TWI455318B - High voltage semiconductor device and method for manufacturing the same - Google Patents
High voltage semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- TWI455318B TWI455318B TW100107690A TW100107690A TWI455318B TW I455318 B TWI455318 B TW I455318B TW 100107690 A TW100107690 A TW 100107690A TW 100107690 A TW100107690 A TW 100107690A TW I455318 B TWI455318 B TW I455318B
- Authority
- TW
- Taiwan
- Prior art keywords
- conductivity type
- high voltage
- doped region
- region
- semiconductor device
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
本發明係有關於一種高壓半導體裝置,特別是有關於一種水平擴散金氧半導體(laterally diffused metal oxide semiconductor,LDMOS)電晶體及其製造方法。The present invention relates to a high voltage semiconductor device, and more particularly to a laterally diffused metal oxide semiconductor (LDMOS) transistor and a method of fabricating the same.
高壓半導體裝置技術適用於高電壓與高功率的積體電路領域。傳統高壓半導體裝置,例如垂直式擴散金氧半導體(vertically diffused metal oxide semiconductor,VDMOS)電晶體及水平擴散金氧半導體(LDMOS)電晶體,主要用於高於或約為18V的元件應用領域。高壓裝置技術的優點在於符合成本效益,且易相容於其他製程,已廣泛應用於顯示器驅動IC元件、電源供應器、電力管理、通訊、車用電子或工業控制等領域中。The high voltage semiconductor device technology is suitable for the field of high voltage and high power integrated circuits. Conventional high voltage semiconductor devices, such as vertically diffused metal oxide semiconductor (VDMOS) transistors and horizontally diffused metal oxide semiconductor (LDMOS) transistors, are mainly used in component applications above or about 18V. The advantages of high-voltage device technology are cost-effective and easily compatible with other processes, and have been widely used in display driver IC components, power supplies, power management, communications, automotive electronics or industrial control.
水平擴散金氧半導體(LDMOS)電晶體是利用閘極電壓來產生通道,並控制流經源極與汲極之間的電流。在傳統的水平擴散金氧半導體電晶體(LDMOS)中,為了防止源極與汲極之間的擊穿效應(punch-through effect),必須延長電晶體的通道長度。然而,如此一來會增加裝置的尺寸而使晶片面積增加且會使電晶體的導通電阻(on-resistance,Ron )上升。再者,由於電洞的遷移率低於電子的遷移率,因此P型擴散金氧半導體(PDMOS)電晶體的導通電阻會高於N型擴散金氧半導體(NDMOS)電晶體的導通電阻而不利於P型擴散金氧半導體電晶體效能的提升。Horizontally diffused metal oxide semiconductor (LDMOS) transistors use gate voltage to create a channel and control the current flowing between the source and the drain. In a conventional horizontally diffused metal oxide semiconductor transistor (LDMOS), in order to prevent a punch-through effect between a source and a drain, it is necessary to lengthen the channel length of the transistor. However, this way increases the size of the wafer area of the device will increase and the transistor ON resistance (on-resistance, R on) rises. Furthermore, since the mobility of the hole is lower than the mobility of the electron, the on-resistance of the P-type diffusion metal oxide semiconductor (PDMOS) transistor is higher than the on-resistance of the N-type diffusion metal oxide semiconductor (NDMOS) transistor. Improvement in the performance of P-type diffusion MOS transistors.
因此,有必要尋求一種新的高壓半導體裝置結構,其能夠解決上述的問題。Therefore, it is necessary to find a new high-voltage semiconductor device structure that can solve the above problems.
本發明一實施例提供一種高壓半導體裝置,包括:一半導體基底,其內具有一高壓井區,且高壓井區具有一第一導電型;一閘極結構,設置於高壓井區的半導體基底上方;一源極摻雜區及一汲極摻雜區,分別位於閘極結構兩側的高壓井區內;以及具有第一導電型的一淡摻雜區,位於源極摻雜區與汲極摻雜區之間且相對鄰近源極摻雜區。An embodiment of the invention provides a high voltage semiconductor device comprising: a semiconductor substrate having a high voltage well region therein, the high voltage well region having a first conductivity type; and a gate structure disposed over the semiconductor substrate of the high voltage well region a source doped region and a drain doped region respectively located in a high voltage well region on both sides of the gate structure; and a lightly doped region having a first conductivity type, located in the source doped region and the drain The doped regions are between and relatively adjacent to the source doped regions.
本發明另一實施例提供一種高壓半導體裝置,包括:具有一第一導電型的一磊晶層,形成於一半導體基底上,且磊晶層內具有一第一高壓井區,且第一高壓井區具有相反於該第一導電型的一第二導電型;一閘極結構,設置於第一高壓井區的磊晶層上方;具有第一導電型的一體摻雜區,位於閘極結構的一第一側的第一高壓井區內;一源極摻雜區,位於體摻雜區內;一汲極摻雜區,位於相對於閘極結構的第一側的一第二側的第一高壓井區內;以及具有第一導電型的一第一淡摻雜區,位於體摻雜區內且鄰近源極摻雜區。Another embodiment of the present invention provides a high voltage semiconductor device comprising: an epitaxial layer having a first conductivity type formed on a semiconductor substrate, and having a first high voltage well region and a first high voltage in the epitaxial layer The well region has a second conductivity type opposite to the first conductivity type; a gate structure disposed above the epitaxial layer of the first high voltage well region; and an integrated doping region of the first conductivity type, located in the gate structure a first high voltage well region on a first side; a source doped region in the body doped region; a drain doped region on a second side opposite the first side of the gate structure a first high-voltage well region; and a first lightly doped region having a first conductivity type, located in the body doping region and adjacent to the source doping region.
本發明又一實施例提供一種高壓半導體裝置之製造方法,包括:在一半導體基底上形成具有一第一導電型的一磊晶層;在該磊晶層內形成具有相反於該第一導電型的一第二導電型的一第一高壓井區;在第一高壓井區內形成具有第一導電型的一體摻雜區;在第一高壓井區內形成一汲極摻雜區;在體摻雜區內形成一源極摻雜區;在第一高壓井區的磊晶層上方形成一閘極結構,使體摻雜區及汲極摻雜區分別位於閘極結構兩側的第一高壓井區內;以及在鄰近源極摻雜區的體摻雜區內形成具有第一導電型的一第一淡摻雜區。A further embodiment of the present invention provides a method of fabricating a high voltage semiconductor device, comprising: forming an epitaxial layer having a first conductivity type on a semiconductor substrate; forming a phase opposite to the first conductivity type in the epitaxial layer a first high-voltage well region of a second conductivity type; forming an integrally doped region having a first conductivity type in the first high-voltage well region; forming a drain-doped region in the first high-voltage well region; Forming a source doped region in the doped region; forming a gate structure over the epitaxial layer of the first high voltage well region, so that the body doped region and the drain doped region are respectively located on both sides of the gate structure Forming a first lightly doped region having a first conductivity type in the high voltage well region; and forming a body doped region adjacent to the source doping region.
以下說明本發明實施例之高壓半導體裝置。然而,可輕易了解本發明所提供的實施例僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。A high voltage semiconductor device according to an embodiment of the present invention will be described below. However, the present invention is to be understood as being limited to the details of the present invention.
本發明實施例提供一種高壓半導體裝置,例如水平擴散金氧半導體電晶體,其利用環形植入區(halo implant region)或口袋植入區(pocket implant region)來緩和擊穿效應,進而藉由縮短電晶體通道來降低電晶體的導通電阻並縮小裝置尺寸。Embodiments of the present invention provide a high voltage semiconductor device, such as a horizontally diffused MOS transistor, which utilizes a halo implant region or a pocket implant region to mitigate a breakdown effect and thereby shorten The transistor channel reduces the on-resistance of the transistor and reduces the size of the device.
請參照第1圖,其繪示出根據本發明一實施例之高壓半導體裝置10之剖面示意圖。在本實施例中,高壓半導體裝置10,例如水平擴散金氧半導體電晶體,包括一半導體基底100,其具有由一隔離結構103所定義出的一主動區OD。在本實施例中,半導體基底100可為矽基底、鍺化矽(SiGe)基底、塊體半導體(bulk semiconductor)基底、化合物半導體(compound semiconductor)基底、絕緣層上覆矽(silicon on insulator,SOI)基底或其他習用之半導體基底。再者,半導體基底100可依據設計需求而植入P型或N型摻雜物。再者,隔離結構103為局部矽氧化層(local oxidation of silicon,LOCOS)。在其他實施例中,隔離結構103可為淺溝槽隔離(shallow trench isolation,STI)結構。Referring to FIG. 1, a cross-sectional view of a high voltage semiconductor device 10 in accordance with an embodiment of the present invention is shown. In the present embodiment, the high voltage semiconductor device 10, such as a horizontally diffused MOS transistor, includes a semiconductor substrate 100 having an active region OD defined by an isolation structure 103. In this embodiment, the semiconductor substrate 100 can be a germanium substrate, a germanium telluride (SiGe) substrate, a bulk semiconductor substrate, a compound semiconductor substrate, a silicon on insulator (SOI). A substrate or other conventional semiconductor substrate. Furthermore, the semiconductor substrate 100 can be implanted with a P-type or N-type dopant depending on design requirements. Furthermore, the isolation structure 103 is a local oxidation of silicon (LOCOS). In other embodiments, the isolation structure 103 can be a shallow trench isolation (STI) structure.
具有一第一導電型的一高壓井區102位於主動區OD的半導體基底100內。A high voltage well region 102 having a first conductivity type is located within the semiconductor substrate 100 of the active region OD.
一閘極結構117設置於高壓井區102的半導體基底100上方。閘極結構117包括與半導體基底100接觸的閘極介電層114、位於閘極介電層114上並耦接至一閘極電壓VG 的閘極電極116以及位於閘極電極116側壁的閘極間隙壁115。A gate structure 117 is disposed over the semiconductor substrate 100 of the high voltage well region 102. The gate structure 117 includes a gate dielectric layer 114 in contact with the semiconductor substrate 100, a gate electrode 116 on the gate dielectric layer 114 and coupled to a gate voltage V G , and a gate on the sidewall of the gate electrode 116. Pole spacer 115.
一源極摻雜區109及一汲極摻雜區113分別位於閘極結構117兩側的高壓井區102內。在本實施例中,源極摻雜區109耦接至一源極電壓VS ,包括具有第一導電型的一第一濃摻雜區106及與第一濃摻雜區106相鄰且具有一第二導電型的一第二濃摻雜區108,其中第二導電型相反於第一導電型。在一實施例中,第一導電型可為N型,而第二導電型則為P型。在另一實施例中第一導電型可為P型,而第二導電型則為N型。再者,汲極摻雜區113耦接至一汲極電壓VD ,包括具有第二導電型的一雙擴散區112及位於雙擴散區112內且具有第二導電型的一第三濃摻雜區110。A source doped region 109 and a drain doped region 113 are respectively located in the high voltage well region 102 on both sides of the gate structure 117. In this embodiment, the source doping region 109 is coupled to a source voltage V S , including a first heavily doped region 106 having a first conductivity type and adjacent to the first heavily doped region 106 and having A second heavily doped region 108 of a second conductivity type, wherein the second conductivity type is opposite to the first conductivity type. In an embodiment, the first conductivity type may be an N type, and the second conductivity type is a P type. In another embodiment, the first conductivity type may be a P type, and the second conductivity type is an N type. Furthermore, the gate doping region 113 is coupled to a drain voltage V D , and includes a double diffusion region 112 having a second conductivity type and a third concentration dopant having a second conductivity type in the double diffusion region 112. Miscellaneous zone 110.
具有第二導電型的一井區104位於半導體基底100內,且環繞高壓井區102。井區104的表面可包括具有第二導電型的一第四濃摻雜區122,其耦接至一基底電壓Vsub 。A well region 104 having a second conductivity type is located within the semiconductor substrate 100 and surrounds the high voltage well region 102. The surface of the well region 104 can include a fourth heavily doped region 122 having a second conductivity type coupled to a substrate voltage Vsub .
具有第一導電型的一淡摻雜區120位於源極摻雜區109與汲極摻雜區113之間,且相對鄰近源極摻雜區109。在一實施例中,淡摻雜區120的摻雜濃度在108 /cm2 至1016 /cm2 的範圍,且可利用環形植入製程(halo implantation)而形成,使淡摻雜區120(即,環形植入區)大抵上環繞源極摻雜區109(即,第一濃摻雜區106及第二濃摻雜區108)。在本實施例中,特別的是淡摻雜區120可有效降低源極與汲極之間因擊穿效應所引起的漏電流。A lightly doped region 120 having a first conductivity type is located between the source doping region 109 and the gate doping region 113 and is relatively adjacent to the source doping region 109. In one embodiment, the doping concentration of the lightly doped region 120 is in the range of 10 8 /cm 2 to 10 16 /cm 2 and may be formed by a halo implantation, such that the lightly doped region 120 (ie, the annular implant region) substantially surrounds the source doped region 109 (ie, the first heavily doped region 106 and the second heavily doped region 108). In the present embodiment, in particular, the lightly doped region 120 can effectively reduce the leakage current between the source and the drain due to the breakdown effect.
請參照第2圖,其繪示出根據本發明另一實施例之高壓半導體裝置20之剖面示意圖,其中相同於第1圖的部間隙使用相同的標號並省略其說明。在本實施例中,高壓半導體裝置20,例如水平擴散金氧半導體電晶體,包括一半導體基底100,其上形成了具有一第一導電型的一磊晶層101。磊晶層101的導電型可與半導體基底100的導電型相同。再者,磊晶層101具有由一隔離結構103所定義出的一主動區OD。Referring to FIG. 2, a cross-sectional view of a high voltage semiconductor device 20 according to another embodiment of the present invention is illustrated, wherein the same reference numerals are used for the same portions as those of FIG. 1 and the description thereof is omitted. In the present embodiment, the high voltage semiconductor device 20, such as a horizontally diffused MOS transistor, includes a semiconductor substrate 100 on which an epitaxial layer 101 having a first conductivity type is formed. The conductivity type of the epitaxial layer 101 may be the same as that of the semiconductor substrate 100. Furthermore, the epitaxial layer 101 has an active region OD defined by an isolation structure 103.
具有相反於第一導電型的一第二導電型的一第一高壓井區202位於主動區OD的磊晶層101內。在一實施例中,第一導電型可為N型,而第二導電型則為P型。在另一實施例中第一導電型可為P型,而第二導電型則為N型。A first high voltage well region 202 having a second conductivity type opposite to the first conductivity type is located within the epitaxial layer 101 of the active region OD. In an embodiment, the first conductivity type may be an N type, and the second conductivity type is a P type. In another embodiment, the first conductivity type may be a P type, and the second conductivity type is an N type.
一閘極結構117設置於第一高壓井區202的磊晶層101上方且耦接至一閘極電壓VG 。在本實施例中,閘極結構117的閘極電極116可延伸至部份的隔離結構103上方,如第2圖所示。A gate structure 117 is disposed over the epitaxial layer 101 of the first high voltage well region 202 and coupled to a gate voltage V G . In the present embodiment, the gate electrode 116 of the gate structure 117 may extend over a portion of the isolation structure 103, as shown in FIG.
具有第一導電型的一體摻雜區111,位於閘極結構117的一第一側的第一高壓井區202內。一源極摻雜區109位於體摻雜區(body doping region)111內且耦接至一源極電壓VS 。再者,具有第一導電型的一第一淡摻雜區220位於體摻雜區111內且鄰近源極摻雜區109。第一淡摻雜區220的摻雜濃度在108 /cm2 至1016 /cm2 的範圍。在本實施例中,源極摻雜區109包括具有第一導電型的一第一濃摻雜區106、與第一濃摻雜區106相鄰且具有一第二導電型的一第二濃摻雜區108以及與第二濃摻雜區108相鄰且具有第二導電型的一第二淡摻雜區105。在一實施例中,第一淡摻雜區220可藉由口袋植入(pocket implantation)而形成,使第一淡摻雜區220位於源極摻雜區109或第二淡摻雜區105下方的體摻雜區內111且鄰近第二濃摻雜區108。在本實施例中,特別的是第一淡摻雜區220可有效降低源極與汲極之間因擊穿效應所引起的漏電流。An integrally doped region 111 having a first conductivity type is located within the first high voltage well region 202 on a first side of the gate structure 117. A source doping region 109 is located in the body doping region 111 and coupled to a source voltage V S . Furthermore, a first lightly doped region 220 having a first conductivity type is located within the body doped region 111 and adjacent to the source doped region 109. The doping concentration of the first lightly doped region 220 is in the range of 10 8 /cm 2 to 10 16 /cm 2 . In the present embodiment, the source doping region 109 includes a first heavily doped region 106 having a first conductivity type, a second concentration adjacent to the first heavily doped region 106 and having a second conductivity type. The doped region 108 is adjacent to the second heavily doped region 108 and has a second lightly doped region 105 of the second conductivity type. In an embodiment, the first lightly doped region 220 may be formed by pocket implantation such that the first lightly doped region 220 is located below the source doped region 109 or the second lightly doped region 105. The body doped region 111 is adjacent to the second heavily doped region 108. In this embodiment, in particular, the first lightly doped region 220 can effectively reduce the leakage current between the source and the drain due to the breakdown effect.
一汲極摻雜區113位於相對於閘極結構117的第一側的一第二側的第一高壓井區202內。汲極摻雜區耦接至一汲極電壓VD ,包括具有第二導電型的一高壓雙擴散區(high voltage double diffused region)212及位於高壓雙擴散區212內且具有第二導電型的一第三濃摻雜區110。A drain doped region 113 is located within the first high voltage well region 202 on a second side relative to the first side of the gate structure 117. The drain doping region is coupled to a drain voltage V D , including a high voltage double diffused region 212 having a second conductivity type and a second conductivity type in the high voltage double diffusion region 212 A third concentrated doped region 110.
具有該第一導電型的一第二高壓井區204,位於磊晶層101內且環繞第一高壓井區202。第二高壓井區204的表面可包括具有第一導電型的一第四濃摻雜區122,其耦接至一基底電壓Vsub 。A second high voltage well region 204 having the first conductivity type is located within the epitaxial layer 101 and surrounds the first high voltage well region 202. The surface of the second high voltage well region 204 can include a fourth heavily doped region 122 having a first conductivity type coupled to a substrate voltage Vsub .
第3A至3G圖係繪示出第2圖中高壓半導體裝置20之製造方法剖面示意圖。請參照第3A圖,提供一半導體基底100,例如矽基底、鍺化矽(SiGe)基底、塊體半導體基底、化合物半導體基底、絕緣層上覆矽(SOI)基底或其他習用之半導體基底。再者,半導體基底100可依據設計需求而植入P型或N型摻雜物。接著,在半導體基底100上形成具有第一導電型的一磊晶層101,其中磊晶層101可與半導體基底100具有相同的導電型,且可利用選擇性磊晶成長方式而形成。3A to 3G are cross-sectional views showing a manufacturing method of the high voltage semiconductor device 20 in Fig. 2. Referring to FIG. 3A, a semiconductor substrate 100 such as a germanium substrate, a germanium telluride (SiGe) substrate, a bulk semiconductor substrate, a compound semiconductor substrate, an insulating layer overlying germanium (SOI) substrate, or other conventional semiconductor substrates is provided. Furthermore, the semiconductor substrate 100 can be implanted with a P-type or N-type dopant depending on design requirements. Next, an epitaxial layer 101 having a first conductivity type is formed on the semiconductor substrate 100, wherein the epitaxial layer 101 can have the same conductivity type as the semiconductor substrate 100, and can be formed by selective epitaxial growth.
然後,在磊晶層101內形成具有相反於第一導電型的一第二導電型的一第一高壓井區202。在一實施例中,第一導電型可為N型,而第二導電型則為P型。在另一實施例中第一導電型可為P型,而第二導電型則為N型。在本實施例中,可利用離子植入製程,於磊晶層101中植入摻雜物,並接著進行熱擴散製程,以形成第一高壓井區202。Then, a first high voltage well region 202 having a second conductivity type opposite to the first conductivity type is formed in the epitaxial layer 101. In an embodiment, the first conductivity type may be an N type, and the second conductivity type is a P type. In another embodiment, the first conductivity type may be a P type, and the second conductivity type is an N type. In this embodiment, an ion implantation process can be used to implant dopants in the epitaxial layer 101, followed by a thermal diffusion process to form a first high voltage well region 202.
請參照第3B圖,在磊晶層101形成隔離結構103,例如局部矽氧化層(LOCOS),以定義出對應於第一高壓井區202的一主動區OD。在其他實施例中,隔離結構103可為淺溝槽隔離(STI)結構。Referring to FIG. 3B, an isolation structure 103, such as a local tantalum oxide layer (LOCOS), is formed on the epitaxial layer 101 to define an active region OD corresponding to the first high voltage well region 202. In other embodiments, the isolation structure 103 can be a shallow trench isolation (STI) structure.
請參照第3C圖,可利用離子植入製程,於磊晶層101中植入摻雜物,並接著進行熱擴散製程及退火製程,以形成形成環繞第一高壓井區202,且具有第一導電型的一第二高壓井區204。Referring to FIG. 3C, an ion implantation process can be used to implant dopants in the epitaxial layer 101, and then perform a thermal diffusion process and an annealing process to form a first high-voltage well region 202, and have a first A second high pressure well region 204 of conductivity type.
請參照第3D圖,利用不同的離子植入製程及熱擴散製程,在第一高壓井區202內形成具有第一導電型的一體摻雜區111及具有第二導電型的一高壓雙擴散區212。體摻雜區111與高壓雙擴散區212彼此相隔一既定距離。Referring to FIG. 3D, an integrated doping region 111 having a first conductivity type and a high voltage double diffusion region having a second conductivity type are formed in the first high voltage well region 202 by using different ion implantation processes and thermal diffusion processes. 212. The body doped region 111 and the high voltage double diffused region 212 are separated from each other by a predetermined distance.
請參照第3E圖,在磊晶層101的主動區OD上形成一閘極介電層114,例如氧化物、氮化物、氮氧化物、碳氧化物或其組合或其他高介電常數材料(high-k,介電常數大於8),例如氧化鋁(Al2 O3 )、氧化鉿(HfO2 )、氮氧化鉿(HfON)、氧化鋯(zirconium oxide,ZrO2 )、氮氧化鋯(ZrON)或其組合。閘極介電層114可利用熱氧化法、化學氣相沉積法(chemical vapor deposition,CVD)或其他習用的沉積技術而形成。接著,可利用化學氣相沉積法(CVD)或其他習用的沉積技術,於閘極介電層114上形成閘極電極116。閘極電極116可包括多晶矽或金屬。之後,利用習知微影及蝕刻製程以圖案化閘極電極116及下方的閘極介電層114。圖案化的閘極電極116及閘極介電層114大抵位於體摻雜區111與高壓雙擴散區212之間的第一高壓井區202上方且局部覆蓋體摻雜區111、高壓雙擴散區212以及隔離結構103。Referring to FIG. 3E, a gate dielectric layer 114 is formed on the active region OD of the epitaxial layer 101, such as an oxide, a nitride, an oxynitride, a carbon oxide, or a combination thereof or other high dielectric constant material ( High-k, dielectric constant greater than 8), such as alumina (Al 2 O 3 ), hafnium oxide (HfO 2 ), hafnium oxynitride (HfON), zirconium oxide (ZrO 2 ), zirconium oxynitride (ZrON) ) or a combination thereof. The gate dielectric layer 114 can be formed using thermal oxidation, chemical vapor deposition (CVD), or other conventional deposition techniques. Next, a gate electrode 116 can be formed on the gate dielectric layer 114 by chemical vapor deposition (CVD) or other conventional deposition techniques. Gate electrode 116 may comprise polysilicon or metal. Thereafter, the gate electrode 116 and the underlying gate dielectric layer 114 are patterned using conventional lithography and etching processes. The patterned gate electrode 116 and the gate dielectric layer 114 are located above the first high voltage well region 202 between the body doped region 111 and the high voltage double diffusion region 212, and the partial cover doping region 111 and the high voltage double diffusion region. 212 and isolation structure 103.
接著,在磊晶層101上形成一光阻圖案層119而露出高壓雙擴散區212及部分的體摻雜區111。之後,利用自對準的方式進行離子植入製程,以在高壓雙擴散區212及體摻雜區111內形成具有第二導電型的淡摻雜區105。Next, a photoresist pattern layer 119 is formed on the epitaxial layer 101 to expose the high voltage double diffusion region 212 and a portion of the body doped region 111. Thereafter, the ion implantation process is performed in a self-aligned manner to form a lightly doped region 105 having a second conductivity type in the high voltage double diffusion region 212 and the body doped region 111.
請參照第3F圖,在去除光阻圖案層119之後,在圖案化的閘極電極116及閘極介電層114的側壁形成閘極間隙壁115,以完成閘極結構117的製做。閘極間隙壁115可包括氧化物、氮化物、氮氧化物或其組合,且可利用習知沉積製程及非等向性蝕刻製程而形成。在形成閘極結構117之後,利用不同的離子植入製程,在體摻雜區111內形成具有第一導電型的一第一濃摻雜區106及與其相鄰且具有第二導電型的一第二濃摻雜區108、在高壓雙擴散區212內形成具有第二導電型的一第三濃摻雜區110以及在第二高壓井區204的表面形成具有第一導電型的一第四濃摻雜區122。第一濃摻雜區106、第二濃摻雜區108以及淡摻雜區105係構成一源極摻雜區109,而第三濃摻雜區110及高壓雙擴散區212係構成一汲極摻雜區113,使體摻雜區111及汲極摻雜區113分別位於閘極結構117兩側。Referring to FIG. 3F, after the photoresist pattern layer 119 is removed, the gate spacers 115 are formed on the sidewalls of the patterned gate electrode 116 and the gate dielectric layer 114 to complete the fabrication of the gate structure 117. The gate spacers 115 may include oxides, nitrides, oxynitrides, or combinations thereof, and may be formed using conventional deposition processes and anisotropic etch processes. After forming the gate structure 117, a first heavily doped region 106 having a first conductivity type and a first adjacent thereto having a second conductivity type are formed in the body doping region 111 by using different ion implantation processes. a second heavily doped region 108, a third heavily doped region 110 having a second conductivity type formed in the high voltage double diffusion region 212, and a fourth having a first conductivity type formed on a surface of the second high voltage well region 204 Concentrated doped region 122. The first heavily doped region 106, the second heavily doped region 108, and the lightly doped region 105 form a source doped region 109, and the third heavily doped region 110 and the high voltage double diffused region 212 form a drain. The doped region 113 is such that the body doped region 111 and the drain doped region 113 are respectively located on both sides of the gate structure 117.
請參照第3G圖,可利用口袋植入製程,在鄰近源極摻雜區109的體摻雜區111內形成具有第一導電型的一淡摻雜區220(即,口袋植入區),如此一來便完成高電壓半導體裝置20的製做。在一實施例中,淡摻雜區220位於淡摻雜區105下方的體摻雜區111內。再者,淡摻雜區220鄰近第二濃摻雜區108且摻雜濃度在108 /cm2 至1016 /cm2 的範圍。另外,特別的是形成淡摻雜區220所使用的離子植入罩幕以及形成淡摻雜區105所使用的離子植入罩幕可採用同一光罩來進行微影製程而形成,因此可避免額外的製造成本。Referring to FIG. 3G, a lightly doped region 220 having a first conductivity type (ie, a pocket implant region) may be formed in the body doped region 111 adjacent to the source doping region 109 by using a pocket implantation process. In this way, the fabrication of the high voltage semiconductor device 20 is completed. In an embodiment, the lightly doped region 220 is located within the body doped region 111 below the lightly doped region 105. Furthermore, the lightly doped region 220 is adjacent to the second heavily doped region 108 and has a doping concentration in the range of 10 8 /cm 2 to 10 16 /cm 2 . In addition, in particular, the ion implantation mask used to form the lightly doped region 220 and the ion implantation mask used to form the lightly doped region 105 can be formed by using the same mask for the lithography process, thereby avoiding Additional manufacturing costs.
根據前述的實施例,由於淡摻雜區(環形植入區)120以及淡摻雜區(口袋植入區)220能夠有效降低源極與汲極之間因擊穿效應所引起的漏電流,因此可適當地縮短高壓半導體裝置10及20的通道長度,進而降低高壓半導體裝置10及20的導通電阻以及尺寸。According to the foregoing embodiments, since the lightly doped region (annular implanted region) 120 and the lightly doped region (pocket implanted region) 220 can effectively reduce the leakage current between the source and the drain due to the breakdown effect, Therefore, the channel lengths of the high voltage semiconductor devices 10 and 20 can be appropriately shortened, thereby reducing the on-resistance and size of the high voltage semiconductor devices 10 and 20.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
10、20...半導體裝置10, 20. . . Semiconductor device
100...半導體基底100. . . Semiconductor substrate
101...磊晶層101. . . Epitaxial layer
102...高壓井區102. . . High pressure well area
103...隔離結構103. . . Isolation structure
104...井區104. . . Well area
105、120、220...淡摻雜區105, 120, 220. . . Lightly doped area
106...第一濃摻雜區106. . . First concentrated doping zone
108...第二濃摻雜區108. . . Second concentrated doping zone
109...源極摻雜區109. . . Source doping region
110...第三濃摻雜區110. . . Third concentrated doping zone
111...體摻雜區111. . . Body doped region
112...雙擴散區112. . . Double diffusion zone
113...汲極摻雜區113. . . Bipolar doping zone
114...閘極介電層114. . . Gate dielectric layer
115...閘極間隙壁115. . . Gate spacer
116...閘極電極116. . . Gate electrode
117...閘極結構117. . . Gate structure
119...光阻圖案層119. . . Photoresist pattern layer
122...第四濃摻雜區122. . . Fourth concentrated doping zone
202...第一高壓井區202. . . First high pressure well area
204...第二高壓井區204. . . Second high pressure well area
212...高壓雙擴散區212. . . High pressure double diffusion zone
OD...主動區OD. . . Active zone
VG ...閘極電壓V G . . . Gate voltage
VD ...汲極電壓V D . . . Buckling voltage
VS ...源極電壓V S . . . Source voltage
Vsub ...基底電壓V sub . . . Substrate voltage
第1圖係繪示出根據本發明一實施例之高壓半導體裝置剖面示意圖。1 is a cross-sectional view showing a high voltage semiconductor device in accordance with an embodiment of the present invention.
第2圖係繪示出根據本發明另一實施例之高壓半導體裝置剖面示意圖。2 is a cross-sectional view showing a high voltage semiconductor device in accordance with another embodiment of the present invention.
第3A至3G圖係繪示出第2圖中高壓半導體裝置之製造方法剖面示意圖。3A to 3G are cross-sectional views showing the manufacturing method of the high voltage semiconductor device in Fig. 2.
10...半導體裝置10. . . Semiconductor device
100...半導體基底100. . . Semiconductor substrate
102...高壓井區102. . . High pressure well area
103...隔離結構103. . . Isolation structure
104...井區104. . . Well area
120...淡摻雜區120. . . Lightly doped area
106...第一濃摻雜區106. . . First concentrated doping zone
108...第二濃摻雜區108. . . Second concentrated doping zone
109...源極摻雜區109. . . Source doping region
110...第三濃摻雜區110. . . Third concentrated doping zone
112...雙擴散區112. . . Double diffusion zone
113...汲極摻雜區113. . . Bipolar doping zone
114...閘極介電層114. . . Gate dielectric layer
115...閘極間隙壁115. . . Gate spacer
116...閘極電極116. . . Gate electrode
117...閘極結構117. . . Gate structure
122...第四濃摻雜區122. . . Fourth concentrated doping zone
OD...主動區OD. . . Active zone
VG ...閘極電壓V G . . . Gate voltage
VD ...汲極電壓V D . . . Buckling voltage
VS ...源極電壓V S . . . Source voltage
Vsub ...基底電壓V sub . . . Substrate voltage
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100107690A TWI455318B (en) | 2011-03-08 | 2011-03-08 | High voltage semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100107690A TWI455318B (en) | 2011-03-08 | 2011-03-08 | High voltage semiconductor device and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201238049A TW201238049A (en) | 2012-09-16 |
TWI455318B true TWI455318B (en) | 2014-10-01 |
Family
ID=47223293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100107690A TWI455318B (en) | 2011-03-08 | 2011-03-08 | High voltage semiconductor device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI455318B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI557904B (en) * | 2015-03-17 | 2016-11-11 | 世界先進積體電路股份有限公司 | Semiconductor device and method for fabricating the same |
US9553091B1 (en) | 2015-09-23 | 2017-01-24 | Vanguard International Semiconductor Corporation | Semiconductor structure and method for manufacturing the same |
TWI562208B (en) * | 2015-10-19 | 2016-12-11 | Vanguard Int Semiconduct Corp | Semiconductor structure and method for manufacturing the same |
TWI620333B (en) * | 2015-12-08 | 2018-04-01 | 世界先進積體電路股份有限公司 | Schottky diode and method for manufacturing the same |
US9530900B1 (en) | 2016-01-26 | 2016-12-27 | Vanguard International Semiconductor Corporation | Schottky diode and method for manufacturing the same |
TWI726247B (en) * | 2018-10-17 | 2021-05-01 | 世界先進積體電路股份有限公司 | Semiconductor device and method for forming the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200840047A (en) * | 2007-03-28 | 2008-10-01 | Taiwan Semiconductor Mfg | High voltage semiconductor devices |
TW201011913A (en) * | 2008-09-03 | 2010-03-16 | Nuvoton Technology Corp | Lateral diffused metal oxide semiconductor device |
-
2011
- 2011-03-08 TW TW100107690A patent/TWI455318B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200840047A (en) * | 2007-03-28 | 2008-10-01 | Taiwan Semiconductor Mfg | High voltage semiconductor devices |
TW201011913A (en) * | 2008-09-03 | 2010-03-16 | Nuvoton Technology Corp | Lateral diffused metal oxide semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TW201238049A (en) | 2012-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9224862B2 (en) | High voltage semiconductor device and method for fabricating the same | |
US7508032B2 (en) | High voltage device with low on-resistance | |
US10777551B2 (en) | Integrated semiconductor device and method for manufacturing the same | |
US9859399B2 (en) | Lateral diffused semiconductor device with ring field plate | |
US9660020B2 (en) | Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same | |
US8143671B2 (en) | Lateral trench FETs (field effect transistors) | |
US10784337B2 (en) | MOSFET and a method for manufacturing the same | |
TWI455318B (en) | High voltage semiconductor device and method for manufacturing the same | |
US20060091503A1 (en) | High voltage lateral diffused MOSFET device | |
US20160372591A1 (en) | Lateral double diffused metal oxide semiconductor field-effect transistor | |
US9876069B1 (en) | High-voltage semiconductor device and method for manufacturing the same | |
US20160181400A1 (en) | LDMOS Device and Its Manufacturing Method | |
US20160043215A1 (en) | Semiconductor device and method of manufacturing the same | |
US20160087039A1 (en) | High voltage semiconductor device and method of manufacturing the same | |
US10217828B1 (en) | Transistors with field plates on fully depleted silicon-on-insulator platform and method of making the same | |
TWI698017B (en) | High voltage semiconductor device and manufacturing method thereof | |
US11145718B2 (en) | Semiconductor device with separate active region and method of fabricating the same | |
WO2017175544A1 (en) | Semiconductor device and method for manufacturing same | |
TWI673880B (en) | Laterally diffused metal oxide semiconductor device | |
CN108695386B (en) | High voltage semiconductor device and method for manufacturing the same | |
CN114335156A (en) | Lateral double-diffused metal oxide semiconductor field effect transistor and manufacturing method thereof | |
US20170263770A1 (en) | Semiconductor device and manufacturing method of the same | |
US20160056237A1 (en) | Semiconductor device and semiconductor device manufacturing method | |
JP2009266868A (en) | Mosfet and manufacturing method of mosfet | |
TWI618246B (en) | High-voltage semiconductor device and method for manufacturing the same |