JP6437900B2 - Manufacturing method of dust core - Google Patents
Manufacturing method of dust core Download PDFInfo
- Publication number
- JP6437900B2 JP6437900B2 JP2015168819A JP2015168819A JP6437900B2 JP 6437900 B2 JP6437900 B2 JP 6437900B2 JP 2015168819 A JP2015168819 A JP 2015168819A JP 2015168819 A JP2015168819 A JP 2015168819A JP 6437900 B2 JP6437900 B2 JP 6437900B2
- Authority
- JP
- Japan
- Prior art keywords
- lubricant
- powder
- mixture
- dust core
- magnetic metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000428 dust Substances 0.000 title claims description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000000314 lubricant Substances 0.000 claims description 139
- 239000000843 powder Substances 0.000 claims description 118
- 239000000203 mixture Substances 0.000 claims description 77
- 239000011521 glass Substances 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 37
- 238000002844 melting Methods 0.000 claims description 29
- 230000008018 melting Effects 0.000 claims description 29
- 238000000465 moulding Methods 0.000 claims description 28
- 238000002156 mixing Methods 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 7
- 230000000052 comparative effect Effects 0.000 description 28
- 238000000034 method Methods 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 239000000523 sample Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 229960000735 docosanol Drugs 0.000 description 3
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000005211 surface analysis Methods 0.000 description 3
- 229910002796 Si–Al Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- XBJJRSFLZVLCSE-UHFFFAOYSA-N barium(2+);diborate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]B([O-])[O-].[O-]B([O-])[O-] XBJJRSFLZVLCSE-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- ZJOLCKGSXLIVAA-UHFFFAOYSA-N ethene;octadecanamide Chemical compound C=C.CCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCC(N)=O ZJOLCKGSXLIVAA-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は圧粉磁心の製造方法に関する。 The present invention relates to a method for manufacturing a dust core.
近年、車両の駆動モータを構成するステータコアやロータコア、電力変換回路を構成するリアクトルコアなどに圧粉磁心が用いられている。圧粉磁心は、電磁鋼板を積層して形成したコアと比べて、高周波損失(鉄損)が少ない等の利点を備える。 In recent years, dust cores have been used for stator cores and rotor cores constituting vehicle drive motors, reactor cores constituting power conversion circuits, and the like. The dust core has advantages such as less high-frequency loss (iron loss) compared to a core formed by laminating electromagnetic steel sheets.
特許文献1には圧粉磁心の製造方法が開示されている。特許文献1に開示されている圧粉磁心の製造方法では、磁性金属粉末とガラス粉末と潤滑剤とを混合し、その後これらの混合体を圧縮して成形することで圧粉磁心を製造している。 Patent Document 1 discloses a method for manufacturing a dust core. In the method of manufacturing a dust core disclosed in Patent Document 1, a magnetic core is manufactured by mixing magnetic metal powder, glass powder, and a lubricant, and then compressing and molding the mixture. Yes.
特許文献1に開示されている圧粉磁心の製造方法では、磁性金属粉末にガラス粉末を添加することで、圧粉磁心の強度を向上させている。しかしながら、ガラス粉末は流動性が低いため、磁性金属粉末にガラス粉末を添加すると粉末流動性が低下し、圧粉磁心を成形する際の成形性が悪化する。このような成形性の悪化は潤滑剤を添加することで改善することができる。しかしながら、添加する潤滑剤の量が多くなると圧粉磁心の密度が低下し、圧粉磁心の強度が低下するという問題がある。 In the method of manufacturing a dust core disclosed in Patent Document 1, the strength of the dust core is improved by adding glass powder to the magnetic metal powder. However, since glass powder has low fluidity, when glass powder is added to magnetic metal powder, the powder fluidity is lowered, and the moldability at the time of molding a dust core is deteriorated. Such deterioration of moldability can be improved by adding a lubricant. However, when the amount of lubricant to be added is increased, there is a problem that the density of the dust core is lowered and the strength of the dust core is lowered.
上記課題に鑑み本発明の目的は、圧粉磁心の成形性を向上させつつ圧粉磁心の強度低下を抑制することが可能な圧粉磁心の製造方法を提供することである。 In view of the above problems, an object of the present invention is to provide a method of manufacturing a dust core capable of suppressing a decrease in strength of the dust core while improving the moldability of the dust core.
本発明にかかる圧粉磁心の製造方法は、磁性金属粉末とガラス粉末と潤滑剤とを混合して混合体を形成する混合体形成工程と、前記混合体を加圧成形して焼きなましする成形工程と、を備え、前記混合体形成工程において、前記潤滑剤の融点以上で加熱しながら前記磁性金属粉末と前記ガラス粉末と前記潤滑剤とを混合する。 The method for producing a dust core according to the present invention includes a mixture forming step of mixing magnetic metal powder, glass powder, and a lubricant to form a mixture, and a molding step of pressing and annealing the mixture. In the mixture forming step, the magnetic metal powder, the glass powder, and the lubricant are mixed while being heated at a melting point or higher of the lubricant.
本発明にかかる圧粉磁心の製造方法では、混合体形成工程において、潤滑剤の融点以上で加熱しながら磁性金属粉末とガラス粉末と潤滑剤とを混合している。よって、混合時に潤滑剤が溶融し、潤滑剤の分散性と付着性が向上し、混合体の粉末流動性が向上する。したがって、磁性金属粉末の表面にガラス粉末および潤滑剤を均一に付着させることができるので、圧粉磁心の成形性を向上させることができる。また、混合時に潤滑剤を溶融させているので、潤滑剤の機能を効果的に発揮させることができる。よって、混合体に添加する潤滑剤の添加量を低減させることができるので、圧粉磁心の密度の低下を抑制することができ、圧粉磁心の強度が低下することを抑制することができる。 In the method for manufacturing a dust core according to the present invention, in the mixture forming step, the magnetic metal powder, the glass powder, and the lubricant are mixed while being heated at the melting point or higher of the lubricant. Therefore, the lubricant melts during mixing, dispersibility and adhesion of the lubricant are improved, and powder flowability of the mixture is improved. Therefore, since the glass powder and the lubricant can be uniformly attached to the surface of the magnetic metal powder, the moldability of the dust core can be improved. Moreover, since the lubricant is melted at the time of mixing, the function of the lubricant can be effectively exhibited. Therefore, since the addition amount of the lubricant added to the mixture can be reduced, a decrease in the density of the dust core can be suppressed, and a decrease in the strength of the dust core can be suppressed.
本発明にかかる圧粉磁心の製造方法において、前記成形工程の加圧成形は、前記潤滑剤の融点以上に加熱した状態で実施してもよい。 In the method for manufacturing a powder magnetic core according to the present invention, the pressure molding in the molding step may be performed in a state of being heated to the melting point or higher of the lubricant.
このように、加熱した状態で加圧成形することで、磁性金属粉末の表面を被覆している潤滑剤を再び溶融させることができる。よって、溶融した潤滑剤を用いて金型と成形体との間の摩擦力を低減させることができるので、混合体を加圧成形して成形体を形成した後、当該成形体を金型から取り出すときに必要な力を低減させることができる。 In this way, by performing pressure molding in a heated state, the lubricant covering the surface of the magnetic metal powder can be melted again. Therefore, since the frictional force between the mold and the molded body can be reduced using the melted lubricant, after forming the molded body by pressure molding the mixture, the molded body is removed from the mold. The force required when taking out can be reduced.
本発明にかかる圧粉磁心の製造方法において、前記潤滑剤は第1の潤滑剤と第2の潤滑剤とを含んでいてもよく、互いに溶融している状態で前記第1の潤滑剤は前記第2の潤滑剤よりも分散性が高く、前記第2の潤滑剤は前記第1の潤滑剤よりも潤滑性が高くてもよい。 In the method of manufacturing a dust core according to the present invention, the lubricant may include a first lubricant and a second lubricant, and the first lubricant is in a state of being melted with each other. The dispersibility is higher than that of the second lubricant, and the second lubricant may be higher in lubricity than the first lubricant.
このように、分散性が高い第1の潤滑剤を添加することで、混合体の分散性を効果的に向上させることができる。よって、混合体の粉末流動性が向上し、圧粉磁心の成形性を効果的に向上させることができる。また、潤滑性が高い第2の潤滑剤を添加することで、成形体と金型との間の摩擦力を効果的に低減させることができる。よって、成形体を金型から取り出すときに必要な力を効果的に低減させることができる。 Thus, the dispersibility of the mixture can be effectively improved by adding the first lubricant having high dispersibility. Therefore, the powder fluidity of the mixture is improved, and the moldability of the dust core can be effectively improved. Moreover, the frictional force between a molded object and a metal mold | die can be effectively reduced by adding the 2nd lubricant with high lubricity. Therefore, the force required when taking out the molded body from the mold can be effectively reduced.
本発明により、圧粉磁心の成形性を向上させつつ圧粉磁心の強度低下を抑制することが可能な圧粉磁心の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION By this invention, the manufacturing method of the powder magnetic core which can suppress the intensity | strength fall of a powder magnetic core can be provided, improving the moldability of a powder magnetic core.
以下、図面を参照して本発明の実施の形態について説明する。
図1は、実施の形態にかかる圧粉磁心の製造方法を説明するためのフローチャートである。本実施の形態にかかる圧粉磁心の製造方法は、混合体形成工程(ステップS1)と成形工程(ステップS2)とを備える。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a flowchart for explaining a method of manufacturing a dust core according to the embodiment. The method for manufacturing a dust core according to the present embodiment includes a mixture forming step (step S1) and a forming step (step S2).
混合体形成工程(ステップS1)は、磁性金属粉末とガラス粉末と潤滑剤とを混合して混合体を形成する工程である。磁性金属粉末には、例えば表面が絶縁被膜で覆われた軟磁性金属粉末を用いる。具体的には、Al2O3またはAlNなどの絶縁被膜で覆われたFe−Si系合金の粉末やAl2O3またはAlNなどの絶縁被膜で覆われたFe−Si−Al系合金の粉末を用いることができる。なお、これらの材料は一例であり、本実施の形態では磁性金属粉末として他の材料を用いてもよい。 The mixture forming step (step S1) is a step of mixing the magnetic metal powder, the glass powder, and the lubricant to form a mixture. As the magnetic metal powder, for example, a soft magnetic metal powder whose surface is covered with an insulating film is used. Specifically, powders of Al 2 O 3 or of Fe-Si-based alloy covered with an insulating film such as AlN powder and Al 2 O 3 or Fe-Si-Al alloy covered with an insulating film such as AlN Can be used. These materials are examples, and other materials may be used as the magnetic metal powder in the present embodiment.
また、ガラス粉末には低融点ガラス粉末を用いることができる。具体的には、潤滑剤の融点よりも軟化点が高く、成形工程(ステップS2)で実施する焼きなまし(後述する)の温度よりも軟化点が低いガラス粉末を用いる。一例を挙げると、硼珪酸系、硼珪酸バリウム系、硼酸バリウム系、アルミノリン酸塩系、リン酸塩系のガラス粉末を用いることができる。例えば、平均粒子径が1μm〜10μmのガラス粉末を用いる。なお、これらの材料は一例であり、本実施の形態ではガラス粉末として他の材料を用いてもよい。 Moreover, a low melting glass powder can be used for the glass powder. Specifically, a glass powder having a softening point higher than the melting point of the lubricant and having a softening point lower than the temperature of annealing (described later) performed in the molding step (step S2) is used. For example, borosilicate-based, borosilicate barium-based, barium borate-based, aluminophosphate-based, and phosphate-based glass powders can be used. For example, glass powder having an average particle diameter of 1 μm to 10 μm is used. Note that these materials are examples, and other materials may be used as the glass powder in this embodiment.
潤滑剤には、例えば、ベヘニルアルコール、エルカ酸モノアミド、ステアリン酸モノアミド、オレイン酸モノアミド、ステアリン酸カルシウム、およびエチレンビス−ステアリン酸アミドから選ばれる1種または2種以上の材料を用いることができる。なお、これらの材料は一例であり、本実施の形態では潤滑剤として他の材料を用いてもよい。 As the lubricant, for example, one or more materials selected from behenyl alcohol, erucic acid monoamide, stearic acid monoamide, oleic acid monoamide, calcium stearate, and ethylene bis-stearic amide can be used. These materials are examples, and other materials may be used as the lubricant in the present embodiment.
本実施の形態にかかる圧粉磁心の製造方法では、磁性金属粉末とガラス粉末と潤滑剤とを混合する際(つまり、撹拌する際)、潤滑剤の融点以上で加熱しながらこれらの混合体を混合する。このように、混合時に潤滑剤の融点以上に加熱することで、混合時に潤滑剤を溶融させることができ、潤滑剤の分散性と付着性を向上させることができる。よって、混合体の粉末流動性を向上させることができる。 In the method for producing a dust core according to the present embodiment, when mixing magnetic metal powder, glass powder, and lubricant (that is, when stirring), these mixtures are heated while being heated above the melting point of the lubricant. Mix. Thus, by heating to the melting | fusing point or more of a lubricant at the time of mixing, a lubricant can be melted at the time of mixing, and the dispersibility and adhesiveness of a lubricant can be improved. Therefore, the powder fluidity of the mixture can be improved.
本実施の形態にかかる圧粉磁心の製造方法では、例えば、磁性金属粉末とガラス粉末と潤滑剤とを混合して混合体を形成する際、混合体100重量%に対して、潤滑剤を0.1〜0.6重量%の割合で混合することが好ましい。また、磁性金属粉末とガラス粉末と潤滑剤とを混合する際の温度の上限値は、ガラス粉末の軟化点よりも低い温度とする。 In the method of manufacturing a dust core according to the present embodiment, for example, when a mixture is formed by mixing magnetic metal powder, glass powder, and a lubricant, the lubricant is 0% with respect to 100% by weight of the mixture. It is preferable to mix at a ratio of 0.1 to 0.6% by weight. Moreover, the upper limit of the temperature at the time of mixing magnetic metal powder, glass powder, and a lubrication agent shall be temperature lower than the softening point of glass powder.
次に、成形工程(ステップS2)について説明する。成形工程(ステップS2)では、混合体形成工程(ステップS1)において形成した混合体(混合粉末)を加圧成形し、その後、焼きなましをすることで所定の形状を備える圧粉磁心を形成する。具体的には、所定の形状(つまり、完成後の圧粉磁心の形状に対応した形状)を備える金型に、混合体形成工程(ステップS1)において形成した混合体を充填する。その後、金型に充填されている混合体に所定の圧力を印加する。例えば、印加する圧力は100〜2000MPaとすることができる。これにより、混合体が成形される(成形後の混合体を成形体と呼ぶ)。そして、加圧成形後、成形体を金型から取り外す。 Next, the molding process (step S2) will be described. In the forming step (step S2), the mixture (mixed powder) formed in the mixture forming step (step S1) is pressure-molded, and then annealed to form a dust core having a predetermined shape. Specifically, a mold having a predetermined shape (that is, a shape corresponding to the shape of the finished powder magnetic core) is filled with the mixture formed in the mixture forming step (step S1). Thereafter, a predetermined pressure is applied to the mixture filled in the mold. For example, the applied pressure can be 100 to 2000 MPa. Thereby, a mixture is shape | molded (the mixture after shaping | molding is called a molded object). And after pressure molding, a molded object is removed from a metal mold | die.
なお、本実施の形態にかかる圧粉磁心の製造方法では、加圧成形をする際に、潤滑剤の融点以上に加熱した状態で加圧成形(つまり、温間成形)してもよい。このように、加熱した状態で加圧成形することで、磁性金属粉末の表面を被覆している潤滑剤を再び溶融させることができる。よって、溶融した潤滑剤を用いて金型と成形体との間の摩擦力を低減させることができるので、混合体を加圧成形して成形体を形成した後、当該成形体を金型から取り出すときに必要な力を低減させることができる(つまり、抜き出し力を低減させることができる)。なお、この場合も、加圧成形する際の温度の上限値は、ガラス粉末の軟化点よりも低い温度とする。 In the method for manufacturing a powder magnetic core according to the present embodiment, when performing pressure molding, pressure molding (that is, warm molding) may be performed in a state where the powder is heated to a melting point or higher of the lubricant. In this way, by performing pressure molding in a heated state, the lubricant covering the surface of the magnetic metal powder can be melted again. Therefore, since the frictional force between the mold and the molded body can be reduced using the melted lubricant, after forming the molded body by pressure molding the mixture, the molded body is removed from the mold. The force required when taking out can be reduced (that is, the extraction force can be reduced). In this case as well, the upper limit of the temperature at the time of pressure molding is set to a temperature lower than the softening point of the glass powder.
その後、成形体を焼きなましする。例えば、焼きなましの条件は、窒素雰囲気で600〜900℃、15〜60分とすることができる。なお、焼きなましの条件は、この条件に限定されることはなく、適宜、変更してもよい。 Thereafter, the molded body is annealed. For example, the annealing conditions can be 600 to 900 ° C. and 15 to 60 minutes in a nitrogen atmosphere. The annealing conditions are not limited to these conditions, and may be changed as appropriate.
特許文献1に開示されている圧粉磁心の製造方法では、磁性金属粉末にガラス粉末を添加することで、圧粉磁心の強度を向上させていた。しかしながら、ガラス粉末は流動性が低いため、磁性金属粉末にガラス粉末を添加すると粉末流動性が低下し、圧粉磁心を成形する際の成形性が悪化する。このような成形性の悪化は潤滑剤を添加することで改善することができる。しかしながら、添加する潤滑剤の量が多くなると圧粉磁心の密度が低下し、圧粉磁心の強度が低下するという問題があった。 In the method of manufacturing a powder magnetic core disclosed in Patent Document 1, the strength of the powder magnetic core is improved by adding glass powder to the magnetic metal powder. However, since glass powder has low fluidity, when glass powder is added to magnetic metal powder, the powder fluidity is lowered, and the moldability at the time of molding a dust core is deteriorated. Such deterioration of moldability can be improved by adding a lubricant. However, when the amount of lubricant to be added is increased, there is a problem that the density of the dust core is lowered and the strength of the dust core is lowered.
そこで、本発明にかかる圧粉磁心の製造方法では、混合体形成工程において、潤滑剤の融点以上で加熱しながら磁性金属粉末とガラス粉末と潤滑剤とを混合している。よって、混合時に潤滑剤が溶融し、潤滑剤の分散性と付着性が向上し、混合体の粉末流動性が向上する。したがって、磁性金属粉末の表面にガラス粉末および潤滑剤を均一に付着させることができるので、圧粉磁心の成形性を向上させることができる。また、混合時に潤滑剤を溶融させているので、潤滑剤の機能を効果的に発揮させることができる。よって、混合体に添加する潤滑剤の添加量を低減させることができるので、圧粉磁心の密度の低下を抑制することができ、圧粉磁心の強度が低下することを抑制することができる。 Therefore, in the method of manufacturing a dust core according to the present invention, the magnetic metal powder, the glass powder, and the lubricant are mixed while being heated at the melting point or higher of the lubricant in the mixture forming step. Therefore, the lubricant melts during mixing, dispersibility and adhesion of the lubricant are improved, and powder flowability of the mixture is improved. Therefore, since the glass powder and the lubricant can be uniformly attached to the surface of the magnetic metal powder, the moldability of the dust core can be improved. Moreover, since the lubricant is melted at the time of mixing, the function of the lubricant can be effectively exhibited. Therefore, since the addition amount of the lubricant added to the mixture can be reduced, a decrease in the density of the dust core can be suppressed, and a decrease in the strength of the dust core can be suppressed.
また、本実施の形態にかかる圧粉磁心の製造方法では、性質が異なる2種以上の潤滑剤を用いてもよい。例えば、潤滑剤として第1の潤滑剤と第2の潤滑剤とを用いる場合は、第1の潤滑剤として第2の潤滑剤よりも分散性(溶融している状態における分散性)が高い潤滑剤を用い、また、第2の潤滑剤として第1の潤滑剤よりも潤滑性(溶融している状態における潤滑性)が高い潤滑剤を用いてもよい。例えば、第1の潤滑剤はベヘニルアルコールを含んでいてもよく、第2の潤滑剤はエルカ酸モノアミド及びステアリン酸モノアミドの少なくとも一つを含んでいてもよい。 Moreover, in the manufacturing method of the powder magnetic core concerning this Embodiment, you may use 2 or more types of lubricants from which a property differs. For example, when the first lubricant and the second lubricant are used as the lubricant, the lubricant having higher dispersibility (dispersibility in a melted state) than the second lubricant as the first lubricant. An agent may be used, and a lubricant having higher lubricity (lubricity in a molten state) than the first lubricant may be used as the second lubricant. For example, the first lubricant may include behenyl alcohol, and the second lubricant may include at least one of erucic acid monoamide and stearic acid monoamide.
このように、分散性が高い第1の潤滑剤を添加することで、混合体の分散性を効果的に向上させることができる。ここで、分散性が高い潤滑剤は融点が比較的低いという性質がある。つまり、融点が低い潤滑剤は溶けやすいので、潤滑剤が均一になりやすい。このように分散性が高い潤滑剤を用いることで、混合体の粉末流動性が向上し、圧粉磁心の成形性を効果的に向上させることができる。 Thus, the dispersibility of the mixture can be effectively improved by adding the first lubricant having high dispersibility. Here, a highly dispersible lubricant has a property of having a relatively low melting point. That is, since the lubricant having a low melting point is easily dissolved, the lubricant is likely to be uniform. By using a lubricant having high dispersibility as described above, the powder fluidity of the mixture is improved, and the moldability of the dust core can be effectively improved.
また、潤滑性が高い第2の潤滑剤を添加することで、成形体と金型との間の摩擦力を効果的に低減させることができる。つまり、潤滑性が高い潤滑剤は、表面の摩擦係数を低減させる効果が高いので、成形体を金型から取り出すときに必要な力を効果的に低減させることができる。 Moreover, the frictional force between a molded object and a metal mold | die can be effectively reduced by adding the 2nd lubricant with high lubricity. That is, since the lubricant having high lubricity has a high effect of reducing the coefficient of friction of the surface, it is possible to effectively reduce the force required when taking out the molded body from the mold.
なお、分散性が高い潤滑剤は融点が比較的低いという性質があり、潤滑性が高い潤滑剤は融点が比較的高いという性質がある。よって、本実施の形態にかかる圧粉磁心の製造方法では、融点が異なる2種以上の潤滑剤を用いることで、上記で説明した混合体の粉末流動性の向上と、成形体と金型との間の摩擦力の低減の効果を得ることができる。 Note that a lubricant having high dispersibility has a property of having a relatively low melting point, and a lubricant having high lubricity has a property of having a relatively high melting point. Therefore, in the method of manufacturing a dust core according to the present embodiment, by using two or more kinds of lubricants having different melting points, the improvement of the powder fluidity of the mixture described above, and the molded body and the mold The effect of reducing the frictional force between the two can be obtained.
以上で説明した本実施の形態にかかる発明により、圧粉磁心の成形性を向上させつつ圧粉磁心の強度低下を抑制することが可能な圧粉磁心の製造方法を提供することができる。 By the invention according to the present embodiment described above, it is possible to provide a method of manufacturing a dust core capable of suppressing a decrease in strength of the dust core while improving the moldability of the dust core.
次に、本発明の実施例について説明する。
図2は、実施例にかかる圧粉磁心の製造方法を説明するためのフローチャートである。図3は、圧粉磁心の作製条件および評価結果を示す表である。
Next, examples of the present invention will be described.
FIG. 2 is a flowchart for explaining the manufacturing method of the dust core according to the embodiment. FIG. 3 is a table showing the production conditions and evaluation results of the dust core.
<サンプルの作製>
まず、図2に示す混合体形成工程(ステップS11)に従い、磁性金属粉末とガラス粉末と潤滑剤とを含む混合体を形成した。具体的には、まず、所定の容器(混合機)に磁性金属粉末を投入した。磁性金属粉末には、Feを3%、Siを3.5%含むFe−Si−Al系合金の粉末(表面がAl2O3の絶縁被膜で覆われているもの)を用いた。更に、この磁性金属粉末にガラス粉末と潤滑剤とを添加した。ガラス粉末には平均粒径が1.5μmの硼珪酸ガラス(軟化点:505℃)を用いた。ガラス粉末の添加量は2.0重量%とした。
<Preparation of sample>
First, according to the mixture formation process (step S11) shown in FIG. 2, the mixture containing magnetic metal powder, glass powder, and a lubricant was formed. Specifically, first, magnetic metal powder was put into a predetermined container (mixer). As the magnetic metal powder, an Fe—Si—Al alloy powder containing 3% Fe and 3.5% Si (the surface of which is covered with an Al 2 O 3 insulating coating) was used. Further, glass powder and a lubricant were added to the magnetic metal powder. Borosilicate glass (softening point: 505 ° C.) having an average particle diameter of 1.5 μm was used as the glass powder. The amount of glass powder added was 2.0% by weight.
また、潤滑剤として、ベヘニルアルコール粉末(融点:約70℃)、エルカ酸モノアミド粉末(融点:約82℃)、ステアリン酸モノアミド粉末(融点:約103℃)をそれぞれ1:1:3の割合で混合したものを用いた。潤滑剤(3種の潤滑剤を混合した後の潤滑剤a1)の添加量は、0.1〜0.6重量%とした。図3の表に示すように、潤滑剤の添加量が0.1重量%のサンプルを実施例1、潤滑剤の添加量が0.2重量%のサンプルを実施例2、潤滑剤の添加量が0.4重量%のサンプルを実施例3、潤滑剤の添加量が0.6重量%のサンプルを実施例4とした。 As a lubricant, behenyl alcohol powder (melting point: about 70 ° C.), erucic acid monoamide powder (melting point: about 82 ° C.), and stearic acid monoamide powder (melting point: about 103 ° C.) were mixed at a ratio of 1: 1: 3, respectively. What was done was used. The addition amount of the lubricant (the lubricant a1 after mixing the three kinds of lubricants) was 0.1 to 0.6% by weight. As shown in the table of FIG. 3, the sample in which the addition amount of the lubricant is 0.1 wt% is Example 1, the sample in which the addition amount of the lubricant is 0.2 wt% is Example 2, and the addition amount of the lubricant Was 0.4% by weight, and Example 4 was a lubricant with an added amount of 0.6% by weight.
そして、磁性金属粉末とガラス粉末と潤滑剤とを含む混合体の温度を、図4に示す温度プロファイルとなるように制御しながら、混合体を撹拌した。具体的には、実施例1〜4に含まれる潤滑剤のうち最も融点が高いステアリン酸モノアミド粉末(融点:約103℃)の融点よりも高い温度である110℃に混合体を加熱し、5分間、撹拌した。つまり、混合体に含まれる潤滑剤を溶融させながら、混合体を撹拌した。その後、混合体を撹拌しながら70℃まで冷却した。 And the mixture was stirred, controlling the temperature of the mixture containing magnetic metal powder, glass powder, and a lubricant so that it might become the temperature profile shown in FIG. Specifically, the mixture is heated to 110 ° C., which is higher than the melting point of the stearic acid monoamide powder (melting point: about 103 ° C.) having the highest melting point among the lubricants included in Examples 1 to 4. Stir for minutes. That is, the mixture was stirred while the lubricant contained in the mixture was melted. Thereafter, the mixture was cooled to 70 ° C. with stirring.
また、図3の表に示すように、比較例1として潤滑剤を添加しないサンプルを作製した。更に、潤滑剤としてステアリン酸亜鉛粉末(融点:約150℃)を用いたサンプルを比較例2〜4として作製した。潤滑剤の添加量が0.2重量%のサンプルを比較例2、潤滑剤の添加量が0.4重量%のサンプルを比較例3、潤滑剤の添加量が0.6重量%のサンプルを比較例4とした。 Further, as shown in the table of FIG. 3, a sample to which no lubricant was added was produced as Comparative Example 1. Furthermore, samples using zinc stearate powder (melting point: about 150 ° C.) as a lubricant were prepared as Comparative Examples 2 to 4. A sample with a lubricant addition amount of 0.2% by weight is Comparative Example 2, a sample with a lubricant addition amount of 0.4% by weight is Comparative Example 3, and a sample with a lubricant addition amount is 0.6% by weight. It was set as Comparative Example 4.
比較例1〜4にかかるサンプルを作製する際は、磁性金属粉末とガラス粉末と潤滑剤とを含む混合体をV型混合機に入れて常温で乾式混合した。すなわち、比較例1〜4では潤滑剤が溶融していない状態で混合体を撹拌した。 When producing samples according to Comparative Examples 1 to 4, a mixture containing magnetic metal powder, glass powder and a lubricant was placed in a V-type mixer and dry-mixed at room temperature. That is, in Comparative Examples 1 to 4, the mixture was stirred in a state where the lubricant was not melted.
次に、図2に示す成形工程(ステップS12)に従い、混合体形成工程(ステップS11)で形成した混合体を成形した。具体的には、リング形状(φ30〜φ39)および円柱形状(φ17)の金型に、混合体形成工程(ステップS11)において形成した混合体を充填した。その後、温間成型法を用いて混合体を成形した。つまり、金型を130℃に加熱しながら、金型に充填されている混合体に980MPaの圧力を印加して混合体を成形した。加圧成形後、成形体を金型から取り外した。その後、成形体を窒素雰囲気において750℃で30分、焼きなまし処理をすることで圧粉磁心を作製した。このようにして、各々のサンプル(実施例1〜4、比較例1〜4)を作製した。 Next, according to the molding process (step S12) shown in FIG. 2, the mixture formed in the mixture formation process (step S11) was molded. Specifically, the mixture formed in the mixture forming step (step S11) was filled into a ring-shaped (φ30 to φ39) and columnar (φ17) mold. Thereafter, the mixture was molded using a warm molding method. That is, while heating the mold to 130 ° C., a pressure of 980 MPa was applied to the mixture filled in the mold to mold the mixture. After pressure molding, the molded body was removed from the mold. Thereafter, the compact was annealed at 750 ° C. for 30 minutes in a nitrogen atmosphere to produce a dust core. Thus, each sample (Examples 1-4, Comparative Examples 1-4) was produced.
<サンプルの評価>
次に、サンプルの評価結果について説明する。各々のサンプル(実施例1〜4、比較例1〜4)に対して、粉末流動性試験、走査型電子顕微鏡(SEM:Scanning Electron Microscope)による表面観察、圧粉密度測定、圧環強度測定、磁気測定(鉄損)、引き出し力測定、EPMA(Electron Probe Micro Analyser)による表面分析を実施した。以下、各々の評価結果について説明する。
<Evaluation of sample>
Next, sample evaluation results will be described. For each sample (Examples 1 to 4, Comparative Examples 1 to 4), powder fluidity test, surface observation with a scanning electron microscope (SEM), dust density measurement, crushing strength measurement, magnetism Measurement (iron loss), extraction force measurement, and surface analysis by EPMA (Electron Probe Micro Analyzer) were performed. Hereinafter, each evaluation result will be described.
(粉末流動性試験)
図2に示す混合体形成工程(ステップS11)で形成した混合体(粉末)に対して粉末流動性試験を実施した。粉末流動性試験は、JIS、Z−2502に準拠した方法で行った。具体的には、排出口直径φ2.63mmのかさ密度測定器から50gの混合体(粉末)を室温にて排出し、この排出が終了するまでの時間を測定することで粉末流動性を調べた。つまり、排出時間が短いほど粉末流動性がよいといえる。
(Powder fluidity test)
A powder fluidity test was performed on the mixture (powder) formed in the mixture formation step (step S11) shown in FIG. The powder fluidity test was performed by a method based on JIS, Z-2502. Specifically, 50 g of a mixture (powder) was discharged at room temperature from a bulk density measuring device having a discharge port diameter of φ2.63 mm, and the powder flowability was examined by measuring the time until the discharge was completed. . In other words, the shorter the discharge time, the better the powder fluidity.
図5に、潤滑剤の添加量と粉末流動性との関係を示す(図3の表も参照)。図5に示すように、比較例1〜4では粉末流動性(排出時間)が76〜85(s/50g)であったのに対して、実施例1〜4では粉末流動性(排出時間)が24〜28(s/50g)と小さく(短く)なった。よって、実施例1〜4では比較例1〜4と比べて粉末流動性が著しく向上したといえる。つまり、混合体形成工程において、潤滑剤の融点以上に加熱して潤滑剤を溶融させながら混合体を混合することで、潤滑剤の分散性と付着性を向上させることができ、混合体の粉末流動性を向上させることができた。 FIG. 5 shows the relationship between the amount of lubricant added and the powder fluidity (see also the table in FIG. 3). As shown in FIG. 5, in Comparative Examples 1 to 4, the powder fluidity (discharge time) was 76 to 85 (s / 50 g), whereas in Examples 1 to 4, the powder fluidity (discharge time). Was as small as 24 to 28 (s / 50 g). Therefore, it can be said that in Examples 1 to 4, the powder fluidity was remarkably improved as compared with Comparative Examples 1 to 4. That is, in the mixture forming step, the dispersibility and adhesion of the lubricant can be improved by mixing the mixture while heating the lubricant to a melting point or higher and melting the lubricant. The fluidity could be improved.
(SEMによる表面観察)
また、混合体形成工程(ステップS11)で形成した混合体の表面を走査型電子顕微鏡(SEM)を用いて観察した。図6は、実施例にかかる混合体のSEM像であり、図7は比較例にかかる混合体のSEM像である。図6に示すように、実施例にかかる混合体では、潤滑剤を溶融させながら混合体を混合したので、磁性金属粉末の表面がガラス粉末および潤滑剤で均一に被覆されていた。よって、磁性金属粉末間の摩擦力を低減することができ、混合体の粉末流動性を向上させることができたといえる。
(SEM surface observation)
Further, the surface of the mixture formed in the mixture forming step (step S11) was observed using a scanning electron microscope (SEM). FIG. 6 is an SEM image of the mixture according to the example, and FIG. 7 is an SEM image of the mixture according to the comparative example. As shown in FIG. 6, in the mixture according to the example, since the mixture was mixed while melting the lubricant, the surface of the magnetic metal powder was uniformly coated with the glass powder and the lubricant. Therefore, it can be said that the frictional force between the magnetic metal powders could be reduced and the powder flowability of the mixture could be improved.
一方、図7に示すように、比較例にかかる混合体では、潤滑剤が溶融していない状態で混合体を混合したので、ガラス粉末および潤滑剤の分散状態が不均一となった。このため、比較例にかかる混合体では粉末流動性が悪くなったといえる。 On the other hand, as shown in FIG. 7, in the mixture according to the comparative example, since the mixture was mixed in a state where the lubricant was not melted, the dispersion state of the glass powder and the lubricant became non-uniform. For this reason, it can be said that the powder fluidity deteriorated in the mixture according to the comparative example.
(圧粉密度)
また、作製した圧粉磁心の密度を測定した。図8は、潤滑剤の添加量と圧粉密度との関係を示すグラフである(図3の表も参照)。図8に示すように、実施例1〜4では圧粉磁心の密度が6.32〜6.33と略一定となったのに対して、比較例1〜4では、圧粉磁心の密度が潤滑剤の添加量が増加するにしたがって低下した。この理由は、比較例では混合体を形成した際に潤滑剤が偏って存在しているため(図7参照)、焼きなまし処理で潤滑剤が抜ける際に空孔ができ、密度が低下したためであると考えられる。一方、実施例1〜4では、潤滑剤が均一に分散しているため、焼きなまし処理で潤滑剤が抜ける際に、空孔の発生を抑制できたと考えられる。
(Dust density)
Moreover, the density of the produced dust core was measured. FIG. 8 is a graph showing the relationship between the amount of lubricant added and the green density (see also the table in FIG. 3). As shown in FIG. 8, in Examples 1 to 4, the density of the dust core was substantially constant at 6.32 to 6.33, whereas in Comparative Examples 1 to 4, the density of the dust core was It decreased as the amount of lubricant added increased. The reason for this is that in the comparative example, when the mixture is formed, the lubricant is unevenly present (see FIG. 7), so that voids are formed when the lubricant is removed by the annealing treatment, and the density is lowered. it is conceivable that. On the other hand, in Examples 1 to 4, since the lubricant is uniformly dispersed, it is considered that the generation of pores can be suppressed when the lubricant is removed by the annealing treatment.
(圧環強度)
また、作製した圧粉磁心の圧環強度試験を行った。具体的には、5kNオートグラフを用いて最大荷重を測定して圧環強度を算出した。圧環強度試験は、JIS、Z−2507に準拠した方法を用いて行った。図9に潤滑剤の添加量と圧環強度との関係を示す(図3の表も参照)。図9に示すように、実施例1〜4では比較例1〜4と比べて圧環強度が高くなった。これは、実施例1〜4では比較例1〜4と比べて圧粉磁心の密度が高いためであると考えられる(図8参照)。また、比較例1〜4では、潤滑剤の添加量が増加するにしたがって圧環強度が低下した。これは、比較例1〜4では潤滑剤の添加量が増加するにしたがって圧粉磁心の密度が低下したためであると考えられる(図8参照)。
(Crushing strength)
Moreover, the crushing strength test of the produced powder magnetic core was done. Specifically, the crushing strength was calculated by measuring the maximum load using a 5 kN autograph. The crushing strength test was performed using a method based on JIS, Z-2507. FIG. 9 shows the relationship between the amount of lubricant added and the crushing strength (see also the table in FIG. 3). As shown in FIG. 9, the crushing strength was higher in Examples 1 to 4 than in Comparative Examples 1 to 4. This is considered to be because the density of the dust core is higher in Examples 1 to 4 than in Comparative Examples 1 to 4 (see FIG. 8). In Comparative Examples 1 to 4, the crushing strength decreased as the amount of lubricant added increased. This is considered to be because in Comparative Examples 1 to 4, the density of the dust core decreased as the amount of lubricant added increased (see FIG. 8).
(EPMAによる表面分析)
また、作製した圧粉磁心に対してEPMAによる表面分析を実施した。図10は、実施例にかかる圧粉磁心のEPMA像であり、図11は比較例にかかる圧粉磁心のEPMA像である。図10に示すように、実施例にかかる圧粉磁心では、磁性金属粉末の粒界においてガラスが均一に分散していることが確認できた。一方、図11に示すように、比較例にかかる圧粉磁心では、磁性金属粉末の粒界においてガラスが偏析していることが確認できた。このように比較例にかかる圧粉磁心ではガラスが偏析しており、このガラスの偏析は圧環強度が低くなる原因の一つであると考えられる。
(Surface analysis by EPMA)
Moreover, the surface analysis by EPMA was implemented with respect to the produced powder magnetic core. FIG. 10 is an EPMA image of the dust core according to the example, and FIG. 11 is an EPMA image of the dust core according to the comparative example. As shown in FIG. 10, in the dust core according to the example, it was confirmed that the glass was uniformly dispersed at the grain boundary of the magnetic metal powder. On the other hand, as shown in FIG. 11, in the powder magnetic core concerning a comparative example, it has confirmed that glass segregated in the grain boundary of magnetic metal powder. Thus, in the dust core according to the comparative example, the glass is segregated, and this segregation of the glass is considered to be one of the causes of the reduced crushing strength.
(引き出し力)
また、混合体形成工程(ステップS11)で形成した混合体を、500kNアムスラー試験機を用いて加圧成形(温間成形)した後、金型から成形体を抜き出す時の荷重を測定し、この測定した最大荷重を抜き出し力とした。図12に潤滑剤の添加量と抜き出し力との関係を示す。図12に示すように、実施例2〜4では比較例2〜4と比べて抜き出し力が低くなった。これは、実施例では、磁性金属粉末の表面に潤滑剤が均一に被覆されているため、加圧成形時に潤滑剤が溶融した際に、金型と成形体との間に潤滑剤が均一に分散したためであると考えられる。
(Drawing power)
Further, after the mixture formed in the mixture forming step (step S11) is pressure-molded (warm forming) using a 500 kN Amsler tester, the load when the molded body is extracted from the mold is measured. The maximum load measured was taken as the extraction force. FIG. 12 shows the relationship between the amount of lubricant added and the extraction force. As shown in FIG. 12, in Examples 2-4, extraction force became low compared with Comparative Examples 2-4. In this embodiment, since the lubricant is uniformly coated on the surface of the magnetic metal powder, the lubricant is uniformly distributed between the mold and the molded body when the lubricant is melted during pressure molding. This is thought to be due to dispersion.
(磁気測定)
また、作製した圧粉磁心に対して磁気測定を行った。磁気測定は、リング形状の圧粉磁心に励磁用、検出用の巻線(90×90ターン)をそれぞれ設けて行った。巻線にはφ0.5mmの銅線を用いた。磁気測定には、BHアナライザ(岩通計測、型番SY−8232)を用いた。測定条件は、0.1T、20kHzとした。図3の表に示すように、比較例1〜4では鉄損が313〜336(kW/m3)となり、潤滑剤の添加量が増加するにしたがって鉄損の値が上昇した。これに対して、実施例1〜4では鉄損が311〜314(kW/m3)となり、比較例と比べて鉄損の値が低くなった。
(Magnetic measurement)
Magnetic measurements were performed on the produced dust core. Magnetic measurement was performed by providing excitation and detection windings (90 × 90 turns) on a ring-shaped dust core. A copper wire having a diameter of 0.5 mm was used for the winding. A BH analyzer (Iwadori Measurement, model number SY-8232) was used for the magnetic measurement. The measurement conditions were 0.1T and 20 kHz. As shown in the table of FIG. 3, in Comparative Examples 1 to 4, the iron loss was 313 to 336 (kW / m 3 ), and the value of the iron loss increased as the amount of lubricant added increased. On the other hand, in Examples 1-4, the iron loss became 311 to 314 (kW / m < 3 >), and the value of the iron loss became low compared with the comparative example.
以上で説明した実施例1〜4では、潤滑剤として3種の材料を用いた場合を示したが、本発明では、1種の材料を用いた潤滑剤を溶融した場合でも同様の効果が得られる。つまり、添加する潤滑剤の種類が1種の場合であっても、本発明の効果が奏される基本的なメカニズム(潤滑剤が溶融することによる効果)は、潤滑剤の種類が3種の場合と同様である。 In Examples 1 to 4 described above, the case where three kinds of materials are used as the lubricant is shown, but in the present invention, the same effect can be obtained even when the lubricant using one kind of material is melted. It is done. That is, even if the type of lubricant to be added is one, the basic mechanism (effect by melting the lubricant) that exhibits the effect of the present invention is that there are three types of lubricant. Same as the case.
以上、本発明を上記実施の形態および実施例に即して説明したが、本発明は上記実施の形態および実施例の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。 The present invention has been described with reference to the above-described embodiment and examples. However, the present invention is not limited only to the configurations of the above-described embodiment and examples. It goes without saying that various modifications, corrections, and combinations that can be made by those skilled in the art within the scope of the invention are included.
Claims (2)
前記混合体を加圧成形して焼きなましする成形工程と、を備え、
互いに溶融している状態で前記第1の潤滑剤は前記第2の潤滑剤よりも分散性が高く、前記第2の潤滑剤は前記第1の潤滑剤よりも潤滑性が高く、
前記混合体形成工程において、前記第1の潤滑剤の融点以上かつ前記第2の潤滑剤の融点以上で加熱しながら前記磁性金属粉末と前記ガラス粉末と前記第1の潤滑剤と前記第2の潤滑剤とを混合し、前記磁性金属粉末に前記ガラス粉末、前記第1の潤滑剤、及び前記第2の潤滑剤を均一に付着させる、
圧粉磁心の製造方法。 A mixture forming step of mixing a magnetic metal powder, a glass powder, a first lubricant, and a second lubricant to form a mixture;
A molding step of pressure-molding and annealing the mixture,
In a melted state, the first lubricant is more dispersible than the second lubricant, the second lubricant is more lubricious than the first lubricant,
In the mixture forming step, the magnetic metal powder, the glass powder, the first lubricant, and the second lubricant are heated while being heated above the melting point of the first lubricant and above the melting point of the second lubricant . A lubricant is mixed, and the glass powder, the first lubricant, and the second lubricant are uniformly adhered to the magnetic metal powder ;
Manufacturing method of a dust core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015168819A JP6437900B2 (en) | 2015-08-28 | 2015-08-28 | Manufacturing method of dust core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015168819A JP6437900B2 (en) | 2015-08-28 | 2015-08-28 | Manufacturing method of dust core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017045926A JP2017045926A (en) | 2017-03-02 |
JP6437900B2 true JP6437900B2 (en) | 2018-12-12 |
Family
ID=58212255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015168819A Active JP6437900B2 (en) | 2015-08-28 | 2015-08-28 | Manufacturing method of dust core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6437900B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019125622A (en) * | 2018-01-12 | 2019-07-25 | トヨタ自動車株式会社 | Method for manufacturing powder-compact magnetic core |
JP2020092224A (en) * | 2018-12-07 | 2020-06-11 | トヨタ自動車株式会社 | Manufacturing method of powder magnetic core |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01219101A (en) * | 1988-02-25 | 1989-09-01 | Kobe Steel Ltd | Iron powder for powder metallurgy and production thereof |
JPH0433301A (en) * | 1990-05-29 | 1992-02-04 | Matsushita Electric Ind Co Ltd | Formation of ferrite magnetic substance |
JPH08143901A (en) * | 1994-11-28 | 1996-06-04 | Daido Steel Co Ltd | Alloy powder for powder metallurgy having high flowability and its production |
JP2010251696A (en) * | 2009-03-25 | 2010-11-04 | Tdk Corp | Soft magnetic powder core and method of manufacturing the same |
JP5107993B2 (en) * | 2009-08-07 | 2012-12-26 | 株式会社タムラ製作所 | Powder magnetic core and manufacturing method thereof |
JP5841089B2 (en) * | 2013-03-13 | 2016-01-13 | 株式会社豊田中央研究所 | Molding powder, lubricant concentrated powder, and method for producing metal member |
-
2015
- 2015-08-28 JP JP2015168819A patent/JP6437900B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017045926A (en) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6232359B2 (en) | Powder magnetic core, powder for magnetic core, and production method thereof | |
JP5368686B2 (en) | Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core | |
JP2014216495A (en) | Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact | |
US10497500B2 (en) | Powder magnetic core, powder for magnetic cores, and methods of manufacturing them | |
JP5067544B2 (en) | Reactor core, manufacturing method thereof, and reactor | |
JP5050745B2 (en) | Reactor core, manufacturing method thereof, and reactor | |
JP2014143286A (en) | Soft magnetic material composition, method for producing the same, magnetic core, and coil type electronic component | |
WO2011001958A1 (en) | Soft magnetic material, shaped body, compressed powder magnetic core, electromagnetic component, process for production of soft magnetic material, and process for production of compressed powder magnetic core | |
JPWO2011077601A1 (en) | Powder magnetic core and manufacturing method thereof | |
JP5976284B2 (en) | Method for producing dust core and method for producing powder for magnetic core | |
JP2010251696A (en) | Soft magnetic powder core and method of manufacturing the same | |
WO2013175929A1 (en) | Powder core, powder core manufacturing method, and method for estimating eddy current loss in powder core | |
JP6437900B2 (en) | Manufacturing method of dust core | |
JP6052419B2 (en) | Method for selecting iron powder for dust core and iron powder for dust core | |
KR102040207B1 (en) | Powder pressed magnetic body, magnetic core, and coil-type electronic component | |
JP6056862B2 (en) | Iron powder for dust core and insulation coated iron powder for dust core | |
JP5565453B2 (en) | Iron powder for dust core | |
JP2012238866A (en) | Core for reactor, method of manufacturing the same, and reactor | |
KR100964731B1 (en) | Low magnetostriction body, dust core using the same and manufacturing method the same | |
TWI578339B (en) | Soft magnetic composition, method of manufacturing the same, magnetic core, and coil type electronic component | |
JP4618557B2 (en) | Soft magnetic alloy compact and manufacturing method thereof | |
JP6179245B2 (en) | SOFT MAGNETIC COMPOSITION AND METHOD FOR PRODUCING THE SAME, MAGNETIC CORE, AND COIL TYPE ELECTRONIC COMPONENT | |
JP2009228108A (en) | Powder for metallurgy, and method for manufacturing powder for metallurgy | |
JP5929819B2 (en) | Iron powder for dust core | |
WO2022196315A1 (en) | Powder for magnetic core, method for manufacturing same, and dust core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181115 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6437900 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |