a power element and a logic circuit for controlling the power element, the breakdown voltage and on-resistance of the first semiconductor element can be reduced while simultaneously forming a plurality of types of elements. Can be improved.

また、第1の半導体素子と第2の半導体素子とは互いに耐圧が異なっていてもよい。これにより、第1の半導体素子の耐圧およびオン抵抗を第2の半導体素子に対して選択的に向上させた、複数種類の素子(複数種類の耐圧系を含む素子)を含む半導体装置を提供することができる。   The first semiconductor element and the second semiconductor element may have different breakdown voltages. Accordingly, a semiconductor device including a plurality of types of elements (elements including a plurality of types of breakdown voltage systems) in which the breakdown voltage and on-resistance of the first semiconductor element are selectively improved with respect to the second semiconductor element is provided. be able to.

また、半導体装置1は、LOCOS酸化膜22のエッジ22aと同じプロファイルを有するエッジを備えた素子分離膜を備えていてもよい。これにより、LOCOS酸化膜22と同じプロセスによって素子分離膜を形成することができ、プロセスの効率が向上する。   The semiconductor device 1 may include an element isolation film having an edge having the same profile as the edge 22a of the LOCOS oxide film 22. Thereby, the element isolation film can be formed by the same process as the LOCOS oxide film 22, and the process efficiency is improved.

(半導体装置の製造工程)
次に、半導体装置1の製造工程について説明する。
まず、図6(a)に示すように、シリコン基板11、BOX層12、N+埋め込み層13、および、N-活性層14がこの順で配置されたSOI基板を用意する。ここでは半導体装置1のNチャネル型LDMOSを製造する例を説明するので、例えば、N+埋め込み層13を、砒素をドーパントとする1×1019cm-2程度のキャリア濃度を有する層として形成し、N-活性層14を、リンをドーパントとする1×1015cm-2程度のキャリア濃度を有するとともに12μm程度の膜厚を有する層として形成する。BOX層12の膜厚は例えば1.0μm程度である。
(Semiconductor device manufacturing process)
Next, the manufacturing process of the semiconductor device 1 will be described.
First, as shown in FIG. 6A, an SOI substrate in which a silicon substrate 11, a BOX layer 12, an N + buried layer 13, and an N active layer 14 are arranged in this order is prepared. Here, an example of manufacturing an N channel type LDMOS of the semiconductor device 1 will be described. For example, the N + buried layer 13 is formed as a layer having a carrier concentration of about 1 × 10 19 cm −2 using arsenic as a dopant. The N active layer 14 is formed as a layer having a carrier concentration of about 1 × 10 15 cm −2 with phosphorus as a dopant and a film thickness of about 12 μm. The film thickness of the BOX layer 12 is, for example, about 1.0 μm.

次に、図6(b)に示すように、SOI基板の表面を熱酸化法により酸化して、80nm程度の膜厚を有するバッファ熱酸化膜31を形成する。バッファ熱酸化膜31の好ましい膜厚の範囲は60nm〜100nmである。この範囲内で膜厚が小さい方には、LOCOS酸化膜22のバーズビーク発生の抑止力を高める効果がある。すなわち、角度θを拡大する効果がある。また、この範囲内で膜厚が大きい方には、角度θを縮小させる効果がある。従来のようにリセスLOCOS酸化膜を形成する場合には、バッファ熱酸化膜の膜厚は30nm程度である。   Next, as shown in FIG. 6B, the surface of the SOI substrate is oxidized by a thermal oxidation method to form a buffer thermal oxide film 31 having a thickness of about 80 nm. A preferable film thickness range of the buffer thermal oxide film 31 is 60 nm to 100 nm. If the film thickness is smaller within this range, the LOCOS oxide film 22 has an effect of increasing the deterrence of bird's beak generation. That is, there is an effect of increasing the angle θ. In addition, the larger the film thickness within this range, there is an effect of reducing the angle θ. When the recess LOCOS oxide film is formed as in the prior art, the thickness of the buffer thermal oxide film is about 30 nm.

次いで、図6(c)に示すように、バッファ熱酸化膜31上にCVD法により、175nm程度の膜厚を有するシリコン窒化膜32を形成する。シリコン窒化膜32の好ましい膜厚の範囲は150nm〜200nmである。この範囲内で膜厚が小さい方には、角度θを縮小させる効果がある。また、この範囲内で膜厚が大きい方には、LOCOS酸化膜22のバーズビーク発生の抑止力を高める効果がある。すなわち、角度θを拡大する効果がある。   Next, as shown in FIG. 6C, a silicon nitride film 32 having a thickness of about 175 nm is formed on the buffer thermal oxide film 31 by the CVD method. A preferable film thickness range of the silicon nitride film 32 is 150 nm to 200 nm. A smaller film thickness within this range has an effect of reducing the angle θ. In addition, the larger film thickness within this range has the effect of increasing the deterrence of bird's beak generation in the LOCOS oxide film 22. That is, there is an effect of increasing the angle θ.

上記のバッファ熱酸化膜31とシリコン窒化膜32との好ましい膜厚の範囲を組み合わせることにより、角度θを15度以上30度以下に容易に調整することができる。   The angle θ can be easily adjusted to 15 degrees or more and 30 degrees or less by combining the preferable film thickness ranges of the buffer thermal oxide film 31 and the silicon nitride film 32.

次いで、図7(a)に示すように、シリコン窒化膜32上にフォトレジスト33をパターニングし、N-活性層14の表面が露出するまでドライエッチングによってバッファ熱酸化膜31とシリコン窒化膜32とに窓開けを行い、窓34を形成する。このとき、半導体装置1上に素子分離膜を形成する領域があれば、当該領域にも窓34を形成する。ドライエッチングには、例えばCHF3/CF4などをエッチャントガスとするRIE(Reactive Ion Etching)を用いる。 Next, as shown in FIG. 7A, a photoresist 33 is patterned on the silicon nitride film 32, and the buffer thermal oxide film 31 and the silicon nitride film 32 are formed by dry etching until the surface of the N active layer 14 is exposed. The window 34 is formed by opening the window. At this time, if there is a region for forming an element isolation film on the semiconductor device 1, the window 34 is also formed in the region. For dry etching, RIE (Reactive Ion Etching) using, for example, CHF3 / CF4 as an etchant gas is used.

次いで、図7(b)に示すように、フォトレジスト33を除去した後、シリコン窒化膜32をマスクとし、窓34を通してN-活性層14の表面を水素/酸素雰囲気で1100℃程度の温度で50分間程度熱酸化する。ここで、熱酸化の前に、N-活性層14の表面をリセスエッチングしない。従来は60nm程度のリセスエッチングを行っていた。熱酸化により、窓34から露出したN-活性層14の表面のみが選択的に酸化され、LOCOS酸化膜22が形成される。LOCOS酸化膜22の膜厚によっても角度θを調整することができ、好ましい当該膜厚の範囲は250nm〜400nmである。 Next, as shown in FIG. 7B, after removing the photoresist 33, the silicon nitride film 32 is used as a mask and the surface of the N active layer 14 is passed through the window 34 at a temperature of about 1100 ° C. in a hydrogen / oxygen atmosphere. Thermally oxidize for about 50 minutes. Here, the surface of the N active layer 14 is not recess-etched before thermal oxidation. Conventionally, recess etching of about 60 nm has been performed. By thermal oxidation, only the surface of the N active layer 14 exposed from the window 34 is selectively oxidized, and the LOCOS oxide film 22 is formed. The angle θ can also be adjusted by the film thickness of the LOCOS oxide film 22, and the preferable film thickness range is 250 nm to 400 nm.

次いで、図7(c)に示すように、シリコン窒化膜32およびバッファ熱酸化膜31を除去してSOI基板の表面を露出させる。シリコン窒化膜32の除去には熱リン酸によるウェットエッチングを行い、バッファ熱酸化膜31の除去にはバッファードフッ酸等を用いることができる。これにより、LOCOS酸化膜22が完成し、この時点でエッジ22a・22bの角度θが15度以上30度以下の範囲内に形成される。   Next, as shown in FIG. 7C, the silicon nitride film 32 and the buffer thermal oxide film 31 are removed to expose the surface of the SOI substrate. The silicon nitride film 32 can be removed by wet etching using hot phosphoric acid, and the buffer thermal oxide film 31 can be removed by using buffered hydrofluoric acid. Thereby, the LOCOS oxide film 22 is completed, and at this time, the angle θ of the edges 22a and 22b is formed within a range of 15 degrees or more and 30 degrees or less.

その後、図8(a)に示すように、SOI基板の表面を酸化して犠牲酸化膜35を形成し、犠牲酸化膜35を通してイオン注入を行い、P型ボディ層15とLVPW16とを順次に形成し、また、N型ドリフト層19およびLVNW20を形成する。各注入領域はリソグラフィ工程により個別にパターニングされる。   Thereafter, as shown in FIG. 8A, the surface of the SOI substrate is oxidized to form a sacrificial oxide film 35, and ion implantation is performed through the sacrificial oxide film 35 to sequentially form the P-type body layer 15 and the LVPW 16. In addition, the N-type drift layer 19 and the LVNW 20 are formed. Each implantation region is individually patterned by a lithography process.

そして、図8(b)に示すように、犠牲酸化膜35を除去した後に、ゲート酸化を実施してゲート絶縁膜23を形成する。また、ゲート絶縁膜23の形成後に、ポリシリコン、WSiを成膜してリソグラフィ工程およびエッチング工程によりゲート電極24を形成する。   Then, as shown in FIG. 8B, after the sacrificial oxide film 35 is removed, gate oxidation is performed to form the gate insulating film 23. Further, after the gate insulating film 23 is formed, polysilicon and WSi are formed, and the gate electrode 24 is formed by a lithography process and an etching process.

次いで、図8(c)に示すように、サイドウォール25を形成した後にLDD(Lightly Doped Drain)注入(図示せず)を行い、N+ソース領域17、P+バックゲートコンタクト層18、および、N+ドレイン領域21をイオン注入により形成する。この後に、図示しないが、ソース電極およびドレイン電極と層間絶縁膜とを形成し、さらに種々のコンタクトおよびメタル配線を形成することにより、図1の半導体装置1が完成する。 Next, as shown in FIG. 8C, after the sidewall 25 is formed, LDD (Lightly Doped Drain) implantation (not shown) is performed, and an N + source region 17, a P + back gate contact layer 18, and N + drain region 21 is formed by ion implantation. Thereafter, although not shown, the source and drain electrodes and the interlayer insulating film are formed, and further various contacts and metal wirings are formed, whereby the semiconductor device 1 of FIG. 1 is completed.

このように、本実施形態によれば、LOCOS酸化膜22の15度以上30度以下の角度で終端するエッジの付近のN型ドリフト層19内ではインパクトイオン化が抑制される。従って、N型ドリフト層19上にLOCOS酸化膜22を形成するだけで、LOCOS酸化膜22端部の直下の電界集中が容易に緩和され、コスト増加を伴うことなくLOCOS酸化膜22の直下のN型ドリフト層19の良好な耐圧および抵抗を得ることができる。このプロセスは微細CMOSのプロセスと同等である。   As described above, according to the present embodiment, impact ionization is suppressed in the N-type drift layer 19 near the edge of the LOCOS oxide film 22 that terminates at an angle of 15 degrees or more and 30 degrees or less. Therefore, by forming the LOCOS oxide film 22 on the N-type drift layer 19, the electric field concentration immediately below the end of the LOCOS oxide film 22 can be easily relaxed, and the N directly below the LOCOS oxide film 22 is not accompanied by an increase in cost. Good breakdown voltage and resistance of the type drift layer 19 can be obtained. This process is equivalent to a fine CMOS process.

(半導体装置の変形例の構成)
図9に本実施形態の変形例に係る半導体装置41の断面構成を示す。
半導体装置41は、図1の半導体装置1において、N+ソース領域17をN+エミッタ領域51に、N+ドレイン領域21をP+コレクタ領域52に、それぞれ置き換えた構成である。図9の断面構成は、横型IGBTを構成している。これによっても、半導体装置1と同様に、LOCOS酸化膜22の直下のN型ドリフト層19の良好な耐圧および抵抗を得ることができる。
また、本発明は、Pチャネル型素子にも適用できるし、LDMOS、横型IGBTに限らず、耐圧および低抵抗を得たい任意の箇所にも適用可能である。
(Configuration of Modified Example of Semiconductor Device)
FIG. 9 shows a cross-sectional configuration of a semiconductor device 41 according to a modification of the present embodiment.
The semiconductor device 41 is configured by replacing the N + source region 17 with the N + emitter region 51 and the N + drain region 21 with the P + collector region 52 in the semiconductor device 1 of FIG. The cross-sectional configuration in FIG. 9 constitutes a lateral IGBT. This also makes it possible to obtain a good breakdown voltage and resistance of the N-type drift layer 19 immediately below the LOCOS oxide film 22 as in the semiconductor device 1.
In addition, the present invention can be applied to a P-channel element, and is not limited to an LDMOS and a lateral IGBT, but can be applied to any place where a breakdown voltage and a low resistance are desired.

本発明は、車載用や電力用のIC等に適用可能である。   The present invention is applicable to in-vehicle and power ICs.

1、41 半導体装置
19 N型ドリフト層(半導体導電層)
22 LOCOS酸化膜
22a、22b エッジ
θ 角度
1, 41 Semiconductor device 19 N-type drift layer (semiconductor conductive layer)
22 LOCOS oxide film 22a, 22b Edge θ angle

Claims (9)

表層に半導体導電層を備える半導体基板と、前記半導体導電層上に形成されたLOCOS酸化膜とを備えた半導体装置であって、
前記LOCOS酸化膜の前記半導体基板の表面に対してラテラル方向に終端しているエッジの少なくとも一部が、上面と下面とに15度以上30度以下の角度で挟まれて終端するプロファイルを有していることを特徴とする半導体装置。
A semiconductor device comprising a semiconductor substrate having a semiconductor conductive layer as a surface layer, and a LOCOS oxide film formed on the semiconductor conductive layer,
The LOCOS oxide film has a profile in which at least a part of the edge terminating in the lateral direction with respect to the surface of the semiconductor substrate is sandwiched between the upper surface and the lower surface at an angle of 15 degrees or more and 30 degrees or less. A semiconductor device characterized by that.
前記半導体導電層および前記LOCOS酸化膜を一部に有する横型二重拡散MOSトランジスタを備え、
前記半導体導電層は前記横型二重拡散MOSトランジスタのドリフト層であり、
前記エッジの少なくとも一部は、前記LOCOS酸化膜の、前記横型二重拡散MOSトランジスタのチャネル領域と隣接している側のエッジを含んでいることを特徴とする請求項1に記載の半導体装置。
A lateral double diffusion MOS transistor having the semiconductor conductive layer and the LOCOS oxide film in part,
The semiconductor conductive layer is a drift layer of the lateral double diffusion MOS transistor;
2. The semiconductor device according to claim 1, wherein at least a part of the edge includes an edge of the LOCOS oxide film adjacent to a channel region of the lateral double diffusion MOS transistor.
前記半導体導電層および前記LOCOS酸化膜を一部に有する横型絶縁ゲートバイポーラトランジスタであり、
前記半導体導電層は前記横型絶縁ゲートバイポーラトランジスタのドリフト層であり、
前記エッジの少なくとも一部は、前記LOCOS酸化膜の、前記横型絶縁ゲートバイポーラトランジスタのチャネル領域と隣接している側のエッジを含んでいることを特徴とする請求項1に記載の半導体装置。
A lateral insulated gate bipolar transistor partially including the semiconductor conductive layer and the LOCOS oxide film;
The semiconductor conductive layer is a drift layer of the lateral insulated gate bipolar transistor;
2. The semiconductor device according to claim 1, wherein at least a part of the edge includes an edge of the LOCOS oxide film adjacent to a channel region of the lateral insulated gate bipolar transistor.
前記半導体導電層および前記LOCOS酸化膜を構造に用いた1つ以上の第1の半導体素子と、前記第1の半導体素子以外の1つ以上の第2の半導体素子とが、前記半導体基板にモノリシックに形成されていることを特徴とする請求項1から3までのいずれか1項に記載の半導体装置。   One or more first semiconductor elements using the semiconductor conductive layer and the LOCOS oxide film as a structure, and one or more second semiconductor elements other than the first semiconductor element are monolithically formed on the semiconductor substrate. The semiconductor device according to claim 1, wherein the semiconductor device is formed. 前記第1の半導体素子と前記第2の半導体素子とは、互いに耐圧が異なることを特徴とする請求項4に記載の半導体装置。   The semiconductor device according to claim 4, wherein the first semiconductor element and the second semiconductor element have different breakdown voltages. 前記プロファイルを有するエッジを備えた素子分離膜を備えていることを特徴とする請求項1から5までのいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, further comprising an element isolation film having an edge having the profile. 半導体導電層上にLOCOS酸化膜を形成する半導体装置の製造方法であって、
表層に前記半導体導電層を有する半導体基板の前記半導体導電層上にバッファ熱酸化膜を形成する工程と、
前記バッファ熱酸化膜上にシリコン窒化膜を形成する工程と、
形成された前記シリコン窒化膜と前記バッファ熱酸化膜とを貫通して前記半導体導電層の表面を露出させる窓開けを行う工程と、
前記窓開けにより形成された窓を通して前記半導体導電層をエッチングすることなく選択熱酸化する工程と、
前記半導体導電層の選択熱酸化後に前記シリコン窒化膜および前記バッファ熱酸化膜を除去する工程と、
を経ることにより、
前記LOCOS酸化膜の前記半導体基板の表面に対してラテラル方向に終端する少なくとも1つのエッジが、上面と下面とに15度以上30度以下の角度で挟まれて終端するプロファイルを有するように、前記LOCOS酸化膜を形成することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which a LOCOS oxide film is formed on a semiconductor conductive layer,
Forming a buffer thermal oxide film on the semiconductor conductive layer of the semiconductor substrate having the semiconductor conductive layer as a surface layer;
Forming a silicon nitride film on the buffer thermal oxide film;
Performing a window opening through the formed silicon nitride film and the buffer thermal oxide film to expose the surface of the semiconductor conductive layer;
Selective thermal oxidation without etching the semiconductor conductive layer through the window formed by opening the window;
Removing the silicon nitride film and the buffer thermal oxide film after selective thermal oxidation of the semiconductor conductive layer;
By going through
The LOCOS oxide film has a profile in which at least one edge that terminates in a lateral direction with respect to the surface of the semiconductor substrate is sandwiched between an upper surface and a lower surface at an angle of 15 degrees or more and 30 degrees or less and terminates. A method of manufacturing a semiconductor device, comprising forming a LOCOS oxide film.
前記バッファ熱酸化膜を60nm〜100nmの範囲の膜厚に形成し、前記シリコン窒化膜を150nm〜200nmの範囲の膜厚に形成することを特徴とする請求項7に記載の半導体装置の製造方法。   8. The method of manufacturing a semiconductor device according to claim 7, wherein the buffer thermal oxide film is formed to a thickness of 60 nm to 100 nm, and the silicon nitride film is formed to a thickness of 150 nm to 200 nm. . 前記LOCOS酸化膜を250nm〜400nmの範囲の膜厚に形成することを特徴とする請求項7または8に記載の半導体装置の製造方法。   9. The method of manufacturing a semiconductor device according to claim 7, wherein the LOCOS oxide film is formed to a thickness in a range of 250 nm to 400 nm.
JP2011258100A 2011-11-25 2011-11-25 Manufacturing method of semiconductor device Expired - Fee Related JP5994238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011258100A JP5994238B2 (en) 2011-11-25 2011-11-25 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011258100A JP5994238B2 (en) 2011-11-25 2011-11-25 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2013115144A true JP2013115144A (en) 2013-06-10
JP5994238B2 JP5994238B2 (en) 2016-09-21

Family

ID=48710439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011258100A Expired - Fee Related JP5994238B2 (en) 2011-11-25 2011-11-25 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5994238B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515939A (en) * 2015-04-10 2018-06-14 無錫華潤上華科技有限公司 Lateral diffusion metal oxide semiconductor field effect transistor and method of manufacturing the same
JP2018125415A (en) * 2017-02-01 2018-08-09 富士電機株式会社 Semiconductor device
WO2023150062A1 (en) * 2022-02-04 2023-08-10 Texas Instruments Incorporated Bird's beak profile of field oxide region

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309639A (en) * 1989-05-24 1990-12-25 Fujitsu Ltd Manufacture of semiconductor device
JPH07183522A (en) * 1993-11-10 1995-07-21 Philips Electron Nv Lateral type soi device
JPH098121A (en) * 1995-06-23 1997-01-10 Sony Corp Semiconductor device and its manufacture
JPH0992788A (en) * 1995-09-28 1997-04-04 Nec Corp Semiconductor integrated circuit
JPH1154499A (en) * 1997-07-31 1999-02-26 Oki Electric Ind Co Ltd Fabrication of semiconductor device
JPH11274330A (en) * 1998-03-26 1999-10-08 Sanyo Electric Co Ltd Nonvolatile semiconductor storage device
JP2005294862A (en) * 2005-05-30 2005-10-20 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2008182118A (en) * 2007-01-25 2008-08-07 Denso Corp Semiconductor device and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309639A (en) * 1989-05-24 1990-12-25 Fujitsu Ltd Manufacture of semiconductor device
JPH07183522A (en) * 1993-11-10 1995-07-21 Philips Electron Nv Lateral type soi device
JPH098121A (en) * 1995-06-23 1997-01-10 Sony Corp Semiconductor device and its manufacture
JPH0992788A (en) * 1995-09-28 1997-04-04 Nec Corp Semiconductor integrated circuit
JPH1154499A (en) * 1997-07-31 1999-02-26 Oki Electric Ind Co Ltd Fabrication of semiconductor device
JPH11274330A (en) * 1998-03-26 1999-10-08 Sanyo Electric Co Ltd Nonvolatile semiconductor storage device
JP2005294862A (en) * 2005-05-30 2005-10-20 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2008182118A (en) * 2007-01-25 2008-08-07 Denso Corp Semiconductor device and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515939A (en) * 2015-04-10 2018-06-14 無錫華潤上華科技有限公司 Lateral diffusion metal oxide semiconductor field effect transistor and method of manufacturing the same
JP2018125415A (en) * 2017-02-01 2018-08-09 富士電機株式会社 Semiconductor device
US10134846B2 (en) 2017-02-01 2018-11-20 Fuji Electric Co., Ltd. Semiconductor device
WO2023150062A1 (en) * 2022-02-04 2023-08-10 Texas Instruments Incorporated Bird's beak profile of field oxide region
US20230253495A1 (en) * 2022-02-04 2023-08-10 Texas Instruments Incorporated Bird's beak profile of field oxide region

Also Published As

Publication number Publication date
JP5994238B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
US7345341B2 (en) High voltage semiconductor devices and methods for fabricating the same
JP5959162B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR101245935B1 (en) Semiconductor device and method for thereof
JP6037085B2 (en) Semiconductor device and manufacturing method of semiconductor device
US8362558B2 (en) Low on-resistance lateral double-diffused MOS device
JP2006128668A (en) High voltage transistor and methods of manufacturing the same
US9178055B2 (en) Semiconductor device
JP2009038068A (en) Semiconductor device and manufacturing method thereof
JP5994238B2 (en) Manufacturing method of semiconductor device
TW200952176A (en) Semiconductor devices and methods for fabricating the same
US20110284952A1 (en) Semiconductor device and manufacturing method thereof
JP2011204998A (en) Semiconductor device and method for manufacturing the same
JP5428121B2 (en) Manufacturing method of semiconductor device
US20100237413A1 (en) Semiconductor device and method for manufacturing semiconductor device
TWI500152B (en) Lateral-diffusion metal-oxide-semiconductor device and method for fabricating the same
KR101006519B1 (en) Semiconductor device and method of manufacturing the same
US12002892B2 (en) Semiconductor device with embedded Schottky diode and manufacturing method thereof
CN106549057B (en) DMOS device manufacturing method and DMOS device
KR101099559B1 (en) Method for manufacturing power mosfet
JP2012033841A (en) Semiconductor device and manufacturing method of the same
JP2006332231A (en) Manufacturing method of semiconductor device
JP2009117412A (en) Insulated gate semiconductor device and its manufacturing method
JP2008153495A (en) Semiconductor device and manufacturing method of the same
TWI397151B (en) Fabrication methods for high voltage semiconductor devices
KR100200881B1 (en) High voltage semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R151 Written notification of patent or utility model registration

Ref document number: 5994238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees