JP5518375B2 - Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same - Google Patents

Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same Download PDF

Info

Publication number
JP5518375B2
JP5518375B2 JP2009136848A JP2009136848A JP5518375B2 JP 5518375 B2 JP5518375 B2 JP 5518375B2 JP 2009136848 A JP2009136848 A JP 2009136848A JP 2009136848 A JP2009136848 A JP 2009136848A JP 5518375 B2 JP5518375 B2 JP 5518375B2
Authority
JP
Japan
Prior art keywords
pure
molded body
molybdenum alloy
average particle
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009136848A
Other languages
Japanese (ja)
Other versions
JP2010095791A (en
Inventor
俊之 澤田
敦 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2009136848A priority Critical patent/JP5518375B2/en
Publication of JP2010095791A publication Critical patent/JP2010095791A/en
Application granted granted Critical
Publication of JP5518375B2 publication Critical patent/JP5518375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ドリル加工性に優れたモリブデン合金成形体およびその製造方法に関し、特に集束イオンビーム装置(FIB)や核融合装置などのような装置に使用されるイオン加速電極として用いられるモリブデン合金成形体およびその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a molybdenum alloy molded body excellent in drill workability and a method for producing the same, and in particular, molybdenum alloy molding used as an ion acceleration electrode used in an apparatus such as a focused ion beam apparatus (FIB) or a fusion apparatus. The present invention relates to a body and a manufacturing method thereof.

従来、集束イオンビーム装置(FIB)や核融合装置など加速されたイオンビームを用い、微細加工、イオンビーム照射、スパッタリングなどを行う装置には、イオンビームを加速するための加速電極として、高融点材料であるモリブデン板が使用されている。例えば特開平3−129638号公報(特許文献1)や特開平5−29093号公報(特許文献2)には、イオン加速電極板の製造方法が開示されており、また、特開平5−94794号公報(特許文献3)や特開平5−94795号公報(特許文献4)には、イオンソースグリッドが開示されている。   Conventionally, a high-melting point is used as an accelerating electrode for accelerating an ion beam in an apparatus such as a focused ion beam apparatus (FIB) or a fusion apparatus that uses an accelerated ion beam and performs fine processing, ion beam irradiation, sputtering, and the like. The material molybdenum plate is used. For example, Japanese Patent Application Laid-Open No. 3-129638 (Patent Document 1) and Japanese Patent Application Laid-Open No. 5-29093 (Patent Document 2) disclose a method of manufacturing an ion acceleration electrode plate, and Japanese Patent Application Laid-Open No. 5-94794. An ion source grid is disclosed in Japanese Patent Publication (Patent Document 3) and Japanese Patent Application Laid-Open No. 5-94795 (Patent Document 4).

上記特許文献1〜2の場合のモリブデンの加速電極の形状については、図2に示す加速電極の模式図のように、円形のモリブデン薄板1にイオンビームが通過するビーム穴2が多数あけられている。加速電極のサイズや装置の種類にもよるが、1枚の薄板に数百から数千個のビーム穴がドリル加工によって開けられている。通常、モリブデンは被削性が悪く、ドリル刃先の摩耗が激しいためドリル寿命が短く、加工コストを上げてしまうという課題がある。また、加速電極におけるビーム穴の寸法精度は、イオンビームの拡がりや偏光など原因となるため、ドリル刃先の摩耗による寸法ずれが大きな問題となっている。   Regarding the shape of the acceleration electrode of molybdenum in the case of the above-mentioned patent documents 1 and 2, as shown in the schematic diagram of the acceleration electrode shown in FIG. 2, a large number of beam holes 2 through which the ion beam passes are formed in the circular molybdenum thin plate 1. Yes. Depending on the size of the accelerating electrode and the type of device, hundreds to thousands of beam holes are drilled in one thin plate. Usually, molybdenum has poor machinability, and there is a problem that the wear of the drill tip is severe, so that the drill life is short and the processing cost is increased. In addition, since the dimensional accuracy of the beam hole in the acceleration electrode causes the spread of the ion beam, polarization, and the like, the dimensional deviation due to wear of the drill blade tip is a serious problem.

また、特開2006−299384号公報(特許文献5)、特開2003−293070号公報(特許文献6)、特開2007−302981号公報(特許文献7)、特開2002−327264号公報(特許文献7)、特開2002−327264号公報(特許文献8)、特開2005−290409号公報(特許文献9)や特開昭57−194238号公報(特許文献10)には、Nbを添加したMo合金の例が開示されている。
特開平3−129638号公報 特開平5−29093号公報 特開平5−94794号公報 特開平5−94795号公報 特開2006−299384号公報 特開2003−293070号公報 特開2007−302981号公報 特開2002−327264号公報 特開2005−290409号公報 特開昭57−194238号公報
JP 2006-299384 A (Patent Document 5), JP 2003-293070 A (Patent Document 6), JP 2007-302981 A (Patent Document 7), JP 2002-327264 A (Patent Document 5). Reference 7), Japanese Patent Application Laid-Open No. 2002-327264 (Patent Document 8), Japanese Patent Application Laid-Open No. 2005-290409 (Patent Document 9), and Japanese Patent Application Laid-Open No. 57-194238 (Patent Document 10) were added with Nb. Examples of Mo alloys are disclosed.
Japanese Patent Laid-Open No. 3-129638 JP-A-5-29093 Japanese Patent Laid-Open No. 5-94794 JP-A-5-94795 JP 2006-299384 A JP 2003-293070 A JP 2007-302981 A JP 2002-327264 A JP 2005-290409 A JP-A-57-194238

上述したように、特許文献5〜10には、Nbを添加したMo合金の例が開示されているが、いずれもNb添加の意図やNbの存在形態もしくは製法において本発明技術とは全く異なっている。例えば特許文献5および特許文献6は特許請求の範囲に記載の通り、Nbを固溶し、その後の処理において窒化させることを特徴としているため、純Nb粒子を分散することを特徴とする本発明とは異なる。   As described above, Patent Documents 5 to 10 disclose examples of Mo alloys to which Nb is added. However, all of them are completely different from the present invention in the intention of Nb addition, the existence form of Nb, or the manufacturing method. Yes. For example, Patent Document 5 and Patent Document 6 are characterized in that, as described in the claims, Nb is dissolved in a solid solution and is nitrided in subsequent processing, and therefore, pure Nb particles are dispersed. Is different.

また、特許文献7は、段落[0007]に記載の通り、板材素材として焼結材、溶製材や電子ビーム溶解等の特殊溶解による記載があり、本発明のように純Nb粒子を分散することにより、ドリル加工性を改善するものでない。さらに、特許文献8は、段落[0014]に記載の通り、低酸素な材料を得るに適した溶解法にて製造したインゴットを用いたターゲットであり、本発明のように純Nb粒子を分散することにより、ドリル加工性を改善するものでない。   Further, as described in paragraph [0007], Patent Document 7 has a description by special melting such as sintered material, melted material, or electron beam melting as a plate material, and the dispersion of pure Nb particles as in the present invention. Therefore, the drilling workability is not improved. Further, Patent Document 8 is a target using an ingot manufactured by a melting method suitable for obtaining a low-oxygen material as described in paragraph [0014], and pure Nb particles are dispersed as in the present invention. Therefore, it does not improve drill workability.

さらに、特許文献9は、特許請求の範囲に記載の通り、金属元素M(Nbなど)粒の周囲に存在する酸化物をネットワークで結ぶことを特徴としたミクロ組織を有しており、本発明の純Nb粒子の周囲に酸化物のネットワークは存在しない。また、特許文献10には、構成相や製法の記述がないため、どのようなミクロ組織を有しているか不明であるが、第2頁の右下欄第11行目に記載している通り、Nb添加によりボイドスエリング等の放射線損傷に対する耐性を改善するものであり、本発明のように、数千個のドリル穴を穿孔するような、加速電極に好適なドリル加工性に優れたMo合金とは用途が全く異なっており、かつNb添加の意図も異なっている。   Furthermore, Patent Document 9 has a microstructure characterized by connecting oxides present around metal element M (Nb, etc.) grains with a network as described in the claims, and the present invention. There is no oxide network around the pure Nb particles. In addition, in Patent Document 10, since there is no description of a constituent phase or a manufacturing method, it is unclear what kind of microstructure it has, but as described in the 11th line on the lower right column of the second page. , Nb addition improves resistance to radiation damage such as void swelling, and Mo alloy excellent in drill workability suitable for accelerating electrode such as drilling thousands of drill holes as in the present invention Is completely different in use, and the intention of adding Nb is also different.

上述したような特許文献は多くあるが、しかしながら、通常、Moは被削性が悪く、ドリル刃先の摩耗が激しいためドリル寿命が短く、加工コストを上げてしまう課題があり、また、加速電極におけるビーム穴の寸法精度は、イオンビームの拡がりや偏光など原因となるため、ドリル刃先の摩耗による寸法ずれが大きな問題となっている。これらの問題を解消するために、発明者らは鋭意検討した結果、MoにNbを添加し、かつ純Nb相を分散することによりドリル加工性が極めて良好になることを見出し、発明に至ったものである。   Although there are many patent documents as described above, however, Mo is usually poor in machinability, and there is a problem that drill life is shortened because the wear of the drill tip is severe, and there is a problem of increasing the processing cost. Since the dimensional accuracy of the beam hole causes the spread of the ion beam, polarized light, and the like, the dimensional deviation due to wear of the drill tip is a big problem. In order to solve these problems, the inventors have intensively studied. As a result, the inventors found that drilling workability is extremely improved by adding Nb to Mo and dispersing a pure Nb phase, leading to the invention. Is.

その発明の要旨とするところは、
(1)原子%で、Nb:1〜50%、残部Moおよび不可避的不純物よりなり、かつ純Moからなるマトリックス中に、純Nbが分散しており、該純Nbの平均粒径:3〜100μm、面積率:3〜40%であることを特徴とする加速電極用ドリル加工性に優れたモリブデン合金からなる成形体。
(2)前記(1)に記載する成形体中の純Nbの平均粒径を得るために、原料Nb平均粒径を25〜80μmとすることを特徴とする加速電極用ドリル加工性に優れたモリブデン合金からなる成形体。
)Mo粉末とNb粉末の混合粉末とし、熱間静水圧プレスにより成形することを特徴とした加速電極用ドリル加工性に優れたモリブデン合金からなる成形体の製造方法。
)1100〜1500℃で熱間静水圧プレスすることを特徴とする前記()記載の加速電極用ドリル加工性に優れたモリブデン合金からなる成形体の製造方法にある。
The gist of the invention is that
(1) Atomic%, Nb: 1 to 50%, balance Mo and inevitable impurities, and pure Nb is dispersed in a matrix made of pure Mo. The average particle diameter of the pure Nb is 3 to 3 A molded body made of a molybdenum alloy excellent in drilling workability for an acceleration electrode , characterized by being 100 μm and an area ratio of 3 to 40%.
(2) In order to obtain the average particle diameter of pure Nb in the molded article described in (1), the raw material Nb average particle diameter is set to 25 to 80 μm, which is excellent in accelerating electrode drill workability A compact made of molybdenum alloy.
( 3 ) A method for producing a molded body made of a molybdenum alloy excellent in drilling workability for an acceleration electrode , characterized in that a mixed powder of Mo powder and Nb powder is formed by hot isostatic pressing.
( 4 ) The method for producing a molded body made of a molybdenum alloy having excellent drilling workability for an acceleration electrode according to ( 3 ), wherein hot isostatic pressing is performed at 1100 to 1500 ° C.

以上述べたように、本発明による純Moからなるマトリックス中に、純Nbの粒子として分散させることにより、各種装置の加速電極に好適なドリル加工性に優れたMo合金成形体およびその製造方法を提供するものである。   As described above, a Mo alloy molded body excellent in drill workability suitable for an accelerating electrode of various apparatuses and a method for producing the same by dispersing as pure Nb particles in a matrix made of pure Mo according to the present invention. It is to provide.

以下、本発明についての成分組成の限定理由について述べる。
Nb:1〜50%
Nbは、添加量と共に、ドリル加工性アップに寄与するが、しかし、1%未満ではその効果が得られず、また、50%を超えるとその効果が飽和し、コストアップとなるため、その範囲を1〜50%とした。また、一般に市販されているNb粉末はMo粉末と比較し、酸素値が高い場合が多い。このため、ドリル加工性と酸素値を考慮し、より好ましくは5〜30%とする。なお、酸素値が高すぎると加速電極として使用中にガスが発生する不具合を引き起こす場合があるからである。
Hereinafter, the reasons for limiting the component composition of the present invention will be described.
Nb: 1-50%
Nb contributes to drilling workability improvement with the addition amount, but if less than 1%, the effect cannot be obtained, and if it exceeds 50%, the effect is saturated and the cost is increased, so the range. Was 1 to 50%. Also, commercially available Nb powders often have higher oxygen values than Mo powders. For this reason, considering drill workability and oxygen value, it is more preferably 5 to 30%. This is because if the oxygen value is too high, there may be a problem that gas is generated during use as an acceleration electrode.

純Moマトリックス中に純Nbを分散
本発明はMo合金であり、マトリックスはMoがベースとなるが、マトリックスのMo中にNbが固溶するとドリル加工性が劣化するため、マトリックスを純Moとする。マトリックスのMo中にNbが固溶することによるドリル加工性の劣化の原因としては、Nbが固溶することによりマトリックスが硬化するためではないかと推察される。一方、Nbの存在形態としては、純Nbの粒子としてマトリックスのMoの中に分散させることによりドリル加工性が良好になる。
Dispersion of pure Nb in pure Mo matrix The present invention is a Mo alloy, and the matrix is based on Mo. However, since drill workability deteriorates when Nb dissolves in Mo of the matrix, the matrix is pure Mo. . It is inferred that the cause of deterioration in drill workability due to the solid solution of Nb in the Mo of the matrix is that the matrix is hardened by the solid solution of Nb. On the other hand, as the form of Nb, drill workability is improved by dispersing it as pure Nb particles in the matrix Mo.

成形体中の純Nbの平均粒径:3〜100μm
成形体中の純Nbの平均粒径を3〜100μmとした理由は、Mo中に分散しているNb相がMoよりも軟らかいために、上記範囲で、切欠効果によりドリル加工性が改善し、エンドミル刃先摩耗量が小さくなるためである。しかし、3μm未満の場合は、小さいために切欠効果が現れず、エンドミル刃先摩耗量が大きくなり、ドリル加工性が低下する。一方、100μmを超す場合にも、切欠効果を発揮するには大き過ぎるため、ドリル加工性の改善効果は低下するため、その範囲を3〜100μmとした。好ましくは5〜50μmとする。
Average particle size of pure Nb in the molded product: 3 to 100 μm
The reason why the average particle size of pure Nb in the molded body is 3 to 100 μm is that the Nb phase dispersed in Mo is softer than Mo, so in the above range, the drill workability is improved by the notch effect, This is because the wear amount of the end mill edge becomes small. However, in the case of less than 3 μm, the notch effect does not appear because it is small, the end mill edge wear increases, and drill workability deteriorates. On the other hand, even when it exceeds 100 μm, it is too large to exhibit the notch effect, so that the effect of improving the drill workability is lowered, so the range is set to 3 to 100 μm. Preferably it is 5-50 micrometers.

成形体中の純Nbの面積率:3〜40%
成形体中の純Nbの面積率:3〜40%とした理由は、上記範囲で、エンドミル刃先摩耗量が小さくなる。しかし、成形体中のNb面積率が3%未満では、詳細は不明だが、切欠効果が得られないため、エンドミル刃先摩耗量が大きくなる。一方、40%を超えるとNbのみを切削している時間が増え、切欠効果によるドリル加工性改善効果よりも、Moよりも柔らかいNbを削ることによる切削抵抗増加の影響が大きくなり、Nb添加の効果が現れなくなるためである。したがって、その範囲を3〜40%とした。好ましくは5〜30%とする。
Area ratio of pure Nb in the molded product: 3 to 40%
The reason why the area ratio of pure Nb in the molded body is 3 to 40% is within the above range, and the end mill edge wear amount is small. However, when the Nb area ratio in the molded body is less than 3%, the details are unknown, but the notch effect cannot be obtained, so that the amount of end mill edge wear increases. On the other hand, if it exceeds 40%, the time for cutting only Nb increases, and the effect of increasing the cutting resistance by cutting Nb softer than Mo becomes larger than the effect of improving drill workability by the notch effect. This is because the effect does not appear. Therefore, the range was made 3 to 40%. Preferably it is 5 to 30%.

上述したように、純Nbの粒子サイズは約100μm以下とする。また、マトリックスの純Moと分散している純Nb粒子の界面には10μm程度の拡散相(MoとNbの固溶体)が通常存在する。図1は、本発明に係るMo合金のミクロ組織例を示す図である。   As described above, the particle size of pure Nb is about 100 μm or less. In addition, a diffusion phase (solid solution of Mo and Nb) of about 10 μm is usually present at the interface between the pure Mo in the matrix and the dispersed pure Nb particles. FIG. 1 is a diagram showing an example of a microstructure of a Mo alloy according to the present invention.

Mo粉末とNb粉末の混合粉末を原料粉末とし、1100〜1500℃で熱間静水圧プレス(HIP)により成形
上記のように、純Moマトリックス中に純Nb粒子分散を有するミクロ組織を得ることは溶解法では不可能である。すなわち、MoとNbは全率固溶体を形成するため、溶解、鋳造すると構成相はMo−Nb固溶体となり、純Mo相や純Nb相を生成させることが出来ない。そこで、純Mo粉末と純Nb粉末を混合し、1100〜1500℃で熱間静水圧プレス(HIP)成形することで、純Moマトリックス中に純Nb粒子分散を有するミクロ組織が得られる。
Using a mixed powder of Mo powder and Nb powder as raw material powder and molding by hot isostatic pressing (HIP) at 1100 to 1500 ° C. As described above, obtaining a microstructure having pure Nb particle dispersion in a pure Mo matrix This is not possible with the dissolution method. That is, since Mo and Nb form a complete solid solution, when dissolved and cast, the constituent phase becomes a Mo—Nb solid solution, and a pure Mo phase or a pure Nb phase cannot be generated. Therefore, a pure Mo powder and a pure Nb powder are mixed and subjected to hot isostatic pressing (HIP) at 1100 to 1500 ° C. to obtain a microstructure having pure Nb particle dispersion in a pure Mo matrix.

このとき、1100℃未満でHIP成形すると相対密度が低くドリル穴を穿孔する際に欠け等が発生し、また、1500℃を超える温度でHIP成形すると、Mo、Nbの相互拡散が顕著となり、純Nb相が消失し、ドリル加工性が劣化する。また、通常HIP成形する場合、炭素鋼やステンレス製の金属缶(融点1400〜1500℃程度)に原料粉末を充填し、成形するため、金属缶の溶融を抑制するため、1400℃以下でHIP成形することが好ましい。   At this time, if the HIP molding is performed at a temperature lower than 1100 ° C., the relative density is low and chipping occurs when drilling a drill hole. If the HIP molding is performed at a temperature exceeding 1500 ° C., the mutual diffusion of Mo and Nb becomes remarkable. Nb phase disappears and drill workability deteriorates. In addition, when performing normal HIP molding, carbon steel or stainless steel metal cans (melting point: about 1400 to 1500 ° C.) are filled with raw material powder and molded, so that the melting of the metal cans is suppressed and HIP molding is performed at 1400 ° C. or lower. It is preferable to do.

こうして得られた成形体は、例えば旋盤で炭素鋼などの金属缶を除去して、MoNb合金の成形体が得られる。この成形体はその後、機械加工としてドリル加工や必要に応じて旋盤や研磨などにより部材として仕上げられる。また機械加工に先立ち熱間圧延や熱間鍛造を施したり、その後冷間プレスで矯正や打ち抜き加工を施してから、ドリル加工を伴う機械加工に供しても良い。   The molded body thus obtained is obtained by removing a metal can such as carbon steel with a lathe, for example, to obtain a molded body of MoNb alloy. Thereafter, the formed body is finished as a member by drilling as necessary for machining, lathe or polishing as necessary. Prior to machining, hot rolling or hot forging may be performed, or after correction or punching with a cold press, the workpiece may be subjected to machining with drilling.

(実施例1)
以下、本発明について具体的に実施例によって説明する。
市販のMo粉末(平均粒径10μm)および市販のNb粉末(平均粒径30μm)を表1の組成となるように混合し、炭素鋼で作製された径200mm×長さ80mmの外筒缶に充填し、脱気封入した後、表1に記載の温度で5時間保持しHIP成形した。この成形体よりワイヤカット、旋盤、研磨により径100mm×3tの円盤状試験片を採取した。なお、1400℃以上でHIPしたものについては、上記方法で1350℃にてHIP成形したビレットの外筒缶を切削にて除去し、これを改めて1400℃以上の温度でHIP成形した。その時の相対密度評価、純Nb相の残存確認、ドリル加工性試験の結果を示す。
Example 1
Hereinafter, the present invention will be described specifically by way of examples.
Commercially available Mo powder (average particle size 10 μm) and commercially available Nb powder (average particle size 30 μm) were mixed so as to have the composition shown in Table 1, and an outer cylinder can made of carbon steel having a diameter of 200 mm × length of 80 mm. After filling and degassing and enclosing, it was held at the temperature shown in Table 1 for 5 hours to perform HIP molding. A disk-shaped test piece having a diameter of 100 mm × 3 t was collected from this molded body by wire cutting, lathe and polishing. In addition, about what carried out HIP at 1400 degreeC or more, the outer cylinder can of the billet which carried out HIP shaping | molding at 1350 degreeC by the said method was removed by cutting, and this was HIP-molded again at the temperature of 1400 degreeC or more. The relative density evaluation at that time, the confirmation of the remaining pure Nb phase, and the results of the drill workability test are shown.

相対密度評価は、作製した成形体の端材から、10mm×10mm×10mmの試験片を切り出し、アルキメデス法にて密度を測定し、理論計算密度で除したものを%で評価した。また、純Nb相の残存確認は、作製した成形体の端材を鏡面研磨し、Nb粒子部をEDXにて分析した。Nbのみが検出される部位があるものを○、Nbと同時にMoも検出される部位しかないものを×とした。   In the relative density evaluation, a 10 mm × 10 mm × 10 mm test piece was cut out from the end material of the produced molded body, the density was measured by the Archimedes method, and the value divided by the theoretical calculation density was evaluated in%. Further, the remaining Nb phase was confirmed by mirror-polishing the end material of the produced molded body and analyzing the Nb particle portion by EDX. The case where there was a site where only Nb was detected was marked with ◯, and the case where there was only a site where Mo was detected simultaneously with Nb was marked with x.

さらに、ドリル加工性試験は、採取した円盤状試験片を用い、径4.3mmのドリルで仮穴を10穴穿孔し、次いで本穴を径8mmのエンドミル(超硬、TiAlNコーティング)にて回転数800rpm、送り量10mm/minで仮穴の上から穿孔した。径4.3のドリル、径8mmのエンドミルはいずれも供試材毎に新品を用い、10穴穿孔した後の径8mmのエンドミル刃先の端部から1.5mm内側部分の摩耗幅にて評価を行なった。その結果を表1に合わせて示す。   Furthermore, in the drilling workability test, 10 temporary holes were drilled with a 4.3 mm diameter drill using the collected disk-shaped test piece, and then the main hole was rotated with an 8 mm diameter end mill (carbide, TiAlN coating). Drilling was performed from above the temporary hole at several 800 rpm and a feed rate of 10 mm / min. Use a new 4.3 mm diameter drill and 8 mm diameter end mill for each test material, and evaluate the wear width of the inner part 1.5 mm from the end of the 8 mm diameter end mill edge after drilling 10 holes. I did it. The results are also shown in Table 1.

Figure 0005518375
表1に示すように、No.1〜6は本発明例であり、No.7〜12は比較例である。
Figure 0005518375
As shown in Table 1, no. Nos. 1 to 6 are examples of the present invention. 7 to 12 are comparative examples.

比較例No.7はMo単独の場合であり、エンドミル刃先摩耗量が大きい。比較例No.8はNb含有量が低いために、No.7と同様にエンドミル刃先摩耗量が大きい。比較例No.9は逆にNb含有量が高くエンドミル刃先摩耗量改善の効果が飽和している。比較例No.10はHIP成形温度が低いために、相対密度が小さい。   Comparative Example No. 7 is the case of Mo alone, and the end mill edge wear is large. Comparative Example No. No. 8 has a low Nb content. As with No. 7, the end mill edge wear is large. Comparative Example No. In contrast, No. 9 has a high Nb content and the effect of improving the end mill edge wear is saturated. Comparative Example No. No. 10 has a low relative density because the HIP molding temperature is low.

比較例No.11は逆にHIP成形温度が高いために、純Nb相残存せず、エンドミル刃先摩耗量が大きい。比較例No.12はHIP処理でなく溶解法であり、純Nb相残存せず、エンドミル刃先摩耗量が大きい。これに対して、本発明例であるNo.1〜6はいずれも本発明の条件を満足していることから、相対密度が高く、純Nb相が残存し、エンドミル刃先摩耗量の小さいことが分かる。   Comparative Example No. In contrast, since No. 11 has a high HIP molding temperature, no pure Nb phase remains and the end mill edge wear is large. Comparative Example No. No. 12 is a melting method, not HIP treatment, and no pure Nb phase remains and the end mill edge wear is large. On the other hand, No. which is an example of the present invention. Since all of Nos. 1 to 6 satisfy the conditions of the present invention, it can be seen that the relative density is high, the pure Nb phase remains, and the end mill edge wear is small.

(実施例2)
次に、実施例1の方法で作製した円盤状試験片より、ワイヤカットにより、断面が15mm×15mmで厚さ5mmの試験片を作製した。純Nb相の残存形態がドリル加工性に及ぼす影響をより詳しく見るため、この試験片を樹脂に埋め込み、断面を電子顕微鏡にてNb粒子の形状を観察しながら、EDXにて分析を行い、原子数濃度で95%以上100%のNbを含む部位をNb相と判定した。また、このNb相の大きさを、画像解析により相当する単位面積円の径にて判定し、その平均粒径と面積率を算出した。これらの試料について、ドリル加工性試験を行った。ドリル加工性試験は、実施例1に記載した方法にて評価を行った。その結果を表2と表3に示す。
(Example 2)
Next, a test piece having a cross section of 15 mm × 15 mm and a thickness of 5 mm was produced from the disk-shaped test piece produced by the method of Example 1 by wire cutting. In order to see in more detail the effect of the residual form of pure Nb phase on drilling workability, this test piece was embedded in a resin, and the cross section was analyzed by EDX while observing the shape of Nb particles with an electron microscope. A site containing 95% or more and 100% Nb at several concentrations was determined as the Nb phase. Further, the size of the Nb phase was determined by the diameter of the corresponding unit area circle by image analysis, and the average particle size and area ratio were calculated. These samples were subjected to a drill workability test. The drill workability test was evaluated by the method described in Example 1. The results are shown in Tables 2 and 3.

Figure 0005518375
表2に示す、一般に市販されているNb原料粉末の平均粒径は、100μm以下であることから、No.19の原料Nbは市販のNb原料粉末を分級し、微粉末を除去することで、平均200μmになるように調整した。
Figure 0005518375
The average particle size of Nb raw material powders shown in Table 2 that are generally commercially available is 100 μm or less. Nineteen raw materials Nb were adjusted to an average of 200 μm by classifying commercially available Nb raw material powder and removing fine powder.

表2に示すように、No.13〜17は本発明例であり、No.18、19は比較例である。比較例No.18は成形体中の純Nbの平均粒径が小さいために、エンドミル刃先摩耗量が大きい。比較例No.19は成形体中の純Nbの平均粒径が大きいために、エンドミル刃先摩耗量が大きい。これに対して、本発明例であるNo.13〜17はいずれも本発明の条件を満足していることから、エンドミル刃先摩耗量の小さいことが分かる。   As shown in Table 2, no. Nos. 13 to 17 are examples of the present invention. Reference numerals 18 and 19 are comparative examples. Comparative Example No. No. 18 has a large end mill edge wear because the average particle size of pure Nb in the compact is small. Comparative Example No. No. 19 has a large end mill edge wear because the average particle size of pure Nb in the compact is large. On the other hand, No. which is an example of the present invention. Since all of Nos. 13 to 17 satisfy the conditions of the present invention, it is understood that the end mill edge wear amount is small.

Figure 0005518375
表3に示す、いずれの試作例も、使用したNb原料粉末の平均粒径は30μmである。
Figure 0005518375
In any of the prototypes shown in Table 3, the average particle diameter of the used Nb raw material powder is 30 μm.

表3に示すように、No.20〜23は本発明例であり、No.24、25は比較例である。比較例No.24は成形体中の純Nbの面積率が小さいために、エンドミル刃先摩耗量が大きい。比較例No.25は成形体中の純Nbの面積率が大きいために、エンドミル刃先摩耗量が大きい。これに対して、本発明例であるNo.20〜23はいずれも本発明の条件を満足していることから、エンドミル刃先摩耗量の小さいことが分かる。   As shown in Table 3, no. Nos. 20 to 23 are examples of the present invention. 24 and 25 are comparative examples. Comparative Example No. No. 24 has a large end mill edge wear because the area ratio of pure Nb in the compact is small. Comparative Example No. No. 25 has a large end mill edge wear because the area ratio of pure Nb in the compact is large. On the other hand, No. which is an example of the present invention. Since all of Nos. 20 to 23 satisfy the conditions of the present invention, it is understood that the end mill edge wear amount is small.

上述したように、Nb:1〜50%、残部Moおよび不可避的不純物よりなり、純Moからなるマトリックス中に、純Nbを分散させ、成形体中の純Nbの平均粒径を3〜100μm、成形体中の純Nbの面積率を3〜40%とするように、1100〜1500℃で熱間静水圧プレスにより成形することで、純Moマトリックス中に純Nb粒子を有するミクロ組織が得られ、その成形体は、特に各種装置の加速電極に好適なドリル加工性に優れたMo合金成形体を得ることができるものである。   As described above, Nb: 1 to 50%, balance Mo and unavoidable impurities, pure Nb is dispersed in a matrix made of pure Mo, and the average particle diameter of pure Nb in the molded body is 3 to 100 μm. A microstructure having pure Nb particles in a pure Mo matrix is obtained by molding by hot isostatic pressing at 1100-1500 ° C. so that the area ratio of pure Nb in the molded product is 3-40%. The compact can obtain a Mo alloy compact excellent in drill workability particularly suitable for an accelerating electrode of various apparatuses.

本発明に係るMo合金のミクロ組織例を示す図である。It is a figure which shows the microstructure example of Mo alloy which concerns on this invention. 加速電極の模式図である。It is a schematic diagram of an acceleration electrode.

1 モリブデン薄板
2 ビーム穴


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
1 Molybdenum sheet 2 Beam hole


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (4)

原子%で、Nb:1〜50%、残部Moおよび不可避的不純物よりなり、かつ純Moからなるマトリックス中に、純Nbが分散しており、該純Nbの平均粒径:3〜100μm、面積率:3〜40%であることを特徴とする加速電極用ドリル加工性に優れたモリブデン合金からなる成形体。 Atomic%, Nb: 1 to 50%, balance Mo and inevitable impurities, and pure Nb is dispersed in a matrix made of pure Mo. Average particle diameter of the pure Nb: 3 to 100 μm, area Ratio: 3 to 40%, a molded body made of a molybdenum alloy having excellent drilling workability for acceleration electrodes . 請求項1に記載する成形体中の純Nbの平均粒径を得るために、原料Nb平均粒径を25〜80μmとすることを特徴とする加速電極用ドリル加工性に優れたモリブデン合金からなる成形体。In order to obtain the average particle diameter of pure Nb in the molded product according to claim 1, the raw material Nb average particle diameter is 25 to 80 μm. Molded body. Mo粉末とNb粉末の混合粉末とし、熱間静水圧プレスにより成形することを特徴とした加速電極用ドリル加工性に優れたモリブデン合金からなる成形体の製造方法。 A method for producing a molded body made of a molybdenum alloy excellent in drilling workability for an acceleration electrode , characterized in that a mixed powder of Mo powder and Nb powder is formed by hot isostatic pressing. 1100〜1500℃で熱間静水圧プレスすることを特徴とする請求項2記載の加速電極用ドリル加工性に優れたモリブデン合金からなる成形体の製造方法。 The method for producing a molded body made of a molybdenum alloy having excellent drilling workability for an acceleration electrode according to claim 2, wherein hot isostatic pressing is performed at 1100 to 1500 ° C.
JP2009136848A 2008-09-19 2009-06-08 Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same Active JP5518375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136848A JP5518375B2 (en) 2008-09-19 2009-06-08 Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008240180 2008-09-19
JP2008240180 2008-09-19
JP2009136848A JP5518375B2 (en) 2008-09-19 2009-06-08 Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010095791A JP2010095791A (en) 2010-04-30
JP5518375B2 true JP5518375B2 (en) 2014-06-11

Family

ID=42257674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136848A Active JP5518375B2 (en) 2008-09-19 2009-06-08 Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP5518375B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106244884B (en) * 2016-07-28 2018-09-28 西北有色金属研究院 A kind of high intensity low density niobium alloy bar material and preparation method thereof
JP7110749B2 (en) * 2017-07-05 2022-08-02 日立金属株式会社 MoNb target material
CN110184519B (en) * 2019-06-10 2020-03-24 中国兵器工业第五九研究所 Preparation method of large-diameter special-shaped thin-wall tubular molybdenum-based alloy part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129638A (en) * 1989-10-16 1991-06-03 Toshiba Corp Manufacture of ion accelerating electrode plate
JP4432015B2 (en) * 2001-04-26 2010-03-17 日立金属株式会社 Sputtering target for thin film wiring formation
JP4356071B2 (en) * 2004-03-31 2009-11-04 日立金属株式会社 Sputtering target material and manufacturing method thereof
JP4894008B2 (en) * 2007-05-09 2012-03-07 日立金属株式会社 Method for producing MoNb-based sintered sputtering target material

Also Published As

Publication number Publication date
JP2010095791A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
WO2017191744A1 (en) Cemented carbide and cutting tool
JP6479788B2 (en) Sputtering target and manufacturing method thereof
JP2009074173A (en) Ultra-hard composite material and method for manufacturing the same
JP6144763B2 (en) Cermet, manufacturing method thereof and cutting tool
WO2020090280A1 (en) Cemented carbide alloy, cutting tool, and method for manufacturing cemented carbide alloy
US20130264314A1 (en) Electrode for electric discharge machining
JP2017088917A (en) Hard metal alloy and cutting tool
JP5518375B2 (en) Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same
JP5881742B2 (en) Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
JP2006328477A (en) Wc based cemented carbide member, and coated wc based cemented carbide member
KR102619781B1 (en) Cemented carbide alloy, cutting tool containing same and method for manufacturing cemented carbide alloy
JP2007092090A (en) Wc-based cemented carbide member
JP6931202B2 (en) Titanium Nitride Powder and Titanium Nitride Powder Manufacturing Method
JP4553380B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP2009203544A (en) Hard alloy material, production method, and tool and wear resistant member
JP5071462B2 (en) Rotary cutting tool
EP3109333B1 (en) Iron-based sintered alloy and method for producing the same
WO2020066957A1 (en) Sputtering target and method for producing same
JP2012162753A (en) Cemented carbide and method of manufacturing the same, and micro drill
WO2023175721A1 (en) Cemented carbide
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
JP6957828B1 (en) Cemented carbide and cutting tools equipped with it
JP2005068515A (en) Hard metal containing fine particles
WO2023175720A1 (en) Cemented carbide
JP7251691B1 (en) Cemented carbide and tools containing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250