JP2013083000A - METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL - Google Patents

METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL Download PDF

Info

Publication number
JP2013083000A
JP2013083000A JP2012214945A JP2012214945A JP2013083000A JP 2013083000 A JP2013083000 A JP 2013083000A JP 2012214945 A JP2012214945 A JP 2012214945A JP 2012214945 A JP2012214945 A JP 2012214945A JP 2013083000 A JP2013083000 A JP 2013083000A
Authority
JP
Japan
Prior art keywords
powder
sputtering target
target material
sintered
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012214945A
Other languages
Japanese (ja)
Inventor
Tatsuya Sato
佐藤  達也
Tomoyuki Hata
知之 畠
Suguru Ueno
英 上野
Kazuya Saito
和也 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012214945A priority Critical patent/JP2013083000A/en
Publication of JP2013083000A publication Critical patent/JP2013083000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method by which a sintered Mo alloy sputtering target material with low oxygen can be produced even by simplified manufacturing step.SOLUTION: This method is used to manufacture an Mo alloy sputtering target material which contains 0.5-60 atom% of one or more metal elements M selected from a group (Ti, Nb, Ta) and the balance being Mo and inevitable impurities. The Mo material powder and powder of the hydrogenated metal element M with an average particle size of 200 μm or less are mixed, and the mixed powder is put in a pressurizing container. While the pressurizing container is heated, it is decompressed and deaerated, and the powder is pressurized and sintered by hot isostatic pressing to manufacture an Mo alloy sintered body.

Description

本発明は、平面表示装置等の電気配線、電極等に用いられるMoTi、MoNb、MoTa等のMo合金薄膜の形成に使用されるスパッタリングターゲット材の製造方法に関するものである。   The present invention relates to a method for producing a sputtering target material used for forming Mo alloy thin films such as MoTi, MoNb, and MoTa used for electrical wiring, electrodes and the like of flat display devices.

現在、平面表示装置の一種である液晶ディスプレイ(Liquid Crystal Display)等の薄膜電極および薄膜配線等には、電気抵抗の小さいMo等の高融点金属膜が広く利用されている。そして、これら薄膜電極および薄膜配線等には、薄膜形成の製造工程中での耐熱性、耐食性の要求があるため、例えば、Ti、NbやTa等の高融点の遷移金属元素を添加したMo合金の適用が進んでいる(例えば、特許文献1参照)。   At present, refractory metal films such as Mo having a small electric resistance are widely used for thin film electrodes and thin film wirings of a liquid crystal display (Liquid Crystal Display) which is a kind of flat display device. These thin film electrodes, thin film wirings, and the like have requirements for heat resistance and corrosion resistance during the manufacturing process of thin film formation. For example, Mo alloys to which transition metal elements having high melting points such as Ti, Nb and Ta are added (For example, refer to Patent Document 1).

上記のMo合金を配線として形成する方法としては、同一組成のスパッタリングターゲット材をスパッタリングによって形成する方法が一般的に利用されている。そして、Mo合金のスパッタリングターゲット材に関しては、成分構成やスパッタリングターゲット材に含まれる不純物の低減等に関して様々な提案がなされている。   As a method of forming the Mo alloy as a wiring, a method of forming a sputtering target material having the same composition by sputtering is generally used. And about the sputtering target material of Mo alloy, various proposals are made regarding a component structure, reduction of impurities contained in the sputtering target material, and the like.

融点の高いMoを主成分とするMo合金スパッタリングターゲット材の製造に関しては、一般的に粉末焼結法が利用されている。薄膜電極や薄膜配線等の形成に用いられるMo合金スパッタリングターゲット材は、薄膜の電気抵抗に影響する酸素含有量をできるだけ低減すること求められるが、原料粉末を焼結してスパッタリングターゲット材を作製する粉末焼結法においては、酸素含有量の低減に限界がある。
また、本願出願人は、酸素との親和力の高いNb等を含むMo合金において、ミクロ組織中のNb粒の周囲に粗大な酸素濃化相が形成されるとスプラッシュの発生要因となることから、焼結前のMo原料粉末の酸素含有量を極力低減してMo合金スパッタリングターゲットを製造する方法を提案している(例えば、特許文献2参照)。
特許文献2は、MoNbスパッタリングターゲット材に含まれる酸素含有量の低減のために、焼結原料として使用するMo粉末の酸素含有量に着目したものであって、Mo原料粉末を一度焼結体とした後に粉砕したMo二次粉末をMoNbスパッタリングターゲットの原料粉末とするものである。このMo二次粉末は、市販される化学製法によって製造される微細なMo一次粒子が凝集したMo原料粉末に比べて、粉末の表面積を低減できMo粉末表面に存在する酸素含有量の低減が可能となるので、Mo原料粉末自身の酸素含有量を低減し、最終製品であるスパッタリングターゲット材の酸素含有量の低減が可能となることを提案するものである。
For the production of a Mo alloy sputtering target material mainly composed of Mo having a high melting point, a powder sintering method is generally used. Mo alloy sputtering target materials used for forming thin film electrodes and thin film wirings are required to reduce the oxygen content affecting the electrical resistance of the thin film as much as possible, but the raw material powder is sintered to produce the sputtering target material. In the powder sintering method, there is a limit in reducing the oxygen content.
Further, the applicant of the present application, in a Mo alloy containing Nb or the like having a high affinity with oxygen, causes a splash when a coarse oxygen-concentrated phase is formed around Nb grains in the microstructure. A method for producing a Mo alloy sputtering target by reducing the oxygen content of the Mo raw material powder before sintering as much as possible has been proposed (for example, see Patent Document 2).
Patent document 2 pays attention to the oxygen content of Mo powder used as a sintering raw material in order to reduce the oxygen content contained in the MoNb sputtering target material. Thereafter, the secondary powder of the pulverized Mo is used as a raw material powder for the MoNb sputtering target. This Mo secondary powder can reduce the surface area of the powder and reduce the oxygen content present on the surface of the Mo powder compared to the Mo raw material powder, which is agglomerated fine Mo primary particles produced by a commercially available chemical manufacturing method. Therefore, it is proposed that the oxygen content of the Mo raw material powder itself can be reduced and the oxygen content of the sputtering target material as the final product can be reduced.

特許第3859119号公報Japanese Patent No. 3859119 特開2008−280570号公報JP 2008-280570 A

特許文献2に開示される方法は、Nb等の添加元素を含有する低酸素のMo合金スパッタリングターゲットを作製する上で有効な発明である。一方、この方法は、原料粉末同士を単純に混合して焼結するのではなく、Mo原料粉末を一度焼結してMo焼結体とした後に再度粉砕、熱処理して還元処理Mo粉末を作製するというように、スパッタリングターゲット材の低酸素化のために、原料粉末を前処理する必要があり、工数が増加するに伴い製造コストが上昇してしまうという問題がある。
また、Mo合金を形成するTi、Nb、Taといった高融点の遷移金属元素は、酸素との親和力が高く、粉末の状態では酸素含有量が多い上に、粉末の取扱い中には酸素含有量が上昇しやすいため、粉末焼結法でMo合金の焼結体を作製する際には酸素の低減が困難であるという課題がある。
The method disclosed in Patent Document 2 is an effective invention for producing a low oxygen Mo alloy sputtering target containing an additive element such as Nb. On the other hand, this method does not simply mix and sinter raw material powders, but sinters Mo raw material powders once to make Mo sintered bodies, and then pulverizes and heats them again to produce reduced Mo powders. As described above, it is necessary to pre-process the raw material powder in order to reduce oxygen in the sputtering target material, and there is a problem that the manufacturing cost increases as the number of steps increases.
In addition, transition metal elements having a high melting point such as Ti, Nb, and Ta that form Mo alloys have a high affinity for oxygen, a high oxygen content in the powder state, and an oxygen content during handling of the powder. Since it rises easily, when producing the sintered body of Mo alloy with a powder sintering method, there exists a subject that it is difficult to reduce oxygen.

本発明の目的は、上記課題に鑑み、簡素化した製造工程でも低酸素の焼結Mo合金スパッタリングターゲット材を得ることができる製造方法を提供することである。   In view of the above problems, an object of the present invention is to provide a manufacturing method capable of obtaining a low-oxygen sintered Mo alloy sputtering target material even in a simplified manufacturing process.

本発明者等は、上記の問題点を種々検討した結果、水素化した金属元素Mの粉末を用いることに加え、混合粉末を充填した加圧容器に減圧脱気処理をすることで、脱水素と同時に焼結Mo合金スパッタリングターゲット材の酸素含有量も低減することが可能となり、上記の課題を解決できることを見出し、本発明に到達した。   As a result of various investigations on the above problems, the present inventors have performed dehydrogenation treatment by performing depressurization treatment on a pressure vessel filled with the mixed powder in addition to using the hydrogenated metal element M powder. At the same time, it has become possible to reduce the oxygen content of the sintered Mo alloy sputtering target material, and found that the above-mentioned problems can be solved, thereby reaching the present invention.

すなわち、本発明は、(Ti、Nb、Ta)の群から選択される1種または2種以上の金属元素Mを0.5〜60原子%含有し、残部がMoおよび不可避的不純物からなるMo合金スパッタリングターゲット材の製造方法であって、Mo原料粉末と平均粒径200μm以下の水素化した前記金属元素Mの粉末とを混合処理した混合粉末を加圧容器に充填し、次いで該加圧容器を加熱しながら減圧脱気処理をした後、熱間静水圧プレスで加圧焼結してMo合金焼結体を作製する焼結Mo合金スパッタリングターゲット材の製造方法である。   That is, the present invention contains 0.5 to 60 atomic% of one or more metal elements M selected from the group of (Ti, Nb, Ta), the balance being Mo and Mo consisting of inevitable impurities. A method for producing an alloy sputtering target material, wherein a mixed powder obtained by mixing a Mo raw material powder and a hydrogenated metal element M powder having an average particle size of 200 μm or less is filled in a pressure vessel, and then the pressure vessel Is a method for producing a sintered Mo alloy sputtering target material in which a Mo alloy sintered body is produced by subjecting to vacuum degassing while heating and then pressure sintering with a hot isostatic press.

また、本発明の焼結Mo合金スパッタリングターゲット材の製造方法としては、前記減圧脱気処理を300〜1000℃の範囲で加熱しながら行うことが好ましい。   Moreover, as a manufacturing method of the sintering Mo alloy sputtering target material of this invention, it is preferable to perform the said pressure reduction deaeration process, heating in the range of 300-1000 degreeC.

本発明の製造方法を適用することにより、焼結Mo合金スパッタリングターゲット材の酸素含有量を低減することが可能となる。また、本発明の製造方法は、上述した特許文献2で開示される原料粉末を低酸素化するための予備的な焼結工程が省略できるため、工数削減に伴う製造コストの低減に寄与することができ、焼結Mo合金スパッタリングターゲット材の製造方法に有用な技術となる。   By applying the manufacturing method of the present invention, the oxygen content of the sintered Mo alloy sputtering target material can be reduced. In addition, the production method of the present invention can eliminate the preliminary sintering step for reducing the oxygen content of the raw material powder disclosed in Patent Document 2 described above, thereby contributing to the reduction in production cost associated with the reduction in man-hours. It becomes a technique useful for the manufacturing method of sintered Mo alloy sputtering target material.

本発明の製造方法における焼結Mo合金スパッタリングターゲット材は、(Ti、Nb、Ta)の群から選択される1種または2種以上の金属元素Mを0.5〜60原子%含有し、残部がMoおよび不可避的不純物からなるものである。特に、薄膜電極膜や薄膜配線膜を形成するために用いられるスパッタリングターゲットとしては、電極・配線の耐熱性や耐食性の要求があり、Moの耐食性や耐熱性を向上させるため、Ti、Nb、Ta等の元素の添加が必要とされている。なお、Moへの添加元素としてNbを選択することは、電極・配線膜を形成する際の電気抵抗の上昇を低く抑えながら耐熱性・耐食性の向上が図れるため、特に望ましい。   The sintered Mo alloy sputtering target material in the production method of the present invention contains 0.5 to 60 atom% of one or more metal elements M selected from the group of (Ti, Nb, Ta), and the balance Consists of Mo and inevitable impurities. In particular, sputtering targets used for forming thin film electrode films and thin film wiring films have demands for heat resistance and corrosion resistance of electrodes and wiring, and in order to improve the corrosion resistance and heat resistance of Mo, Ti, Nb, Ta Etc. are required to be added. It is particularly desirable to select Nb as an additive element to Mo because heat resistance and corrosion resistance can be improved while suppressing an increase in electrical resistance when forming an electrode / wiring film.

本発明においては、先ず、Mo原料粉末と平均粒径200μm以下の水素化した(Ti、Nb、Ta)の群から選択される1種または2種以上の金属元素Mの粉末を混合処理して混合粉末とし、加圧容器に充填する。
Ti、Nb、Taは、酸素との親和力の高い元素であり、粉末焼結法でスパッタリングターゲット材を製造するにあたっては、単体の金属を原料粉末として使用すると、粉末のハンドリング時に酸素量が上昇してしまい、スパッタリングターゲット材の酸素含有量の低減が困難である。そのため、スパッタリングターゲット材として酸素含有量を低減させるにあたって、水素化した金属元素Mの粉末を使用する本発明の製造方法が有効となる。
本発明で水素化した金属元素Mの粉末を用いるのは、粉末の状態で酸素量が低いことに加え、ハンドリングに伴う粉末の酸素量の上昇を抑制できるからである。なお、金属元素MであるTi、Nb、Taは、いずれも水素との親和力が高いため、水素化が容易な金属元素であり、上記の目的で水素化するには好都合である。
金属元素Mの粉末の粒径としては、金属元素Mの粉末の粒径が粗大である場合には、焼結後に得られるスパッタリングターゲット組織中に金属元素Mが偏析となりやすい。このため、本発明では、金属元素Mの粉末の平均粒径を200μm以下とした。また、金属元素Mの粉末の粒径が微細な場合には、単位体積当たりの比表面積が大きくなり、粉末表面に吸着する酸素が増加しやすくなるため、粉末中の酸素量が増加する傾向となる。このため、本発明で適用する金属元素Mの粉末は平均粒径が10μm以上の粉末を使用することが望ましい。
また、Mo原料粉末としては、一般的に購入可能な平均粒径2〜15μmの粉末を使用することが望ましい。
In the present invention, first, a powder of one or more metal elements M selected from the group of Mo raw material powder and hydrogenated (Ti, Nb, Ta) having an average particle size of 200 μm or less is mixed. The mixture powder is filled into a pressurized container.
Ti, Nb, and Ta are elements having high affinity with oxygen. When a sputtering target material is manufactured by a powder sintering method, if a single metal is used as a raw material powder, the amount of oxygen increases when handling the powder. Therefore, it is difficult to reduce the oxygen content of the sputtering target material. Therefore, in reducing the oxygen content as a sputtering target material, the production method of the present invention using a hydrogenated metal element M powder is effective.
The reason why the powder of the metal element M hydrogenated in the present invention is used is that, in addition to the low oxygen content in the powder state, the increase in the oxygen content of the powder accompanying handling can be suppressed. Note that Ti, Nb, and Ta, which are metal elements M, are all metal elements that are easily hydrogenated because of their high affinity with hydrogen, and are convenient for hydrogenation for the above purpose.
As the particle size of the metal element M powder, when the particle size of the metal element M powder is coarse, the metal element M tends to segregate in the sputtering target structure obtained after sintering. For this reason, in this invention, the average particle diameter of the powder of the metal element M was 200 micrometers or less. Further, when the particle size of the powder of the metal element M is fine, the specific surface area per unit volume is increased, and oxygen adsorbed on the powder surface tends to increase, so that the amount of oxygen in the powder tends to increase. Become. For this reason, it is desirable to use a powder having an average particle size of 10 μm or more as the powder of the metal element M applied in the present invention.
Moreover, as Mo raw material powder, it is desirable to use the powder of the average particle diameter of 2-15 micrometers which can be generally purchased.

本発明では、上記の混合粉末を充填した加圧容器を加熱しながら減圧脱気処理を行う。これにより本発明は、原料粉末を一度焼結体とした後に再度粉砕、熱処理して還元処理粉末を作製する必要がなく、簡素化した工程あっても、混合粉末中の水素化した金属元素Mの粉末の含有する水素を除去すると同時に、混合粉末中の酸素量も低減することができる。
ここで、減圧脱気処理としては、300〜1000℃の温度範囲で行うことが望ましい。それは、300℃に満たない温度で減圧脱気処理を行なっても、水素を除去する効果が極めて小さいためである。一方、1000℃を超える温度で減圧脱気処理を行なうと、加圧容器内の混合粉末の焼結が進んで空孔が多く残り、その後の熱間静水圧プレス(以下、HIPという)による加圧焼結を行なっても、焼結体の密度が高まらない場合があるためである。また、減圧脱気処理の温度が1000℃を超えると、加圧容器が急激に酸化することがあるため、これにより加圧容器が損傷を受けて、その後のHIPが困難になる場合がある。
また、減圧脱気処理における減圧条件としては、上述した温度範囲であれば、減圧レベルが高いほど加圧容器中に存在する酸素および水素は除去しやすく、本発明では10Paより減圧に達するまでの減圧脱気処理であることが望ましい。これにより、加圧容器中に存在する酸素および水素を除去することができる。また、減圧脱気に使用するポンプ等の設備能力を考慮すると、0.1Paより減圧に達するまでの減圧脱気処理であることがより望ましい。
In the present invention, the degassing treatment is performed while heating the pressurized container filled with the above mixed powder. As a result, the present invention eliminates the need to produce a reduced powder by re-grinding and heat-treating the raw material powder once, and even in a simplified process, the hydrogenated metal element M in the mixed powder At the same time that the hydrogen contained in the powder is removed, the amount of oxygen in the mixed powder can also be reduced.
Here, the vacuum degassing treatment is desirably performed in a temperature range of 300 to 1000 ° C. This is because the effect of removing hydrogen is extremely small even if the vacuum degassing treatment is performed at a temperature less than 300 ° C. On the other hand, when the vacuum degassing treatment is performed at a temperature exceeding 1000 ° C., the mixed powder in the pressurized container is sintered and a large number of pores remain, which is then applied by hot isostatic pressing (hereinafter referred to as HIP). This is because the density of the sintered body may not increase even when pressure sintering is performed. Moreover, since the pressurized container may be rapidly oxidized when the temperature of the vacuum degassing treatment exceeds 1000 ° C., this may damage the pressurized container and make subsequent HIP difficult.
In addition, as a depressurization condition in the depressurization treatment, if the temperature range is as described above, the higher the depressurization level, the easier it is to remove oxygen and hydrogen present in the pressurized container. A vacuum degassing process is desirable. Thereby, oxygen and hydrogen present in the pressurized container can be removed. Further, considering the equipment capacity of a pump or the like used for vacuum degassing, it is more desirable to perform the vacuum degassing treatment until the vacuum pressure is reached from 0.1 Pa.

加圧焼結としては、ホットプレスやHIP等が適用可能であるところ、本発明では、3次元的に高い圧力を付加することで、原料粉末を焼結させ高密度の焼結体を得ることが可能なHIPを適用する。HIPによる加圧焼結の条件としては、温度1000〜1500℃、圧力100MPa以上の条件を適用することが望ましい。これは、100MPaに満たない圧力、および1000℃に満たない温度でHIPを行っても、スパッタリングターゲット材に要求される相対密度が98%以上の焼結体を作製しづらいためである。
また、融点の高いMoとTi、Nbおよび/またはTaとからなる焼結体を得るためには、できるだけ高い温度、高い圧力で処理することが望ましい。ただし、HIP条件は、加圧容器に用いる材質のほか、設備面での制約が存在するため、現存する一般的なHIP装置を用いると、温度1500℃、圧力200MPaがほぼ上限となる。
As pressure sintering, hot press, HIP, etc. can be applied. In the present invention, a high-density sintered body is obtained by sintering raw material powder by applying a three-dimensionally high pressure. HIP that can be applied. As conditions for pressure sintering with HIP, it is desirable to apply conditions of a temperature of 1000 to 1500 ° C. and a pressure of 100 MPa or more. This is because it is difficult to produce a sintered body having a relative density of 98% or more required for the sputtering target material even when HIP is performed at a pressure less than 100 MPa and a temperature less than 1000 ° C.
Further, in order to obtain a sintered body made of Mo having a high melting point and Ti, Nb and / or Ta, it is desirable to perform the treatment at as high a temperature as possible and at a high pressure. However, since there are restrictions on the equipment as well as the materials used for the pressurized container, the HIP conditions are such that when an existing general HIP apparatus is used, the temperature is 1500 ° C. and the pressure is 200 MPa.

まず、市販の平均粒径6μmのMo原料粉末(酸素量349質量ppm、水素量15質量ppm)と、市販の粉末を篩分けした平均粒径90μmの水素化したNb粉末(酸素量588質量ppm、水素量10800質量ppm)を準備し、原子%で90%Mo−10%Nbとなるように秤量後、V型混合機で混合処理して混合粉末を得た。ここで、得られた混合粉末の一部から不活性ガス融解−非分散型赤外線吸収法により酸素量を、不活性ガス中加熱・融解カラム分離−熱伝導度法により水素量を測定した。その測定結果を表1に示す。
次に、得られた混合粉末を軟鋼製の加圧容器に充填した後に、450℃の温度で加熱しながら0.1Paまで減圧脱気処理を行い封止した。その後、温度1250℃、圧力150MPaの条件下で5時間保持するHIPで加圧焼結してMo合金焼結体を得た。このMo合金焼結体を切断および機械加工して直径50mm×厚さ50mmの焼結Mo合金スパッタリングターゲット材を得た。
なお、上記で得られたMo合金焼結体から試験片を採取し、不活性ガス融解−非分散型赤外線吸収法により酸素量を、不活性ガス中加熱・融解カラム分離−熱伝導度法により水素量を測定した。その結果を表1に示す。また、上記試験片を用いてアルキメデス法により相対密度を測定したところ、相対密度は、99.3%であった。ここで、相対密度とは、アルキメデス法により測定されたかさ密度を、焼結Mo合金スパッタリングターゲット材の組成比から得られる質量比で算出した元素単体の加重平均として得た理論密度で除した値に100を乗じて得た値をいう。
First, commercially available Mo raw material powder having an average particle size of 6 μm (oxygen amount: 349 mass ppm, hydrogen content: 15 mass ppm) and hydrogenated Nb powder having an average particle size of 90 μm obtained by sieving commercially available powder (oxygen amount: 588 mass ppm) , 10800 mass ppm of hydrogen) was prepared, weighed to 90% Mo-10% Nb in atomic%, and then mixed with a V-type mixer to obtain a mixed powder. Here, an oxygen amount was measured from a part of the obtained mixed powder by an inert gas melting-non-dispersive infrared absorption method, and a hydrogen amount was measured by heating in an inert gas / melting column separation-thermal conductivity method. The measurement results are shown in Table 1.
Next, after filling the obtained mixed powder into a pressure vessel made of mild steel, it was sealed by performing vacuum degassing to 0.1 Pa while heating at a temperature of 450 ° C. Then, it pressure-sintered with HIP hold | maintained for 5 hours on the conditions of temperature 1250 degreeC and pressure 150MPa, and obtained Mo alloy sintered compact. This Mo alloy sintered body was cut and machined to obtain a sintered Mo alloy sputtering target material having a diameter of 50 mm and a thickness of 50 mm.
In addition, a test piece was collected from the Mo alloy sintered body obtained above, and the oxygen content was measured by inert gas melting-non-dispersive infrared absorption method, heating in inert gas / melting column separation-thermal conductivity method. The amount of hydrogen was measured. The results are shown in Table 1. Moreover, when the relative density was measured by the Archimedes method using the said test piece, the relative density was 99.3%. Here, the relative density is a value obtained by dividing the bulk density measured by the Archimedes method by the theoretical density obtained as a weighted average of elemental elements calculated by the mass ratio obtained from the composition ratio of the sintered Mo alloy sputtering target material. The value obtained by multiplying 100 by 100.

比較例として、以下の従来製法でNbを含有するMo合金スパッタリングターゲット材を作製した。
市販の平均粒径6μmのMo粉末(酸素量349質量ppm、水素量15質量ppm)と市販の平均粒径90μmの水素化していないNb粉末(酸素量920質量ppm、水素量16質量ppm)とを、原子%で90%Mo−10%Nbとなるように秤量後、混合した混合粉末を圧縮成形して得た成形体を粉砕して再度粉末にした造粒粉末を作製した。その造粒粉末を軟鋼製の加圧容器に充填した後に、450℃の温度で加熱しながら0.1Paまで減圧脱気処理を行い封止した。その後、温度1250℃、圧力150MPaの条件下で5時間保持するHIPで加圧焼結してMo合金焼結体を得た。このMo合金焼結体を切断および機械加工して、960mm×855mm×6mmの焼結Mo合金スパッタリングターゲット材を得た。
なお、上記で得られた混合粉末の試料とMo合金焼結体から採取した試験片を用いて、不活性ガス融解−非分散型赤外線吸収法により酸素量を、不活性ガス中加熱・融解カラム分離−熱伝導度法により水素量を測定した。その結果を表1に示す。また、上記試験片を用いてアルキメデス法により相対密度を測定したところ、相対密度は、99.2%であった。
As a comparative example, a Mo alloy sputtering target material containing Nb was produced by the following conventional manufacturing method.
Commercially available Mo powder having an average particle size of 6 μm (oxygen amount: 349 mass ppm, hydrogen content: 15 mass ppm) and commercially available non-hydrogenated Nb powder having an average particle size of 90 μm (oxygen amount: 920 mass ppm, hydrogen content: 16 mass ppm) After being weighed so as to be 90% Mo-10% Nb in atomic%, a granulated powder obtained by pulverizing a compact obtained by compression molding the mixed powder mixed to obtain a powder again was produced. The granulated powder was filled in a pressure vessel made of mild steel, and then subjected to vacuum degassing treatment to 0.1 Pa while being heated at a temperature of 450 ° C. and sealed. Then, it pressure-sintered with HIP hold | maintained for 5 hours on the conditions of temperature 1250 degreeC and pressure 150MPa, and obtained Mo alloy sintered compact. This Mo alloy sintered body was cut and machined to obtain a sintered Mo alloy sputtering target material of 960 mm × 855 mm × 6 mm.
In addition, using the sample of the mixed powder obtained above and the test piece collected from the Mo alloy sintered body, the amount of oxygen was determined by inert gas melting-non-dispersive infrared absorption method, and the heating / melting column in inert gas was used. The amount of hydrogen was measured by a separation-thermal conductivity method. The results are shown in Table 1. Moreover, when the relative density was measured by the Archimedes method using the said test piece, the relative density was 99.2%.

Figure 2013083000
Figure 2013083000

表1に示すように、本発明の製造方法で得られた焼結Mo合金スパッタリングターゲット材をみると、従来の製法にも減圧脱気処理を適用して得られたものに比べて、酸素量および水素量の低減効果が顕著であり、本発明の製造方法の有効性が確認できた。   As shown in Table 1, when looking at the sintered Mo alloy sputtering target material obtained by the production method of the present invention, the amount of oxygen compared to that obtained by applying the vacuum degassing treatment to the conventional production method as well Further, the effect of reducing the amount of hydrogen was remarkable, and the effectiveness of the production method of the present invention was confirmed.

まず、市販の平均粒径6μmのMo原料粉末(酸素量548質量ppm、水素量15質量ppm)と、市販の粉末を篩分けした平均粒径30μmの水素化したTa粉末(酸素量1070質量ppm、水素量4700質量ppm)を準備し、原子%で90%Mo−10%Taとなるように秤量後、V型混合機で混合処理して混合粉末を得た。ここで、得られた混合粉末の一部から不活性ガス融解−非分散型赤外線吸収法により酸素量を、不活性ガス中加熱・融解カラム分離−熱伝導度法により水素量を測定した。その測定結果を表2に示す。
次に、得られた混合粉末を軟鋼製の加圧容器に充填した後に、450℃の温度で加熱しながら0.1Paまで減圧脱気処理を行い封止した。その後、温度1250℃、圧力150MPaの条件下で5時間保持するHIPで加圧焼結してMo合金焼結体を得た。このMo合金焼結体を切断および機械加工して直径50mm×厚さ50mmの焼結Mo合金スパッタリングターゲット材を得た。
なお、上記で得られたMo合金焼結体から試験片を採取し、不活性ガス融解−非分散型赤外線吸収法により酸素量を、不活性ガス中加熱・融解カラム分離−熱伝導度法により水素量を測定した。その結果を表2に示す。また、上記試験片を用いてアルキメデス法により相対密度を測定したところ、相対密度は、99.2%であった。
First, a commercially available Mo raw material powder having an average particle size of 6 μm (oxygen amount 548 mass ppm, hydrogen amount 15 mass ppm) and a hydrogenated Ta powder having an average particle size of 30 μm obtained by sieving commercially available powder (oxygen amount 1070 mass ppm) , 4700 mass ppm of hydrogen) was prepared, weighed so that it would be 90% Mo-10% Ta in atomic%, and then mixed with a V-type mixer to obtain a mixed powder. Here, an oxygen amount was measured from a part of the obtained mixed powder by an inert gas melting-non-dispersive infrared absorption method, and a hydrogen amount was measured by heating in an inert gas / melting column separation-thermal conductivity method. The measurement results are shown in Table 2.
Next, after filling the obtained mixed powder into a pressure vessel made of mild steel, it was sealed by performing vacuum degassing to 0.1 Pa while heating at a temperature of 450 ° C. Then, it pressure-sintered with HIP hold | maintained for 5 hours on the conditions of temperature 1250 degreeC and pressure 150MPa, and obtained Mo alloy sintered compact. This Mo alloy sintered body was cut and machined to obtain a sintered Mo alloy sputtering target material having a diameter of 50 mm and a thickness of 50 mm.
In addition, a test piece was collected from the Mo alloy sintered body obtained above, and the oxygen content was measured by inert gas melting-non-dispersive infrared absorption method, heating in inert gas / melting column separation-thermal conductivity method. The amount of hydrogen was measured. The results are shown in Table 2. Moreover, when the relative density was measured by the Archimedes method using the said test piece, the relative density was 99.2%.

比較例として、以下の従来製法でTaを含有するMo合金スパッタリングターゲット材を作製した。
市販の平均粒径6μmのMo粉末(酸素量548質量ppm、水素量15質量ppm)と市販の平均粒径30μmの水素化していないTa粉末(酸素量1575質量ppm、水素量16質量ppm)とを、原子%で90%Mo−10%Taとなるように秤量後、混合した混合粉末を圧縮成形して得た成形体を粉砕して再度粉末にした造粒粉末を作製した。その造粒粉末を軟鋼製の加圧容器に充填した後に、450℃の温度で加熱しながら0.1Paまで減圧脱気処理を行い封止した。その後、温度1250℃、圧力150MPaの条件下で5時間保持するHIPで加圧焼結してMo合金焼結体を得た。このMo合金焼結体を切断および機械加工して、直径50mm×厚さ50mmの焼結Mo合金スパッタリングターゲット材を得た。
なお、上記で得られた混合粉末の試料とMo合金焼結体から採取した試験片を用いて、不活性ガス融解−非分散型赤外線吸収法により酸素量を、不活性ガス中加熱・融解カラム分離−熱伝導度法により水素量を測定した。その結果を表2に示す。また、上記試験片を用いてアルキメデス法により相対密度を測定したところ、相対密度は、99.2%であった。
As a comparative example, a Mo alloy sputtering target material containing Ta was produced by the following conventional manufacturing method.
Commercially available Mo powder with an average particle size of 6 μm (oxygen amount 548 mass ppm, hydrogen amount 15 mass ppm) and commercially available non-hydrogenated Ta powder with an average particle size 30 μm (oxygen amount 1575 mass ppm, hydrogen amount 16 mass ppm) After being weighed so as to be 90% Mo-10% Ta in atomic%, a granulated powder obtained by pulverizing a molded body obtained by compression molding the mixed powder mixture to obtain a powder again was produced. The granulated powder was filled in a pressure vessel made of mild steel, and then subjected to vacuum degassing treatment to 0.1 Pa while being heated at a temperature of 450 ° C. and sealed. Then, it pressure-sintered with HIP hold | maintained for 5 hours on the conditions of temperature 1250 degreeC and pressure 150MPa, and obtained Mo alloy sintered compact. This Mo alloy sintered body was cut and machined to obtain a sintered Mo alloy sputtering target material having a diameter of 50 mm and a thickness of 50 mm.
In addition, using the sample of the mixed powder obtained above and the test piece collected from the Mo alloy sintered body, the amount of oxygen was determined by inert gas melting-non-dispersive infrared absorption method, and the heating / melting column in inert gas was used. The amount of hydrogen was measured by a separation-thermal conductivity method. The results are shown in Table 2. Moreover, when the relative density was measured by the Archimedes method using the said test piece, the relative density was 99.2%.

Figure 2013083000
Figure 2013083000

表2に示すように、本発明の製造方法で得られた焼結Mo合金スパッタリングターゲット材をみると、従来の製法にも減圧脱気処理を適用して得られたものに比べて、酸素量および水素量の低減効果が顕著であり、本発明の製造方法の有効性が確認できた。   As shown in Table 2, when looking at the sintered Mo alloy sputtering target material obtained by the production method of the present invention, the amount of oxygen is higher than that obtained by applying the vacuum degassing treatment to the conventional production method. Further, the effect of reducing the amount of hydrogen was remarkable, and the effectiveness of the production method of the present invention was confirmed.

Claims (2)

(Ti、Nb、Ta)の群から選択される1種または2種以上の金属元素Mを0.5〜60原子%含有し、残部がMoおよび不可避的不純物からなるMo合金スパッタリングターゲット材の製造方法であって、Mo原料粉末と平均粒径200μm以下の水素化した前記金属元素Mの粉末とを混合処理した混合粉末を加圧容器に充填し、次いで該加圧容器を加熱しながら減圧脱気処理をした後、熱間静水圧プレスで加圧焼結してMo合金焼結体を作製することを特徴とする焼結Mo合金スパッタリングターゲット材の製造方法。   Production of Mo alloy sputtering target material containing 0.5-60 atomic% of one or more metal elements M selected from the group of (Ti, Nb, Ta), with the balance being Mo and inevitable impurities A mixed powder obtained by mixing Mo raw material powder and the hydrogenated metal element M powder having an average particle size of 200 μm or less is filled in a pressure vessel, and then the pressure vessel is depressurized while being heated. A method for producing a sintered Mo alloy sputtering target material, characterized in that a Mo alloy sintered body is produced by pressure sintering with a hot isostatic press after performing gas treatment. 前記減圧脱気処理は、300〜1000℃の範囲で加熱しながら行うことを特徴とする請求項1に記載の焼結Mo合金スパッタリングターゲット材の製造方法。   The method for producing a sintered Mo alloy sputtering target material according to claim 1, wherein the vacuum degassing treatment is performed while heating in a range of 300 to 1000 ° C.
JP2012214945A 2011-09-28 2012-09-27 METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL Pending JP2013083000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214945A JP2013083000A (en) 2011-09-28 2012-09-27 METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011212340 2011-09-28
JP2011212340 2011-09-28
JP2012214945A JP2013083000A (en) 2011-09-28 2012-09-27 METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL

Publications (1)

Publication Number Publication Date
JP2013083000A true JP2013083000A (en) 2013-05-09

Family

ID=48528455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214945A Pending JP2013083000A (en) 2011-09-28 2012-09-27 METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL

Country Status (1)

Country Link
JP (1) JP2013083000A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061816A1 (en) 2013-10-29 2015-05-07 Plansee Se Sputtering target and production method
CN105154740A (en) * 2015-10-22 2015-12-16 烟台希尔德新材料有限公司 Preparation method of mechanically-alloyed niobium-molybdenum target
WO2017018402A1 (en) * 2015-07-27 2017-02-02 日立金属株式会社 Target material
CN106378455A (en) * 2015-07-31 2017-02-08 汉能新材料科技有限公司 Molybdenum alloy rotary metal pipe material and preparation method thereof
CN106567047A (en) * 2016-11-04 2017-04-19 北方民族大学 Method of preparing high-purity microstructure-controllable Mo-Nb alloy target material through hot-pressing process
CN106567024A (en) * 2016-11-11 2017-04-19 洛阳科威钨钼有限公司 Spinning preparing method of molybdenum alloy crucible used for production of sapphire
AT15356U1 (en) * 2016-09-29 2017-07-15 Plansee Se Sputtering target
CN108103458A (en) * 2016-11-24 2018-06-01 宁波江丰电子材料股份有限公司 The manufacturing method of molybdenum niobium target blankss
CN108213440A (en) * 2017-12-25 2018-06-29 安泰天龙钨钼科技有限公司 A kind of preparation method of Mo Re alloys tubing
CN108543947A (en) * 2018-05-11 2018-09-18 成都联虹钼业有限公司 A kind of preparation method of molybdenum base
KR20190005120A (en) * 2017-07-05 2019-01-15 히타치 긴조쿠 가부시키가이샤 MoNb TARGET MATERIAL
CN110257784A (en) * 2019-07-24 2019-09-20 洛阳高新四丰电子材料有限公司 A kind of preparation process of high-compactness molybdenum niobium alloy sputtering target material
CN114231915A (en) * 2021-11-15 2022-03-25 广州市尤特新材料有限公司 Alloy sputtering target material for flat panel display and preparation method thereof
CN114318101A (en) * 2021-12-29 2022-04-12 合肥工业大学 High-density fine-grain molybdenum-tantalum alloy and preparation method thereof
CN118064848A (en) * 2024-04-18 2024-05-24 西安理工大学 Molybdenum-titanium target material and preparation method and application thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061816A1 (en) 2013-10-29 2015-05-07 Plansee Se Sputtering target and production method
WO2017018402A1 (en) * 2015-07-27 2017-02-02 日立金属株式会社 Target material
CN106378455A (en) * 2015-07-31 2017-02-08 汉能新材料科技有限公司 Molybdenum alloy rotary metal pipe material and preparation method thereof
CN105154740A (en) * 2015-10-22 2015-12-16 烟台希尔德新材料有限公司 Preparation method of mechanically-alloyed niobium-molybdenum target
AT15356U1 (en) * 2016-09-29 2017-07-15 Plansee Se Sputtering target
US11569075B2 (en) 2016-09-29 2023-01-31 Plansee Se Sputtering target
CN106567047A (en) * 2016-11-04 2017-04-19 北方民族大学 Method of preparing high-purity microstructure-controllable Mo-Nb alloy target material through hot-pressing process
CN106567024A (en) * 2016-11-11 2017-04-19 洛阳科威钨钼有限公司 Spinning preparing method of molybdenum alloy crucible used for production of sapphire
CN108103458A (en) * 2016-11-24 2018-06-01 宁波江丰电子材料股份有限公司 The manufacturing method of molybdenum niobium target blankss
KR102161580B1 (en) * 2017-07-05 2020-10-05 히타치 긴조쿠 가부시키가이샤 MoNb TARGET MATERIAL
KR20190005120A (en) * 2017-07-05 2019-01-15 히타치 긴조쿠 가부시키가이샤 MoNb TARGET MATERIAL
CN108213440A (en) * 2017-12-25 2018-06-29 安泰天龙钨钼科技有限公司 A kind of preparation method of Mo Re alloys tubing
CN108543947A (en) * 2018-05-11 2018-09-18 成都联虹钼业有限公司 A kind of preparation method of molybdenum base
CN110257784A (en) * 2019-07-24 2019-09-20 洛阳高新四丰电子材料有限公司 A kind of preparation process of high-compactness molybdenum niobium alloy sputtering target material
CN114231915A (en) * 2021-11-15 2022-03-25 广州市尤特新材料有限公司 Alloy sputtering target material for flat panel display and preparation method thereof
CN114231915B (en) * 2021-11-15 2023-09-19 广州市尤特新材料有限公司 Alloy sputtering target material for flat panel display and preparation method thereof
CN114318101A (en) * 2021-12-29 2022-04-12 合肥工业大学 High-density fine-grain molybdenum-tantalum alloy and preparation method thereof
CN118064848A (en) * 2024-04-18 2024-05-24 西安理工大学 Molybdenum-titanium target material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2013083000A (en) METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL
JP4894008B2 (en) Method for producing MoNb-based sintered sputtering target material
CN105331939B (en) A kind of silicon-containing alloy target and preparation method thereof
JP2012237056A (en) METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL
JP5861839B2 (en) Method for manufacturing molybdenum target
TW201704494A (en) Poly-crystalline tungsten and poly-crystalline tungsten alloy, and method of producing same
JP6037211B2 (en) Manufacturing method of MoTi target material
JP6370595B2 (en) Method for producing magnesium powder metallurgy sintered body, magnesium powder metallurgy sintered body and magnesium powder metallurgy material
WO2014024519A1 (en) Sintered body and sputtering target
JP4356071B2 (en) Sputtering target material and manufacturing method thereof
JP5988140B2 (en) Manufacturing method of MoTi target material and MoTi target material
JP4721090B2 (en) Manufacturing method of Mo-based target material
JP5692940B2 (en) α + β-type or β-type titanium alloy and method for producing the same
JP6459058B2 (en) Mo alloy target
JP2006169547A (en) METHOD FOR PRODUCING Mo ALLOY POWDER TO BE PRESSURE-SINTERED, AND METHOD FOR PRODUCING TARGET MATERIAL FOR SPUTTERING
CN113798488B (en) Aluminum-based powder metallurgy material and preparation method thereof
KR20160133571A (en) W-ti sputtering target
CN105345007A (en) Preparation method for highly dense chromium-tungsten alloy target
Gülsoy et al. Injection molding of mechanical alloyed Ti–Fe–Zr powder
JP4591749B2 (en) Manufacturing method of Mo target material
MXPA04007104A (en) Stabilized grain size refractory metal powder metallurgy mill products.
CN105364074A (en) Preparation method for high-compactness chromium-tungsten alloy target material
RU2447177C1 (en) Method of producing modifying agent for nickel alloys
JP2009013471A (en) Ru TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2002194536A (en) Sputtering target with low oxygen content