TWI397151B - Fabrication methods for high voltage semiconductor devices - Google Patents

Fabrication methods for high voltage semiconductor devices Download PDF

Info

Publication number
TWI397151B
TWI397151B TW98124049A TW98124049A TWI397151B TW I397151 B TWI397151 B TW I397151B TW 98124049 A TW98124049 A TW 98124049A TW 98124049 A TW98124049 A TW 98124049A TW I397151 B TWI397151 B TW I397151B
Authority
TW
Taiwan
Prior art keywords
region
type
drain
high voltage
gate
Prior art date
Application number
TW98124049A
Other languages
Chinese (zh)
Other versions
TW201104798A (en
Inventor
Che Hua Chang
Shih Ming Chen
Sung Min Wei
Chun Ping Yang
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW98124049A priority Critical patent/TWI397151B/en
Publication of TW201104798A publication Critical patent/TW201104798A/en
Application granted granted Critical
Publication of TWI397151B publication Critical patent/TWI397151B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

高壓半導體裝置的製造方法Manufacturing method of high voltage semiconductor device

本發明係有關於一種高壓半導體裝置的製造方法,特別是有關於一種具低漏電流特性的高壓半導體裝置的製造方法。The present invention relates to a method of fabricating a high voltage semiconductor device, and more particularly to a method of fabricating a high voltage semiconductor device having low leakage current characteristics.

高壓元件技術適用於高電壓與高功率的積體電路領域。傳統高電壓半導體元件之一型態為雙擴散汲極(DDD)CMOS結構,另一型態為橫向擴散MOS(LDMOS)結構。傳統高電壓半導體元件主要用於高於或大抵18V的元件應用領域。高壓元件技術的優點為符合成本效益且易相容於其他製程,已廣泛應用於顯示器驅動IC元件、電源供應器、電力管理、通訊、車用電子或工業控制等領域。High-voltage component technology is suitable for high-voltage and high-power integrated circuits. One of the conventional high voltage semiconductor devices is a double diffused drain (DDD) CMOS structure, and the other is a laterally diffused MOS (LDMOS) structure. Conventional high voltage semiconductor components are mainly used in component applications above or substantially 18V. The advantages of high-voltage component technology are cost-effective and easily compatible with other processes, and have been widely used in display driver IC components, power supplies, power management, communications, automotive electronics or industrial control.

第1A-1F圖係顯示傳統高壓半導體裝置的製造方法各步驟的剖面示意圖。請參閱第1A圖,首先提供一半導體基底10,例如單晶矽基底,具有淺溝槽隔離區13定義出一第一區域10I和一第二區域10II。形成高壓P-型摻雜井區(HVPW)12於第二區域10II中與高壓N-型摻雜井區(HVNW)11於第一區域10I中。接著,形成P-型雙擴散汲極(PDDD)15於高壓N-摻雜井區11中與形成N-型雙擴散汲極(NDDD)16於高壓P-型摻雜井區12中。The 1A-1F diagram is a schematic cross-sectional view showing the steps of the manufacturing method of the conventional high voltage semiconductor device. Referring to FIG. 1A, a semiconductor substrate 10, such as a single crystal germanium substrate, is provided, with a shallow trench isolation region 13 defining a first region 10I and a second region 10II. A high voltage P-type doped well region (HVPW) 12 is formed in the second region 10II and a high voltage N-type doped well region (HVNW) 11 in the first region 10I. Next, a P-type double diffusion drain (PDDD) 15 is formed in the high voltage N-doped well region 11 and forms an N-type double diffusion drain (NDDD) 16 in the high voltage P-type well region 12.

請參閱第1B圖,毯覆性地形成閘極介電層17和多晶矽層18於半導體基底10上。藉著,進行一黃光微影製程,利用光罩定義第一閘極堆疊20a於第一區域10I上和第二閘極堆疊20b於第二區域10II上,如第1C圖所示。Referring to FIG. 1B, a gate dielectric layer 17 and a polysilicon layer 18 are formed on the semiconductor substrate 10 in a blanket manner. By performing a yellow lithography process, the first gate stack 20a is defined on the first region 10I and the second gate stack 20b on the second region 10II by using a photomask, as shown in FIG. 1C.

接著,請參閱第1D圖,形成閘極間隙子23於閘極堆疊20a和20b的側壁上。例如,閘極間隙子23可為氧化矽-氮化矽-氧化矽(ONO)結構,且閘極間隙子23的厚度大抵為0.08μm。接著,施以離子植入步驟,將P-型離子分別植入於閘極堆疊20a兩側的P-型雙擴散汲極15中,以形成對應的P-型濃摻雜源極/汲極區25,及將N-型離子分別植入於閘極堆疊20b兩側的N-型雙擴散汲極16中,以形成對應的N-型濃摻雜源極/汲極區26。Next, referring to FIG. 1D, a gate spacer 23 is formed on the sidewalls of the gate stacks 20a and 20b. For example, the gate spacer 23 may be a tantalum oxide-tantalum nitride-anthracene oxide (ONO) structure, and the thickness of the gate spacer 23 is substantially 0.08 μm. Next, an ion implantation step is performed to implant P-type ions into the P-type double diffusion drain 15 on both sides of the gate stack 20a to form a corresponding P-type heavily doped source/drain Region 25, and N-type ions are implanted in N-type double diffused drains 16 on either side of gate stack 20b, respectively, to form corresponding N-type heavily doped source/drain regions 26.

接著,請參閱第1E圖,基於整合其他高壓元件的需要,順應性地形成一氧化層27於半導體基底上,並接著施以蝕刻步驟E以移除該氧化層27,露出P-型濃摻雜源極/汲極區25和N-型濃摻雜源極/汲極區26。請參閱第1F圖,形成層間介電層(ILD)30和源極/汲極接觸35,及進行其他後段製程以完成高壓半導體裝置。Next, referring to FIG. 1E, an oxide layer 27 is conformally formed on the semiconductor substrate based on the integration of other high voltage components, and then an etching step E is applied to remove the oxide layer 27 to expose the P-type thick blend. The source/drain region 25 and the N-type heavily doped source/drain region 26. Referring to FIG. 1F, an interlayer dielectric layer (ILD) 30 and a source/drain contact 35 are formed, and other back-end processes are performed to complete the high voltage semiconductor device.

由上述製程步驟所製造的高壓半導體裝置,於高壓驅動下,會有較大的漏電流,例如以16.5V驅動時,其漏電流Ioff 會高於10E-9A。The high-voltage semiconductor device manufactured by the above process steps has a large leakage current under high-voltage driving. For example, when driving at 16.5V, the leakage current I off is higher than 10E-9A.

本發明之一實施例提供一種高壓半導體裝置的製造方法,包括:提供一半導體基底,具有淺溝槽隔離區定義出一第一區域和一第二區域;形成一第一摻雜井區於該第一區域中與一第二摻雜井區於該第二區域中;形成一第一型雙擴散汲極於該第二摻雜井區中與一第二型雙擴散汲極於該第一摻雜井區中;形成一閘極介電層和一多晶矽層於該 半導體基底上;形成多晶矽閘極分別於該第一區域上和該第二區域上;形成閘極間隙子於該等多晶矽閘極的側壁上;施以離子植入步驟,將離子穿透該閘極介電層分別植入於該第一型雙擴散汲極和該第二型雙擴散汲極中,以形成對應的一第一型濃摻雜源極/汲極區和一第二型濃摻雜源極/汲極區;形成一氧化層於該半導體基底上;以及移除該氧化層和其下方的該閘極介電層,露出該第一型濃摻雜源極/汲極區和該第二型濃摻雜源極/汲極區。An embodiment of the present invention provides a method of fabricating a high voltage semiconductor device, including: providing a semiconductor substrate having a shallow trench isolation region defining a first region and a second region; forming a first doped well region a first doped well region and a second doped well region in the second region; a first type of double diffused drain in the second doped well region and a second type double diffused drain in the first region Doping a well region; forming a gate dielectric layer and a polysilicon layer Forming a polysilicon gate on the first region and the second region; forming a gate spacer on sidewalls of the polysilicon gates; applying an ion implantation step to pass ions through the gate The pole dielectric layers are respectively implanted in the first type double diffusion drain and the second type double diffusion drain to form a corresponding first type dense doped source/drain region and a second type thick Doping a source/drain region; forming an oxide layer on the semiconductor substrate; and removing the oxide layer and the gate dielectric layer underneath to expose the first type of heavily doped source/drain regions And the second type of heavily doped source/drain regions.

本發明另一實施例提供一種高壓半導體裝置的製造方法,包括:提供一半導體基底,具有淺溝槽隔離區定義出一第一區域和一第二區域;形成一N-型摻雜井區於該第一區域中與一P-型摻雜井區於該第二區域中;形成一N-型雙擴散汲極於該P-摻雜井區中與一P-型雙擴散汲極於該N-摻雜井區;形成一閘極介電層和一多晶矽層於該半導體基底;形成多晶矽閘極分別於該第一區域上和該第二區域上;形成閘極間隙子於該等多晶矽閘極的側壁上;施以離子植入步驟,將離子穿透該閘極介電層分別植入於該N-型雙擴散汲極和該P-型雙擴散汲極中,以形成對應的一N-型濃摻雜源極/汲極區和一P-型濃摻雜源極/汲極區;形成一氧化層於該半導體基底上;以及移除該氧化層和其下方的該閘極介電層,露出該N-型濃摻雜源極/汲極區和該P-型濃摻雜源極/汲極區。Another embodiment of the present invention provides a method of fabricating a high voltage semiconductor device, comprising: providing a semiconductor substrate having a shallow trench isolation region defining a first region and a second region; forming an N-type doped well region The first region and a P-type doped well region are in the second region; forming an N-type double diffusion drain in the P-doped well region and a P-type double diffusion gate N-doping the well region; forming a gate dielectric layer and a polysilicon layer on the semiconductor substrate; forming a polysilicon gate on the first region and the second region; forming a gate spacer on the polysilicon On the sidewall of the gate; an ion implantation step is performed to implant ions through the gate dielectric layer in the N-type double diffusion drain and the P-type double diffusion drain to form corresponding An N-type heavily doped source/drain region and a P-type heavily doped source/drain region; forming an oxide layer on the semiconductor substrate; and removing the oxide layer and the gate thereunder The pole dielectric layer exposes the N-type heavily doped source/drain region and the P-type heavily doped source/drain region.

為使本發明能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to make the invention more apparent, the following detailed description of the embodiments and the accompanying drawings are as follows:

以下以各實施例詳細說明並伴隨著圖式說明之範例,做為本發明之參考依據。在圖式或說明書描述中,相似或相同之部分皆使用相同之圖號。且在圖式中,實施例之形狀或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,另外,特定之實施例僅為揭示本發明使用之特定方式,其並非用以限定本發明。The following is a detailed description of the embodiments and examples accompanying the drawings, which are the basis of the present invention. In the drawings or the description of the specification, the same drawing numbers are used for similar or identical parts. In the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. In addition, the components of the drawings will be described separately, and it is noted that the components not shown or described in the drawings are known to those of ordinary skill in the art, and in particular, The examples are merely illustrative of specific ways of using the invention and are not intended to limit the invention.

有鑑於此,本發明的主要特徵及樣態在於將閘極介電層的圖案化步驟延遲,並且和電阻保護氧化層(RPO)的移除步驟同時進行,因此省略了一道光罩(簡稱HVOR光罩)製程,可有效地降低製造成本。再者,由於濃摻雜源極/汲極區是在閘極介電層存在下形成,由此形成的高壓半導體裝置,具有較低的漏電流。In view of this, the main features and aspects of the present invention are to delay the patterning step of the gate dielectric layer and simultaneously with the step of removing the resistive oxide layer (RPO), thus omitting a mask (HVOR for short) The mask process can effectively reduce manufacturing costs. Furthermore, since the heavily doped source/drain regions are formed in the presence of a gate dielectric layer, the resulting high voltage semiconductor device has a lower leakage current.

第2A-2F圖係顯示本發明之一實施例的高壓半導體裝置的製造方法各步驟的剖面示意圖。請參閱第2A圖,首先提供一半導體基底100,例如單晶矽基底、絕緣層上有矽(SOI)基底或磊晶矽基底,其具有淺溝槽隔離區130定義出一第一區域100I和一第二區域100II。接著,形成一高壓P-型摻雜井區(HVPW)120於該第二區域100II中與一高壓N-型摻雜井區(HVNW)110於該第一區域100I中。接著,形成P-型雙擴散汲極(PDDD)150於該高壓N-型摻雜井區110中與形成N-型雙擴散汲極(NDDD)160於該高壓P型摻雜井區120中。2A-2F is a schematic cross-sectional view showing the steps of a method of manufacturing a high voltage semiconductor device according to an embodiment of the present invention. Referring to FIG. 2A, a semiconductor substrate 100, such as a single crystal germanium substrate, a germanium (SOI) substrate or an epitaxial germanium substrate on the insulating layer, having a shallow trench isolation region 130 defining a first region 100I and A second area 100II. Next, a high voltage P-type doping well region (HVPW) 120 is formed in the second region 100II and a high voltage N-type doping well region (HVNW) 110 in the first region 100I. Next, a P-type double diffusion drain (PDDD) 150 is formed in the high voltage N-type well region 110 and an N-type double diffusion drain (NDDD) 160 is formed in the high voltage P-type well region 120. .

請參閱第2B圖,毯覆性地形成一閘極介電層170和一多晶矽層180於半導體基底100上。藉著,進行一黃光微影製程,利用光罩定義一第一多晶矽閘極180a於該第一區域100I上和一第二多晶矽閘極180b於該第二區域100II上,如第2C圖所示,於此階段,閘極介電層170仍覆蓋於半導體基底100上。Referring to FIG. 2B, a gate dielectric layer 170 and a polysilicon layer 180 are formed on the semiconductor substrate 100 in a blanket manner. By performing a yellow lithography process, a first polysilicon gate 180a is defined on the first region 100I and a second polysilicon gate 180b on the second region 100II by using a mask, such as 2C. As shown, at this stage, the gate dielectric layer 170 still covers the semiconductor substrate 100.

接著,請參閱第2D圖,形成閘極間隙子230於多晶矽閘極180a和180b的側壁上。例如,閘極間隙子230的材質可為氮化矽(SiN)結構,且閘極間隙子230的厚度大抵為0.11μm。接著,施以離子植入步驟Ia和Ib,將P-型離子穿透該閘極介電層170並分別植入於該多晶矽閘極180a兩側的該P-型雙擴散汲極150中,以形成對應的一P-型源極/汲極區250,及將N-型離子穿透閘極介電層170分別植入於多晶矽閘極180b兩側的N-型雙擴散汲極160中,以形成對應的一N-型源極/汲極區260。應注意的是,P-型和N-型離子離子植入的能量和濃度應視該閘極介電層170的厚度和濃摻雜源極/汲極區的設計需求而定。Next, referring to FIG. 2D, a gate spacer 230 is formed on the sidewalls of the polysilicon gates 180a and 180b. For example, the material of the gate spacer 230 may be a tantalum nitride (SiN) structure, and the thickness of the gate spacer 230 is substantially 0.11 μm. Next, ion implantation steps Ia and Ib are applied, and P-type ions are penetrated into the gate dielectric layer 170 and implanted in the P-type double diffusion drain 150 on both sides of the polysilicon gate 180a, respectively. To form a corresponding P-type source/drain region 250, and implant an N-type ion penetrating gate dielectric layer 170 into the N-type double diffusion drain 160 on both sides of the polysilicon gate 180b. To form a corresponding N-type source/drain region 260. It should be noted that the energy and concentration of P-type and N-type ion implantation should be dependent on the thickness of the gate dielectric layer 170 and the design requirements of the heavily doped source/drain regions.

接著,請參閱第2E圖,基於整合其他高壓元件的需要,順應性地形成一電阻保護氧化層(RPO)270於該半導體基底上,並接著施以蝕刻步驟E以移除該電阻保護氧化層270和其下方的該閘極介電層170,並露出該P-型濃摻雜源極/汲極區250和該N-型濃摻雜源極/汲極區260。請參閱第2F圖,形成一層間介電層(ILD)300和源極/汲極接觸350,及進行其他後段製程以完成高壓半導體裝置。Next, referring to FIG. 2E, a resistive protective oxide layer (RPO) 270 is conformally formed on the semiconductor substrate based on the need to integrate other high voltage components, and then an etching step E is applied to remove the resistive protective oxide layer. 270 and the gate dielectric layer 170 thereunder, and exposing the P-type heavily doped source/drain region 250 and the N-type heavily doped source/drain region 260. Referring to FIG. 2F, an interlevel dielectric (ILD) 300 and source/drain contacts 350 are formed, and other back-end processes are performed to complete the high voltage semiconductor device.

根據本發明實施例,由第2A-2F圖所示製程步驟所製 造的高壓半導體裝置,於高壓驅動下,會有較小的漏電流,例如以16.5V驅動時,其漏電流Ioff 會小於10E-12A。再者,由於該閘極介電層170的圖案化步驟和該電阻保護氧化層(RPO)270的移除步驟同時進行,因此省略了一道光罩(簡稱HVOR光罩)製程,可有效地降低製造成本,並且因有效地降低漏電流而提升高壓半導體裝置的電性效能。According to the embodiment of the present invention, the high voltage semiconductor device manufactured by the process steps shown in FIG. 2A-2F has a small leakage current under high voltage driving. For example, when driving at 16.5V, the leakage current I off is smaller than 10E-12A. Moreover, since the patterning step of the gate dielectric layer 170 and the step of removing the resistance protective oxide layer (RPO) 270 are performed simultaneously, a photomask (referred to as HVOR mask) process is omitted, which can effectively reduce The manufacturing cost and the electrical performance of the high voltage semiconductor device are improved by effectively reducing the leakage current.

本發明雖以各種實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been disclosed in the above various embodiments, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art can make a few changes and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

10‧‧‧半導體基底10‧‧‧Semiconductor substrate

10I‧‧‧第一區域10I‧‧‧First Area

10II‧‧‧第二區域10II‧‧‧Second area

11‧‧‧高壓N-型摻雜井區(HVNW)11‧‧‧High-pressure N-type doping well area (HVNW)

12‧‧‧高壓P-型摻雜井區(HVPW)12‧‧‧High-pressure P-type doping well area (HVPW)

13‧‧‧淺溝槽隔離區13‧‧‧Shallow trench isolation zone

15‧‧‧P-型雙擴散汲極(PDDD)15‧‧‧P-type double diffused bungee (PDDD)

16‧‧‧N-型雙擴散汲極(NDDD)16‧‧‧N-type double diffusion bungee (NDDD)

17‧‧‧閘極介電層17‧‧‧ gate dielectric layer

18‧‧‧多晶矽層18‧‧‧Polysilicon layer

20a、20b‧‧‧第一和第二閘極堆疊20a, 20b‧‧‧ first and second gate stacks

23‧‧‧閘極間隙子23‧‧‧ gate gap

25‧‧‧P-型濃摻雜源極/汲極區25‧‧‧P-type concentrated doped source/drain region

26‧‧‧N-型濃摻雜源極/汲極區26‧‧‧N-type concentrated doped source/drain region

27‧‧‧電阻保護氧化層(RPO)27‧‧‧Resist Protective Oxide Layer (RPO)

30‧‧‧層間介電層(ILD)30‧‧‧Interlayer dielectric layer (ILD)

35‧‧‧源極/汲極接觸35‧‧‧Source/bungee contact

100‧‧‧半導體基底100‧‧‧Semiconductor substrate

100I‧‧‧第一區域100I‧‧‧First Area

100II‧‧‧第二區域100II‧‧‧Second area

110‧‧‧高壓N-型摻雜井區(HVNW)110‧‧‧High-pressure N-type doping well area (HVNW)

120‧‧‧高壓P-型摻雜井區(HVPW)120‧‧‧High-pressure P-type doping well area (HVPW)

130‧‧‧淺溝槽隔離區130‧‧‧Shallow trench isolation zone

150‧‧‧P-型雙擴散汲極(PDDD)150‧‧‧P-type double diffused bungee (PDDD)

160‧‧‧N-型雙擴散汲極(NDDD)160‧‧‧N-type double diffusion bungee (NDDD)

170‧‧‧閘極介電層170‧‧‧ gate dielectric layer

180‧‧‧多晶矽層180‧‧‧Polysilicon layer

180a、180b‧‧‧第一和第二多晶矽閘極180a, 180b‧‧‧ first and second polysilicon gates

230‧‧‧閘極間隙子230‧‧ ‧ gate gap

250‧‧‧P-型濃摻雜源極/汲極區250‧‧‧P-type concentrated doped source/drain region

260‧‧‧N-型濃摻雜源極/汲極區260‧‧‧N-type concentrated doped source/drain region

270‧‧‧電阻保護氧化層(RPO)270‧‧‧Resist Protective Oxide Layer (RPO)

300‧‧‧層間介電層(ILD)300‧‧‧Interlayer dielectric layer (ILD)

350‧‧‧源極/汲極接觸350‧‧‧Source/bungee contact

E‧‧‧蝕刻步驟E‧‧‧ etching step

Ia、Ib‧‧‧離子植入步驟Ia, Ib‧‧‧ ion implantation steps

第1A-1F圖係顯示傳統高壓半導體裝置的製造方法各步驟的剖面示意圖;以及第2A-2F圖係顯示本發明之一實施例的高壓半導體裝置的製造方法各步驟的剖面示意圖。1A-1F is a schematic cross-sectional view showing steps of a method of manufacturing a conventional high-voltage semiconductor device; and 2A-2F is a schematic cross-sectional view showing steps of a method of manufacturing a high-voltage semiconductor device according to an embodiment of the present invention.

100‧‧‧半導體基底100‧‧‧Semiconductor substrate

100I‧‧‧第一區域100I‧‧‧First Area

100II‧‧‧第二區域100II‧‧‧Second area

110‧‧‧高壓N-型摻雜井區(HVNW)110‧‧‧High-pressure N-type doping well area (HVNW)

120‧‧‧高壓P-型摻雜井區(HVPW)120‧‧‧High-pressure P-type doping well area (HVPW)

130‧‧‧淺溝槽隔離區130‧‧‧Shallow trench isolation zone

150‧‧‧P-型雙擴散汲極(PDDD)150‧‧‧P-type double diffused bungee (PDDD)

160‧‧‧N-型雙擴散汲極(NDDD)160‧‧‧N-type double diffusion bungee (NDDD)

170‧‧‧閘極介電層170‧‧‧ gate dielectric layer

180a、180b‧‧‧第一和第二多晶矽閘極180a, 180b‧‧‧ first and second polysilicon gates

230‧‧‧閘極間隙子230‧‧ ‧ gate gap

250‧‧‧P-型濃摻雜源極/汲極區250‧‧‧P-type concentrated doped source/drain region

260‧‧‧N-型濃摻雜源極/汲極區260‧‧‧N-type concentrated doped source/drain region

Ia、Ib‧‧‧離子植入步驟Ia, Ib‧‧‧ ion implantation steps

Claims (8)

一種高壓半導體裝置的製造方法,包括:提供一半導體基底,具有淺溝槽隔離區定義出一第一區域和一第二區域;形成一第一摻雜井區於該第一區域中與一第二摻雜井區於該第二區域中;形成一第一型雙擴散汲極於該第二摻雜井區中與一第二型雙擴散汲極於該第一摻雜井區中;形成一閘極介電層和一多晶矽層於該半導體基底上;形成多晶矽閘極分別於該第一區域上和該第二區域上;形成閘極間隙子於該等多晶矽閘極的側壁上;施以離子植入步驟,將離子穿透該閘極介電層分別植入於該第一型雙擴散汲極和該第二型雙擴散汲極中,以形成對應的一第一型濃摻雜源極/汲極區和一第二型濃摻雜源極/汲極區;形成一氧化層於該半導體基底上;以及同時移除該氧化層和該閘極介電層之未被該等多晶矽閘極以及該閘極間隙子所覆蓋的部份,露出該第一型濃摻雜源極/汲極區和該第二型濃摻雜源極/汲極區。A method of fabricating a high voltage semiconductor device, comprising: providing a semiconductor substrate having a shallow trench isolation region defining a first region and a second region; forming a first doped well region in the first region and a first a second doped well region is formed in the second region; forming a first type double diffusion drain in the second doped well region and a second type double diffusion drain in the first doped well region; forming a gate dielectric layer and a polysilicon layer are formed on the semiconductor substrate; a polysilicon gate is formed on the first region and the second region; and a gate gap is formed on sidewalls of the polysilicon gates; And implanting ions through the gate dielectric layer in the first type double diffusion drain and the second type double diffusion drain in an ion implantation step to form a corresponding first type concentrated doping a source/drain region and a second type of heavily doped source/drain region; forming an oxide layer on the semiconductor substrate; and simultaneously removing the oxide layer and the gate dielectric layer a polysilicon gate and a portion covered by the gate spacer to expose the first type of doped The source / drain region and the second type heavily doped source / drain regions. 如申請專利範圍第1項所述之高壓半導體裝置的製造方法,其中該半導體基底包括單晶矽基底或絕緣層上有矽(SOI)基底。The method of manufacturing a high voltage semiconductor device according to claim 1, wherein the semiconductor substrate comprises a single crystal germanium substrate or a germanium (SOI) substrate on the insulating layer. 如申請專利範圍第1項所述之高壓半導體裝置的製造方法,其中該第一摻雜井區為一高壓N-型摻雜井區,及 該第二摻雜井區為一高壓P-型摻雜井區。The method of manufacturing a high voltage semiconductor device according to claim 1, wherein the first doped well region is a high voltage N-type doping well region, and The second doped well region is a high pressure P-type doped well region. 如申請專利範圍第1項所述之高壓半導體裝置的製造方法,其中該第一型雙擴散汲極為一N-型雙擴散汲極及該第二型雙擴散汲極為一P-型雙擴散汲極。The method for manufacturing a high voltage semiconductor device according to claim 1, wherein the first type double diffused germanium is an N-type double diffused drain and the second type double diffused germanium is a P-type double diffused germanium. pole. 如申請專利範圍第1項所述之高壓半導體裝置的製造方法,其中該閘極間隙子的材質包括氮化矽,其厚度大抵等於或小於0.11μm。The method of manufacturing a high voltage semiconductor device according to claim 1, wherein the material of the gate spacer comprises tantalum nitride, and the thickness thereof is substantially equal to or less than 0.11 μm. 如申請專利範圍第1項所述之高壓半導體裝置的製造方法,其中該第一型源極/汲極區為一N-型濃摻雜源極/汲極區,及該第二型源極/汲極區為一P-型濃摻雜源極/汲極區。The method of manufacturing a high voltage semiconductor device according to claim 1, wherein the first source/drain region is an N-type heavily doped source/drain region, and the second source The / drain region is a P-type heavily doped source/drain region. 如申請專利範圍第1項所述之高壓半導體裝置的製造方法,其中該氧化層包括一電阻保護氧化層。The method of manufacturing a high voltage semiconductor device according to claim 1, wherein the oxide layer comprises a resistance protective oxide layer. 一種高壓半導體裝置的製造方法,包括:提供一半導體基底,具有淺溝槽隔離區定義出一第一區域和一第二區域;形成一N-型摻雜井區於該第一區域中與一P-型摻雜井區於該第二區域中;形成一N-型雙擴散汲極於該P-摻雜井區中與一P-型雙擴散汲極於該N-摻雜井區中;形成一閘極介電層和一多晶矽層於該半導體基底上;形成多晶矽閘極分別於該第一區域上和該第二區域上;形成閘極間隙子於該等多晶矽閘極的側壁上;施以離子植入步驟,將離子穿透該閘極介電層分別植 入於該N-型雙擴散汲極和該P-型雙擴散汲極中,以形成對應的一N-型濃摻雜源極/汲極區和一P-型濃摻雜源極/汲極區;形成一電阻保護氧化層於該半導體基底上;以及同時移除該電阻保護氧化層和該閘極介電層之未被該等多晶矽閘極以及該閘極間隙子所覆蓋的部份,露出該N-型濃摻雜源極/汲極區和該P-型濃摻雜源極/汲極區。A method of fabricating a high voltage semiconductor device, comprising: providing a semiconductor substrate having a shallow trench isolation region defining a first region and a second region; forming an N-type doped well region in the first region and a P-type doped well region is in the second region; forming an N-type double-diffused drain in the P-doped well region and a P-type double-diffused drain in the N-doped well region Forming a gate dielectric layer and a polysilicon layer on the semiconductor substrate; forming a polysilicon gate on the first region and the second region; forming a gate spacer on the sidewall of the polysilicon gate Applying an ion implantation step to ionize the gate dielectric layer separately Entering the N-type double-diffused drain and the P-type double-diffused drain to form a corresponding N-type heavily doped source/drain region and a P-type heavily doped source/汲Forming a resistive protective oxide layer on the semiconductor substrate; and simultaneously removing the resistive protective oxide layer and the portion of the gate dielectric layer that is not covered by the polysilicon gate and the gate spacer The N-type heavily doped source/drain region and the P-type heavily doped source/drain region are exposed.
TW98124049A 2009-07-16 2009-07-16 Fabrication methods for high voltage semiconductor devices TWI397151B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98124049A TWI397151B (en) 2009-07-16 2009-07-16 Fabrication methods for high voltage semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98124049A TWI397151B (en) 2009-07-16 2009-07-16 Fabrication methods for high voltage semiconductor devices

Publications (2)

Publication Number Publication Date
TW201104798A TW201104798A (en) 2011-02-01
TWI397151B true TWI397151B (en) 2013-05-21

Family

ID=44813780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98124049A TWI397151B (en) 2009-07-16 2009-07-16 Fabrication methods for high voltage semiconductor devices

Country Status (1)

Country Link
TW (1) TWI397151B (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878100A (en) * 1988-01-19 1989-10-31 Texas Instruments Incorporated Triple-implanted drain in transistor made by oxide sidewall-spacer method
US4928156A (en) * 1987-07-13 1990-05-22 Motorola, Inc. N-channel MOS transistors having source/drain regions with germanium
US5091763A (en) * 1990-12-19 1992-02-25 Intel Corporation Self-aligned overlap MOSFET and method of fabrication
US5606191A (en) * 1994-12-16 1997-02-25 Mosel Vitelic, Inc. Semiconductor device with lightly doped drain regions
US5897363A (en) * 1996-05-29 1999-04-27 Micron Technology, Inc. Shallow junction formation using multiple implant sources
US6297108B1 (en) * 2000-03-10 2001-10-02 United Microelectronics Corp. Method of forming a high voltage MOS transistor on a semiconductor wafer
US6528850B1 (en) * 2000-05-03 2003-03-04 Linear Technology Corporation High voltage MOS transistor with up-retro well
US20030089951A1 (en) * 2001-10-05 2003-05-15 Taiwan Semiconductor Manufacturing Company ESD implantation in deep-submicron CMOS technology for high-voltage-tolerant applications
US20050205926A1 (en) * 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. High-voltage MOS transistor and method for fabricating the same
US20050227448A1 (en) * 2004-04-07 2005-10-13 Fu-Hsin Chen High voltage double diffused drain MOS transistor with medium operation voltage
US20070166896A1 (en) * 2003-11-13 2007-07-19 Volterra Semiconductor Corporation Method of Fabricating a Lateral Double-Diffused Mosfet
US20090011561A1 (en) * 2007-07-02 2009-01-08 Promos Technologies Inc. Method of fabricating high-voltage mos having doubled-diffused drain

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928156A (en) * 1987-07-13 1990-05-22 Motorola, Inc. N-channel MOS transistors having source/drain regions with germanium
US4878100A (en) * 1988-01-19 1989-10-31 Texas Instruments Incorporated Triple-implanted drain in transistor made by oxide sidewall-spacer method
US5091763A (en) * 1990-12-19 1992-02-25 Intel Corporation Self-aligned overlap MOSFET and method of fabrication
US5606191A (en) * 1994-12-16 1997-02-25 Mosel Vitelic, Inc. Semiconductor device with lightly doped drain regions
US5897363A (en) * 1996-05-29 1999-04-27 Micron Technology, Inc. Shallow junction formation using multiple implant sources
US6297108B1 (en) * 2000-03-10 2001-10-02 United Microelectronics Corp. Method of forming a high voltage MOS transistor on a semiconductor wafer
US6528850B1 (en) * 2000-05-03 2003-03-04 Linear Technology Corporation High voltage MOS transistor with up-retro well
US20030089951A1 (en) * 2001-10-05 2003-05-15 Taiwan Semiconductor Manufacturing Company ESD implantation in deep-submicron CMOS technology for high-voltage-tolerant applications
US20070166896A1 (en) * 2003-11-13 2007-07-19 Volterra Semiconductor Corporation Method of Fabricating a Lateral Double-Diffused Mosfet
US20050205926A1 (en) * 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. High-voltage MOS transistor and method for fabricating the same
US20050227448A1 (en) * 2004-04-07 2005-10-13 Fu-Hsin Chen High voltage double diffused drain MOS transistor with medium operation voltage
US20090011561A1 (en) * 2007-07-02 2009-01-08 Promos Technologies Inc. Method of fabricating high-voltage mos having doubled-diffused drain

Also Published As

Publication number Publication date
TW201104798A (en) 2011-02-01

Similar Documents

Publication Publication Date Title
TWI393190B (en) Semiconductor devices and method of fabrication
US8466026B2 (en) Semiconductor device and method for manufacturing the same
JP4783050B2 (en) Semiconductor device and manufacturing method thereof
KR20100006342A (en) Lateral double diffused metal oxide semiconductor device and manufacturing method of lateral double diffused metal oxide semiconductor device
JP2009239111A (en) Semiconductor device
KR20120012705A (en) Semiconductor devices and methods of manufacturing the same
KR101531882B1 (en) Semiconductor device and method for manufacturing the same
TW201351637A (en) Device and method for manufacturing the same
JP2008130983A (en) Semiconductor device and its manufacturing method
US9768054B2 (en) High voltage device with low Rdson
TWI455318B (en) High voltage semiconductor device and method for manufacturing the same
JP2007027622A (en) Semiconductor device and its manufacturing method
KR20140001087A (en) Vertical power mosfet and methods of forming the same
JP2006253334A (en) Semiconductor device and its fabrication process
US11495675B2 (en) Manufacture method of lateral double-diffused transistor
CN101964326A (en) Manufacturing method of high-voltage semiconductor device
US8138550B2 (en) Method of manufacturing a semiconductor device and a semiconductor device
US20170263770A1 (en) Semiconductor device and manufacturing method of the same
TWI397151B (en) Fabrication methods for high voltage semiconductor devices
CN110957349B (en) Semiconductor device and method for manufacturing the same
US8198659B2 (en) Semiconductor device and method for fabricating the same
US11417761B1 (en) Transistor structure and method for fabricating the same
TWI618246B (en) High-voltage semiconductor device and method for manufacturing the same
JP2012033841A (en) Semiconductor device and manufacturing method of the same
US7803676B2 (en) Semiconductor device and method of fabricating the same