JPH0992788A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0992788A
JPH0992788A JP7250623A JP25062395A JPH0992788A JP H0992788 A JPH0992788 A JP H0992788A JP 7250623 A JP7250623 A JP 7250623A JP 25062395 A JP25062395 A JP 25062395A JP H0992788 A JPH0992788 A JP H0992788A
Authority
JP
Japan
Prior art keywords
region
film
element isolation
insulating film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7250623A
Other languages
Japanese (ja)
Other versions
JP2940448B2 (en
Inventor
Mitsugi Ikenaga
貢 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7250623A priority Critical patent/JP2940448B2/en
Publication of JPH0992788A publication Critical patent/JPH0992788A/en
Application granted granted Critical
Publication of JP2940448B2 publication Critical patent/JP2940448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the alignment accuracy in mark aligning and ESD resis tance by forming an element isolation region from two types of insulating films of the flattened first instating film and not flattened second insulating film having a protruding sectional shape, and particularly isolating the ESD protective element by the second insulating film. SOLUTION: The region undesired to flatten the insulating film of an element isolation region such as, for example, an ESD protective element forming region 10 desired to reduce the breakdown voltage of the parasitic transistor of the part used as a mark alignment detecting mark or a peripheral circuit region is covered with a photoresist film 4A. Then, the region desired to flatten the element isolation insulating film such as, for example, the element forming region 11 of the internal circuit, a thermally oxide film 2 of the region for enhancing the breakdown voltage of the transistor and the silicon substrate 1 are etched. Then, after the films 4, 4A are removed, oxidized, and element isolation oxide films 5A, 5B are formed. Then, a nitride film 3 and a thermally oxide film 2 are removed to form a silicon substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体集積回路に関
し、特に素子分離領域の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit, and more particularly to the structure of an element isolation region.

【0002】[0002]

【従来の技術】従来の半導体集積回路の素子分離領域
は、その後のリソグラフィ工程への悪影響をなくす為
に、ほぼ平坦に形成されていた。以下図2を用いて説明
する。
2. Description of the Related Art The element isolation region of a conventional semiconductor integrated circuit has been formed to be substantially flat in order to prevent adverse effects on the subsequent lithography process. This will be described below with reference to FIG.

【0003】まず図2(a)に示すように、シリコン基
板1上に熱酸化膜2を20〜60nm成長し、その上に
CVD法により窒化膜3を100〜300nm成長す
る。次でフォトレジスト膜4を形成したのちパターニン
グし、素子分離領域のフォトレジスト膜を除去する。次
でこのフォトレジスト膜4をマスクとし窒化膜4のエッ
チングを行ったのちさらに、開口部の熱酸化膜2とシリ
コン基板1の表面を40〜150nmの深さにエッチン
グする。次に図2(b)に示すように、フォトレジスト
膜4を除去した後、選択酸化を行ない開口部に、素子分
離酸化膜5Aを300〜1000nmの長さに形成す
る。その後、図2(c)に示すように窒化膜3と熱酸化
膜2を除去することにより酸化膜5Aからなる平坦化さ
れた素子分離領域を形成する。
First, as shown in FIG. 2A, a thermal oxide film 2 is grown to 20 to 60 nm on a silicon substrate 1, and a nitride film 3 is grown to 100 to 300 nm on it by a CVD method. Next, a photoresist film 4 is formed and then patterned to remove the photoresist film in the element isolation region. Next, the photoresist film 4 is used as a mask to etch the nitride film 4, and then the thermal oxide film 2 in the opening and the surface of the silicon substrate 1 are etched to a depth of 40 to 150 nm. Next, as shown in FIG. 2B, after the photoresist film 4 is removed, selective oxidation is performed to form an element isolation oxide film 5A in the opening with a length of 300 to 1000 nm. After that, as shown in FIG. 2C, the nitride film 3 and the thermal oxide film 2 are removed to form a flattened element isolation region made of the oxide film 5A.

【0004】[0004]

【発明が解決しようとする課題】この従来の素子分離領
域は、平坦化された酸化膜で構成されている為、次工程
の目合せ時分離領域を光学的に検出すること(検知)が
難しくなりアライメント精度が低下するという問題点が
ある。
Since the conventional element isolation region is composed of a flattened oxide film, it is difficult to optically detect (detect) the isolation region at the time of alignment in the next process. Therefore, there is a problem that the alignment accuracy is lowered.

【0005】又半導体集積回路では、静電破壊を防止す
る為に入力端子と内部回路間に保護回路を挿入し過電圧
を吸収するのが一般的である。この保護回路にはMOS
トランジスタを用いたESD(静電破壊)保護素子が用
いられるが、このトランジスタとしては一般に周辺回路
部に形成される寄生トランジスタが用いられる。しかし
従来の半導体集積回路における素子分離酸化膜は一種類
の構造である為、ESD保護素子として用いる寄生トラ
ンジスタの耐圧は他の回路領域に形成される寄生トラン
ジスタの耐圧と同一となる為、ESD保護素子の保護能
力が不十分となり集積回路のESD耐性が低下するとい
う問題点があった。
Further, in a semiconductor integrated circuit, a protection circuit is generally inserted between an input terminal and an internal circuit to absorb an overvoltage in order to prevent electrostatic breakdown. This protection circuit has a MOS
An ESD (electrostatic breakdown) protection element using a transistor is used, and a parasitic transistor formed in a peripheral circuit portion is generally used as this transistor. However, since the element isolation oxide film in the conventional semiconductor integrated circuit has one type of structure, the withstand voltage of the parasitic transistor used as the ESD protection element is the same as the withstand voltage of the parasitic transistor formed in the other circuit area, and thus the ESD protection is performed. There has been a problem that the protection capability of the element becomes insufficient and the ESD resistance of the integrated circuit decreases.

【0006】本発明の目的は、目合せ時のアライメント
精度とESD耐性の向上した半導体集積回路を提供する
ことにある。
An object of the present invention is to provide a semiconductor integrated circuit having improved alignment accuracy and ESD resistance at the time of alignment.

【0007】[0007]

【課題を解決するための手段】本発明の半導体集積回路
は、平坦化されている第1絶縁膜と断面形状が凸状の平
坦化されてない第2絶縁膜の2種類の絶縁膜から素子分
離領域を形成しているものであり、特にESD保護素子
部は第2絶縁膜で分離されているものである。
A semiconductor integrated circuit according to the present invention is a device including two kinds of insulating films, a first insulating film which is flattened and a second insulating film which has a convex cross-sectional shape and is not flattened. The isolation region is formed, and in particular, the ESD protection element portion is isolated by the second insulating film.

【0008】[0008]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。図1(a)〜(c)は本発明の一実施の形
態を説明する為の半導体チップの断面図である。以下製
造工程順に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. 1A to 1C are cross-sectional views of a semiconductor chip for explaining an embodiment of the present invention. Hereinafter, description will be made in the order of the manufacturing process.

【0009】まず図1(a)に示すように、シリコン基
板1上に熱酸化膜2を20〜60nmの厚さに形成した
のち、CVD法により厚さ100〜300nmの窒化膜
3を形成する。次に全面にフォトレジスト膜4を形成し
たのちパターニングし、素子分離領域に開口部を形成す
る。次でこのフォトレジスト膜4をマスクとしドライエ
ッチング法により露出した窒化膜3をエッチングする。
次に素子分離領域を構成する絶縁膜を平坦化したくない
領域、例えば目合せ検知用マークとして利用する部分や
周辺回路領域の寄生トランジスタの耐圧を低くしたいE
SD保護素子形成領域10をフォトレジスト膜4Aで覆
う。次で素子分離絶縁膜を平坦化したい領域、例えば内
部回路の素子形成領域11や寄生トランジスタの耐圧を
高くしたい領域の熱酸化膜2とシリコン基板1を40〜
150nmの深さ迄エッチングする。
First, as shown in FIG. 1A, a thermal oxide film 2 having a thickness of 20 to 60 nm is formed on a silicon substrate 1, and then a nitride film 3 having a thickness of 100 to 300 nm is formed by a CVD method. . Next, a photoresist film 4 is formed on the entire surface and then patterned to form an opening in the element isolation region. Next, using the photoresist film 4 as a mask, the exposed nitride film 3 is etched by a dry etching method.
Next, it is desired to lower the breakdown voltage of the parasitic transistor in a region where the insulating film forming the element isolation region is not desired to be flattened, for example, a portion used as a registration detection mark or the peripheral circuit region.
The SD protection element formation region 10 is covered with the photoresist film 4A. Next, the thermal oxide film 2 and the silicon substrate 1 in the region where the element isolation insulating film is to be flattened, for example, the element forming region 11 of the internal circuit or the region where the withstand voltage of the parasitic transistor is desired to be increased from 40 to 40.
Etch to a depth of 150 nm.

【0010】次に図1(b)に示すように、フォトレジ
スト膜4,4Aを除去したのち酸化し、素子分離酸化膜
5A,5Bを形成する。この時、シリコン基板1の表面
をエッチングした部分の素子分離酸化膜5Aはほぼ平坦
化されたものとなるのに対し、シリコン基板1をエッチ
ングしない部分の素子分離酸化膜5Bの断面形状は凸状
となる。
Next, as shown in FIG. 1B, the photoresist films 4 and 4A are removed and then oxidized to form element isolation oxide films 5A and 5B. At this time, the element isolation oxide film 5A in the portion where the surface of the silicon substrate 1 is etched is substantially flattened, whereas the cross-sectional shape of the element isolation oxide film 5B in the portion where the silicon substrate 1 is not etched is convex. Becomes

【0011】次に図1(c)に示すように、窒化膜3と
熱酸化膜2とを除去することにより2種類の素子分離酸
化膜を有するシリコン基板が形成される。以下素子分離
酸化膜5A,5Bにより分離された領域に素子等を形成
し半導体集積回路を完成させる。
Next, as shown in FIG. 1C, the nitride film 3 and the thermal oxide film 2 are removed to form a silicon substrate having two types of element isolation oxide films. Thereafter, elements and the like are formed in the regions separated by the element isolation oxide films 5A and 5B to complete the semiconductor integrated circuit.

【0012】このように構成された本実施の形態によれ
ば、素子分離酸化膜を目合せ用に利用したり、又ESD
保護素子の耐圧を低下させる手段に用いる場合は、その
断面形状を凸状に形成して電流パスを短くし、その他の
領域では素子分離酸化膜を平坦化している為、回路素子
形成領域におけるリソグラフィー工程へ悪影響を与える
ことなく、目合せ時のアライメント精度を向上させ、E
SD保護回路素子の耐圧を低くできる。
According to the present embodiment having such a configuration, the element isolation oxide film is used for alignment, and the ESD is used.
When it is used as a means for lowering the withstand voltage of a protection element, its cross-sectional shape is formed to be convex to shorten the current path, and the element isolation oxide film is flattened in other areas. Alignment accuracy at the time of alignment is improved without adversely affecting the process.
The breakdown voltage of the SD protection circuit element can be lowered.

【0013】[0013]

【発明の効果】以上説明したように本発明は、素子分離
絶縁膜として平坦な酸化膜と凸状の酸化膜との2種類の
酸化膜を設けることにより、平坦化されてない素子分離
酸化膜は、目合時のアライメント精度を向上させ、かつ
寄生トランジスタの耐圧を低くしたESD保護素子部で
使用することにより、ESD耐性を向上させることがで
きるという効果がある。一方、平坦化されている素子分
離酸化膜を持つ部分は従来通り目合せ時の焦点深度等の
マージンを保ち、寄生トランジスタの耐圧を高く保つこ
とができる。
As described above, according to the present invention, two types of oxide films, that is, a flat oxide film and a convex oxide film, are provided as the element isolation insulating film, so that the element isolation oxide film which is not planarized is provided. Has an effect that the ESD resistance can be improved by improving the alignment accuracy at the time of meshing and by using it in the ESD protection element section in which the withstand voltage of the parasitic transistor is lowered. On the other hand, in the portion having the flattened element isolation oxide film, the margin such as the depth of focus at the time of alignment can be maintained and the withstand voltage of the parasitic transistor can be kept high as in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を説明する為の半導体チッ
プの断面図。
FIG. 1 is a sectional view of a semiconductor chip for explaining an embodiment of the invention.

【図2】従来の素子分離酸化膜の製造方法を説明する為
の半導体チップの断面図。
FIG. 2 is a cross-sectional view of a semiconductor chip for explaining a conventional method for manufacturing an element isolation oxide film.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 熱酸化膜 3 窒化膜 4,4A フォトレジスト膜 5A,5B 素子分離酸化膜 10 ESD素子形成領域 11 回路素子形成領域 1 Silicon substrate 2 Thermal oxide film 3 Nitride film 4, 4A Photoresist film 5A, 5B Element isolation oxide film 10 ESD element formation area 11 Circuit element formation area

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/092 29/78 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Reference number in the agency FI Technical display location H01L 27/092 29/78

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された内部回路領域
と、ESD保護素子を含む周辺回路領域と、素子分離の
為の素子分離領域とを有する半導体集積回路において、
前記素子分離領域は平坦化された第1絶縁膜と断面形状
が凸形の第2絶縁膜とから構成されていることを特徴と
する半導体集積回路。
1. A semiconductor integrated circuit having an internal circuit region formed on a semiconductor substrate, a peripheral circuit region including an ESD protection element, and an element isolation region for element isolation,
2. The semiconductor integrated circuit according to claim 1, wherein the element isolation region is composed of a flattened first insulating film and a second insulating film having a convex cross section.
【請求項2】 ESD保護素子部は第2絶縁膜で分離さ
れている請求項1記載の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the ESD protection element section is separated by a second insulating film.
JP7250623A 1995-09-28 1995-09-28 Semiconductor integrated circuit Expired - Lifetime JP2940448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7250623A JP2940448B2 (en) 1995-09-28 1995-09-28 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7250623A JP2940448B2 (en) 1995-09-28 1995-09-28 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH0992788A true JPH0992788A (en) 1997-04-04
JP2940448B2 JP2940448B2 (en) 1999-08-25

Family

ID=17210615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7250623A Expired - Lifetime JP2940448B2 (en) 1995-09-28 1995-09-28 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2940448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115144A (en) * 2011-11-25 2013-06-10 Toyota Motor Corp Semiconductor device and manufacturing method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252411A (en) * 1993-02-24 1994-09-09 Nkk Corp Manufacture for semiconductor memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252411A (en) * 1993-02-24 1994-09-09 Nkk Corp Manufacture for semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115144A (en) * 2011-11-25 2013-06-10 Toyota Motor Corp Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP2940448B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
KR940010205A (en) Contact hole formation method of highly integrated semiconductor device
JPH0158661B2 (en)
JP3348997B2 (en) Method for manufacturing semiconductor device
JP4338490B2 (en) Manufacturing method of optical semiconductor integrated circuit device
JPH0629317A (en) Semiconductor device and manufacture thereof
JP2940448B2 (en) Semiconductor integrated circuit
US6391701B1 (en) Semiconductor device and process of fabrication thereof
US5681765A (en) Process for fabricating single polysilicon high performance BICMOS
US6114194A (en) Method for fabricating a field device transistor
JPH10256390A (en) Manufacture of semiconductor device
JPH08181223A (en) Manufacture of semiconductor device
JP2817226B2 (en) Method for manufacturing semiconductor device
KR100628642B1 (en) High Voltage MOS Transistor and Method for Forming the Same
JPH0621369A (en) Manufacture of mos integrated circuit
US6544852B1 (en) Method of fabricating semiconductor device
JP2943855B2 (en) Method for manufacturing semiconductor device
JPH0740604B2 (en) Method for manufacturing MOS semiconductor device
KR101004813B1 (en) Method for manufacturing Transistor
JP2985202B2 (en) Method for manufacturing MOS type semiconductor device
JP2002050746A (en) Semiconductor device
KR100292052B1 (en) Method for manufacturing semiconductor device
JP2001274388A (en) Semiconductor device and manufacturing method thereof
JP2002050747A (en) Production method for semiconductor device
JP3218777B2 (en) Semiconductor device and manufacturing method thereof
JPH07321218A (en) Manufacture of semiconductor device