JP2012238866A - Core for reactor, method of manufacturing the same, and reactor - Google Patents

Core for reactor, method of manufacturing the same, and reactor Download PDF

Info

Publication number
JP2012238866A
JP2012238866A JP2012156426A JP2012156426A JP2012238866A JP 2012238866 A JP2012238866 A JP 2012238866A JP 2012156426 A JP2012156426 A JP 2012156426A JP 2012156426 A JP2012156426 A JP 2012156426A JP 2012238866 A JP2012238866 A JP 2012238866A
Authority
JP
Japan
Prior art keywords
magnetic particles
metal magnetic
reactor
circularity
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012156426A
Other languages
Japanese (ja)
Other versions
JP5445801B2 (en
JP2012238866A5 (en
Inventor
Kazutsugu Kusabetsu
和嗣 草別
Toru Maeda
前田  徹
Asayuki Ishimine
朝之 伊志嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012156426A priority Critical patent/JP5445801B2/en
Publication of JP2012238866A publication Critical patent/JP2012238866A/en
Publication of JP2012238866A5 publication Critical patent/JP2012238866A5/en
Application granted granted Critical
Publication of JP5445801B2 publication Critical patent/JP5445801B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a core for a reactor, capable of improving DC superposition characteristics, a method of manufacturing the same, and the reactor.SOLUTION: A core M for a reactor is made by pressure-molding metal magnetic particles each covered with an insulating coating, and the metal magnetic particle includes the following configuration. (1) An average particle diameter is 1 μm or more and 70 μm or less. (2) A variation coefficient Cv(σ/μ) representing the ratio of the standard deviation of the particle diameters (σ) to the average particle diameter (μ) is 0.40 or less. (3) Circularity is 0.8 or more and 1.0 or less. The circularity is the average value of values found by the following formula after observing cross sections of 1,000 or more randomly sampled metal magnetic particles under a microscope, and calculating the area and the circumference length of each metal magnetic particle. Circularity=4π×(the area of the metal magnetic particle)/(the square of the circumference length of the metal magnetic particle).

Description

本発明はリアクトル用コアとその製造方法およびリアクトルに関するものである。特に、直流重畳特性に優れたリアクトルに関するものである。   The present invention relates to a reactor core, a manufacturing method thereof, and a reactor. In particular, the present invention relates to a reactor excellent in direct current superposition characteristics.

近年、地球環境保護の観点からハイブリッド自動車や電気自動車が実用化されている。ハイブリッド自動車は、エンジン及びモータを駆動源として備え、その一方又は双方を用いて走行する自動車である。このようなハイブリッド自動車等は、モータへの電力供給系統に昇圧回路を備えている。そして、昇圧回路の部品の一つとして、電気エネルギーを磁気エネルギーとして蓄えることができるリアクトルが利用される。   In recent years, hybrid vehicles and electric vehicles have been put into practical use from the viewpoint of protecting the global environment. A hybrid vehicle is a vehicle that includes an engine and a motor as drive sources and travels using one or both of them. Such a hybrid vehicle or the like includes a booster circuit in a power supply system to a motor. A reactor that can store electric energy as magnetic energy is used as one of the components of the booster circuit.

リアクトルは、コイルとコアを有し、コイルの励磁により閉磁路をコアに形成する。このコアとして、圧粉成形体で構成されたものがある。圧粉成形体は、金属磁性粒子を絶縁被膜で覆った複合磁性粒子を加圧成形して構成される。このようなコアを交流(AC)磁場で使用した場合、鉄損と呼ばれるエネルギー損が生じる。この鉄損は、概ね、ヒステリシス損と渦電流損との和で表わされる。このうち、渦電流損を低減する技術として、特許文献1に記載の技術がある。特許文献1は、複合磁性粉末の円相当径に対する最大径の比を特定することを開示している。   The reactor has a coil and a core, and forms a closed magnetic circuit in the core by exciting the coil. As this core, there exists what was comprised with the compacting body. The green compact is formed by pressure-molding composite magnetic particles in which metal magnetic particles are covered with an insulating coating. When such a core is used in an alternating current (AC) magnetic field, an energy loss called iron loss occurs. This iron loss is generally expressed as the sum of hysteresis loss and eddy current loss. Among these, there is a technique described in Patent Document 1 as a technique for reducing eddy current loss. Patent Document 1 discloses specifying the ratio of the maximum diameter to the equivalent-circle diameter of the composite magnetic powder.

一方、コイルに印加される電流波形は、直流成分に交流成分が加わった波形となっている。そのうち直流成分が増加すると、コイルのインダクタンスは低下し、その結果、インピーダンスが低下して、出力が低下したり電力変換効率が低下してしまう等の問題が発生する。そのため、リアクトルでは、直流成分の増加に伴うインダクタンスの低下量が少ないこと、すなわち直流重畳特性が良いことも求められる。この直流重畳特性を改善する技術として、特許文献2に記載の技術が知られている。特許文献2は、粒径が5〜70μmの異形状の軟質磁性粉末を用いることを開示している。   On the other hand, the current waveform applied to the coil is a waveform in which an AC component is added to a DC component. When the direct current component increases, the inductance of the coil decreases. As a result, the impedance decreases, causing problems such as a decrease in output and a decrease in power conversion efficiency. Therefore, the reactor is also required to have a small amount of decrease in inductance accompanying an increase in DC component, that is, to have good DC superposition characteristics. As a technique for improving the direct current superimposition characteristic, a technique described in Patent Document 2 is known. Patent Document 2 discloses the use of an irregularly shaped soft magnetic powder having a particle size of 5 to 70 μm.

特開2007-129045号公報JP 2007-129045 特開2004-319652号公報Japanese Patent Laid-Open No. 2004-319652

しかし、従来のリアクトル用コアでは、渦電流損の低減や直流重畳特性のさらなる改善が求められていた。   However, conventional reactor cores have been required to reduce eddy current loss and further improve DC superposition characteristics.

通常、圧粉成形体は、数百MPaという高圧で成形されている。そのため、複合磁性粒子同士が圧接されて絶縁被膜が損傷されることがある。絶縁被膜が損傷すれば、金属磁性粒子同士の電気的接続により、成形体の渦電流損が増大することになる。特許文献1の技術では、軟磁性粉末の円相当径に対する最大径の比を特定することで、上記絶縁被膜の損傷を抑制しているが、この比率限定だけでは、なお十分とはいえない。   Usually, the green compact is molded at a high pressure of several hundred MPa. Therefore, the composite magnetic particles may be pressed against each other and the insulating coating may be damaged. If the insulating coating is damaged, eddy current loss of the molded body increases due to electrical connection between the metal magnetic particles. In the technique of Patent Document 1, damage to the insulating coating is suppressed by specifying the ratio of the maximum diameter to the equivalent circle diameter of the soft magnetic powder. However, this ratio limitation alone is still not sufficient.

また、特許文献2では、軟質磁性粉末の粒径を限定しているのみなので、この限定範囲内で粉末の粒径にばらつきが生じる。そのため、このような粉末を成形すると、成形体の内部の均一性が低下するため、直流重畳特性に改善の余地が残る。   Further, in Patent Document 2, since only the particle size of the soft magnetic powder is limited, the particle size of the powder varies within this limited range. For this reason, when such a powder is molded, the uniformity inside the molded body is lowered, so there is room for improvement in the DC superposition characteristics.

本発明は上記の事情に鑑みてなされたもので、その目的の一つは、直流重畳特性の改善を実現できるリアクトル用コアとその製造方法およびリアクトルを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a reactor core, a manufacturing method thereof, and a reactor capable of realizing improvement in DC superposition characteristics.

本発明のリアクトル用コアは、絶縁被膜で覆った金属磁性粒子を加圧成形してなるリアクトル用コアで、前記金属磁性粒子が次の構成を備えることを特徴とする。   The reactor core of the present invention is a reactor core formed by pressure-molding metal magnetic particles covered with an insulating coating, and the metal magnetic particles have the following configuration.

(1)平均粒径が1μm以上70μm以下であること。
(2)粒径の標準偏差(σ)と平均粒径(μ)との比である変動係数Cv(σ/μ)が0.40以下であること。
(3)円形度が0.8以上1.0以下であること。
(1) The average particle size is 1 μm or more and 70 μm or less.
(2) The coefficient of variation Cv (σ / μ), which is the ratio between the standard deviation (σ) of the particle size and the average particle size (μ), is 0.40 or less.
(3) The circularity is 0.8 or more and 1.0 or less.

また、本発明のリアクトル用コアの製造方法は、次の工程を備えることを特徴とする。   Moreover, the manufacturing method of the core for reactors of this invention is equipped with the following process, It is characterized by the above-mentioned.

(1)平均粒径が1μm以上70μm以下で、粒径の標準偏差(σ)と平均粒径(μ)との比である変動係数Cv(σ/μ)が0.40以下で、円形度が0.8以上1.0以下の金属磁性粒子に絶縁被膜を形成した複合磁性粒子を準備する工程。
(2)この複合磁性粒子を加圧成形してリアクトル用コアの所定形状に成形する工程。
(3)得られた成形体に熱処理を施して、前記加圧成形時に複合磁性粒子に導入された欠陥を軽減する工程。
(1) The average particle size is 1 μm or more and 70 μm or less, the coefficient of variation Cv (σ / μ), which is the ratio between the standard deviation (σ) of the particle size and the average particle size (μ), is 0.40 or less, and the circularity is 0.8 A step of preparing composite magnetic particles in which an insulating film is formed on metal magnetic particles of 1.0 or less.
(2) A step of pressure-molding the composite magnetic particles into a predetermined shape of the reactor core.
(3) The process which heat-processes to the obtained molded object and reduces the defect introduced into the composite magnetic particle at the time of the said pressure forming.

上記の本発明のリアクトル用コアおよびその製造方法において、円形度は、無作為に抽出した1000個以上の金属磁性粒子について断面を顕微鏡で観察し、各金属磁性粒子の面積および外周長さを算出し、以下の式により求めた値の平均値である。
円形度=4π×金属磁性粒子の面積/金属磁性粒子の外周長さの2乗
In the reactor core of the present invention and the manufacturing method thereof, the circularity is calculated by observing a cross section of a randomly extracted 1000 or more metal magnetic particles with a microscope and calculating the area and outer circumference length of each metal magnetic particle. The average value of the values obtained by the following formula.
Circularity = 4π × area of metallic magnetic particle / square of outer circumferential length of metallic magnetic particle

これらの構成によれば、圧粉体を構成する複合磁性粒子として、平均粒径が微細な金属粒子を用いることで、絶縁被膜で絶縁される金属磁性粒子の厚みを細分化して、渦電流損を低減することができる。また、変動係数を上記のように限定することで、金属磁性粒子の粒径の分布を均一にできる。そのため、複合磁性粒子を加圧成形した成形体内部の均一性を向上でき、磁化過程において磁壁の移動を容易にすることができる。その結果として、直流重畳特性を向上できる。さらに、金属磁性粒子の円形度を0.80以上とすることによって、複合磁性粒子を加圧成形する時に金属磁性粒子の表面に生じる歪みを低減できるので、直流重畳特性を向上できる。そして、円形度を0.80以上とすれば、より真球に近い形状の金属磁性粒子で成形体が構成されるため、複合磁性粒子の加圧成形時に、これら粉末同士が圧接されて絶縁被膜が損傷することを抑制でき、その結果、渦電流損の低減を実現することができる。なお、円形度1.0とは真球のことである。   According to these configurations, by using metal particles having a fine average particle diameter as the composite magnetic particles constituting the green compact, the thickness of the metal magnetic particles insulated by the insulating coating is subdivided, and eddy current loss is achieved. Can be reduced. Moreover, by limiting the coefficient of variation as described above, the particle size distribution of the metal magnetic particles can be made uniform. Therefore, it is possible to improve the uniformity inside the compact formed by press-molding the composite magnetic particles, and to facilitate the movement of the domain wall in the magnetization process. As a result, the direct current superposition characteristics can be improved. Furthermore, by setting the circularity of the metal magnetic particles to 0.80 or more, distortion generated on the surface of the metal magnetic particles when the composite magnetic particles are pressure-molded can be reduced, so that the DC superposition characteristics can be improved. If the circularity is 0.80 or more, the compact is composed of metal magnetic particles having a shape closer to a true sphere. Therefore, when the composite magnetic particles are pressed, these powders are pressed together to damage the insulating coating. As a result, reduction of eddy current loss can be realized. The circularity of 1.0 is a true sphere.

本発明のリアクトル用コアにおいて、前記金属磁性粒子の平均粒径は50μm以上70μm以下とすることが好ましい。   In the reactor core of the present invention, the metal magnetic particles preferably have an average particle size of 50 μm or more and 70 μm or less.

このような平均粒径の金属磁性粒子であれば、渦電流損の低減効果が得られると共に、複合磁性粒子の取り扱いが容易になり、より高い密度の成形体とすることができる。   With such metal magnetic particles having an average particle diameter, an effect of reducing eddy current loss can be obtained, and handling of the composite magnetic particles can be facilitated, and a molded body having a higher density can be obtained.

本発明のリアクトル用コアにおいて、前記金属磁性粒子が実質的に鉄からなることが好ましい。   In the reactor core of the present invention, it is preferable that the metal magnetic particles are substantially made of iron.

鉄は、透磁率及び磁束密度の点から好ましい材料であり、また鉄合金と比較して安価であり、経済性にも優れる。特に99質量%以上がFeである純鉄が好ましい。   Iron is a preferred material in terms of magnetic permeability and magnetic flux density, and is cheaper and more economical than iron alloys. In particular, pure iron in which 99% by mass or more is Fe is preferable.

本発明のリアクトル用コアにおいて、前記絶縁被膜は、リン化合物、ケイ素化合物、ジルコニウム化合物およびアルミニウム化合物からなる群より選択された少なくとも一種を含むことが挙げられる。   In the reactor core of the present invention, the insulating coating includes at least one selected from the group consisting of a phosphorus compound, a silicon compound, a zirconium compound, and an aluminum compound.

これらの物質は絶縁性に優れているため、コアに生じる渦電流をより効果的に抑制することができる。   Since these materials are excellent in insulation, eddy currents generated in the core can be more effectively suppressed.

本発明のリアクトル用コアにおいて、前記絶縁被膜の平均厚みを10nm以上1μm以下とすることが挙げられる。   In the reactor core of the present invention, the average thickness of the insulating coating may be 10 nm or more and 1 μm or less.

このような絶縁被膜の膜厚限定により、加圧成形時に絶縁被膜がせん断破壊することを防止して、渦電流損を効果的に抑制できる。   By limiting the film thickness of such an insulating film, the insulating film can be prevented from being sheared and destroyed during pressure molding, and eddy current loss can be effectively suppressed.

一方、本発明のリアクトルは、上記のリアクトル用コアと、このコアに巻線を巻回して形成したコイルとを備えることを特徴とする。   On the other hand, a reactor according to the present invention includes the reactor core described above and a coil formed by winding a winding around the core.

この構成のリアクトルにより、上記リアクトル用コアと同様に、渦電流損の低減と直流重畳特性の改善を図ることができる。   With the reactor having this configuration, it is possible to reduce the eddy current loss and improve the direct current superposition characteristics as in the case of the reactor core.

本発明のリアクトル用コアおよびその製造方法によれば、直流重畳特性を改善することができる。   According to the reactor core and the manufacturing method thereof of the present invention, the DC superimposition characteristics can be improved.

本発明リアクトルの一例を示す部分切欠斜視図である。It is a partial notch perspective view which shows an example of this invention reactor. 直流重畳特性の試験方法の説明図である。It is explanatory drawing of the test method of a DC superimposition characteristic.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

<リアクトル>
ハイブリッド自動車等の昇圧回路に用いられる代表的なリアクトルRのコアは、図1に示すようなリング状のコアMである。このコアMは、以下のような複数のコア片を組み合わせて構成されている。コアMは、矩形状の端面を有するU字状コア片m一対と、I字状コア片m4つとから成り、各U字状コア片mを互いの端面同士が対向するように配し、各端面間にI字状コア片mを2つずつ並べて、それぞれを接合して構成している。上記コアMは、絶縁被膜を有する金属磁性粒子、つまり複合磁性粒子を加圧成形して得ることができる。
<Reactor>
A core of a typical reactor R used in a booster circuit of a hybrid vehicle or the like is a ring-shaped core M as shown in FIG. The core M is configured by combining a plurality of core pieces as described below. The core M has a U-shaped core pieces m u pair having a rectangular end face, made I-shaped core piece m i 4 bracts, so that the U-shaped core pieces m u is between the end face of each other facing arranged, side by side one by 2 I-shaped core piece m i between the end faces, are formed by joining respectively. The core M can be obtained by press-molding metal magnetic particles having an insulating coating, that is, composite magnetic particles.

また、上記コアMは、通常、磁気飽和を回避するため、コア片の各接合部にスペーサsを配することにより、閉磁路中にギャップが設けられている。リアクトルのインダクタンスは、主として閉磁路に形成するギャップの合計長(ここではスペーサsの合計厚み)により規定される。各スペーサsにはアルミナといった非磁性材料の板材を高精度に加工して利用している。   The core M is usually provided with a gap in the closed magnetic path by arranging a spacer s at each joint portion of the core piece in order to avoid magnetic saturation. The inductance of the reactor is mainly defined by the total length of the gaps formed in the closed magnetic circuit (here, the total thickness of the spacers s). For each spacer s, a non-magnetic plate material such as alumina is processed and used with high accuracy.

そして、このようなコアMの一部に巻線を巻回してコイルCを形成し、このコイルCに電流を流すことでコアMに閉磁路を形成する。巻線は、銅線などにエナメルなどの絶縁被膜を施したものが利用できる。巻線の断面形状には、丸や多角形が挙げられる。   Then, a coil C is formed by winding a winding around a part of the core M, and a closed magnetic circuit is formed in the core M by passing a current through the coil C. As the winding, a copper wire or the like coated with an insulating film such as enamel can be used. Examples of the cross-sectional shape of the winding include a circle and a polygon.

その他、図示しないが、コアの形態をいわゆるポットコアとしてもよい。ポットコアは、例えば、コイルの内側に配される柱状の内側コアと、コイルの外側に配される円筒状の外側コアと、コイルの両端側の各々に配される円盤状の端部コアとを有する。ポットコアとすれば、コイルがコア内に収納された状態のリアクトルとなるため、コイルの励磁に伴なう振動による騒音を効果的に抑制したり、コイルを機械的に保護したりすることができる。さらに、コアを介してのコイルの放熱も効果的に行うことができる。   In addition, although not shown, the core may be a so-called pot core. The pot core includes, for example, a columnar inner core disposed inside the coil, a cylindrical outer core disposed outside the coil, and a disk-shaped end core disposed on each of both end sides of the coil. Have. If it is a pot core, it becomes a reactor in a state where the coil is housed in the core, so that it is possible to effectively suppress noise due to vibration accompanying the excitation of the coil and to mechanically protect the coil. . Further, the heat radiation of the coil through the core can be effectively performed.

<コア>
上述したようなコアを構成する複合磁性粒子は、金属磁性粒子の表面に絶縁被膜が形成された粉末である。
<Core>
The composite magnetic particle constituting the core as described above is a powder in which an insulating coating is formed on the surface of the metal magnetic particle.

(金属磁性粒子)
金属磁性粒子としては、鉄を50質量%以上含有するものが好ましく、例えば、純鉄(Fe)が挙げられる。その他、鉄合金、例えば、鉄(Fe)-シリコン(Si)系合金、鉄(Fe)-アルミニウム(Al)系合金、鉄(Fe)-窒素(N)系合金、鉄(Fe)-ニッケル(Ni)系合金、鉄(Fe)-炭素(C)系合金、鉄(Fe)-ホウ素(B)系合金、鉄(Fe)-コバルト(Co)系合金、鉄(Fe)-リン(P)系合金、鉄(Fe)-ニッケル(Ni)−コバルト(Co)系合金、及び鉄(Fe)-アルミニウム(Al)-シリコン(Si)から選択される1種からなるものが利用できる。特に、透磁率及び磁束密度の点から、99質量%以上がFeである純鉄が好ましい。また、純鉄は、鉄合金と比較して安価であり、経済性にも優れる。
(Metal magnetic particles)
As a metal magnetic particle, what contains 50 mass% or more of iron is preferable, for example, pure iron (Fe) is mentioned. In addition, iron alloys such as iron (Fe) -silicon (Si) alloys, iron (Fe) -aluminum (Al) alloys, iron (Fe) -nitrogen (N) alloys, iron (Fe) -nickel ( Ni) alloy, iron (Fe) -carbon (C) alloy, iron (Fe) -boron (B) alloy, iron (Fe) -cobalt (Co) alloy, iron (Fe) -phosphorus (P) A material selected from the group consisting of iron alloys, iron (Fe) -nickel (Ni) -cobalt (Co) alloys, and iron (Fe) -aluminum (Al) -silicon (Si) can be used. In particular, from the viewpoint of magnetic permeability and magnetic flux density, pure iron in which 99% by mass or more is Fe is preferable. Moreover, pure iron is cheaper and more economical than iron alloys.

金属磁性粒子の平均粒径は、1μm以上70μm以下とする。金属磁性粒子の平均粒径を1μm以上とすることによって、複合磁性粒子の流動性を落とすことがなく、複合磁性粒子を用いて製作された圧粉磁心の保磁力およびヒステリシス損の増加を抑制できる。逆に、金属磁性粒子の平均粒径を70μm以下とすることによって、1kHz以上の高周波域において発生する渦電流損を効果的に低減できる。より好ましい金属磁性粒子の平均粒径は、50μm以上70μm以下である。この平均粒径の下限が50μm以上であれば、渦電流損の低減効果が得られると共に、複合磁性粒子の取り扱いが容易になり、より高い密度の成形体とすることができる。なお、この平均粒径とは、粒径のヒストグラム中、粒径の小さい粒子からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径をいう。   The average particle size of the metal magnetic particles is 1 μm or more and 70 μm or less. By setting the average particle size of the metal magnetic particles to 1 μm or more, it is possible to suppress an increase in coercive force and hysteresis loss of a dust core produced using the composite magnetic particles without reducing the fluidity of the composite magnetic particles. . Conversely, by setting the average particle size of the metal magnetic particles to 70 μm or less, eddy current loss that occurs in a high-frequency region of 1 kHz or more can be effectively reduced. The average particle size of the metal magnetic particles is more preferably 50 μm or more and 70 μm or less. When the lower limit of the average particle diameter is 50 μm or more, an effect of reducing eddy current loss can be obtained, and handling of the composite magnetic particles becomes easy, and a molded body with a higher density can be obtained. The average particle diameter means a particle diameter of particles in which the sum of masses from particles having a small particle diameter reaches 50% of the total mass, that is, 50% particle diameter in the particle diameter histogram.

また、金属磁性粒子は、その粒径の標準偏差(σ)と平均粒径(μ)との比である変動係数Cv(σ/μ)が0.40以下であることとする。変動係数Cvを0.40以下とすることによって、金属磁性粒子の粒径の分布を均一にできるので、複合磁性粒子を用いて作製された成形体内部の均一性を向上できる。その結果、コアの磁化過程において磁壁の移動を容易にできるので、直流重畳特性を向上できる。より好ましい変動係数Cvは、0.38以下であり、さらに好ましくは0.36以下である。この変動係数Cvは小さいほど好ましいが、製造の容易性の観点から、下限は0.001以上程度である。   The metal magnetic particles have a coefficient of variation Cv (σ / μ), which is a ratio of the standard deviation (σ) and the average particle diameter (μ), of 0.40 or less. By setting the coefficient of variation Cv to 0.40 or less, the particle size distribution of the metal magnetic particles can be made uniform, so that the uniformity inside the molded body produced using the composite magnetic particles can be improved. As a result, the domain wall can be easily moved in the magnetization process of the core, so that the DC superposition characteristics can be improved. The variation coefficient Cv is more preferably 0.38 or less, and still more preferably 0.36 or less. The variation coefficient Cv is preferably as small as possible, but the lower limit is about 0.001 or more from the viewpoint of ease of manufacture.

金属磁性粒子の形状は、円形度が0.80以上1以下となるような形状とする。円形度を0.80以上とすることで、複合磁性粒子の加圧成形時に金属磁性粒子の表面に生じる歪みを低減できるので、直流重畳特性を向上できる。また、円形度が0.80以上であれば、先鋭な突起が少なく球形に近い形状であるため、複合磁性粒子の加圧成形時に、この粉末同士が圧接されて絶縁被膜が損傷することを抑制できる。特に、円形度は0.91以上が好ましい。なお、金属磁性粒子の外形が真球状である場合には、金属磁性粒子の円形度は1.0となる。   The shape of the metal magnetic particles is such that the circularity is 0.80 or more and 1 or less. By setting the circularity to 0.80 or more, it is possible to reduce distortion generated on the surface of the metal magnetic particles during compression molding of the composite magnetic particles, so that the direct current superposition characteristics can be improved. Further, when the circularity is 0.80 or more, since it has a shape close to a sphere with few sharp protrusions, it can be suppressed that the powder is pressed against each other and the insulating coating is damaged when the composite magnetic particles are pressed. In particular, the circularity is preferably 0.91 or more. In addition, when the outer shape of the metal magnetic particles is a true sphere, the circularity of the metal magnetic particles is 1.0.

(絶縁被膜)
絶縁被膜は、金属磁性粒子間の絶縁層として機能する。この金属磁性粒子を絶縁被膜で覆うことによって、金属磁性粒子同士の接触を抑制し、成形体の比透磁率を抑えることができる。また、絶縁被膜の存在により、金属磁性粒子間に渦電流が流れるのを抑制して、成形体の渦電流損を低減させることができる。絶縁被膜は、リン化合物、ケイ素化合物、ジルコニウム化合物およびアルミニウム化合物からなる群より選択された少なくとも一種を含む材質が好適に利用できる。これらの物質は絶縁性に優れているため、金属磁性粒子を流れる渦電流を効果的に抑制できる。具体例としては、リン酸鉄、リン酸マンガン、リン酸亜鉛、リン酸カルシウム、酸化シリコンや酸化ジルコニウムなどが挙げられる。また、絶縁被膜には、金属酸化物、金属窒化物、または金属炭化物や、リン酸金属塩化合物、ホウ酸金属塩化合物、または珪酸金属塩化合物などの絶縁性物質が利用できる。ここでの金属には、Fe、Al、Ca、Mn、Zn、Mg、V、Cr、Y、Ba、Sr、希土類元素などから選択された少なくとも一種が利用できる。このような材質からなる絶縁被膜は、単層でもよいし複数層でもよい。
(Insulation coating)
The insulating coating functions as an insulating layer between the metal magnetic particles. By covering the metal magnetic particles with an insulating coating, the contact between the metal magnetic particles can be suppressed, and the relative magnetic permeability of the molded body can be suppressed. Further, the presence of the insulating coating can suppress the eddy current from flowing between the metal magnetic particles, thereby reducing the eddy current loss of the compact. For the insulating coating, a material containing at least one selected from the group consisting of a phosphorus compound, a silicon compound, a zirconium compound and an aluminum compound can be suitably used. Since these materials are excellent in insulation, eddy currents flowing through the metal magnetic particles can be effectively suppressed. Specific examples include iron phosphate, manganese phosphate, zinc phosphate, calcium phosphate, silicon oxide and zirconium oxide. Insulating materials such as metal oxides, metal nitrides, or metal carbides, metal phosphate compounds, metal borate compounds, or metal silicate compounds can be used for the insulating coating. As the metal here, at least one selected from Fe, Al, Ca, Mn, Zn, Mg, V, Cr, Y, Ba, Sr, rare earth elements and the like can be used. The insulating film made of such a material may be a single layer or a plurality of layers.

絶縁被膜の厚みは、10nm以上1μm以下であることが好ましい。絶縁被膜の厚みを10nm以上とすることによって、金属磁性粒子同士の接触の抑制や渦電流によるエネルギー損失を効果的に抑制することができる。また、絶縁被膜の厚みを1μm以下とすることによって、複合磁性粒子に占める絶縁被膜の割合が大きくなりすぎない。このため、この複合磁性粒子の磁束密度が著しく低下することを防止できる。   The thickness of the insulating coating is preferably 10 nm or more and 1 μm or less. By setting the thickness of the insulating coating to 10 nm or more, it is possible to effectively suppress contact between metal magnetic particles and energy loss due to eddy current. Further, by setting the thickness of the insulating coating to 1 μm or less, the ratio of the insulating coating to the composite magnetic particles does not become too large. For this reason, it can prevent that the magnetic flux density of this composite magnetic particle falls remarkably.

上記絶縁被膜の厚さは、組成分析(TEM-EDX:transmission electron microscope energy dispersive X-ray spectroscopy)によって得られる膜組成と、誘導結合プラズマ質量分析(ICP-MS:inductively coupled plasma-mass spectrometry)によって得られる元素量とを鑑みて相当厚さを導出し、更に、TEM写真により直接、被膜を観察し、先に導出された相当厚さのオーダーが適正な値であることを確認して決定される平均的な厚さとする。   The thickness of the insulating film is determined by composition analysis (TEM-EDX: transmission electron microscope energy dispersive X-ray spectroscopy) and inductively coupled plasma-mass spectrometry (ICP-MS). Considering the amount of element obtained, the equivalent thickness is derived, and further, the film is directly observed with a TEM photograph, and it is determined by confirming that the order of the equivalent thickness derived earlier is an appropriate value. Average thickness.

<コアの製造方法>
(準備工程)
まず、準備工程では、上述した平均粒径、変動係数、円形度の金属磁性粒子を用意する。金属磁性粒子の変動係数を変えるには、金属磁性粒子をふるいにかけて分級するなどして、その粒径のばらつきを小さくする。また、円形度が0.8以上の金属磁性粒子を得るには、アトマイズ法にて金属磁性粒子を作製する場合、噴霧した金属が凝固する際の冷却速度を遅くしたりすることが挙げられる。アトマイズ法には、ガスアトマイズ法で生成された粉末や、水アトマイズ法で生成された粉末がある。このうち、前者がほぼ球状の粒子であり、後者は表面に凹凸が形成された非球状の粒子である。ただし、この水アトマイズ法で生成された金属磁性粒子であっても、ボールミルなどで粉砕して球状に形成することで0.8以上の円形度を得ることができる。
<Core manufacturing method>
(Preparation process)
First, in the preparation step, the above-described metal magnetic particles having an average particle diameter, a variation coefficient, and a circularity are prepared. In order to change the coefficient of variation of the metal magnetic particles, the particle size variation is reduced by, for example, sieving and classifying the metal magnetic particles. Further, in order to obtain metal magnetic particles having a circularity of 0.8 or more, when producing metal magnetic particles by the atomizing method, the cooling rate when the sprayed metal solidifies may be slowed. The atomization method includes a powder generated by the gas atomization method and a powder generated by the water atomization method. Among these, the former is a substantially spherical particle, and the latter is a non-spherical particle having irregularities formed on the surface. However, even the metal magnetic particles produced by this water atomization method can be obtained by pulverizing with a ball mill or the like to form a spherical shape with a circularity of 0.8 or more.

上述した所定の金属磁性粒子には、絶縁被膜の形成前に、700℃以上1400℃未満の温度で予備熱処理することが好ましい。金属磁性粒子には、アトマイズ処理時の熱応力などに起因する歪みや結晶粒界などの多数の欠陥が存在している。そのため、上記の予備熱処理を実施することによって、これらの欠陥を低減させることができる。この予備熱処理は省略されてもよい。   The predetermined metal magnetic particles described above are preferably pre-heated at a temperature of 700 ° C. or higher and lower than 1400 ° C. before forming the insulating coating. The metal magnetic particles have many defects such as strains and crystal grain boundaries caused by thermal stress during atomization. Therefore, these defects can be reduced by performing the preliminary heat treatment. This preliminary heat treatment may be omitted.

得られた金属磁性粒子には、絶縁被膜を施す。絶縁被膜の形成手法の代表例としては、リン酸塩化成処理が挙げられる。その他に溶剤吹きつけや前駆体を用いたゾルゲル処理を利用することもできる。また、有機溶剤を用いた湿式被覆処理や、ミキサーによる直接被覆処理などを利用して、シリコン系有機化合物の絶縁被膜を形成してもよい。その他、熱可塑性樹脂、非熱可塑性樹脂、または高級脂肪酸塩なども絶縁被膜として利用できる。   An insulating coating is applied to the obtained metal magnetic particles. A typical example of the method for forming the insulating coating is a phosphate chemical conversion treatment. In addition, sol-gel treatment using a solvent spray or a precursor can also be used. Moreover, you may form the insulating film of a silicon type organic compound using the wet coating process using an organic solvent, the direct coating process with a mixer, etc. In addition, thermoplastic resins, non-thermoplastic resins, higher fatty acid salts, and the like can also be used as the insulating coating.

市販の複合磁性粒子で金属磁性粒子が上記の平均粒径、変動係数、円形度を満たすものがあれば、その市販品が利用できることはいうまでもない。   Needless to say, commercially available composite magnetic particles can be used as long as the metal magnetic particles satisfy the above average particle diameter, coefficient of variation, and circularity.

(成形工程)
コアを製造するには、上記複合磁性粒子を所望の形状に成形する。成形は、所望の金型に複合磁性粒子を充填し、パンチで押圧することで行う。押圧時の圧力は、390MPa以上1500MPa以下が好ましい。390MPa未満では、圧縮度合いが少ないため、コアの密度が小さくなり易く、1500MPa超では、粉末同士の接触により、絶縁被膜が損傷することがある。より好ましくは、700MPa以上1300MPa以下である。成形時の雰囲気は、複合磁性粒子が大気中の酸素により酸化されることを防止するために、Arなどの不活性ガス雰囲気や減圧雰囲気が好ましい。
(Molding process)
In order to manufacture the core, the composite magnetic particles are formed into a desired shape. Molding is performed by filling composite magnetic particles in a desired mold and pressing with a punch. The pressure during pressing is preferably 390 MPa to 1500 MPa. If it is less than 390 MPa, the degree of compression is small, so the density of the core tends to be small, and if it exceeds 1500 MPa, the insulating coating may be damaged by the contact between the powders. More preferably, it is 700 MPa or more and 1300 MPa or less. The atmosphere during molding is preferably an inert gas atmosphere such as Ar or a reduced-pressure atmosphere in order to prevent the composite magnetic particles from being oxidized by oxygen in the atmosphere.

この成形時、適宜潤滑剤を適用することが好ましい。潤滑剤は、複合磁性粒子の流動性をよくして高密度の成形体を得ることや、複合磁性粒子同士の強い擦れ合いを回避して、絶縁被膜の損傷を抑制すること、ひいては渦電流損を抑制することに寄与する。潤滑剤の具体例としては、金属石鹸および六方晶系の結晶構造を有する無機潤滑剤の少なくとも一方が挙げられる。   It is preferable to apply a lubricant as appropriate during this molding. The lubricant improves the fluidity of the composite magnetic particles to obtain a high-density molded body, avoids strong rubbing between the composite magnetic particles, suppresses damage to the insulating coating, and consequently eddy current loss. It contributes to restraining. Specific examples of the lubricant include at least one of a metal soap and an inorganic lubricant having a hexagonal crystal structure.

潤滑剤の添加量は、複合磁性粒子に対して、0.001質量%以上0.2質量%以下が好適である。この添加量を0.001質量%以上とすることによって、金属石鹸および六方晶系の結晶構造を有する無機潤滑剤の高い潤滑性から、複合磁性粒子の流動性を向上できるので、金型に充填したときの複合磁性粒子の充填性を向上できる。その結果、得られる成形体の密度を向上できるので、直流重畳特性を向上できる。また、上記添加量を0.2質量%以下とすることによって、成形体の密度の低下を抑制できるので、直流重畳特性の劣化を防止できる。   The addition amount of the lubricant is preferably 0.001% by mass to 0.2% by mass with respect to the composite magnetic particles. When the amount added is 0.001% by mass or more, the fluidity of the composite magnetic particles can be improved due to the high lubricity of the metal soap and the inorganic lubricant having a hexagonal crystal structure. The filling property of the composite magnetic particles can be improved. As a result, since the density of the obtained molded body can be improved, the direct current superposition characteristics can be improved. Moreover, since the fall of the density of a molded object can be suppressed by making the said addition amount 0.2 mass% or less, degradation of a direct current | flow superimposition characteristic can be prevented.

潤滑剤の平均粒径は2.0μm以下であることが好ましい。2.0μm以下とすることによって、複合磁性粒子を加圧成形する時の絶縁被膜の損傷をより低減できるので、鉄損をより低減することができる。この平均粒径は、粒径のヒストグラム中、粒径の小さい方からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径をいう。   The average particle size of the lubricant is preferably 2.0 μm or less. By setting the thickness to 2.0 μm or less, it is possible to further reduce the damage to the insulating coating when the composite magnetic particles are pressure-molded, so that the iron loss can be further reduced. This average particle diameter refers to the particle diameter of particles in which the sum of the masses from the smaller particle diameter reaches 50% of the total mass in the histogram of particle diameters, that is, 50% particle diameter.

そして、上記の潤滑剤と共に、複合磁性粒子を混合して混合材料とする。この混合法には特に制限がなく、振動ボールミル、遊星ボールミルなどが好適に利用できる。もちろん、必要に応じて、樹脂や他の添加剤を混合してもよい。   Then, the composite magnetic particles are mixed with the above lubricant to obtain a mixed material. This mixing method is not particularly limited, and a vibration ball mill, a planetary ball mill, or the like can be suitably used. Of course, you may mix resin and another additive as needed.

(熱処理工程)
得られた成形体に熱処理を施し、成形により複合磁性粒子に導入された歪みなどの欠陥を除去して、ヒステリシス損の向上を図る。熱処理の温度は、高いほどヒステリシス損の低減が行えるため好ましいが、絶縁被膜材料の熱分解温度に応じて、その熱分解温度未満の適切な値を選択する。通常、絶縁被膜がリン酸鉄やリン酸亜鉛などの非晶質リン酸塩被膜の場合、熱処理温度はせいぜい500℃程度までである。一方、金属酸化物などからなる耐熱性の高い絶縁被膜の場合、熱処理温度は550℃以上、特に600℃以上、更に650℃以上が好ましい。保持時間は、30分以上60分以下が挙げられる。加熱温度や保持時間は、絶縁被膜の種類によって変更してもよい。
(Heat treatment process)
The obtained molded body is subjected to heat treatment to remove defects such as distortion introduced into the composite magnetic particles by molding, thereby improving the hysteresis loss. A higher heat treatment temperature is preferable because hysteresis loss can be reduced, but an appropriate value lower than the thermal decomposition temperature is selected according to the thermal decomposition temperature of the insulating coating material. Usually, when the insulating coating is an amorphous phosphate coating such as iron phosphate or zinc phosphate, the heat treatment temperature is at most about 500 ° C. On the other hand, in the case of a highly heat-resistant insulating film made of a metal oxide or the like, the heat treatment temperature is preferably 550 ° C. or higher, particularly 600 ° C. or higher, and more preferably 650 ° C. or higher. The holding time is 30 minutes or more and 60 minutes or less. The heating temperature and holding time may be changed depending on the type of insulating coating.

<インシュレータ>
その他、本発明リアクトル用コアとコイルとの間には、インシュレータを介在させてもよい。このインシュレータを用いることで、仮にコイルを形成する巻線の絶縁被膜が損傷しても、コイルとコアとの絶縁を確保することができる。このインシュレータは、予め樹脂を射出成形するなどして構成することができる。
<Insulator>
In addition, an insulator may be interposed between the core for reactor of the present invention and the coil. By using this insulator, it is possible to ensure insulation between the coil and the core even if the insulating coating of the winding forming the coil is damaged. This insulator can be configured by, for example, injection molding a resin in advance.

(コアの作製)
金属磁性粒子の準備→絶縁被膜の形成→複合磁性粒子と添加剤の混合→混合材料の成形→成形品の熱処理からなる工程によりリアクトル用コアの試料を作製した。
(Production of core)
A reactor core sample was prepared by a process consisting of preparation of metal magnetic particles → formation of insulating coating → mixing of composite magnetic particles and additives → molding of mixed material → heat treatment of the molded product.

まず、各試料における金属磁性粒子として、鉄粉を水アトマイズ法により鉄が99.6質量%以上含有され、残部が0.3質量%以下のOおよび0.1重量%以下のC、N、P、またはMnなどの不可避的不純物からなる金属磁性粒子を準備した。この金属磁性粒子は、ふるいによる分級により、粒径のばらつきが異なる複数種を用意した。各試料の金属磁性粒子の平均粒径、変動係数Cvおよび円形度Sfは、それぞれ表1に記載の通りであった。   First, as metal magnetic particles in each sample, iron powder contains 99.6% by mass or more of iron by the water atomization method, and the balance is 0.3% by mass or less of O and 0.1% by weight or less of C, N, P, or Mn. Metal magnetic particles made of inevitable impurities were prepared. As the metal magnetic particles, a plurality of types having different particle size variations were prepared by classification using a sieve. The average particle diameter, coefficient of variation Cv, and circularity Sf of the metal magnetic particles of each sample are as shown in Table 1, respectively.

金属磁性粒子の平均粒径および変動係数Cvは、レーザ散乱回折粒度分布測定法を用いて対象粉末の粒度分布を測定することにより算出した。円形度Sfは、次のようにして求めた。まず、多数の金属磁性粒子を樹脂で固め、その固化物を研磨して断面を形成する。次に、この断面を光学顕微鏡で観察して、無作為に抽出した1000個以上の金属磁性粒子を含む観察画像を取得する。そして、この観察画像を画像処理して金属磁性粒子の断面形状を特定し、各金属磁性粒子の面積および外周長さを算出して、以下の式により求めた値の平均値とした。
円形度=4π×金属磁性粒子の面積/金属磁性粒子の外周長さの2乗
The average particle size and variation coefficient Cv of the metal magnetic particles were calculated by measuring the particle size distribution of the target powder using a laser scattering diffraction particle size distribution measurement method. The circularity Sf was obtained as follows. First, a large number of metal magnetic particles are hardened with a resin, and the solidified product is polished to form a cross section. Next, this cross section is observed with an optical microscope, and an observation image including 1000 or more randomly extracted metal magnetic particles is acquired. And this observation image was image-processed, the cross-sectional shape of the metal magnetic particle was specified, the area and outer periphery length of each metal magnetic particle were calculated, and it was set as the average value of the value calculated | required by the following formula | equation.
Circularity = 4π × area of metallic magnetic particle / square of outer circumferential length of metallic magnetic particle

次に、各金属磁性粒子にリン酸塩化成処理を実施して、リン酸鉄からなる絶縁被膜を形成して複合磁性粒子とした。この絶縁被膜の平均厚みは、50nmであった。   Next, a phosphate chemical conversion treatment was performed on each metal magnetic particle to form an insulating coating made of iron phosphate to obtain composite magnetic particles. The average thickness of this insulating coating was 50 nm.

次に、試料No.1〜3では複合磁性粒子に金属石鹸として、平均粒径が1μmのステアリン酸亜鉛をそれぞれ0.1質量%添加した。また、試料No.4は潤滑剤を用いずに成形した。さらに、各試料No.1〜4には、0.3質量%のメチル系シリコーン樹脂も添加した。そして、これら複合磁性粒子と添加剤を混合し、実施例となる試料No.1〜4の混合材料を得た。   Next, in Sample Nos. 1 to 3, 0.1% by mass of zinc stearate having an average particle diameter of 1 μm was added to the composite magnetic particles as a metal soap. Sample No. 4 was molded without using a lubricant. Furthermore, 0.3 mass% methyl-type silicone resin was also added to each sample No. 1-4. And these composite magnetic particles and an additive were mixed and the mixed material of sample No. 1-4 which becomes an Example was obtained.

次に、この混合材料を金型に充填し、1000MPaの圧力を印加して、成形体を作製した。続いて、得られた成形体を窒素気流雰囲気において、500℃で1時間熱処理してリアクトル用コアとした。このうち、成形前の円形度が0.92の試料No.2について、成形後の円形度も断面を顕微鏡観察して調べたところ0.85であった。   Next, this mixed material was filled in a mold, and a pressure of 1000 MPa was applied to produce a molded body. Subsequently, the obtained molded body was heat-treated at 500 ° C. for 1 hour in a nitrogen stream atmosphere to obtain a reactor core. Of these samples, Sample No. 2 having a circularity of 0.92 before molding was 0.85 when the circularity after molding was examined by microscopic observation of the cross section.

一方、比較例として、試料No.2と同様に製造したが、変動係数Cv、円形度Sf、および平均粒径(μ)を下記の表1に記載のようにそれぞれ変更した試料No.11〜14も作製した。   On the other hand, as a comparative example, it was manufactured in the same manner as Sample No. 2, but Sample No. 11 to Sample No. 11 to which the coefficient of variation Cv, the circularity Sf, and the average particle size (μ) were respectively changed as shown in Table 1 below. 14 was also made.

(評価方法)
得られた各試料のコアについて、直流重畳特性および渦電流損をそれぞれ測定した。
(Evaluation method)
With respect to the cores of the obtained samples, the DC superposition characteristics and eddy current loss were measured.

具体的には、直流重畳特性については、図2に示すように各試料からなるコアMとスペーサsを組み、コアMの周囲にコイルCを形成して、直流重畳試験機を用いて測定した。ここでは、印加電流が0Aの時のインダクタンスL0Aに対する同電流8AのインダクタンスL8Aの比(L8A/L0A)(単位:なし)により直流重畳特性を評価した。この比が大きいほどインダクタンスの低下量が少なく、直流重畳特性に優れることを示す。 Specifically, as shown in FIG. 2, the DC superposition characteristics were measured by using a DC superposition tester with a core M and a spacer s made of each sample, a coil C formed around the core M, and the like. . Here, the DC superposition characteristics were evaluated by the ratio (L 8A / L 0A ) (unit: none) of the inductance L 8A of the same current 8A to the inductance L 0A when the applied current was 0A. The larger this ratio is, the smaller the amount of decrease in inductance, and the better the DC superposition characteristics.

また、外径34mm、内径20mm、厚み5mmのリング状の各試料(熱処理済)に、一次300巻、二次20巻の巻き線を施し、磁気特性測定用試料とした。これらの試料について、AC‐BHカーブトレーサを用いて50Hz〜10000Hzの範囲で周波数を変化させて、励起磁束密度1kG(=0.1T(テスラ))における鉄損を測定した。そして、鉄損から渦電流損を算出した。その結果も表1に示す。渦電流損の算出は、鉄損の周波数曲線を次の2つの式で最小2乗法によりフィッティングすることで行なった。
(鉄損)=(ヒステリシス損係数)×(周波数)+(渦電流損係数)×(周波数)2
(渦電流損)=(渦電流損係数)×(周波数)2
その他、試料No.2とNo.4については、得られた成形体の密度と抵抗率も調べた。
In addition, each of the ring-shaped samples (heat treated) having an outer diameter of 34 mm, an inner diameter of 20 mm, and a thickness of 5 mm was subjected to winding of 300 primary windings and 20 secondary windings to obtain magnetic property measurement samples. For these samples, the iron loss at an excitation magnetic flux density of 1 kG (= 0.1 T (Tesla)) was measured by changing the frequency in the range of 50 Hz to 10000 Hz using an AC-BH curve tracer. And the eddy current loss was computed from the iron loss. The results are also shown in Table 1. The calculation of eddy current loss was performed by fitting the frequency curve of iron loss by the following method using the least square method.
(Iron loss) = (Hysteresis loss coefficient) x (Frequency) + (Eddy current loss coefficient) x (Frequency) 2
(Eddy current loss) = (Eddy current loss coefficient) x (Frequency) 2
In addition, for samples No. 2 and No. 4, the density and resistivity of the obtained molded bodies were also examined.

Figure 2012238866
Figure 2012238866

(評価結果)
表1に示すように、試料No.2、No.3、No.11の対比から、金属磁性粒子の平均粒径が50〜70μmの試料は、渦電流損が小さくなっていることがわかる。また、試料No.3とNo.13の対比から、変動係数Cvの小さい試料ではインダクタンスの低下量が小さく、直流重畳特性に優れていることが分かる。さらに、試料No.3とNo.14の対比から、円形度Sfが大きいほど直流重畳特性と渦電流損失を抑制できることがわかる。そして、試料No.2は成形体の密度と抵抗率がそれぞれ7.55g/cm3、1.6×105μΩmであったのに対し、No.4の成形体の密度と抵抗率はそれぞれ7.50g/cm3、0.8×105μΩmであり、潤滑剤を適用した方がより高密度で渦電流損の小さい成形体が得られることがわかった。
(Evaluation results)
As shown in Table 1, it can be seen from the comparison of samples No. 2, No. 3, and No. 11 that the eddy current loss is small in the sample having an average particle size of the metal magnetic particles of 50 to 70 μm. In addition, it can be seen from the comparison between samples No. 3 and No. 13 that the sample with a small coefficient of variation Cv has a small amount of decrease in inductance and is excellent in DC superposition characteristics. Furthermore, it can be seen from the comparison between samples No. 3 and No. 14 that the DC superposition characteristics and eddy current loss can be suppressed as the circularity Sf increases. In Sample No. 2, the density and resistivity of the molded body were 7.55 g / cm 3 and 1.6 × 10 5 μΩm, respectively, whereas the density and resistivity of the No. 4 molded body were 7.50 g / cm 3 respectively. It was found that a molded body having a higher density and a smaller eddy current loss can be obtained by applying a lubricant, with a cm 3 of 0.8 × 10 5 μΩm.

以上説明したように、金属磁性粒子の平均粒径が50〜70μm、変動係数Cvが0.40以下、円形度Sfが0.8以上であれば、渦電流損を低減できると共に、直流重畳特性を向上できることが確認できた。   As described above, if the average particle diameter of the metal magnetic particles is 50 to 70 μm, the coefficient of variation Cv is 0.40 or less, and the circularity Sf is 0.8 or more, the eddy current loss can be reduced and the DC superposition characteristics can be improved. It could be confirmed.

なお、本発明はその要旨を逸脱することなく適宜変更することが可能であり、上記の実施例に限定されるものではない。   The present invention can be modified as appropriate without departing from the gist thereof, and is not limited to the above-described embodiments.

本発明リアクトル用コア、リアクトルは、ハイブリッド自動車等の昇圧回路用や発電・変電設備用のリアクトルの構成材料として好適に利用することができる。   The reactor core and reactor of the present invention can be suitably used as a constituent material of a reactor for a booster circuit such as a hybrid vehicle or a power generation / transforming facility.

R リアクトル M コア C コイル
m U字状コア片 m I字状コア片 s スペーサ
R reactor M core C coil
m u U-shaped core piece m i I-shaped core piece s spacer

Claims (7)

絶縁被膜で覆った金属磁性粒子を加圧成形してなるリアクトル用コアであって、
前記金属磁性粒子は、
平均粒径が1μm以上70μm以下で、
粒径の標準偏差(σ)と平均粒径(μ)との比である変動係数Cv(σ/μ)が0.40以下で、
円形度が0.8以上1.0以下であるリアクトル用コア。
ただし、円形度は、無作為に抽出した1000個以上の金属磁性粒子について断面を顕微鏡で観察し、各金属磁性粒子の面積および外周長さを算出し、以下の式により求めた値の平均値である。
円形度=4π×金属磁性粒子の面積/金属磁性粒子の外周長さの2乗
A core for a reactor formed by press-molding metal magnetic particles covered with an insulating coating,
The metal magnetic particles are
The average particle size is 1 μm or more and 70 μm or less,
The coefficient of variation Cv (σ / μ), which is the ratio of the standard deviation of particle size (σ) to the average particle size (μ), is 0.40 or less,
A reactor core with a circularity of 0.8 to 1.0.
However, the circularity is the average value of the values obtained by the following formula by observing the cross section of 1000 or more metal magnetic particles randomly extracted with a microscope, calculating the area and outer circumference length of each metal magnetic particle It is.
Circularity = 4π × area of metallic magnetic particle / square of outer circumferential length of metallic magnetic particle
前記金属磁性粒子の平均粒径が50μm以上70μm以下である請求項1に記載のリアクトル用コア。   The reactor core according to claim 1, wherein an average particle diameter of the metal magnetic particles is 50 μm or more and 70 μm or less. 前記金属磁性粒子が実質的に鉄からなる請求項1または2に記載のリアクトル用コア。   The reactor core according to claim 1, wherein the metal magnetic particles are substantially made of iron. 前記絶縁被膜は、リン化合物、ケイ素化合物、ジルコニウム化合物およびアルミニウム化合物からなる群より選択された少なくとも一種を含む請求項1から3のいずれか1項に記載のリアクトル用コア。   4. The reactor core according to claim 1, wherein the insulating coating includes at least one selected from the group consisting of a phosphorus compound, a silicon compound, a zirconium compound, and an aluminum compound. 5. 前記絶縁被膜の平均厚みは10nm以上1μm以下である請求項1から4のいずれか1項に記載のリアクトル用コア。   5. The reactor core according to claim 1, wherein an average thickness of the insulating coating is 10 nm or more and 1 μm or less. 平均粒径が1μm以上70μm以下で、粒径の標準偏差(σ)と平均粒径(μ)との比である変動係数Cv(σ/μ)が0.40以下で、円形度が0.8以上1.0以下の金属磁性粒子に絶縁被膜を形成した複合磁性粒子を準備する工程と、
この複合磁性粒子を加圧成形してリアクトル用コアの所定形状に成形する工程と、
得られた成形体に熱処理を施して、前記加圧成形時に複合磁性粒子に導入された欠陥を軽減する工程とを備えるリアクトル用コアの製造方法。
ただし、円形度は、無作為に抽出した1000個以上の金属磁性粒子について断面を顕微鏡で観察し、各金属磁性粒子の面積および外周長さを算出し、以下の式により求めた値の平均値である。
円形度=4π×金属磁性粒子の面積/金属磁性粒子の外周長さの2乗
The average particle diameter is 1 μm or more and 70 μm or less, the coefficient of variation Cv (σ / μ), which is the ratio between the standard deviation (σ) of the particle diameter and the average particle diameter (μ), is 0.40 or less, and the circularity is 0.8 or more and 1.0 or less. Preparing a composite magnetic particle in which an insulating coating is formed on the metal magnetic particle of
A step of molding the composite magnetic particles into a predetermined shape of the reactor core; and
And a step of reducing the defects introduced into the composite magnetic particles during the pressure forming by subjecting the obtained compact to a heat treatment.
However, the circularity is the average value of the values obtained by the following formula by observing the cross section of 1000 or more metal magnetic particles randomly extracted with a microscope, calculating the area and outer circumference length of each metal magnetic particle It is.
Circularity = 4π × area of metallic magnetic particle / square of outer circumferential length of metallic magnetic particle
請求項1から5のいずれか1項に記載のリアクトル用コアと、このコアに巻線を巻回して形成したコイルとを備えるリアクトル。   A reactor comprising the reactor core according to any one of claims 1 to 5 and a coil formed by winding a winding around the core.
JP2012156426A 2012-07-12 2012-07-12 Reactor and booster circuit Expired - Fee Related JP5445801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156426A JP5445801B2 (en) 2012-07-12 2012-07-12 Reactor and booster circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156426A JP5445801B2 (en) 2012-07-12 2012-07-12 Reactor and booster circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007235138A Division JP5050745B2 (en) 2007-09-11 2007-09-11 Reactor core, manufacturing method thereof, and reactor

Publications (3)

Publication Number Publication Date
JP2012238866A true JP2012238866A (en) 2012-12-06
JP2012238866A5 JP2012238866A5 (en) 2013-06-20
JP5445801B2 JP5445801B2 (en) 2014-03-19

Family

ID=47461453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156426A Expired - Fee Related JP5445801B2 (en) 2012-07-12 2012-07-12 Reactor and booster circuit

Country Status (1)

Country Link
JP (1) JP5445801B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114487A (en) * 2012-12-10 2014-06-26 Sumitomo Electric Ind Ltd Powder-compressed molded body, manufacturing method of powder-compressed molded body, heat-treated body, and coil component
JP2016012671A (en) * 2014-06-30 2016-01-21 Tdk株式会社 Precursor for powder magnetic core, powder magnetic core, and electronic component
CN113518676A (en) * 2019-03-06 2021-10-19 杰富意钢铁株式会社 Iron-based powder for dust core and dust core
WO2024048499A1 (en) * 2022-08-31 2024-03-07 戸田工業株式会社 Soft-magnetic metal powder, production method for same, and resin composition
WO2024048500A1 (en) * 2022-09-01 2024-03-07 戸田工業株式会社 Soft magnetic metal powder having high spheroidization rate and method for manufacturing same
JP7456239B2 (en) 2020-03-31 2024-03-27 株式会社村田製作所 inductor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319448B2 (en) * 1982-07-26 1988-04-22 Teii Deii Kei Kk
JP2001102207A (en) * 1999-09-30 2001-04-13 Tdk Corp Method for production of dust core
JP2005019764A (en) * 2003-06-27 2005-01-20 Toyota Motor Corp Reactor device
JP2005050918A (en) * 2003-07-30 2005-02-24 Toyota Central Res & Dev Lab Inc Reactor, reactor core and its manufacturing method
JP2006024869A (en) * 2004-07-09 2006-01-26 Toyota Central Res & Dev Lab Inc Dust core and manufacturing method thereof
JP2006202956A (en) * 2005-01-20 2006-08-03 Sumitomo Electric Ind Ltd Soft magnetic material and powder magnetic core
JP2006283166A (en) * 2005-04-04 2006-10-19 Jfe Steel Kk Coated iron based powder for powder magnetic core, and powder magnetic core
JP2006302958A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2007092162A (en) * 2005-02-03 2007-04-12 Jfe Steel Kk Highly compressive iron powder, iron powder for dust core using the same and dust core
JP2007129093A (en) * 2005-11-04 2007-05-24 Sumitomo Electric Ind Ltd Soft magnetic material and dust core manufactured by using same
JP2007180225A (en) * 2005-12-27 2007-07-12 Toyota Motor Corp Fixing structure of reactor and electric apparatus unit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319448B2 (en) * 1982-07-26 1988-04-22 Teii Deii Kei Kk
JP2001102207A (en) * 1999-09-30 2001-04-13 Tdk Corp Method for production of dust core
JP2005019764A (en) * 2003-06-27 2005-01-20 Toyota Motor Corp Reactor device
JP2005050918A (en) * 2003-07-30 2005-02-24 Toyota Central Res & Dev Lab Inc Reactor, reactor core and its manufacturing method
JP2006024869A (en) * 2004-07-09 2006-01-26 Toyota Central Res & Dev Lab Inc Dust core and manufacturing method thereof
JP2006202956A (en) * 2005-01-20 2006-08-03 Sumitomo Electric Ind Ltd Soft magnetic material and powder magnetic core
JP2007092162A (en) * 2005-02-03 2007-04-12 Jfe Steel Kk Highly compressive iron powder, iron powder for dust core using the same and dust core
JP2006283166A (en) * 2005-04-04 2006-10-19 Jfe Steel Kk Coated iron based powder for powder magnetic core, and powder magnetic core
JP2006302958A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2007129093A (en) * 2005-11-04 2007-05-24 Sumitomo Electric Ind Ltd Soft magnetic material and dust core manufactured by using same
JP2007180225A (en) * 2005-12-27 2007-07-12 Toyota Motor Corp Fixing structure of reactor and electric apparatus unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114487A (en) * 2012-12-10 2014-06-26 Sumitomo Electric Ind Ltd Powder-compressed molded body, manufacturing method of powder-compressed molded body, heat-treated body, and coil component
JP2016012671A (en) * 2014-06-30 2016-01-21 Tdk株式会社 Precursor for powder magnetic core, powder magnetic core, and electronic component
CN113518676A (en) * 2019-03-06 2021-10-19 杰富意钢铁株式会社 Iron-based powder for dust core and dust core
JP7456239B2 (en) 2020-03-31 2024-03-27 株式会社村田製作所 inductor
WO2024048499A1 (en) * 2022-08-31 2024-03-07 戸田工業株式会社 Soft-magnetic metal powder, production method for same, and resin composition
WO2024048500A1 (en) * 2022-09-01 2024-03-07 戸田工業株式会社 Soft magnetic metal powder having high spheroidization rate and method for manufacturing same

Also Published As

Publication number Publication date
JP5445801B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5050745B2 (en) Reactor core, manufacturing method thereof, and reactor
JP5067544B2 (en) Reactor core, manufacturing method thereof, and reactor
JP5368686B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
US7682695B2 (en) Dust core with specific relationship between particle diameter and coating thickness, and method for producing same
JP4325950B2 (en) Soft magnetic material and dust core
JP5650928B2 (en) SOFT MAGNETIC MATERIAL, MOLDED BODY, DUST CORE, ELECTRONIC COMPONENT, SOFT MAGNETIC MATERIAL MANUFACTURING METHOD, AND DUST CORE MANUFACTURING METHOD
JP6088284B2 (en) Soft magnetic mixed powder
JP5445801B2 (en) Reactor and booster circuit
US20150050178A1 (en) Soft Magnetic Composite Materials
JP2014505165A (en) Soft magnetic powder
WO2013175929A1 (en) Powder core, powder core manufacturing method, and method for estimating eddy current loss in powder core
WO2008149825A1 (en) Metallic powder for powder magnetic core and process for producing powder magnetic core
JP5919144B2 (en) Iron powder for dust core and method for producing dust core
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP2005281805A (en) Method for producing soft magnetic material, soft magnetic powder and dust core
JP2021093405A (en) Method of manufacturing dust core
WO2019044467A1 (en) Method for manufacturing dust core and raw material powder for dust core
JP2012243912A (en) Production method of green compact, and green compact
JP6073066B2 (en) Method for producing soft magnetic iron-based powder for dust core
JP2021036577A (en) Dust core
JP2008041685A (en) Powder magnetic core
JP2013016656A (en) Production method of green compact, and green compact

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees