JP2013108778A - Sample preforming method and component quantification method using the same - Google Patents

Sample preforming method and component quantification method using the same Download PDF

Info

Publication number
JP2013108778A
JP2013108778A JP2011252255A JP2011252255A JP2013108778A JP 2013108778 A JP2013108778 A JP 2013108778A JP 2011252255 A JP2011252255 A JP 2011252255A JP 2011252255 A JP2011252255 A JP 2011252255A JP 2013108778 A JP2013108778 A JP 2013108778A
Authority
JP
Japan
Prior art keywords
sample
rays
irradiated
analysis
preforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011252255A
Other languages
Japanese (ja)
Inventor
Junya Kawada
純也 川田
Ryozo Maeda
了三 前田
Naohisa Okamoto
尚久 岡本
Takahiro Kuroki
敬広 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKADEN RARE EARTH CO Ltd
Original Assignee
NAKADEN RARE EARTH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKADEN RARE EARTH CO Ltd filed Critical NAKADEN RARE EARTH CO Ltd
Priority to JP2011252255A priority Critical patent/JP2013108778A/en
Publication of JP2013108778A publication Critical patent/JP2013108778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sample preforming method capable of improving analysis accuracy in component quantification by a fluorescent x-ray analysis method, and to provide a component quantification method using the preforming method.SOLUTION: In the sample preforming method to be used for the fluorescent x-ray analysis method after pressurization and principal forming, metal or alloy powder with 30 μm or less of average grain size D50 is filled in a mold and formed and the whole surface of a compact 5 to be irradiated with x-rays is pressurized by setting a pushing rate to 10 to 40%. When pressurizing the whole surface of the compact 5 to be irradiated with x-rays by setting the pushing rate to 10 to 40%, it is preferable to use a punch 4 for pressurizing the whole surface of the face irradiated with x-rays in the compact 5 and a guide 3 for guiding the punch 4, and it is also preferable to use oxide powder of rare earth-iron-boron group alloy as the metal or alloy powder.

Description

本発明は、蛍光X線分析法に用いられる試料を予備成形する方法およびそれを用いる成分定量方法に関する。さらに詳しくは、蛍光X線分析法による成分定量において分析精度を向上できる試料の予備成形方法およびそれを用いる成分定量方法に関する。   The present invention relates to a method for preforming a sample used for fluorescent X-ray analysis and a component determination method using the same. More specifically, the present invention relates to a sample preforming method capable of improving analysis accuracy in component quantification by fluorescent X-ray analysis and a component quantification method using the same.

物質の含有成分を定量する方法として蛍光X線分析法がある。蛍光X線分析法による成分定量は、例えば、試料台に載置した分析用試料の一つの面にX線を照射し、この際に分析用試料から発生する蛍光X線を測定する蛍光X線分析装置を用いて行うことができる。   There is a fluorescent X-ray analysis method as a method for quantifying the content of a substance. Component quantification by X-ray fluorescence analysis is performed, for example, by irradiating one surface of an analytical sample placed on a sample stage with X-rays and measuring fluorescent X-rays generated from the analytical sample at this time. This can be done using an analyzer.

分析用試料は、成分定量の対象が金属または合金の場合、例えば以下の手順により作製することができる。
(a)対象の金属または合金をスタンプミル等により粉砕して所定の粒度の粉末とし、
(b)粉末を型に充填して成形体とし、この成形体のX線が照射される面を平へらで均しつつ加圧することにより予備成形(1次成形)して試料とし、
(c)予備成形した試料をプレス機によって本成形(2次成形)して分析用試料とする。
When the target of component quantification is a metal or an alloy, the analytical sample can be prepared, for example, by the following procedure.
(A) The target metal or alloy is pulverized by a stamp mill or the like to obtain a powder having a predetermined particle size,
(B) Filling the mold with a powder to form a molded body, pre-molding (primary molding) into a sample by pressurizing the surface irradiated with X-rays with a flat spatula,
(C) The preformed sample is subjected to main molding (secondary molding) with a press machine to obtain a sample for analysis.

上記(a)〜(c)の手順による分析用試料の作製では、必要に応じて、粉砕された金属または合金の粉末にバインダーが添加される場合がある。また、粉砕された金属または合金の粉末を酸溶解した後、酸溶解液を濾紙粉末に吸着させ、焼成することにより酸化物として金属または合金を含む粉末として型に充填される場合もある。   In the preparation of the analytical sample by the procedures (a) to (c), a binder may be added to the pulverized metal or alloy powder as necessary. Further, after the pulverized metal or alloy powder is acid-dissolved, the acid-dissolved solution is adsorbed on the filter paper powder and fired to fill the mold as a powder containing the metal or alloy as an oxide.

このような蛍光X線分析法による成分定量に関し、従来から種々の提案がなされており例えば特許文献1がある。特許文献1で提案される成分定量方法は、活性金属を有する合金を粉砕してD50=10〜40μmの粉末とした後、金型およびプレス機を用いて加圧成形(本成形)して分析用試料とする。なお、特許文献1では、前記(a)〜(c)の手順からなる分析用試料を作製のうちで(b)の予備成形については記載されていない。   Various proposals have heretofore been made regarding component quantification by such X-ray fluorescence analysis, and for example, Patent Document 1 is available. In the component determination method proposed in Patent Document 1, an alloy having an active metal is pulverized into a powder of D50 = 10 to 40 μm, and then subjected to pressure molding (main molding) using a mold and a press machine for analysis. Sample for use. In addition, in patent document 1, it does not describe about the preforming of (b) among preparation of the analytical sample which consists of the procedure of said (a)-(c).

このような特許文献1で提案される成分定量方法は、粉砕してD50=10〜40μmである合金粉末から試料を作製することにより、分析精度や再現性の低下を生じさせることなく、発火が防止できるとしている。   In such a component determination method proposed in Patent Document 1, the sample is made from an alloy powder having a D50 of 10 to 40 μm by pulverization, so that ignition is not caused without causing deterioration in analysis accuracy and reproducibility. It can be prevented.

しかし、前記(a)〜(c)の手順により作製した分析用試料および特許文献1で提案される粒径の粉末から作製した分析用試料を用い、蛍光X線分析法により成分を定量すると、同一の金属または合金粉末から同じ手順により分析用試料を作製した場合でも分析試料ごとに分析結果にばらつきが生じる。このため、蛍光X線分析法による成分定量では、分析結果のばらつきを低減して分析精度を向上させることが望まれていた。   However, using the analysis sample prepared by the procedure of (a) to (c) and the analysis sample prepared from the powder having the particle diameter proposed in Patent Document 1, components are quantified by fluorescent X-ray analysis. Even when samples for analysis are produced from the same metal or alloy powder by the same procedure, the analysis results vary for each analysis sample. For this reason, in component quantification by fluorescent X-ray analysis, it has been desired to improve the analysis accuracy by reducing the variation in the analysis results.

特開2003−172714号公報JP 2003-172714 A

前述の通り、従来の蛍光X線分析法による成分定量では、分析結果にばらつきが生じるので、分析結果のばらつきを低減して分析精度を向上させることが望まれていた。本発明は、このような状況に鑑みてなされたものであり、蛍光X線分析法による成分定量において分析精度を向上できる試料の予備成形方法およびそれを用いる成分定量方法を提供することを目的とする。   As described above, in the component quantification by the conventional fluorescent X-ray analysis method, the analysis result varies. Therefore, it has been desired to improve the analysis accuracy by reducing the variation of the analysis result. The present invention has been made in view of such a situation, and an object of the present invention is to provide a sample preforming method that can improve analysis accuracy in component quantification by fluorescent X-ray analysis and a component quantification method using the same. To do.

本発明者らは、従来の蛍光X線分析法による成分定量で分析結果がばらつく理由について検討した。ここで、前記(a)〜(c)の手順による分析用試料の作製では、手順(b)の予備成形で、金属または合金粉末からなる成形体のX線が照射される面を平へらで均しつつ加圧する。   The present inventors examined the reason why the analysis results vary in the component quantification by the conventional fluorescent X-ray analysis method. Here, in the preparation of the analysis sample according to the procedures (a) to (c), the surface on which the X-ray of the compact made of metal or alloy powder is irradiated in the preliminary molding in the procedure (b) is flattened. Apply pressure while leveling.

予備成形で用いられる平へらは、通常、X線が照射される面より面積が小さいので、X線が照射される面は複数回に分けて一部の領域ごとに加圧される。また、平へらによる加圧は、通常、手作業によって行われることから、加圧する力がその都度変化する。このため、予備成形された試料は、X線照射面の表層部で場所によって粒子密度が変化してばらつく。   Since the flat spatula used in the preforming is usually smaller in area than the surface irradiated with X-rays, the surface irradiated with X-rays is pressurized in a plurality of areas in several areas. Further, since pressurization with a flat spatula is usually performed manually, the force of pressurization changes each time. For this reason, the preformed sample varies in the particle density depending on the location on the surface layer portion of the X-ray irradiation surface.

さらに、予備成形の平へらによる加圧は作業者の経験に基づく作業になることから、作業者が異なれば加圧する力も変化する。これらから、予備成形された試料は、試料ごとにX線照射面の表層部の粒子密度が変化してばらつく。   Furthermore, since pressurization with a pre-formed flat spatula is an operation based on the experience of the operator, the pressurizing force changes depending on the operator. From these, the preformed sample varies with the particle density of the surface layer portion of the X-ray irradiation surface changing for each sample.

その結果、プレス機で加圧して本成形された分析用試料においても、X線が照射される面の表層部における粒子密度にばらつきが生じてしまう。このように分析用試料に生じるX線が照射される面の表層部における粒子密度のばらつきが、蛍光X線分析法による成分定量に分析用試料を用いた場合に分析値をばらつかせることを、本発明者らは見出した。ここで、「表層部」とは、蛍光X線分析法による成分定量において情報が得られる部分を意味し、通常、X線が照射される面から100μm程度の範囲となる。   As a result, even in the analytical sample that is formed by pressurization with a press, the particle density in the surface layer portion of the surface irradiated with X-rays varies. As described above, the variation in the particle density in the surface layer portion of the surface irradiated with X-rays generated in the analytical sample may cause the analytical value to vary when the analytical sample is used for component determination by the fluorescent X-ray analysis method. The present inventors have found out. Here, the “surface layer portion” means a portion where information can be obtained in component quantification by fluorescent X-ray analysis, and is usually in a range of about 100 μm from the surface irradiated with X-rays.

そこで、本発明者らは、種々の試験を行い、鋭意検討を重ねた結果、X線が照射される面の全面を加圧するパンチと、このパンチを案内するガイドとを用い、金属または合金粉末からなる成形体を加圧して予備成形することにより、X線が照射される面の表層部における粒子密度を均一にできることを知見した。また、この予備成形された試料を本成形した後で蛍光X線分析法により成分を定量することにより、分析精度を向上できることを知見した。   Therefore, as a result of conducting various tests and intensive studies, the present inventors have used a punch that pressurizes the entire surface to be irradiated with X-rays and a guide for guiding the punch, and a metal or alloy powder. It was found that the particle density in the surface layer portion of the surface irradiated with X-rays can be made uniform by pressurizing and pre-molding a molded body made of Further, the present inventors have found that the analysis accuracy can be improved by quantitatively determining the components by fluorescent X-ray analysis after the preformed sample is fully molded.

本発明は、上記の知見に基づいて完成したものであり、下記(1)〜(3)の試料の予備成形方法および下記(4)の試料の成分定量方法を要旨としている。   The present invention has been completed on the basis of the above findings, and the gist of the present invention is the sample pre-forming method (1) to (3) below and the component quantification method of the sample (4) below.

(1)加圧して本成形した後で蛍光X線分析法に用いられる試料を予備成形する方法であって、平均粒径D50が30μm以下の金属または合金粉末を型に充填して成形し、該成形体のX線が照射される面の全面を、下記(1)式により算出される押込み率を10〜40%にして加圧することを特徴とする試料の予備成形方法。
P=100×(h1−h2)/h1 ・・・(1)
ここで、加圧前の成形体の高さをh1(mm)、加圧後の成形体の高さをh2(mm)とする。
(1) A method of pre-molding a sample to be used for fluorescent X-ray analysis after pressurizing and main-molding, filling a mold with metal or alloy powder having an average particle diameter D50 of 30 μm or less, and molding the mold, A pre-molding method for a sample, characterized in that the entire surface of the molded body that is irradiated with X-rays is pressed with an indentation rate calculated by the following formula (1) set to 10 to 40%.
P = 100 × (h1−h2) / h1 (1)
Here, the height of the compact before pressurization is h1 (mm), and the height of the compact after pressurization is h2 (mm).

(2)前記成形体のX線が照射される面の全面を押込み率を10〜40%にして加圧する際に、前記成形体のX線が照射される面の全面を加圧するパンチと、該パンチを案内するガイドとを用いることを特徴とする上記(1)に記載の試料の予備成形方法。 (2) a punch that pressurizes the entire surface of the molded body that is irradiated with X-rays, and pressurizes the entire surface of the molded body that is irradiated with X-rays when the pressing rate is 10 to 40%. The method for preforming a sample as described in (1) above, wherein a guide for guiding the punch is used.

(3)前記金属または合金粉末として、希土類−鉄−ホウ素系合金の酸化物粉末を用いることを特徴とする上記(1)または(2)に記載の試料の予備成形方法。 (3) The method for preforming a sample as described in (1) or (2) above, wherein an oxide powder of a rare earth-iron-boron alloy is used as the metal or alloy powder.

(4)試料を加圧することにより本成形した後で蛍光X線分析法により成分を定量する方法であって、前記試料として、上記(1)〜(3)のいずれかに記載の予備成形方法により予備成形した試料を用いることを特徴とする試料の成分定量方法。 (4) A method for quantitatively determining components by fluorescent X-ray analysis after performing main molding by pressurizing a sample, and the preforming method according to any of (1) to (3) above as the sample A method for quantifying a component of a sample, characterized in that a sample preformed by the method is used.

本発明の予備成形方法は、成形体のX線が照射される面の全面を加圧することにより、予備成形された試料のX線が照射される面の表層部における粒子密度を均一にすることができる。このようにX線が照射される面の表層部における粒子密度を均一な試料を本成形すれば、本成形された分析用試料もX線が照射される面の表層部における粒子密度が均一となり、蛍光X線分析法による成分定量における分析精度を向上できる。   The preforming method of the present invention makes the particle density in the surface layer portion of the surface of the preformed sample irradiated with X-rays uniform by pressurizing the entire surface of the molded body irradiated with X-rays. Can do. If a sample having a uniform particle density in the surface layer portion of the surface irradiated with X-rays is formed in this manner, the particle density in the surface layer portion of the surface irradiated with X-rays becomes uniform in the molded sample for analysis. In addition, it is possible to improve analysis accuracy in component quantification by X-ray fluorescence analysis.

本発明の成分定量方法は、上述の効果を有する本発明の予備成形方法を用いることから、成分定量の分析精度を向上できる。   Since the component quantification method of the present invention uses the preforming method of the present invention having the above-described effects, the analysis accuracy of component quantification can be improved.

本発明の予備成形方法による試料の作製手順例を説明する模式図であり、同図(a)は型に粉末を充填して成形体とした状態、同図(b)はガイドにパンチを挿入した状態をそれぞれ示す。It is a schematic diagram explaining the example of the preparation procedure of the sample by the preforming method of this invention, The figure (a) fills a type | mold with the powder and it is the molded object, The figure (b) inserts a punch in a guide Each state is shown.

以下に、本発明の予備成形方法およびそれを用いる成分定量方法について図面を参照しながら説明する。   Hereinafter, the preforming method of the present invention and the component determination method using the same will be described with reference to the drawings.

図1は、本発明の予備成形方法による試料の作製手順例を説明する模式図であり、同図(a)は型に粉末を充填して成形体とした状態、同図(b)はガイドにパンチを挿入した状態をそれぞれ示す。同図には、作業台1と、作業台1とともに成形用の型を形成する環状の試料リング2と、成形用の型に充填された金属または合金粉末からなる成形体5と、成形体5を加圧するパンチ4と、パンチ4を案内するガイド3とを示す。   FIG. 1 is a schematic diagram for explaining an example of a sample preparation procedure according to the preforming method of the present invention. FIG. 1 (a) shows a state in which a mold is filled with powder, and FIG. 1 (b) shows a guide. Each shows a state in which a punch is inserted. The figure shows a work table 1, an annular sample ring 2 that forms a mold for molding together with the work table 1, a molded body 5 made of metal or alloy powder filled in the molding mold, and a molded body 5 2 shows a punch 4 for pressurizing and a guide 3 for guiding the punch 4.

本発明の予備成形方法は、加圧して本成形した後で蛍光X線分析法に用いられる試料を予備成形する方法であって、平均粒径D50が30μm以下の金属または合金粉末を型に充填して成形し、この成形体5のX線が照射される面5aの全面を、前記(1)式で算出される押込み率を10〜40%にして加圧することを特徴とする。   The preforming method of the present invention is a method of preforming a sample to be used for fluorescent X-ray analysis after press molding and filling with a metal or alloy powder having an average particle diameter D50 of 30 μm or less. Then, the entire surface of the surface 5a irradiated with X-rays of the molded body 5 is pressed with the indentation rate calculated by the equation (1) set to 10 to 40%.

金属または合金粉末の平均粒径D50を30μm以下と規定するのは、平均粒径D50が30μmを超えると粒径が大きい粒子の割合が増加し、予備成形および本成形で成形性が悪化することから、分析用試料でX線が照射される面の平坦性が悪化する。その結果、蛍光X線分析による成分定量で乱反射が多くなり、分析精度が低下する。一方、平均粒径D50を小さくし過ぎると、パンチおよびガイドを用いて予備成形する場合にパンチとガイドとの隙間に一部の粒子が入り込み、かじり等の不具合を生じさせることから、1μm以上とするのが好ましい。   The reason why the average particle diameter D50 of the metal or alloy powder is defined as 30 μm or less is that when the average particle diameter D50 exceeds 30 μm, the proportion of particles having a large particle diameter increases, and the formability deteriorates in preforming and main forming. Therefore, the flatness of the surface irradiated with X-rays in the analysis sample is deteriorated. As a result, irregular reflection increases in component quantification by fluorescent X-ray analysis, and the analysis accuracy decreases. On the other hand, if the average particle diameter D50 is too small, some of the particles enter the gap between the punch and the guide when pre-molding using the punch and the guide, causing problems such as galling, and so on. It is preferable to do this.

ここで、本発明において平均粒径D50とは、体積基準の粒度分布における累積頻度50%の粒径を意味し、粒度分布はレーザー回折散乱法による測定機を用いるものとする。   Here, in the present invention, the average particle size D50 means a particle size having a cumulative frequency of 50% in the volume-based particle size distribution, and the particle size distribution is determined using a measuring device by a laser diffraction scattering method.

本発明の予備成形方法では、平均粒径D50が上記範囲である金属または合金粉末を型に充填して成形し、この成形体5のX線が照射される面5aの全面を押込み率を10〜40%にして加圧する。従来の従来の蛍光X線分析法による成分定量では、前述のとおり、X線が照射される面5aより面積が小さい平へらを用いて手作業により予備成形を行うことから、予備成形された試料は、X線照射面の表層部で場所によって粒子密度が変化してばらつく。   In the preforming method of the present invention, a metal or alloy powder having an average particle diameter D50 in the above range is filled into a mold and molded, and the entire surface 5a irradiated with X-rays of the molded body 5 has an indentation rate of 10 Pressurize to ~ 40%. In the conventional component quantification by the conventional fluorescent X-ray analysis method, as described above, preforming is performed manually using a flat spatula having a smaller area than the surface 5a irradiated with X-rays. The particle density varies depending on the location on the surface layer portion of the X-ray irradiation surface.

一方、本発明の予備成形方法では、成形体5のX線が照射される面5aの全面を加圧する。これにより、成形体5のX線が照射される面5aの全面が同じ力で加圧されるので、X線が照射される面の表層部における粒子密度が場所によって変化することなく、均一になる。このように予備成形された試料を本成形とすれば、本成形した分析用試料においてもX線が照射される面の表層部における粒子密度が均一となり、蛍光X線分析法による成分定量における分析精度を向上できる。   On the other hand, in the preforming method of the present invention, the entire surface 5a of the molded body 5 to which X-rays are irradiated is pressurized. Thereby, since the whole surface 5a irradiated with X-rays of the molded body 5 is pressurized with the same force, the particle density in the surface layer portion of the surface irradiated with X-rays is uniform without changing depending on the location. Become. If the preformed sample is used as the main molding, the particle density in the surface layer portion of the surface irradiated with X-rays becomes uniform in the analytical sample thus molded, and analysis in component quantification by fluorescent X-ray analysis is performed. Accuracy can be improved.

また、成形体5のX線が照射される面5aの全面を加圧する際、前記(1)式で算出される押込み率を10〜40%とする。この前記(1)式で算出される押込み率Pは、加圧前後における成形体の高さの変化量(h1−h2、単位:mm)を加圧前の成形体の高さ(h2、単位:mm)で除して百分率として表したものである。   Moreover, when pressurizing the whole surface 5a to which the X-ray of the molded body 5 is irradiated, the indentation rate calculated by the equation (1) is set to 10 to 40%. The indentation rate P calculated by the above equation (1) is the amount of change in the height of the molded body before and after pressing (h1-h2, unit: mm), and the height of the molded body before pressing (h2, unit). : Mm) and expressed as a percentage.

このような押込み率が10%未満であると、成形体のX線が照射される面の全面を加圧することにより表層部の粒子密度が均一となる効果がほとんど発揮されず、予備成形された試料でX線が照射される面の表層部の粒子密度にばらつきが生じる。このため、本成形された分析用試料も粒子密度がばらつき、割れが生じる。分析用試料に割れが生じた場合、蛍光X線分析による成分定量において分析結果が大きくばらつき、有効な分析結果を得ることができない。   When the indentation rate is less than 10%, the effect of making the particle density of the surface layer portion uniform is almost not exhibited by pressurizing the entire surface of the molded body that is irradiated with X-rays. Variation occurs in the particle density of the surface layer portion of the surface to which the sample is irradiated with X-rays. For this reason, the particle density of the analysis sample thus formed varies and cracks occur. When cracks occur in the analysis sample, the analysis results greatly vary in component quantification by fluorescent X-ray analysis, and effective analysis results cannot be obtained.

一方、押込み率が40%を超えると、粉末の粒子が成形体の外縁に偏ってしまい、予備成形された試料でX線が照射される面の表層部の粒子密度にばらつきが生じる。このため、本成形された分析用試料も粒子密度がばらつき、割れが生じる。   On the other hand, if the indentation rate exceeds 40%, the powder particles are biased toward the outer edge of the molded body, and the particle density in the surface layer portion of the surface irradiated with X-rays in the preformed sample varies. For this reason, the particle density of the analysis sample thus formed varies and cracks occur.

このように本発明の予備成形方法は、成形体のX線が照射される面の全面を加圧することから、予備成形された試料でX線が照射される面の表層部における粒子密度を均一にすることができる。この成形体を本成形すれば、分析用試料もX線が照射される面の表層部における粒子密度が均一となり、蛍光X線分析法による成分定量における分析精度を向上できる。   As described above, the preforming method of the present invention pressurizes the entire surface of the molded body that is irradiated with X-rays, so that the particle density in the surface layer portion of the surface that is irradiated with X-rays in the preformed sample is uniform. Can be. If this molded body is formed, the analysis sample also has a uniform particle density in the surface layer portion of the surface irradiated with X-rays, and the analysis accuracy in component quantification by fluorescent X-ray analysis can be improved.

また、本発明の予備成形方法は、成形体のX線が照射される面の全面を加圧する際に、押込み率を上述の範囲内である一定の値に管理すれば、作業者により加圧条件が変化するのを防ぐことができ、予備成形された試料ごとにX線照射面の表層部の粒子密度が変化してばらつくのを抑制することができる。その結果、蛍光X線分析法による成分定量において分析試料ごとに測定値がばらつくのを低減し、分析精度を向上できる。   The preforming method of the present invention can be applied by an operator if the indentation rate is controlled to a certain value within the above-mentioned range when pressing the entire surface of the molded body irradiated with X-rays. It is possible to prevent the conditions from changing, and it is possible to suppress variations in the particle density of the surface layer portion of the X-ray irradiation surface for each preformed sample. As a result, in the component quantification by the fluorescent X-ray analysis method, it is possible to reduce the variation in the measured value for each analytical sample and improve the analysis accuracy.

本発明の予備成形方法は、成形体5のX線が照射される面の全面を押込み率を10〜40%にして加圧する際に、成形体5のX線が照射される面5aの全面を加圧するパンチ4と、このパンチ4を案内するガイド3とを用いるのが好ましい。以下では、本発明の予備成形方法による処理手順の一例であって、パンチ4およびガイド3を用いる場合の処理手順について前記図1を参照しながら詳細に説明する。   In the preforming method of the present invention, when the entire surface of the molded body 5 irradiated with X-rays is pressed at a pressing rate of 10 to 40%, the entire surface 5a of the molded body 5 irradiated with X-rays. It is preferable to use a punch 4 for pressurizing and a guide 3 for guiding the punch 4. Below, it is an example of the process sequence by the preforming method of this invention, Comprising: The process sequence in the case of using the punch 4 and the guide 3 is demonstrated in detail, referring said FIG.

同図(a)に示すように、環状の試料リング2の内面および作業台1の平面状の上面によって成形用の型を形成する。試料リング2上にガイド3を配置し、成形用の型に金属または合金粉末を充填し、円盤状の成形体5を成形する。   As shown in FIG. 1A, a molding die is formed by the inner surface of the annular sample ring 2 and the planar upper surface of the work table 1. A guide 3 is placed on the sample ring 2 and a molding die is filled with a metal or alloy powder to form a disk-shaped molded body 5.

次に、同図(b)に示すように、ガイド3の中空部に円柱状のパンチ4を挿入する。ガイド3の案内によりパンチ4を移動(下降)させると、成形体5とパンチ4とが接触し、パンチ4は試料リング2の空洞部(型の断面形状)に対応する断面形状を有することから、パンチ4によって成形体5のX線が照射される面5aの全面が加圧される。パンチ4をさらに移動(下降)させて、押込み率が10〜40%となるまで移動(下降)させる。   Next, a cylindrical punch 4 is inserted into the hollow portion of the guide 3 as shown in FIG. When the punch 4 is moved (lowered) by the guide 3, the molded body 5 and the punch 4 come into contact with each other, and the punch 4 has a cross-sectional shape corresponding to the cavity (the cross-sectional shape of the mold) of the sample ring 2. The entire surface 5a of the molded body 5 irradiated with X-rays is pressurized by the punch 4. The punch 4 is further moved (lowered) and moved (lowered) until the indentation rate becomes 10 to 40%.

このように、成形体5のX線が照射される面5aの全面を加圧するパンチ4と、このパンチ4を案内するガイド3とを用いることにより、成形体5のX線が照射される面5aの全面を容易に均一に加圧することができる。また、試料リング2上にガイド3を配置した状態で成形用の型に金属または合金粉末を充填すれば、金属または合金粉末の飛散を防止することができる。   Thus, by using the punch 4 that pressurizes the entire surface 5 a of the molded body 5 to which X-rays are irradiated and the guide 3 that guides the punch 4, the surface of the molded body 5 that is irradiated with X-rays. The entire surface of 5a can be easily and uniformly pressurized. Further, if the metal or alloy powder is filled in the mold for molding with the guide 3 placed on the sample ring 2, the metal or alloy powder can be prevented from being scattered.

同図に示すように環状の試料リング2を用いて円盤状の成形体5を成形する場合、ガイド3の内径D2(mm)は、円柱状のパンチ4の外径をD1(mm)として下記(2)式を満足するように設計するのが好ましい。これにより、ガイド3に沿ってパンチ4を平滑に移動させることができるとともに、加圧する際にガイド3とパンチ4との隙間に金属または合金粉末が入り込むのを防止できる。
D1+0.01≦D2≦D1+0.05 ・・・(2)
As shown in the figure, when the disk-shaped molded body 5 is formed using the annular sample ring 2, the inner diameter D2 (mm) of the guide 3 is as follows with the outer diameter of the cylindrical punch 4 being D1 (mm). It is preferable to design so as to satisfy the formula (2). As a result, the punch 4 can be moved smoothly along the guide 3, and metal or alloy powder can be prevented from entering the gap between the guide 3 and the punch 4 during pressurization.
D1 + 0.01 ≦ D2 ≦ D1 + 0.05 (2)

また、円柱状のパンチ4の外径をD1(mm)は、試料リング2の内径をD3(mm)として下記(3)式を満足するように設計するのが好ましい。これにより、成形体のX線が照射される面5aの全面を加圧することができるとともに、パンチ4およびガイド3の大型化による作業性の悪化および製作コストの上昇を防止できる。
D3≦D1≦D3+0.01 ・・・(3)
Further, it is preferable that the outer diameter of the cylindrical punch 4 is D1 (mm) and the inner diameter of the sample ring 2 is D3 (mm) so that the following expression (3) is satisfied. This makes it possible to pressurize the entire surface 5a of the molded body that is irradiated with X-rays, and to prevent deterioration in workability and increase in manufacturing cost due to the enlargement of the punch 4 and the guide 3.
D3 ≦ D1 ≦ D3 + 0.01 (3)

パンチ4およびガイド3は、金属または合金粉末を加圧することから、高強度の鋼または合金を用いるのが好ましく、例えばステンレス鋼(SUS系)や炭素工具鋼(SK系)を採用できる。超硬合金(例えばWC−Co系やWC−TiC−Co系)を採用するのがより好ましい。   Since the punch 4 and the guide 3 pressurize metal or alloy powder, it is preferable to use high-strength steel or alloy. For example, stainless steel (SUS type) or carbon tool steel (SK type) can be adopted. It is more preferable to use a cemented carbide (for example, WC-Co type or WC-TiC-Co type).

本発明の予備成形方法は、金属または合金粉末にバインダーを添加して混練してから型に充填してもよい。これにより、予備成形された試料および成形体を本成形した分析用試料の一部が振動等によって粉化するのを防止できる。バインダーとしては、例えば、ステアリン酸、スチレン−マレイン酸共重合物を用いることができる。   In the preforming method of the present invention, a binder may be added to metal or alloy powder and kneaded and then filled into a mold. As a result, it is possible to prevent a part of the pre-molded sample and the analytical sample obtained by molding the molded body from being pulverized by vibration or the like. As the binder, for example, stearic acid or a styrene-maleic acid copolymer can be used.

本発明の予備成形方法は、金属または合金粉末を酸化物としてから型に充填してもよい。酸化物は、例えば、金属または合金粉末を酸溶解した後、酸溶解液を濾紙粉末に吸着させ、焼成することにより得ることができる。   In the preforming method of the present invention, the metal or alloy powder may be formed into an oxide and then filled into a mold. The oxide can be obtained, for example, by dissolving a metal or alloy powder with an acid, adsorbing the acid solution on a filter paper powder, and baking it.

金属または合金については、特に限定はなく、純金属、合金などを粉末にして用いることができる。金属または合金粉末が加圧した際にスプリングバックが少ない高硬度(高ヤング率)である粉末であれば、本発明による予備成形された試料でX線が照射される面の表層部における粒子密度を均一にする効果が大きくなる。このため、本発明の予備成形方法は、希土類−鉄−ホウ素系合金の酸化物粉末から分析用試料を作製する際に好適である。   The metal or alloy is not particularly limited, and a pure metal, an alloy, or the like can be used as a powder. If the metal or alloy powder is a powder having high hardness (high Young's modulus) with little springback when pressed, the particle density in the surface layer portion of the surface irradiated with X-rays in the preformed sample according to the present invention The effect of making uniform becomes larger. For this reason, the preforming method of the present invention is suitable for preparing an analytical sample from an oxide powder of a rare earth-iron-boron alloy.

本発明の成分定量方法は、試料を加圧することにより本成形した後で蛍光X線分析法により成分を定量する方法であって、試料として上述の本発明の予備成形方法により予備成形した試料を用いることを特徴とする。前述のとおり、本発明の予備成形方法により予備成形した試料はX線が照射される面の表層部において粒子密度が均一となることから、本成形された分析用試料でもX線が照射される面の表層部において粒子密度が均一となる。このため、本発明の成分定量方法は、蛍光X線分析法による成分定量において分析精度を向上できる。   The component quantification method of the present invention is a method of quantitatively determining components by fluorescent X-ray analysis after performing main molding by pressurizing a sample, wherein a sample preformed by the above-described preforming method of the present invention is used as a sample. It is characterized by using. As described above, since the sample preformed by the preforming method of the present invention has a uniform particle density in the surface layer portion of the surface irradiated with X-rays, the analysis sample thus formed is also irradiated with X-rays. The particle density is uniform in the surface layer portion of the surface. For this reason, the component quantification method of the present invention can improve analysis accuracy in component quantification by fluorescent X-ray analysis.

本発明の成分定量方法では、試料を加圧することによる本成形を、例えば1軸プレス機といった装置により行うことができる。   In the component quantification method of the present invention, the main molding by pressurizing the sample can be performed by an apparatus such as a uniaxial press.

本発明の予備成形方法およびそれを用いる成分定量方法による効果を検証するため、下記の試験を行った。   In order to verify the effects of the preforming method of the present invention and the component determination method using the same, the following tests were conducted.

1.成分定量試験
[試験方法]
本試験では、合金の酸化物からなる粉末Aと、合金の粉末Bとを準備し、粉末Aの準備手順は以下のとおりとした。ストリップキャスト法により鋳造された希土類−鉄−ホウ素系合金(Nd:32.3質量%およびB:1.0質量%を含有し残部がFeからなる合金)の鋳片を水素粉砕した後で篩い目が0.5mmである篩により分級した。その篩下の合金粉末から質量4.2gを採取して硝酸(HNO3)に加熱溶解し、その溶解液を濾紙粉末に吸着させた後で加熱された鋼板状で灰化した。この灰化物をスタンプミルにより粉砕して粉末状とした後で、電気炉にて一定の条件で加熱することにより焼成し、希土類−鉄−ホウ素系合金の酸化物からなる質量4.5gの粉末Aを得た。
1. Component quantification test [test method]
In this test, a powder A made of an oxide of an alloy and an alloy powder B were prepared, and the preparation procedure of the powder A was as follows. A slab of a rare earth-iron-boron alloy cast by the strip casting method (Nd: 32.3% by mass and B: 1.0% by mass and the balance of Fe) is crushed with hydrogen and then sieved Classification was performed with a sieve having a mesh size of 0.5 mm. A mass of 4.2 g was sampled from the alloy powder under the sieve, dissolved in nitric acid (HNO 3 ) by heating, and the dissolved liquid was adsorbed on the filter paper powder and then incinerated in the form of a heated steel plate. After the ashed product is pulverized by a stamp mill to form a powder, it is fired by heating in an electric furnace under certain conditions, and a powder having a mass of 4.5 g made of an oxide of a rare earth-iron-boron alloy. A was obtained.

一方、粉末Bの準備手順は以下のとおりとした。真空中で混合原料を加熱して溶融し、この溶湯を鋳型に流し込んで合金インゴットを得た。この際、混合原料は合金インゴットの組成がTi:30質量%およびNi:70質量%となるように配合した。得られた合金インゴットをスタンプミルで粉砕した後、篩い目が20μmである篩いにより分級し、その篩下を質量4.5gで採取して粉末Bとした。   On the other hand, the preparation procedure of the powder B was as follows. The mixed raw material was heated and melted in a vacuum, and this molten metal was poured into a mold to obtain an alloy ingot. At this time, the mixed raw materials were blended so that the composition of the alloy ingot was Ti: 30% by mass and Ni: 70% by mass. The obtained alloy ingot was pulverized with a stamp mill and then classified with a sieve having a sieve mesh of 20 μm.

これら粉末AおよびBについて、レーザー回折散乱法による測定機(株式会社島津製作所製、SALD3000S)を用いて粒度分布を測定し、平均粒径D50は粉末Aが5μm、粉末Bが10μmであった。   About these powder A and B, the particle size distribution was measured using the measuring machine (Shimadzu Corporation make, SALD3000S) by the laser diffraction scattering method, and the average particle diameter D50 was 5 micrometers for powder A, and 10 micrometers for powder B.

本試験の本発明例では、前記図1を用いて説明した手順により、粉末AまたはBを型に充填して成形体とした後、成形体のX線が照射される面の全面を押込み率を19%にして加圧することにより予備成形した。この際、環状の試料リングの寸法は外径が37.8mm、内径が31.0mmであり、パンチの外径は31.0mm、ガイドの内径は31.03mmであった。パンチおよびガイドにはステンレス鋼(SUS316)を用いた。この予備成形した試料をプレス機によって本成形して分析用試料とし、プレス機は1軸プレス機を用いて150kNの条件で加圧した。   In the present invention example, after filling the mold with powder A or B according to the procedure described with reference to FIG. 1, the entire surface of the surface irradiated with X-rays is pressed. Was preformed by pressurizing to 19%. At this time, the outer diameter of the annular sample ring was 37.8 mm, the inner diameter was 31.0 mm, the outer diameter of the punch was 31.0 mm, and the inner diameter of the guide was 31.03 mm. Stainless steel (SUS316) was used for the punch and guide. This pre-molded sample was formed into a sample for analysis by main molding with a press machine, and the press machine was pressurized under a condition of 150 kN using a uniaxial press machine.

従来例では、上面が平面状の作業台に環状の試料リングを配置し、試料リングの内面と作業台の上面とで形成される型に粉末Aまたは粉末Bを充填し成形体とした。この成形体のX線が照射される面(上面)を平へらで均しつつ加圧することにより予備成形して試料とし、予備成形した試料をプレス機によって本成形して分析用試料とした。予備成形の平へらは成形体を加圧する部分が長さ10mm、幅10mmであり、本成形のプレス機は1軸プレス機を用いて150kNの条件で加圧した。   In the conventional example, an annular sample ring is arranged on a work table having a flat upper surface, and a mold formed by the inner surface of the sample ring and the upper surface of the work table is filled with powder A or powder B to form a molded body. A surface (upper surface) irradiated with X-rays of this molded body was preliminarily molded by pressurizing while flattening with a flat spatula, and the preformed sample was subjected to main molding with a press machine to obtain a sample for analysis. The pre-formed flat spatula is 10 mm long and 10 mm wide to press the compact, and the press machine of this molding was pressurized using a uniaxial press machine at 150 kN.

粉末Aについて、本発明例および従来例ともにそれぞれ5個の分析用試料を作製し、それらの分析用試料について蛍光X線分析装置(株式会社リガク社製、Simultix 14)によりNd成分を定量した。また、粉末Bについても、本発明例および従来例ともにそれぞれ5個の分析用試料を作製し、それらの分析用試料について蛍光X線分析装置によりNi成分を定量した。蛍光X線分析装置による成分定量は、測定条件は管電圧を50kV、管電流を50mA、測定時間を40秒とした。   For the powder A, 5 samples for analysis were prepared for each of the present invention example and the conventional example, and the Nd component of the sample for analysis was quantified with a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, Simulix 14). For powder B, five analytical samples were prepared for each of the present invention example and the conventional example, and the Ni component of each analytical sample was quantified using a fluorescent X-ray analyzer. Component quantification using a fluorescent X-ray analyzer was performed under the measurement conditions of a tube voltage of 50 kV, a tube current of 50 mA, and a measurement time of 40 seconds.

[試験結果]
表1に、本発明例または従来例のうちで粉末Aを用いた各分析用試料で定量されたNd成分の含有量(質量%)についてそれぞれ示す。併せて表1には、本発明例または従来例におけるNd成分の含有量の平均値、標準偏差および変動係数(標準偏差/平均値)も示す。
一方、表2に、本発明例または従来例のうちで粉末Bを用いた各分析用試料で定量されたNi成分の含有量(質量%)についてそれぞれ示す。併せて表2には、本発明例または従来例におけるNi成分の含有量の平均値、標準偏差および変動係数(標準偏差/平均値)も示す。
[Test results]
Table 1 shows the content (% by mass) of the Nd component quantified in each analytical sample using the powder A in the present invention example or the conventional example. Table 1 also shows the average value, standard deviation, and coefficient of variation (standard deviation / average value) of the content of the Nd component in the present invention example or the conventional example.
On the other hand, Table 2 shows the content (mass%) of the Ni component quantified in each analytical sample using the powder B in the present invention example or the conventional example. In addition, Table 2 also shows the average value, standard deviation, and coefficient of variation (standard deviation / average value) of the Ni component content in the present invention example or the conventional example.

Figure 2013108778
Figure 2013108778

Figure 2013108778
Figure 2013108778

表1より、粉末Aを用いた分析用試料においてNd成分の含有量の標準偏差が、従来例では0.04となったのに対し、本発明例では0.02となった。
一方、表2より、粉末Bを用いた分析用試料においてNi成分の含有量の標準偏差が、従来例では0.06となったのに対し、本発明例では0.03となった。
From Table 1, the standard deviation of the content of the Nd component in the analytical sample using powder A was 0.04 in the conventional example, but 0.02 in the present invention example.
On the other hand, from Table 2, the standard deviation of the Ni component content in the analytical sample using powder B was 0.06 in the conventional example, and 0.03 in the present invention example.

これらから、合金粉末を型に充填して成形し、この成形体のX線が照射される面の全面を加圧することにより、蛍光X線分析法による成分定量において分析精度を向上できることが明らかになった。   From these, it is clear that the analysis accuracy can be improved in the component quantification by the fluorescent X-ray analysis method by filling the alloy powder into the mold and molding it, and pressurizing the entire surface of the compact that is irradiated with X-rays. became.

2.予備成形試験
[試験方法]
本試験では、前述の粉末AまたはBを成形体とし、この成形体を前記図1を用いて説明した手順により加圧して予備成形した。予備成形した試料を1軸プレス機を用いて150kNの条件で加圧して本成形することにより分析用試料を得た。
2. Pre-molding test [test method]
In this test, the above-mentioned powder A or B was used as a molded body, and this molded body was pre-molded by pressurization according to the procedure described with reference to FIG. A sample for analysis was obtained by press-molding the preformed sample under a condition of 150 kN using a single-screw press and performing main molding.

本試験では、成形体を加圧して予備成形する際に押込み率を、粉末Aを用いた場合は8〜48%で、粉末Bを用いた場合は6〜48%で変化させた。この際、試料リング、パンチおよびガイドは、前述の「1.成分定量試験」の本発明例と同じ寸法および材質のものを用いた。   In this test, the indentation rate was changed from 8 to 48% when powder A was used and 6 to 48% when powder B was used when pre-molding the compact by pressing. At this time, sample rings, punches, and guides having the same dimensions and materials as those of the present invention example of “1.

本試験では、得られた分析用試料のX線が照射される面について割れの有無を目視により確認した。後述する表3および表4の割れ評価欄の記号の意味は次の通りである。
○:分析用試料のX線が照射される面に割れが確認されなかったことを示す。
×:分析用試料のX線が照射される面に割れが確認されたことを示す。
In this test, the presence or absence of cracks was visually confirmed on the surface of the obtained analytical sample that was irradiated with X-rays. The meanings of the symbols in the crack evaluation column of Table 3 and Table 4 to be described later are as follows.
(Circle): It shows that the crack was not confirmed by the surface irradiated with the X-ray of the sample for analysis.
X: It shows that the crack was confirmed by the surface irradiated with the X-ray of the sample for analysis.

[試験結果]
表3に、粉末Aを用いた試験における試験番号、区分、加圧前の成形体の高さ(h2)、加圧前の成形体の高さと加圧後の成形体の高さとの差(h1−h2)、押込み率および本成形された分析用試料の割れ評価の結果を示す。
一方、表4に、粉末Bを用いた試験における試験番号、区分、加圧前の成形体の高さ(h2)、加圧前の成形体の高さと加圧後の成形体の高さとの差(h1−h2)、押込み率および本成形された分析用試料の割れ評価の結果を示す。
[Test results]
Table 3 shows the test number, classification, height of the molded body before pressing (h2) in the test using powder A, and the difference between the height of the molded body before pressing and the height of the molded body after pressing ( h1-h2), the indentation rate, and the results of crack evaluation of the molded sample for analysis are shown.
On the other hand, Table 4 shows the test number, classification, height of the compact before pressing (h2), the height of the compact before pressurization and the height of the compact after pressurization in the test using powder B. The difference (h1−h2), the indentation rate, and the result of crack evaluation of the molded sample for analysis are shown.

Figure 2013108778
Figure 2013108778

Figure 2013108778
Figure 2013108778

表3より、粉末Aを用いた場合、押込み率が10%未満の試験番号3−1と、40%を超えた試験番号3−8および3−9とで、本成形した分析用試料のX線が照射される面に割れが確認された。一方、押込み率が10〜40%であった試験番号3−2〜3−7では、本成形した分析用試料のX線が照射される面に割れが確認されなかった。   From Table 3, when powder A is used, X of the analytical sample formed in this way was obtained by test numbers 3-1 having an indentation rate of less than 10% and test numbers 3-8 and 3-9 exceeding 40%. Cracks were confirmed on the surface irradiated with the line. On the other hand, in the test numbers 3-2 to 3-7 in which the indentation rate was 10 to 40%, no cracks were confirmed on the surface of the analytical sample that was subjected to X-ray irradiation.

表4より、粉末Bを用いた場合、押込み率が10%未満の試験番号4−1と、40%を超えた試験番号4−8および4−9とで、本成形した分析用試料のX線が照射される面に割れが確認された。一方、押込み率が10〜40%であった試験番号4−2〜4−7では、本成形した分析用試料のX線が照射される面に割れが確認されなかった。   From Table 4, when powder B was used, X of the analytical sample formed in this way was obtained by test numbers 4-1 having an indentation rate of less than 10% and test numbers 4-8 and 4-9 exceeding 40%. Cracks were confirmed on the surface irradiated with the line. On the other hand, in the test numbers 4-2 to 4-7 in which the indentation rate was 10 to 40%, no cracks were confirmed on the surface of the analytical sample that was subjected to X-ray irradiation.

これらから、成形体のX線が照射される面の全面を押込み率を10〜40%にして加圧することにより、本成形した分析用試料に割れが生じることがなく、その結果、蛍光X線分析法による成分定量において分析精度を向上できることが明らかになった。   From these, the whole surface of the molded body irradiated with X-rays is pressed with an indentation rate of 10 to 40%, so that the analytical sample thus formed does not crack, and as a result, fluorescent X-rays are obtained. It became clear that the analysis accuracy could be improved in the component quantification by the analytical method.

本発明の予備成形方法は、成形体のX線が照射される面の全面を加圧することにより、予備成形された試料のX線が照射される面の表層部における粒子密度を均一にすることができる。このようにX線が照射される面の表層部における粒子密度を均一な試料を本成形すれば、本成形された分析用試料もX線が照射される面の表層部における粒子密度が均一となり、蛍光X線分析法による成分定量における分析精度を向上できる。また、本発明の成分定量方法は、上述の効果を有する本発明の予備成形方法を用いることから、成分定量の分析精度を向上できる。   The preforming method of the present invention makes the particle density in the surface layer portion of the surface of the preformed sample irradiated with X-rays uniform by pressurizing the entire surface of the molded body irradiated with X-rays. Can do. If a sample having a uniform particle density in the surface layer portion of the surface irradiated with X-rays is formed in this manner, the particle density in the surface layer portion of the surface irradiated with X-rays becomes uniform in the molded sample for analysis. In addition, it is possible to improve analysis accuracy in component quantification by X-ray fluorescence analysis. In addition, since the component quantification method of the present invention uses the preforming method of the present invention having the above-described effects, the analysis accuracy of component quantification can be improved.

したがって、本発明の予備成形方法およびそれを用いた成分定量方法を、希土類磁石の原料となる希土類−鉄−ホウ素系合金の製造に適用すれば、希土類−鉄−ホウ素系合金の品質向上に大きく寄与することができる。   Therefore, if the preforming method of the present invention and the component determination method using the same are applied to the production of a rare earth-iron-boron alloy used as a raw material for a rare earth magnet, the quality of the rare earth-iron-boron alloy is greatly improved. Can contribute.

1:作業台、 2:試料リング、 3:ガイド、 4:パンチ、
5:成形体(試料)、 5a:X線が照射される面、 D1:パンチの外径、
D2:ガイドの内径、 D3:試料リングの内径
1: work table, 2: sample ring, 3: guide, 4: punch,
5: Molded body (sample), 5a: surface irradiated with X-rays, D1: outer diameter of punch,
D2: inner diameter of the guide, D3: inner diameter of the sample ring

Claims (4)

加圧して本成形した後で蛍光X線分析法に用いられる試料を予備成形する方法であって、
平均粒径D50が30μm以下の金属または合金粉末を型に充填して成形し、該成形体のX線が照射される面の全面を、下記(1)式により算出される押込み率を10〜40%にして加圧することを特徴とする試料の予備成形方法。
P=100×(h1−h2)/h1 ・・・(1)
ここで、加圧前の成形体の高さをh1(mm)、加圧後の成形体の高さをh2(mm)とする。
A method for pre-molding a sample to be used for fluorescent X-ray analysis after press molding and main molding,
A metal or alloy powder having an average particle diameter D50 of 30 μm or less is filled into a mold and molded, and the entire surface of the molded body that is irradiated with X-rays has an indentation rate calculated by the following formula (1) of 10 to 10 A method for preforming a sample, wherein the pressure is 40%.
P = 100 × (h1−h2) / h1 (1)
Here, the height of the compact before pressurization is h1 (mm), and the height of the compact after pressurization is h2 (mm).
前記成形体のX線が照射される面の全面を押込み率を10〜40%にして加圧する際に、前記成形体のX線が照射される面の全面を加圧するパンチと、該パンチを案内するガイドとを用いることを特徴とする請求項1に記載の試料の予備成形方法。   A punch that pressurizes the entire surface of the molded body that is irradiated with X-rays and pressurizes the entire surface of the molded body that is irradiated with X-rays, and presses the punch. The method for preforming a sample according to claim 1, wherein a guide for guiding is used. 前記金属または合金粉末として、希土類−鉄−ホウ素系合金の酸化物粉末を用いることを特徴とする請求項1または2に記載の試料の予備成形方法。   The method for preforming a sample according to claim 1 or 2, wherein an oxide powder of a rare earth-iron-boron alloy is used as the metal or alloy powder. 試料を加圧することにより本成形した後で蛍光X線分析法により成分を定量する方法であって、
前記試料として、請求項1〜3のいずれかに記載の予備成形方法により予備成形した試料を用いることを特徴とする試料の成分定量方法。
A method for quantitatively determining a component by fluorescent X-ray analysis after main molding by pressurizing a sample,
A sample component quantification method using a sample preformed by the preforming method according to claim 1 as the sample.
JP2011252255A 2011-11-18 2011-11-18 Sample preforming method and component quantification method using the same Pending JP2013108778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252255A JP2013108778A (en) 2011-11-18 2011-11-18 Sample preforming method and component quantification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252255A JP2013108778A (en) 2011-11-18 2011-11-18 Sample preforming method and component quantification method using the same

Publications (1)

Publication Number Publication Date
JP2013108778A true JP2013108778A (en) 2013-06-06

Family

ID=48705692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252255A Pending JP2013108778A (en) 2011-11-18 2011-11-18 Sample preforming method and component quantification method using the same

Country Status (1)

Country Link
JP (1) JP2013108778A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729903A (en) * 2015-03-30 2015-06-24 四川新先达测控技术有限公司 Powder sample making mould assembly in X-luminoscope
JP2017058362A (en) * 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method
JP2018066652A (en) * 2016-10-19 2018-04-26 住友金属鉱山株式会社 Analytical method of powder sample
KR20180073993A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Manufacturing Apparatus for preparing slag sample
CN110220811A (en) * 2019-03-29 2019-09-10 山西太钢不锈钢股份有限公司 Automatic sampling and the device and method for testing blocky alloyed powder rate
JP2020098170A (en) * 2018-12-19 2020-06-25 株式会社島津製作所 Method for producing sample

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729903A (en) * 2015-03-30 2015-06-24 四川新先达测控技术有限公司 Powder sample making mould assembly in X-luminoscope
JP2017058362A (en) * 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method
JP2018066652A (en) * 2016-10-19 2018-04-26 住友金属鉱山株式会社 Analytical method of powder sample
JP7005892B2 (en) 2016-10-19 2022-01-24 住友金属鉱山株式会社 Analysis method of powder sample
KR20180073993A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Manufacturing Apparatus for preparing slag sample
KR101897139B1 (en) * 2016-12-23 2018-10-18 주식회사 포스코 Manufacturing Apparatus for preparing slag sample
JP2020098170A (en) * 2018-12-19 2020-06-25 株式会社島津製作所 Method for producing sample
JP7070390B2 (en) 2018-12-19 2022-05-18 株式会社島津製作所 Sample manufacturing method
CN110220811A (en) * 2019-03-29 2019-09-10 山西太钢不锈钢股份有限公司 Automatic sampling and the device and method for testing blocky alloyed powder rate

Similar Documents

Publication Publication Date Title
JP2013108778A (en) Sample preforming method and component quantification method using the same
JP4894008B2 (en) Method for producing MoNb-based sintered sputtering target material
EP3118866B1 (en) Magnetic core, coil component and magnetic core manufacturing method
JP2005240160A (en) METHOD OF PRODUCING Mo-BASED TARGET MATERIAL
JP2013083000A (en) METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL
CN103959404B (en) Rare-earth sintered magnet
CN102041402A (en) Preparation method of low-oxygen molybdenum alloy and application thereof
JP5847196B2 (en) Tungsten sintered alloy
AT14301U1 (en) Method for producing a component
WO2015061816A1 (en) Sputtering target and production method
US10427216B2 (en) Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
US20200208244A1 (en) Sintered material
EP2889095B1 (en) Method and apparatus for preparing rare earth sintered magnet
JP6583158B2 (en) Sample preparation method for fluorescent X-ray analysis
JP7114623B2 (en) Sintered material and method for producing sintered material
TW201504450A (en) Method of making molybdenum alloy target
JP6368448B1 (en) Tungsten carbide powder
WO2018179993A1 (en) Titanium sponge, method for manufacturing titanium sponge, and method for manufacturing titanium ingot or titanium alloy ingot
JP5518375B2 (en) Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same
KR20200088466A (en) Alloy steel powder
US20220226944A1 (en) Method for manufacturing sintered gear
JP6437900B2 (en) Manufacturing method of dust core
JP6815574B1 (en) Tungsten carbide powder
US20220105564A1 (en) Sintered material, gear, and method for producing sintered material
JP5786755B2 (en) Method for producing ferrous sintered material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130717