JP2012243912A - Production method of green compact, and green compact - Google Patents

Production method of green compact, and green compact Download PDF

Info

Publication number
JP2012243912A
JP2012243912A JP2011111731A JP2011111731A JP2012243912A JP 2012243912 A JP2012243912 A JP 2012243912A JP 2011111731 A JP2011111731 A JP 2011111731A JP 2011111731 A JP2011111731 A JP 2011111731A JP 2012243912 A JP2012243912 A JP 2012243912A
Authority
JP
Japan
Prior art keywords
soft magnetic
surface treatment
raw material
green compact
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011111731A
Other languages
Japanese (ja)
Inventor
Kazutsugu Kusabetsu
和嗣 草別
Atsushi Sato
佐藤  淳
Masato Uozumi
真人 魚住
Koji Yamaguchi
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2011111731A priority Critical patent/JP2012243912A/en
Publication of JP2012243912A publication Critical patent/JP2012243912A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of green compact capable of producing a green compact at low loss.SOLUTION: The method of producing a green compact by using coated soft magnetic powder, where a plurality of soft magnetic particles coated with an insulation coating are provided on the outer periphery of a soft magnetic particle, comprises: a raw material preparation step; a heat treatment step; and a surface treatment step. In the raw material preparation step, a raw material compact is prepared by pressure molding the coated soft magnetic powder. In the heat treatment step, the raw material compact is heat treated. In the surface treatment step, the surface of the raw material compact is partially subjected to acid treatment. Since the surface of the raw material compact is partially subjected to acid treatment, the conductive part where the constituent materials of multiple soft magnetic particles are conducting on the surface of the raw material compact can be removed, and thereby the loss of green compact can be reduced.

Description

本発明は、被覆軟磁性粉末を加圧成形してなる圧粉成形体の製造方法、およびその製造方法により製造される圧粉成形体に関するものである。特に、低損失な圧粉成形体を製造する方法に関するものである。   The present invention relates to a method for producing a green compact formed by pressure-molding a coated soft magnetic powder, and a green compact produced by the production method. In particular, the present invention relates to a method for producing a low-loss compact.

ハイブリッド自動車などは、モータへの電力供給系統に昇圧回路を備えている。この昇圧回路の一部品として、リアクトルが利用されている。リアクトルは、コアにコイルを巻回した構成である。コアを交流磁場で使用した場合、コアに鉄損と呼ばれるエネルギー損失が生じる。鉄損は、概ね、ヒステリシス損と渦電流損との和で表され、特に、高周波での使用において顕著に増加する。   A hybrid vehicle or the like includes a booster circuit in a power supply system to a motor. A reactor is used as one component of this booster circuit. The reactor has a configuration in which a coil is wound around a core. When the core is used in an alternating magnetic field, an energy loss called iron loss occurs in the core. The iron loss is generally represented by the sum of hysteresis loss and eddy current loss, and particularly increases significantly when used at high frequencies.

リアクトルのコアにおける鉄損を低減するために、圧粉成形体でできたコアを用いることがある。圧粉成形体は、軟磁性粒子の表面に絶縁被膜を形成した被覆軟磁性粒子からなる被覆軟磁性粉末を加圧して形成され、磁性粒子同士が絶縁被膜により絶縁されているので、特に、渦電流損を低減する効果が高い。   In order to reduce iron loss in the core of the reactor, a core made of a green compact may be used. The compacted body is formed by pressurizing coated soft magnetic powder composed of coated soft magnetic particles in which an insulating film is formed on the surface of soft magnetic particles, and the magnetic particles are insulated from each other by the insulating film. The effect of reducing current loss is high.

しかし、圧粉成形体は、相対的に移動可能な柱状の第一パンチと筒状のダイとでつくられるキャビティに被覆軟磁性粉末を充填し、第一パンチと柱状の第二パンチとによりキャビティ内の被覆軟磁性粉末を加圧成形して作製されるため、この加圧成形時の圧力や、成形体の脱型時における金型との摺接により被覆軟磁性粒子の絶縁被膜が損傷する虞がある。絶縁被膜が損傷すると、軟磁性粒子が露出し展延することがあり、その結果、圧粉成形体における軟磁性粒子同士が電気的に導通して、略膜状の導通部を形成してしまい、渦電流損が増大する虞がある。   However, the green compact has a cavity formed by a relatively movable columnar first punch and a cylindrical die filled with coated soft magnetic powder, and the cavity is formed by the first punch and the columnar second punch. Since the coated soft magnetic powder is pressure molded, the insulating coating of the coated soft magnetic particles is damaged by the pressure during the pressure molding and the sliding contact with the mold when the molded product is removed. There is a fear. When the insulating coating is damaged, the soft magnetic particles may be exposed and spread, and as a result, the soft magnetic particles in the green compact are electrically connected to each other to form a substantially film-like conductive portion. The eddy current loss may increase.

そこで、上記渦電流損を低減するために、例えば、特許文献1には、被覆軟磁性粉末(軟磁性粉末)を加圧成形して形成した素材成形体の表面を、濃塩酸で表面処理することが記載されている。具体的には、素材成形体を濃塩酸に浸漬して、素材成形体の表面全面における上記導通部を除去して圧粉成形体としている。   Therefore, in order to reduce the eddy current loss, for example, in Patent Document 1, the surface of a material molded body formed by press-molding a coated soft magnetic powder (soft magnetic powder) is surface-treated with concentrated hydrochloric acid. It is described. Specifically, the material molded body is immersed in concentrated hydrochloric acid, and the conductive portion on the entire surface of the material molded body is removed to form a powder molded body.

特開2006−229203号公報JP 2006-229203 A

上述のように素材成形体の表面全体を表面処理することで、一定の低損失化を図ることができる。しかし、素材成形体の表面全体を表面処理してしまうと、上記導通部を除去することができるが、一方で、絶縁被膜が損傷していない被覆軟磁性粒子の絶縁被膜をも損傷させる可能性もある。その結果、損失低減効果が小さくなる虞がある。   By subjecting the entire surface of the material molded body to surface treatment as described above, a certain reduction in loss can be achieved. However, if the entire surface of the molded body of the material is surface treated, the conductive portion can be removed, but on the other hand, the insulating coating of the coated soft magnetic particles that do not damage the insulating coating may also be damaged. There is also. As a result, the loss reduction effect may be reduced.

本発明は、上記の事情に鑑みてなされたものであり、その目的の一つは、低損失な圧粉成形体を効率的に製造することができる圧粉成形体の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a method for producing a green compact that can efficiently produce a low-loss green compact. It is in.

本発明の他の目的は、上記本発明の製造方法により製造された圧粉成形体を提供することにある。   Another object of the present invention is to provide a green compact produced by the production method of the present invention.

本発明者らは、上記目的を達成するために、圧粉成形体の製造方法について鋭意検討した。具体的には、表面処理を施す領域を種々選択した圧粉成形体を製造して損失低減効果が小さくなる原因を調べた。その結果、次の知見を得た。   In order to achieve the above-mentioned object, the present inventors diligently studied about a method for producing a green compact. Specifically, the cause of the reduced loss reduction effect was investigated by manufacturing a compacted body with various surface treatment areas selected. As a result, the following knowledge was obtained.

素材成形体の表面全面に表面処理すると、上記ダイと摺接する箇所(摺接面)に生じた上記導通部は除去される。一方で、素材成形体の上記各パンチと接触する箇所(圧接面)にはそもそも上記導通部が形成され難く、そこに表面処理を行うと、絶縁被膜が破壊されることがある。そのため、圧接面では軟磁性粒子が露出した状態になり、その結果、鉄損の低減効果が小さくなることがある。したがって、表面処理は、素材成形体の一部、さらには上記摺接面の一部、特に摺接面において磁束方向全長に亘る領域に施すとよい結果となる。   When the surface treatment is performed on the entire surface of the material molded body, the conductive portion generated at the portion (sliding contact surface) that is in sliding contact with the die is removed. On the other hand, in the first place, the conductive portion is unlikely to be formed at a position (pressure contact surface) in contact with the punches of the material molded body, and when the surface treatment is performed there, the insulating coating may be destroyed. Therefore, the soft magnetic particles are exposed at the pressure contact surface, and as a result, the effect of reducing iron loss may be reduced. Accordingly, the surface treatment is preferably performed on a part of the material molded body, and further on a part of the sliding contact surface, particularly on a region extending over the entire length in the magnetic flux direction on the sliding contact surface.

上記結果から、低損失な圧粉成形体を効率的に製造するには、素材成形体の特定の領域に表面処理を施す以下の方法が挙げられる。   From the above results, in order to efficiently produce a low-loss compacted body, the following method of applying a surface treatment to a specific region of the material compact can be mentioned.

その圧粉成形体の製造方法とは、軟磁性粒子に絶縁被膜が被覆された被覆軟磁性粒子を複数具えてなる被覆軟磁性粉末を用いて圧粉成形体を製造する方法で、素材準備工程と、表面処理工程とを具える。素材準備工程では、被覆軟磁性粉末を加圧成形した素材成形体を用意する。表面処理工程では、素材成形体の表面で複数の軟磁性粒子の構成材料同士が導通した導通部を除去する。上記表面処理工程は、上記素材成形体の表面の一部に施される。ここでの表面処理工程には、化学的、機械的、電気的、光学的、熱的、あるいは、これらの複合的な処理により上記導通部の除去が可能なあらゆる表面処理が含まれる。具体的には、化学的な処理方法として酸処理が、電気化学的な処理方法として電解処理が、機械的な処理方法として切削、研削、或いはウォータージェットがそれぞれ挙げられる。いずれの処理方法も導通部の除去が可能と考えられる。   The method for producing a green compact is a method for producing a green compact using a coated soft magnetic powder comprising a plurality of coated soft magnetic particles in which a soft magnetic particle is coated with an insulating coating. And a surface treatment process. In the material preparation step, a material molded body obtained by pressure-molding the coated soft magnetic powder is prepared. In the surface treatment step, the conduction portion where the constituent materials of the plurality of soft magnetic particles are conducted on the surface of the material molded body is removed. The said surface treatment process is given to a part of surface of the said raw material molded object. The surface treatment step here includes any surface treatment that can remove the conductive portion by chemical, mechanical, electrical, optical, thermal, or a combination of these treatments. Specifically, acid treatment is used as the chemical treatment method, electrolytic treatment is used as the electrochemical treatment method, and cutting, grinding, or water jet is used as the mechanical treatment method. Any of the processing methods is considered to be able to remove the conductive portion.

より具体的な方法として、以下の本発明が挙げられる。   The following present invention is mentioned as a more concrete method.

本発明の圧粉成形体の製造方法は、軟磁性粒子の外周に絶縁被膜が被覆された被覆軟磁性粒子を複数具えてなる被覆軟磁性粉末を用いて圧粉成形体を製造する方法で、素材準備工程と、熱処理工程と、表面処理工程とを具える。素材準備工程では、被覆軟磁性粉末を加圧成形して素材成形体を用意する。熱処理工程では、上記素材成形体を加熱して熱処理する。表面処理工程では、上記素材成形体の表面の一部を酸処理する。   The method for producing a powder compact according to the present invention is a method for producing a powder compact using a coated soft magnetic powder comprising a plurality of coated soft magnetic particles having an insulating coating coated on the outer periphery of the soft magnetic particles. It includes a material preparation process, a heat treatment process, and a surface treatment process. In the material preparation step, the coated soft magnetic powder is pressure-molded to prepare a material molded body. In the heat treatment step, the material molded body is heated and heat treated. In the surface treatment step, a part of the surface of the material molded body is acid-treated.

本発明の製造方法によれば、素材成形体の表面の一部を酸処理することで、導通部を部分的に除去できる。その結果、酸処理した箇所で渦電流の導通を遮断できるため、圧粉成形体の損失を低減できる。その上、絶縁被膜が損傷していない被覆軟磁性粒子の絶縁被膜を損傷させる可能性が低くなり、損失低減効果が小さくなることがない。その結果、素材成形体の表面全面を表面処理した場合と同程度の低損失な圧粉成形体を製造することができる。加えて、損失低減効果が小さくなった場合の圧粉成形体よりも、低損失な圧粉成形体とすることができ、効率的に低損失な圧粉成形体を製造することができる。   According to the production method of the present invention, the conductive portion can be partially removed by acid-treating a part of the surface of the material molded body. As a result, since eddy current conduction can be cut off at the acid-treated portion, loss of the green compact can be reduced. In addition, the possibility of damaging the insulating coating of the coated soft magnetic particles whose insulating coating is not damaged is reduced, and the loss reduction effect is not reduced. As a result, it is possible to produce a compacted product having a low loss comparable to that obtained when the entire surface of the material molded product is surface-treated. In addition, it is possible to obtain a powder compact having a lower loss than the powder compact when the loss reduction effect is reduced, and it is possible to efficiently produce a powder compact having a low loss.

本発明の製造方法の一形態として、上記表面処理工程は、上記圧粉成形体を磁心として励磁した際、磁束方向との平行面の少なくとも一部となる素材成形体の表面に施されることが挙げられる。   As one form of the manufacturing method of this invention, the said surface treatment process is given to the surface of the raw material molded object used as at least one part of a parallel surface with a magnetic flux direction, when exciting the said compacting body as a magnetic core. Is mentioned.

上記の構成によれば、表面処理を施す箇所が、磁束方向との平行面のうち少なくとも一部となる素材成形体の表面であることで、磁束方向を軸とする円周方向に流れる渦電流を、上記表面処理が施された箇所で遮断することができると考えられる。そのため、渦電流損を低減することができ、低損失な圧粉成形体を製造することができる。   According to said structure, the part which surface-treats is the surface of the raw material molded object used as at least one part among the parallel surfaces with a magnetic flux direction, Therefore The eddy current which flows into the circumferential direction centering on a magnetic flux direction is used. Can be blocked at the location where the surface treatment is applied. Therefore, eddy current loss can be reduced, and a low-loss compacting body can be manufactured.

本発明の製造方法の一形態として、上記表面処理工程は、上記圧粉成形体を磁心として励磁した際、磁束方向との平行面の少なくとも一部で、上記平行面において、上記圧粉成形体の磁束方向全長に亘る領域となる素材成形体の表面に施されることが挙げられる。   As one form of the manufacturing method of this invention, the said surface treatment process is at least one part of a parallel surface with the magnetic flux direction, when the said powder compact body is excited as a magnetic core, and the said powder compact body in the said parallel surface. It is mentioned that it is given to the surface of the material molding which becomes the field over the whole magnetic flux direction.

上記の構成によれば、表面処理を施す領域が、素材成形体の表面のうち、上記平行面の少なくとも一部で、その平行面において、圧粉成形体の磁束方向全長に亘る領域になる面とすることで、磁束方向を軸とする円周方向に流れる渦電流を上記全長に亘って分断することができると考えられる。従って、渦電流損をより低減することができ、より低損失な圧粉成形体を製造することができる。   According to said structure, the area | region which surface-treats is a surface which becomes an area | region covering the magnetic flux direction full length of a compacting body in the parallel surface in the surface of a raw material molded body at least one part of the said parallel surface. By doing so, it is considered that the eddy current flowing in the circumferential direction around the magnetic flux direction can be divided over the entire length. Therefore, the eddy current loss can be further reduced, and a green compact with lower loss can be manufactured.

本発明の製造方法の一形態として、上記表面処理工程は、上記素材成形体にpH1〜4の表面処理液を、1min〜40min接触させることが挙げられる。   As one form of the manufacturing method of this invention, the said surface treatment process includes making the surface treatment liquid of pH 1-4 contact the said raw material molded object for 1 minute-40 minutes.

上記の構成によれば、上記範囲の表面処理液を使用して、上記範囲の時間接触させることで、上記導通部を除去し易くなるとともに、上記導通部以外の素材成形体の表面を除去しすぎることがない。   According to said structure, it is easy to remove the said conduction | electrical_connection part by using the surface treatment liquid of the said range, and making it contact for the said range, and removes the surface of raw material molded objects other than the said conduction | electrical_connection part. Never too much.

本発明の圧粉成形体は、上記本発明の製造方法により製造された圧粉成形体である。   The green compact of the present invention is a green compact manufactured by the manufacturing method of the present invention.

本発明の圧粉成形体によれば、渦電流損の少ない低損失な圧粉成形体とすることができる。そのため、例えば、リアクトル用コアに好適に利用でき、その場合、コイルが高周波の交流で励磁される場合でも鉄損特性を改善できる。   According to the green compact of the present invention, a low-loss compact with low eddy current loss can be obtained. Therefore, for example, it can be suitably used for a reactor core, and in that case, even when the coil is excited by high-frequency alternating current, the iron loss characteristic can be improved.

本発明の圧粉成形体の製造方法は、渦電流損を低減でき、効率的に低損失な圧粉成形体を製造することができる。   The manufacturing method of the compacting body of this invention can reduce an eddy current loss, and can manufacture a compacting body with a low loss efficiently.

本発明の圧粉成形体は、渦電流損の少ない低損失な圧粉成形体とすることができる。   The green compact of the present invention can be a low-loss compact with low eddy current loss.

試験例における各試料の損失を示すグラフである。It is a graph which shows the loss of each sample in a test example. 本発明の製造過程における成形体の表面状態を示す顕微鏡写真であって、(A)は、表面処理前の熱処理成形体の表面状態を示し、(B)は、表面処理工程後の圧粉成形体の表面状態を示す。It is a microscope picture which shows the surface state of the molded object in the manufacture process of this invention, Comprising: (A) shows the surface state of the heat processing molded object before surface treatment, (B) is compacting after a surface treatment process. Indicates the surface condition of the body.

以下、本発明の実施形態に係る圧粉成形体の製造方法を説明する。   Hereinafter, the manufacturing method of the compacting body which concerns on embodiment of this invention is demonstrated.

《圧粉成形体の製造方法》
本発明の圧粉成形体の製造方法は、被覆軟磁性粉末を用いて圧粉成形体を製造する方法で、素材準備工程と、熱処理工程と、表面処理工程とを具える。上記各工程について順に説明する。
<< Method for Producing Green Compact >>
The manufacturing method of the compacting body of this invention is a method of manufacturing a compacting body using a covering soft magnetic powder, and comprises a raw material preparation process, a heat treatment process, and a surface treatment process. Each of the above steps will be described in order.

〔素材準備工程〕
素材準備工程では、圧粉成形体を構成する被覆軟磁性粉末を用意して、その粉末を加圧成形して素材成形体を作製するか、予め同様に成形された素材成形体を購入するなどして用意する。前者の場合、原料準備工程と、その原料から素材成形体を成形する素材成形工程とを具える。原料準備工程として、圧粉成形体を構成する被覆軟磁性粉末を用意する。被覆軟磁性粉末は、軟磁性粒子の外周に絶縁被膜が被覆された被覆軟磁性粒子を複数具える。
[Material preparation process]
In the raw material preparation process, a coated soft magnetic powder constituting the green compact is prepared, and the powder is pressure-molded to produce a raw material compact, or a previously molded material compact is purchased in advance. Prepare. In the former case, a raw material preparation step and a raw material forming step of forming a raw material molded body from the raw material are provided. As the raw material preparation step, a coated soft magnetic powder constituting the green compact is prepared. The coated soft magnetic powder includes a plurality of coated soft magnetic particles in which an insulating coating is coated on the outer periphery of the soft magnetic particles.

[被覆軟磁性粉末]
(軟磁性粒子)
〈組成〉
軟磁性粒子は、鉄を50質量%以上含有するものが好ましく、例えば、純鉄(Fe)が挙げられる。その他、鉄合金、例えば、Fe−Si系合金、Fe−Al系合金、Fe−N系合金、Fe−Ni系合金、Fe−C系合金、Fe−B系合金、Fe−Co系合金、Fe−P系合金、Fe−Ni−Co系合金、及びFe−Al−Si系合金から選択される少なくとも1種からなるものが利用できる。特に、透磁率及び磁束密度の点から、99質量%以上がFeである純鉄が好ましい。
[Coated soft magnetic powder]
(Soft magnetic particles)
<composition>
The soft magnetic particles preferably contain 50% by mass or more of iron, and examples thereof include pure iron (Fe). In addition, iron alloys such as Fe-Si alloys, Fe-Al alloys, Fe-N alloys, Fe-Ni alloys, Fe-C alloys, Fe-B alloys, Fe-Co alloys, Fe An alloy composed of at least one selected from a -P alloy, an Fe-Ni-Co alloy, and an Fe-Al-Si alloy can be used. In particular, from the viewpoint of magnetic permeability and magnetic flux density, pure iron in which 99% by mass or more is Fe is preferable.

〈粒径〉
軟磁性粒子の平均粒径は、圧粉成形体として低損失に寄与するサイズであればよい。つまり、特に限定することなく適宜選択することができるが、例えば、1μm以上150μm以下であれば好ましい。軟磁性粒子の平均粒径を1μm以上とすることによって、軟磁性粉末の流動性を落とすことがなく、軟磁性粉末を用いて製作された圧粉成形体の保磁力およびヒステリシス損の増加を抑制できる。逆に、軟磁性粒子の平均粒径を150μm以下とすることによって、1kHz以上の高周波域において発生する渦電流損を効果的に低減できる。より好ましい軟磁性粒子の平均粒径は、40μm以上100μm以下である。この平均粒径の下限が40μm以上であれば、渦電流損の低減効果が得られると共に、被覆軟磁性粉末の取り扱いが容易になり、より高い密度の成形体とすることができる。なお、この平均粒径とは、粒径のヒストグラム中、粒径の小さい粒子からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径をいう。
<Particle size>
The average particle diameter of the soft magnetic particles may be any size that contributes to low loss as a green compact. That is, although it can select suitably, without specifically limiting, For example, if it is 1 micrometer or more and 150 micrometers or less, it is preferable. By setting the average particle size of soft magnetic particles to 1 μm or more, the increase in coercive force and hysteresis loss of compacts made using soft magnetic powder is suppressed without reducing the fluidity of soft magnetic powder. it can. Conversely, by setting the average particle size of the soft magnetic particles to 150 μm or less, eddy current loss that occurs in a high frequency region of 1 kHz or more can be effectively reduced. The average particle size of the soft magnetic particles is more preferably 40 μm or more and 100 μm or less. If the lower limit of the average particle diameter is 40 μm or more, an effect of reducing eddy current loss can be obtained, and handling of the coated soft magnetic powder becomes easy, and a molded body having a higher density can be obtained. The average particle diameter means a particle diameter of particles in which the sum of masses from particles having a small particle diameter reaches 50% of the total mass in the particle diameter histogram, that is, 50% particle diameter.

〈形状〉
軟磁性粒子の形状は、アスペクト比が1.2〜1.8となるようにすると好ましい。このアスペクト比とは、粒子の最大径と最小径との比とする。上記範囲のアスペクト比を有する軟磁性粒子は、アスペクト比が小さな(1.0に近い)ものに比べて、圧粉成形体にしたときに反磁界係数を大きくでき、磁気特性に優れた圧粉成形体とすることができる。その上、圧粉成形体の強度を向上させることができる。
<shape>
The shape of the soft magnetic particles is preferably such that the aspect ratio is 1.2 to 1.8. The aspect ratio is the ratio between the maximum diameter and the minimum diameter of the particles. Soft magnetic particles having an aspect ratio in the above range can increase the demagnetizing factor when formed into a compact, compared to those having a small aspect ratio (close to 1.0), and have excellent magnetic properties. It can be set as a molded body. In addition, the strength of the green compact can be improved.

〈製法〉
軟磁性粒子は、水アトマイズ法やガスアトマイズ法などのアトマイズ法で製造されたものが好ましい。水アトマイズ法で製造された軟磁性粒子は、粒子表面に凹凸が多いため、その凹凸の噛合により高強度の成形体を得やすい。一方、ガスアトマイズ法で製造された軟磁性粒子は、その粒子形状が略球形のため、絶縁被膜を突き破るような凹凸が少なくて好ましい。軟磁性粒子の表面には、自然酸化膜が形成されていても良い。
<Production method>
The soft magnetic particles are preferably produced by an atomizing method such as a water atomizing method or a gas atomizing method. Since the soft magnetic particles produced by the water atomization method have many irregularities on the particle surface, it is easy to obtain a high-strength molded product by meshing the irregularities. On the other hand, the soft magnetic particles produced by the gas atomization method are preferable because the particle shape is substantially spherical, and there are few irregularities that break through the insulating coating. A natural oxide film may be formed on the surface of the soft magnetic particles.

(絶縁被膜)
絶縁被膜は、隣接する軟磁性粒子同士を絶縁するために、軟磁性粒子の外周に被覆される。軟磁性粒子を絶縁被膜で覆うことによって、軟磁性粒子同士の接触を抑制し、成形体の比透磁率を低く抑えることができる。その上、絶縁被膜の存在により、軟磁性粒子間に渦電流が流れるのを抑制して、圧粉成形体の渦電流損を低減させることができる。
(Insulation coating)
The insulating coating is coated on the outer periphery of the soft magnetic particles in order to insulate adjacent soft magnetic particles. By covering the soft magnetic particles with an insulating film, the contact between the soft magnetic particles can be suppressed, and the relative magnetic permeability of the compact can be suppressed low. In addition, the presence of the insulating coating can suppress the eddy current from flowing between the soft magnetic particles, thereby reducing the eddy current loss of the green compact.

〈組成〉
絶縁被膜は、軟磁性粒子同士の絶縁を確保できる程度の絶縁性に優れるものであれば特に限定されない。例えば、絶縁被膜の材料は、リン酸塩、チタン酸塩、シリコーン樹脂、リン酸塩とシリコーン樹脂の2層からなるものなどが挙げられる。
<composition>
The insulating coating is not particularly limited as long as it has excellent insulating properties that can ensure insulation between soft magnetic particles. For example, examples of the material for the insulating film include phosphate, titanate, silicone resin, and two layers of phosphate and silicone resin.

特に、リン酸塩からなる絶縁被膜は変形性に優れるので、軟磁性材料を加圧して圧粉成形体を作製する際に軟磁性粒子が変形しても、この変形に追従して変形することができる。また、リン酸塩被膜は鉄系の軟磁性粒子に対する密着性が高く、軟磁性粒子表面から脱落し難い。リン酸塩としては、リン酸鉄やリン酸マンガン、リン酸亜鉛、リン酸カルシウム、リン酸アルミニウムなどのリン酸金属塩化合物を利用することができる。   In particular, since the insulating coating made of phosphate is excellent in deformability, even when soft magnetic particles are deformed when a soft magnetic material is pressed to produce a compact, a deformation follows the deformation. Can do. Further, the phosphate coating has high adhesion to iron-based soft magnetic particles and is difficult to fall off from the surface of the soft magnetic particles. As the phosphate, a metal phosphate compound such as iron phosphate, manganese phosphate, zinc phosphate, calcium phosphate, or aluminum phosphate can be used.

シリコーン樹脂からなる絶縁被膜の場合は、耐熱性に優れるので、後述する熱処理工程で分解し難く、圧粉成形体の完成までの間、軟磁性粒子同士の絶縁を良好に維持することができる。   In the case of an insulating coating made of a silicone resin, it is excellent in heat resistance, so that it is difficult to be decomposed in a heat treatment step to be described later, and the insulation between soft magnetic particles can be maintained well until the compacting body is completed.

絶縁被膜が上記リン酸塩とシリコーン樹脂の2層構造からなる場合、リン酸塩を上記軟磁性粒子側に、シリコーン樹脂をリン酸塩の直上に被覆することが好ましい。リン酸塩の直上にシリコーン樹脂を被膜しているので、上述したリン酸塩およびシリコーン樹脂の両方の特性を具えることができる。   When the insulating coating has a two-layer structure of the phosphate and the silicone resin, it is preferable to coat the phosphate on the soft magnetic particle side and the silicone resin directly on the phosphate. Since the silicone resin is coated directly on the phosphate, it is possible to have the characteristics of both the phosphate and the silicone resin described above.

〈膜厚〉
絶縁被膜の平均厚さは、隣接する軟磁性粒子同士を絶縁することができる程度の厚みであればよい。例えば、10nm以上1μm以下であることが好ましい。絶縁被膜の厚みを10nm以上とすることによって、軟磁性粒子同士の接触の抑制や渦電流によるエネルギー損失を効果的に抑制することができる。一方、絶縁被膜の厚みを1μm以下とすることによって、被覆軟磁性粒子に占める絶縁被膜の割合が大きくなりすぎず、被覆軟磁性粒子の磁束密度が著しく低下することを防止できる。
<Film thickness>
The average thickness of the insulating coating may be a thickness that can insulate adjacent soft magnetic particles. For example, it is preferably 10 nm or more and 1 μm or less. By setting the thickness of the insulating coating to 10 nm or more, it is possible to effectively suppress contact between soft magnetic particles and energy loss due to eddy current. On the other hand, by setting the thickness of the insulating coating to 1 μm or less, the ratio of the insulating coating to the coated soft magnetic particles does not become too large, and the magnetic flux density of the coated soft magnetic particles can be prevented from significantly decreasing.

上記絶縁被膜の厚さは、以下のようにして調べることができる。まず、組成分析(TEM−EDX:transmission electron microscope energy dispersive X−ray spectroscopy)によって得られる膜組成と、誘導結合プラズマ質量分析(ICP−MS:inductively coupled plasma−mass spectrometry)によって得られる元素量とを鑑みて相当厚さを導出する。そして、TEM写真により直接、被膜を観察し、先に導出された相当厚さのオーダーが適正な値であることを確認して決定される平均的な厚さとする。   The thickness of the insulating coating can be examined as follows. First, the film composition obtained by composition analysis (TEM-EDX: transmission electron microscopic energy dispersive X-ray spectroscopy), and the amount of inductively coupled plasma mass (ICP-MS) obtained by inductively coupled plasma Considering this, a considerable thickness is derived. Then, the film is directly observed with a TEM photograph, and the average thickness determined by confirming that the order of the equivalent thickness derived earlier is an appropriate value is used.

〈被覆方法〉
軟磁性粒子に絶縁被膜を被覆する方法は、適宜選択するとよい。例えば、加水分解・縮重合反応などにより被膜することが挙げられる。軟磁性粒子と絶縁被膜を構成する原料とを配合して、その配合体を、加熱した状態で混合する。そうすることで、軟磁性粒子を被膜原料に十分に分散でき、個々の軟磁性粒子の外側に絶縁被膜を被覆することができる。
<Coating method>
The method of covering the soft magnetic particles with the insulating coating may be selected as appropriate. For example, the film may be formed by hydrolysis / polycondensation reaction. Soft magnetic particles and a material constituting the insulating coating are blended, and the blend is mixed in a heated state. By doing so, the soft magnetic particles can be sufficiently dispersed in the coating material, and the insulating coating can be coated on the outside of the individual soft magnetic particles.

上記加熱温度および混合時間は適宜選択するとよい。加熱温度及び混合時間を選択することで、軟磁性粒子をより十分に分散させることができ、個々の粒子に絶縁被膜を被覆することが容易となる。   The heating temperature and mixing time may be appropriately selected. By selecting the heating temperature and mixing time, the soft magnetic particles can be more sufficiently dispersed, and it becomes easy to coat the individual particles with the insulating coating.

[素材成形工程]
素材成形工程では、上記原料準備工程により用意された複数の被覆軟磁性粒子からなる被覆軟磁性粉末を加圧成形して素材成形体を作製する。
[Raw material forming process]
In the raw material forming step, a coated soft magnetic powder composed of a plurality of coated soft magnetic particles prepared in the raw material preparing step is pressure-molded to produce a raw material compact.

素材成形工程では、代表的には、所定の形状のパンチとダイからなる成形金型内に被覆軟磁性粉末を注入し、圧力を付加して押し固める。パンチとダイを使用する際、加圧により金型に成形体が焼き付くことや、被覆軟磁性粉末の絶縁被膜が破壊されることがないように被覆軟磁性粉末を加圧成形する。その手段として、パンチとダイの少なくとも一方の被覆軟磁性粉末と接触する箇所(内壁)に潤滑剤を塗布して被覆軟磁性粉末を加圧する外部潤滑成形方法でもよいし、被覆軟磁性粉末に予め潤滑剤を混合させて混合物を作製しておき、その混合物を金型で加圧する内部潤滑成形方法でもよい。前者の場合、潤滑剤を上記内壁に塗布するので、被覆軟磁性粉末との摩擦を低減すると共に、高密度な素材成形体を成形することができる。後者の場合、被覆軟磁性粉末の表面に付着した潤滑剤が被覆軟磁性粉末における粒子同士の摩擦を低減するため、被覆軟磁性粒子の絶縁被膜が破れることを抑制することができる。   In the raw material forming step, typically, the coated soft magnetic powder is injected into a molding die composed of a punch and die having a predetermined shape, and is pressed and hardened. When the punch and die are used, the coated soft magnetic powder is pressure-molded so that the compact is not baked on the mold by pressurization and the insulating coating of the coated soft magnetic powder is not destroyed. As the means, an external lubrication molding method in which a lubricant is applied to a portion (inner wall) in contact with the coated soft magnetic powder of at least one of the punch and the die and the coated soft magnetic powder is pressed, or the coated soft magnetic powder is previously applied to the coated soft magnetic powder. An internal lubrication molding method may be used in which a mixture is prepared by mixing a lubricant, and the mixture is pressurized with a mold. In the former case, since the lubricant is applied to the inner wall, it is possible to reduce friction with the coated soft magnetic powder and to form a high-density material molded body. In the latter case, the lubricant adhering to the surface of the coated soft magnetic powder reduces friction between particles in the coated soft magnetic powder, so that the insulating coating of the coated soft magnetic particles can be prevented from being broken.

加圧する際には、上記成形金型を加熱してから加圧成形してもよい。その場合、例えば、成形金型温度を50〜200℃にすることが挙げられる。金型を加熱することで高密度な素材成形体を得ることができる。   When pressurizing, the molding die may be heated and then press-molded. In that case, for example, the mold temperature is set to 50 to 200 ° C. By heating the mold, a high-density material molded body can be obtained.

加圧する圧力は、適宜選択することができるが、例えば、リアクトル用コアとなる圧粉成形体を製造するのであれば、490〜1470MPa、特に、588〜1079MPa程度とすることが好ましい。   Although the pressure to pressurize can be selected suitably, for example, if the compacting body used as the core for reactors is manufactured, it is preferred to set it as about 490-1470 MPa, especially about 588-1079 MPa.

〔熱処理工程〕
熱処理工程では、素材成形工程で軟磁性粒子に導入された歪や転移などを除去するために素材成形体を加熱して熱処理する。
[Heat treatment process]
In the heat treatment step, the material molded body is heated and heat-treated in order to remove the distortion and transition introduced into the soft magnetic particles in the material molding step.

熱処理の温度が高いほど、歪の除去を十分に行うことができることから、熱処理温度は、300℃以上、特に400℃以上が好ましい。軟磁性粒子の歪などを除去する観点から、熱処理の上限は約800℃程度とする。このような熱処理温度であれば、歪の除去と共に、加圧時に軟磁性粒子に導入される転移などの格子欠陥も除去できる。それにより、圧粉成形体のヒステリシス損を効果的に低減することができる。   The higher the heat treatment temperature, the more strain can be removed. Therefore, the heat treatment temperature is preferably 300 ° C. or higher, particularly 400 ° C. or higher. From the viewpoint of removing strain and the like of the soft magnetic particles, the upper limit of the heat treatment is about 800 ° C. With such a heat treatment temperature, not only strain can be removed, but also lattice defects such as transition introduced into the soft magnetic particles during pressurization can be removed. Thereby, the hysteresis loss of a compacting body can be reduced effectively.

熱処理を施す時間は、素材成形工程で軟磁性粒子に導入された歪や転移などを十分に除去するように、上記熱処理温度および素材成形体の体積に合わせて適宜選択すればよい。例えば、上記の温度範囲の場合、10分〜1時間であることが好ましい。   What is necessary is just to select the time which heat-processes suitably according to the said heat processing temperature and the volume of a raw material molded object so that the distortion | strain, transition, etc. which were introduce | transduced into the soft-magnetic particle in the raw material formation process may fully be removed. For example, in the above temperature range, it is preferably 10 minutes to 1 hour.

この熱処理を施す際の雰囲気は、大気中でも良いが、不活性ガス雰囲気内で施すと特に好ましい。それにより、大気中の酸素によって被覆軟磁性粒子が酸化されるのを抑制することができる。   The atmosphere at the time of performing the heat treatment may be in the air, but it is particularly preferable to apply in an inert gas atmosphere. Thereby, it can suppress that a coated soft magnetic particle is oxidized with oxygen in air | atmosphere.

この熱処理は、後述する表面処理工程後の素材成形体に施しても良いが、表面処理工程前に素材成形体に施すことが好ましい。   This heat treatment may be performed on the material molded body after the surface treatment process described later, but is preferably performed on the material molded body before the surface treatment process.

〔表面処理工程〕
表面処理工程では、素材成形体の表面の一部を酸処理する。この酸処理により、素材成形体の表面で複数の軟磁性粒子の構成材料同士が導通した導通部を除去する。
[Surface treatment process]
In the surface treatment step, a part of the surface of the material molded body is acid-treated. By this acid treatment, the conduction portion where the constituent materials of the plurality of soft magnetic particles are conducted on the surface of the material molded body is removed.

酸処理させる素材成形体の面は、製造された圧粉成形体を磁心、例えばリアクトル用コアとして励磁した際、磁束方向に平行となる面(平行面)の少なくとも一部とすることが好ましい。圧粉成形体とコイルとを組み合わせて、そのコイルを励磁すれば、コイルの軸方向に沿った磁束が成形体内に形成される。そこで、例えば、圧粉成形体が立方体である場合、その磁束方向に直交する面(直交面)が立方体の両端面であれば、それ以外の4つの側面が上記平行面となり、表面処理を施す領域は、その側面となる素材成形体の表面の少なくとも一部でよい。また、圧粉成形体が円柱である場合、磁束方向と直交する面が両端面であれば、磁束方向との平行面は円柱の側面となるので、表面処理を施す領域は、側面となる素材成形体の表面の少なくとも一部でよい。このように、磁束方向との平行面となる素材成形体の表面の一部に表面処理を施すことで、磁束方向を軸とする円周方向に流れる渦電流を、上記表面処理が施された箇所で遮断できると考えられる。そのため、渦電流損を低減でき、低損失な圧粉成形体を製造することができる。   The surface of the material molded body to be acid-treated is preferably at least a part of a plane (parallel plane) that is parallel to the magnetic flux direction when the produced powder compact is excited as a magnetic core, for example, a reactor core. When the compacted compact and the coil are combined and the coil is excited, a magnetic flux along the axial direction of the coil is formed in the compact. Therefore, for example, when the green compact is a cube, if the surfaces orthogonal to the magnetic flux direction (orthogonal surfaces) are both end surfaces of the cube, the other four side surfaces become the parallel surfaces and are subjected to surface treatment. The region may be at least a part of the surface of the material molded body that serves as the side surface. In addition, when the green compact is a cylinder, if the surfaces perpendicular to the magnetic flux direction are both end faces, the parallel surface to the magnetic flux direction is the side surface of the cylinder. It may be at least part of the surface of the molded body. In this way, the surface treatment was applied to the eddy current flowing in the circumferential direction around the magnetic flux direction by subjecting a part of the surface of the material molded body to be parallel to the magnetic flux direction. It is thought that it can be cut off at the location. Therefore, eddy current loss can be reduced, and a low-loss compacting body can be manufactured.

上記平行面において酸処理される領域は、上記平行面の少なくとも一部であって、上記平行面において、圧粉成形体の磁束方向全長に亘る領域となる素材成形体の表面であることがより好ましい。例えば、圧粉成形体が直方体であり、その両端面が磁束方向と直交面で、それ以外の面が平行面である場合、表面処理する領域は、平行面において、一方の端面側から他方の端面側に亘る領域となる素材成形体の表面とする。また、圧粉成形体が円柱であり、その両底面が磁束方向との直交面で、それ以外の面(側面)が平行面である場合、表面処理する領域は、平行面において、一方の端面側から他方の端面側に亘る領域となる素材成形体の表面とする。そうすることで、磁束方向を軸とする円周方向に流れる渦電流を上記全長に亘って分断できると考えられる。従って、渦電流損をより低減でき、より低損失な圧粉成形体を製造することができる。   The region to be acid-treated in the parallel surface is at least a part of the parallel surface, and in the parallel surface, is a surface of the material molded body that is a region extending over the entire length in the magnetic flux direction of the green compact. preferable. For example, when the green compact is a rectangular parallelepiped, its both end faces are perpendicular to the magnetic flux direction, and the other faces are parallel faces, the surface treatment area is from one end face side to the other in the parallel face. It is set as the surface of the raw material molded object used as the area | region over an end surface side. In addition, when the green compact is a cylinder, both bottom surfaces thereof are orthogonal to the magnetic flux direction, and the other surfaces (side surfaces) are parallel surfaces, the region to be surface-treated is one end surface in the parallel surface. It is set as the surface of the raw material molded object used as the area | region ranging from the other end surface side from the side. By doing so, it is considered that the eddy current flowing in the circumferential direction around the magnetic flux direction can be divided over the entire length. Therefore, the eddy current loss can be further reduced, and a powder compact with a lower loss can be manufactured.

上記平行面において一方の端面側から他方の端面側に亘る領域に表面処理が施される場合、上記平行面の面積が、平行面において磁束方向と平行な方向を縦t、磁束方向を軸とした圧粉成形体の周方向の全長をlとするとき、平行面の全面積はt×lで、当該平行面において実際に表面処理が施された領域の幅(磁束方向と直交する方向)を処理幅wとするとき、この領域はt×wと表される。この処理幅wは、被覆軟磁性粉末の平均粒径をdとするとき、d<w≦lを満たすことが好ましい。上記処理幅wを上記範囲とすることで、渦電流損の低減効果を効果的に得ることができる。より好ましくは、上記全長lに対する上記処理幅wの比率w/lは、30%以下、さらには20%以下、10%以下、特に5%以下とすることが挙げられる。   When a surface treatment is performed on a region extending from one end face side to the other end face side in the parallel plane, the area of the parallel plane is longitudinal t in a direction parallel to the magnetic flux direction in the parallel plane and the magnetic flux direction as an axis. When the total length in the circumferential direction of the compacted green body is 1, the total area of the parallel surface is t × 1, and the width of the region actually surface-treated on the parallel surface (direction perpendicular to the magnetic flux direction) Is the processing width w, this region is represented as t × w. This treatment width w preferably satisfies d <w ≦ l, where d is the average particle diameter of the coated soft magnetic powder. By setting the processing width w within the above range, an effect of reducing eddy current loss can be effectively obtained. More preferably, the ratio w / l of the processing width w to the total length l is 30% or less, further 20% or less, 10% or less, and particularly 5% or less.

表面処理液の種類は、素材成形体表面の導通部を除去できる程度の処理液であればよい。例えば、pH1〜4程度の酸性の処理液であることが好ましく、具体的には、塩酸、硫酸、硝酸、リン酸などの無機酸などが挙げられ、特に濃塩酸を使用することが好ましい。   The kind of surface treatment liquid should just be a treatment liquid of the grade which can remove the conduction | electrical_connection part of a raw material molded object surface. For example, an acidic treatment solution having a pH of about 1 to 4 is preferable, and specific examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and concentrated hydrochloric acid is particularly preferable.

表面処理液の温度は、適宜選択することができる。例えば、20℃〜50℃の処理液を使用することが挙げられる。上記の温度範囲であれば、表面処理を促進できる。   The temperature of the surface treatment liquid can be appropriately selected. For example, use of a treatment liquid at 20 ° C. to 50 ° C. can be mentioned. If it is said temperature range, surface treatment can be accelerated | stimulated.

また、素材成形体を表面処理液に接触させる時間は、表面処理液の種類や温度、除去する領域などに合わせて適宜選択すればよい。特に表面処理液のpHが上記範囲である場合、1min〜40minであることが挙げられる。つまり、上記pHの範囲を満たす表面処理液で、上記範囲の時間素材成形体に接触させることで、上記導通部を除去し易くなるとともに、上記導通部以外の素材成形体の表面を除去しすぎることがない。   Further, the time for bringing the material molded body into contact with the surface treatment liquid may be appropriately selected according to the type and temperature of the surface treatment liquid, the region to be removed, and the like. In particular, when the pH of the surface treatment liquid is in the above range, it may be 1 min to 40 min. That is, the surface treatment liquid that satisfies the above pH range makes it easy to remove the conductive part by contacting the material molded body for the time in the above range, and the surface of the material molded body other than the conductive part is excessively removed. There is nothing.

素材成形体を表面処理液に接触する方法は、所望の箇所に表面処理を施せる方法であれば、特に問わない。例えば、素材成形体を表面処理液の入った液槽に浸けるバッチ式が挙げられる。このバッチ式は、素材成形体側を液槽内に投入して、素材成形体を表面処理液に接触させてもよいし、素材成形体を固定し、液槽側を動かして表面処理液を素材成形体に接触させてもよい。表面処理液に接触させない領域には、マスキングなどを施して表面処理液に接触しないようにしておくとよい。このマスキングには、耐酸性に優れるものを使用すればよく、例えば、市販のPTFE製のテープなどが使用できる。   The method for bringing the material molded body into contact with the surface treatment liquid is not particularly limited as long as it is a method capable of performing surface treatment on a desired portion. For example, the batch type which immerses a raw material molded object in the liquid tank containing surface treatment liquid is mentioned. In this batch method, the material molded body side may be put into the liquid tank, and the material molded body may be brought into contact with the surface treatment liquid, or the material molded body may be fixed and the liquid tank side moved to use the surface treatment liquid as the material. You may make it contact a molded object. It is preferable to mask the area that is not in contact with the surface treatment liquid so as not to contact the surface treatment liquid. What is necessary is just to use what is excellent in acid resistance for this masking, for example, the tape made from a commercially available PTFE etc. can be used.

[その他の工程]
(洗浄工程)
表面処理工程後、表面処理工程で圧粉成形体表面に付着した表面処理液を洗い流すために圧粉成形体の表面を洗浄することが好ましい。
[Other processes]
(Washing process)
After the surface treatment step, it is preferable to wash the surface of the green compact in order to wash away the surface treatment liquid adhering to the surface of the green compact in the surface treatment step.

この洗浄工程で使用する洗浄液は、上記表面処理液を洗浄できるものであればよい。例えば、水などを使用することが挙げられる。洗浄液の温度や、洗浄する時間は、圧粉成形体の表面から表面処理液が十分に除去できるように適宜選択するとよい。   The cleaning liquid used in this cleaning process only needs to be able to clean the surface treatment liquid. For example, use of water or the like can be mentioned. The temperature of the cleaning liquid and the cleaning time may be appropriately selected so that the surface treatment liquid can be sufficiently removed from the surface of the green compact.

《作用効果》
上述した実施形態によれば、以下の効果を奏する。
<Effect>
According to embodiment mentioned above, there exist the following effects.

(1)渦電流損の少ない低損失な圧粉成形体を製造することができる。   (1) A low-loss compacting body with little eddy current loss can be produced.

(2)上述の製造方法により製造された圧粉成形体はリアクトル用コアに好適に利用することができる。その場合、例えば、一対のコイル素子を有して各コイル素子の軸が平行するように横並びされたコイルと、各コイル素子がそれぞれ配置される一対の柱状の内側コア部(ミドルコア部)、およびコイル素子が配置されず、内側コア部に連結されて閉磁路を構成する外側コア部(サイドコア部)を有する磁性コアとを具えるリアクトルにおいて、当該内側コア部に好適に利用することができる。内側コア部を複数の分割コア片を組み合わせた構成とする場合、分割コア片の少なくとも一つ、好ましくは全てを本発明の圧粉成形体により構成することができる。このとき、内側コア部、或いは分割コア片において、上記表面処理を施す領域は、上記コイルを励磁した際、磁束方向と平行となる面の少なくとも一部である。この分割コア片でリアクトルを組み立てた際、上記分割コア片の表面処理が施された面はコイルの内周面に対向される。それにより、コイルを励磁したとき、上記表面処理が施された領域で、内側コア部の周方向に生じる渦電流を分断して、渦電流損を低減できる。この表面処理を施す領域を、例えば、上記平行面において、内側コア部、或いは各分割片の一方の端面側から他方の端面側に亘る領域とすれば、リアクトルを組み立てた際、その領域が内側コア部の磁束方向全長に及ぶ。そのため、内側コアの磁束方向全長に亘って上記渦電流を分断できるため、渦電流損をより一層低減できる。外側コア部は、端面がU字状、あるいは台形状が代表的である。この外側コア部においても本発明の製造方法により得られた圧粉成形体を用いてもよい。   (2) The compacting body manufactured by the above manufacturing method can be suitably used for the core for the reactor. In that case, for example, a coil having a pair of coil elements and arranged side by side so that the axes of the coil elements are parallel, a pair of columnar inner core parts (middle core parts) in which the coil elements are respectively disposed, and In a reactor including a magnetic core having an outer core portion (side core portion) that is not disposed with a coil element and is connected to the inner core portion to form a closed magnetic path, the reactor can be suitably used for the inner core portion. When the inner core portion is configured by combining a plurality of divided core pieces, at least one, preferably all of the divided core pieces can be formed by the green compact of the present invention. At this time, in the inner core portion or the divided core piece, the region to be subjected to the surface treatment is at least a part of a surface parallel to the magnetic flux direction when the coil is excited. When the reactor is assembled with the split core pieces, the surface of the split core pieces that has been subjected to the surface treatment is opposed to the inner peripheral surface of the coil. Thereby, when the coil is excited, eddy current loss can be reduced by dividing the eddy current generated in the circumferential direction of the inner core portion in the surface-treated region. For example, if the region to be subjected to the surface treatment is a region extending from one end surface side to the other end surface side of the inner core portion or each divided piece in the parallel plane, the region is the inner side when the reactor is assembled. Covers the entire length of the core in the magnetic flux direction. Therefore, since the eddy current can be divided over the entire length of the inner core in the magnetic flux direction, the eddy current loss can be further reduced. The outer core portion is typically U-shaped or trapezoidal in the end surface. Also in this outer core part, you may use the compacting body obtained by the manufacturing method of this invention.

(3)表面処理液に浸けて表面処理する箇所は、素材成形体の表面の一部なので、素材成形体の表面全面を処理する場合に比べて、表面処理液を少なくすることができる上に、表面処理液の劣化を低減できて長期的に表面処理液を使用できる。そのため、使用済み表面処理液の廃液も少なくて済む上に、頻繁に表面処理液を交換する必要がなくなる。したがって、製造コストを低減することもできる。   (3) Since the portion to be surface-treated by dipping in the surface treatment liquid is a part of the surface of the material molded body, the surface treatment liquid can be reduced compared to the case where the entire surface of the material molded body is treated. The deterioration of the surface treatment liquid can be reduced and the surface treatment liquid can be used for a long time. Therefore, the waste liquid of the used surface treatment liquid can be reduced, and the surface treatment liquid need not be frequently replaced. Accordingly, the manufacturing cost can be reduced.

(4)表面処理する領域が素材成形体の表面の一部なので、表面処理後の洗浄工程で洗浄する面積が小さく、洗浄作業時間を短縮できる。そのため、製造作業を簡略化することができる。   (4) Since the region to be surface-treated is a part of the surface of the material molded body, the area to be washed in the washing step after the surface treatment is small, and the washing work time can be shortened. Therefore, the manufacturing operation can be simplified.

《試験例》
試験例として、以下の試料1〜4を作製し、その各試料の磁気特性について後述する試験を行った。
《Test example》
As test examples, the following samples 1 to 4 were prepared, and the test described below was performed for the magnetic properties of each sample.

[試料1]
試料1は、以下に示す工程a→工程b→工程c→工程d→工程eの順に各工程を経て作製される。
(工程a)被覆軟磁性粉末を用意する原料準備工程。
(工程b)被覆軟磁性粉末を加圧成形して素材成形体を作製する素材成形工程。
(工程c)素材成形体を加熱して熱処理成形体を作製する熱処理工程。
(工程d)熱処理成形体表面を酸処理する表面処理工程。
(工程e)圧粉成形体の表面を洗浄する洗浄工程。
[Sample 1]
Sample 1 is manufactured through the following steps in the order of step a → step b → step c → step d → step e.
(Step a) Raw material preparation step of preparing coated soft magnetic powder.
(Step b) A material molding step of producing a material molded body by press-molding the coated soft magnetic powder.
(Process c) A heat treatment step of heating the material molded body to produce a heat treated molded body.
(Step d) A surface treatment step of acid-treating the surface of the heat-treated molded body.
(Step e) A cleaning step of cleaning the surface of the green compact.

(工程a)
圧粉成形体の構成材料として、鉄粉からなる軟磁性粒子の表面にリン酸鉄からなる絶縁被膜を被覆した被覆軟磁性粉末に、ステアリン酸亜鉛からなる潤滑剤を0.6質量%含有した混合材料を用意した。上記鉄粉は、水アトマイズ法により作製され、純度が99.8%以上であった。この軟磁性粒子の平均粒径が50μmで、そのアスペクト比は1.2であった。この平均粒径は、粒径のヒストグラム中、粒径の小さい粒子からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径により求めた。絶縁被膜は、軟磁性粒子の表面全体を実質的に覆い、その平均厚さは、20nmであった。上記潤滑剤には、その他に、金属石鹸および六方晶系の結晶構造を有する無機潤滑剤の少なくとも一方からなる潤滑剤が好適に利用できる。
(Process a)
As a constituent material of the green compact, the coated soft magnetic powder in which the surface of soft magnetic particles made of iron powder was coated with an insulating coating made of iron phosphate contained 0.6% by mass of a lubricant made of zinc stearate. A mixed material was prepared. The iron powder was produced by a water atomization method and had a purity of 99.8% or more. The soft magnetic particles had an average particle size of 50 μm and an aspect ratio of 1.2. This average particle size was determined from the particle size of particles in which the sum of masses from particles with small particle sizes reached 50% of the total mass, that is, 50% particle size, in the particle size histogram. The insulating coating substantially covered the entire surface of the soft magnetic particles, and the average thickness was 20 nm. In addition, a lubricant composed of at least one of a metal soap and an inorganic lubricant having a hexagonal crystal structure can be suitably used as the lubricant.

(工程b)
工程aで準備した混合材料を所定の形状の金型内に注入し、金型を加熱せず588MPaの圧力をかけて加圧成形して素材成形体を作製した。ここでは、直方体状の素材成形体を複数作製した。ここで作製する素材成形体は、台形状面を有する角柱状体あるいはU字状面を有するU字状体を含んでいてもよい。
(Process b)
The mixed material prepared in step a was poured into a mold having a predetermined shape, and pressure-molded by applying a pressure of 588 MPa without heating the mold to produce a material molded body. Here, a plurality of rectangular parallelepiped material molded bodies were produced. The material molded body produced here may include a prismatic body having a trapezoidal surface or a U-shaped body having a U-shaped surface.

(工程c)
工程bで作製した素材成形体を窒素雰囲気下で400℃×30分、熱処理し、複数の熱処理成形体を得た。
(Process c)
The material molded body produced in step b was heat-treated at 400 ° C. for 30 minutes in a nitrogen atmosphere to obtain a plurality of heat-treated molded bodies.

(工程d)
工程dでは、工程cで得られた複数の直方体状の熱処理成形体を環状に組み合わせて鉄損の評価用の試験片を作製するにあたり、熱処理成形体の少なくとも一部を酸処理する。ここでは、熱処理成形体の表面のうち、後述する磁気特性の測定試験でコイルが配置される熱処理成形体の表面の一部に対して酸処理した。その際、試料に生じる磁束の方向と平行となる面(平行面)の磁束方向全長に亘る領域に次に示す酸処理を施した。その酸処理は、pH1で温度が26℃の濃塩酸が入った液槽に上記領域を20分間浸けると共に、濃塩酸を攪拌しながら行った。その結果、磁束方向を軸とした熱処理成形体の周方向の全長lに対する表面処理の処理幅wの比w/lが10%であった。また、コイルが配置されない熱処理成形体(外側コア部)にも、酸処理してもよい。この表面処理を経た熱処理成形体が、圧粉成形体である。
(Process d)
In step d, at least a part of the heat-treated molded body is acid-treated when a plurality of rectangular parallelepiped heat-treated molded bodies obtained in step c are combined in a ring shape to produce a test piece for evaluating iron loss. Here, of the surface of the heat-treated molded body, acid treatment was performed on a part of the surface of the heat-treated molded body on which the coil is arranged in the magnetic property measurement test described later. At that time, the following acid treatment was performed on a region extending over the entire length in the magnetic flux direction of a surface (parallel surface) parallel to the direction of the magnetic flux generated in the sample. The acid treatment was performed while immersing the region in a liquid tank containing concentrated hydrochloric acid having a pH of 1 and a temperature of 26 ° C. for 20 minutes while stirring the concentrated hydrochloric acid. As a result, the ratio w / l of the treatment width w of the surface treatment to the total length l in the circumferential direction of the heat-treated molded body with the magnetic flux direction as an axis was 10%. Moreover, you may acid-treat also to the heat processing molded object (outer core part) in which a coil is not arrange | positioned. The heat-treated molded body that has undergone this surface treatment is a green compact.

(工程e)
工程dを経て得られた圧粉成形体を水で洗浄した。この洗浄を終えた圧粉成形体を試料1とする。
(Process e)
The green compact obtained through step d was washed with water. The green compact after the washing is designated as sample 1.

[試料2]
試料2は、試料1とは、上記工程d(表面処理工程)において、熱処理成形体に表面処理を施す領域が異なる。試料2では、熱処理成形体全体を上記濃塩酸に浸漬させて、表面全面に表面処理を施して圧粉成形体を作製した。その後、試料1と同様に、圧粉成形体を洗浄し、試料2とする。
[Sample 2]
The sample 2 is different from the sample 1 in the region where the heat treatment molded body is subjected to the surface treatment in the step d (surface treatment step). In Sample 2, the entire heat-treated molded body was immersed in the concentrated hydrochloric acid, and the entire surface was subjected to surface treatment to produce a green compact. Thereafter, like the sample 1, the green compact is washed to obtain a sample 2.

[試料3]
試料3は、試料1とは、各工程を施す順番が以下のように異なり、さらに、工程dにおいて、熱処理成形体に施す表面処理の領域が異なる。つまり、試料3は、上記工程a→工程b→工程d→工程e→工程cの順に各工程を経て作製される。そして、工程dの表面処理工程において、工程bを経た素材成形体の全体を上記濃塩酸に浸漬させて、素材成形体の表面全面を表面処理する。その後、工程eにて表面処理を施した表面を洗浄し、続いて工程cにて熱処理を施して、熱処理を終えた熱処理成形体を試料3とする。
[Sample 3]
The sample 3 differs from the sample 1 in the order in which the steps are performed as follows. Further, in the step d, the region of the surface treatment applied to the heat-treated molded body is different. That is, the sample 3 is manufactured through the respective steps in the order of the above step a → step b → step d → step e → step c. And in the surface treatment process of the process d, the whole raw material molded object which passed the process b is immersed in the said concentrated hydrochloric acid, and the whole surface of the raw material molded object is surface-treated. Thereafter, the surface that has been subjected to the surface treatment in step e is washed, and subsequently, heat treatment is performed in step c.

[試料4]
試料4は、試料1とは、熱処理成形体の表面に表面処理を施さない点が相違する。つまり、試料4は、上記工程a→工程b→工程cの順に各工程を経て作製される。工程cを終えた熱処理成形体を試料4とする。
[Sample 4]
The sample 4 is different from the sample 1 in that the surface treatment is not performed on the surface of the heat-treated molded body. That is, the sample 4 is manufactured through the respective steps in the order of the above step a → step b → step c. The heat-treated molded body after step c is designated as sample 4.

〔評価1〕
以上の工程を経て作製した試料1、2においては、複数の直方体状の圧粉成形体を環状に組み合わせて試験用磁心を作製した。各試験用磁心にそれぞれ巻線で構成したコイルを配して、磁気特性を測定するための測定部材を作製し、以下の磁気特性値を測定した。一方、試料3、4においては、複数の直方体状の熱処理成形体を、上記試料1、2と同様にして測定部材を作製し、以下の磁気特性値を測定した。
[Evaluation 1]
In Samples 1 and 2 produced through the above steps, a test magnetic core was produced by combining a plurality of cuboid compacts in an annular shape. Each test magnetic core was provided with a coil composed of a winding to produce a measurement member for measuring magnetic characteristics, and the following magnetic characteristic values were measured. On the other hand, in Samples 3 and 4, a plurality of rectangular parallelepiped heat-treated molded bodies were prepared in the same manner as Samples 1 and 2, and the following magnetic property values were measured.

[磁気特性試験]
各測定部材について、AC−BHカーブトレーサを用いて、励起磁束密度Bm:1kG(=0.1T)、測定周波数:5kHzにおける試料のヒステリシス損Wh(W)および渦電流損We(W)を求め、鉄損W(W)を算出した。
[Magnetic property test]
For each measurement member, the hysteresis loss Wh (W) and eddy current loss We (W) of the sample at the excitation magnetic flux density Bm: 1 kG (= 0.1 T) and measurement frequency: 5 kHz are obtained using an AC-BH curve tracer. The iron loss W (W) was calculated.

以上の試験から得られた特性値は、表1および図1にまとめて記載する。   The characteristic values obtained from the above tests are summarized in Table 1 and FIG.

〔結果〕
熱処理後に表面処理を施した試料1、2は、熱処理前に表面処理を施した試料3よりも渦電流損が少なく鉄損および損失が少なかった。そして、熱処理成形体の表面の一部に表面処理を施した試料1の方が、上記表面の全面に表面処理を施した試料2よりも損失、特に渦電流損を低減できた。
〔result〕
Samples 1 and 2 subjected to surface treatment after heat treatment had less eddy current loss and less iron loss and loss than sample 3 subjected to surface treatment before heat treatment. And the loss of the sample 1 which surface-treated a part of surface of the heat processing molded object was able to reduce the loss especially eddy current loss compared with the sample 2 which surface-treated the said whole surface.

以上の試験結果より、熱処理後に表面処理を施した試料1は、表面処理後に熱処理を施した試料3とは磁気特性が異なるため、圧粉成形体自体としても異なったものができたと考えられる。そして、熱処理後に施す表面処理は、熱処理成形体の表面の一部、特に、リアクトル用コアとして励磁した際、磁束方向との平行面の一部に施すと渦電流損、並びに鉄損の低減に効果的であることが判明した。   From the above test results, it is considered that the sample 1 subjected to the surface treatment after the heat treatment has a different magnetic property from the sample 3 subjected to the heat treatment after the surface treatment, and thus the powder compact itself can be different. The surface treatment performed after heat treatment reduces eddy current loss and iron loss when applied to a part of the surface of the heat-treated molded body, particularly a part parallel to the magnetic flux direction when excited as a reactor core. It turns out to be effective.

〔評価2〕
[表面観察]
試料1を作製する過程において、表面処理工程前の熱処理成形体の表面と、表面処理工程後の圧粉成形体の表面を顕微鏡により観察した。その写真を図2に示す。
[Evaluation 2]
[Surface observation]
In the process of preparing Sample 1, the surface of the heat-treated molded body before the surface treatment process and the surface of the green compact after the surface treatment process were observed with a microscope. The photograph is shown in FIG.

〔結果〕
図2の(A)では、表面処理前の熱処理成形体の表面は粒界が確認し難いのに対し、同図の(B)では、表面処理後の圧粉成形体の表面において粒界が確認できる。これは、成形工程での金型との擦れによって、予備成形体の表面の絶縁被膜が損傷すると共に、軟磁性粒子が展延したことにより表面に軟磁性粒子同士が導通して導通部が形成されているためであると考えられる。一方、表面処理を施すことで、上記導通部が除去されたためであると考えられる。
〔result〕
In FIG. 2A, it is difficult to confirm grain boundaries on the surface of the heat-treated molded body before the surface treatment, whereas in FIG. 2B, grain boundaries are formed on the surface of the compacted molded body after the surface treatment. I can confirm. This is because the insulating coating on the surface of the preform is damaged by rubbing with the mold in the molding process, and the soft magnetic particles are spread to form conductive parts on the surface. It is thought that this is because On the other hand, it is considered that the conductive portion was removed by performing the surface treatment.

本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.

本発明圧粉成形体の製造方法は、各種磁心の作製に好適に利用することができる。また、本発明圧粉成形体は、ハイブリッド自動車などの昇圧回路や、発電・変電設備に用いられるリアクトルの他、トランスやチョークコイルのコアの材料に好適に利用することができる。   The manufacturing method of this invention compacting body can be utilized suitably for preparation of various magnetic cores. Further, the green compact of the present invention can be suitably used as a core material for a transformer or a choke coil in addition to a booster circuit such as a hybrid vehicle or a reactor used in power generation / transforming equipment.

Claims (5)

軟磁性粒子の外周に絶縁被膜が被覆された被覆軟磁性粒子を複数具えてなる被覆軟磁性粉末を用いて圧粉成形体を製造する圧粉成形体の製造方法であって、
前記被覆軟磁性粉末を加圧成形した素材成形体を用意する素材準備工程と、
前記素材成形体を加熱して熱処理する熱処理工程と、
前記素材成形体の表面の一部を酸処理する表面処理工程とを具えることを特徴とする圧粉成形体の製造方法。
A method for producing a green compact using a coated soft magnetic powder comprising a plurality of coated soft magnetic particles having an outer periphery of a soft magnetic particle coated with an insulating coating,
A material preparation step of preparing a material molded body obtained by pressure-molding the coated soft magnetic powder;
A heat treatment step of heating and heat-treating the material molded body;
And a surface treatment step of acid-treating a part of the surface of the material molded body.
前記表面処理工程は、前記圧粉成形体を磁心として励磁した際、磁束方向との平行面の少なくとも一部となる素材成形体の表面に施されることを特徴とする請求項1に記載の圧粉成形体の製造方法。   The said surface treatment process is given to the surface of the raw material molded object used as at least one part of a parallel surface with a magnetic flux direction, when exciting the said compacting body as a magnetic core. A method for producing a green compact. 前記表面処理工程は、前記平行面において、前記圧粉成形体の磁束方向全長に亘る領域となる素材成形体の表面に施されることを特徴とする請求項2に記載の圧粉成形体の製造方法。   The said surface treatment process is given to the surface of the raw material molded object used as the area | region covering the magnetic flux direction full length of the said compacted compact in the said parallel surface, The compacted compact of Claim 2 characterized by the above-mentioned. Production method. 前記表面処理工程は、前記素材成形体にpH1〜4の表面処理液を、1min〜40min接触させることを特徴とする請求項1〜3のいずれか1項に記載の圧粉成形体の製造方法。   The said surface treatment process makes the surface treatment liquid of pH 1-4 contact the said raw material molded object for 1 minute-40 minutes, The manufacturing method of the compacting body of any one of Claims 1-3 characterized by the above-mentioned. . 請求項1〜4のいずれか1項に記載の圧粉成形体の製造方法により製造されたことを特徴とする圧粉成形体。   The compacting body manufactured by the manufacturing method of the compacting body of any one of Claims 1-4.
JP2011111731A 2011-05-18 2011-05-18 Production method of green compact, and green compact Withdrawn JP2012243912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011111731A JP2012243912A (en) 2011-05-18 2011-05-18 Production method of green compact, and green compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011111731A JP2012243912A (en) 2011-05-18 2011-05-18 Production method of green compact, and green compact

Publications (1)

Publication Number Publication Date
JP2012243912A true JP2012243912A (en) 2012-12-10

Family

ID=47465299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011111731A Withdrawn JP2012243912A (en) 2011-05-18 2011-05-18 Production method of green compact, and green compact

Country Status (1)

Country Link
JP (1) JP2012243912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140472A (en) * 2015-11-10 2018-06-08 住友电气工业株式会社 The manufacturing method of formed body, electromagnetic component and formed body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140472A (en) * 2015-11-10 2018-06-08 住友电气工业株式会社 The manufacturing method of formed body, electromagnetic component and formed body
CN108140472B (en) * 2015-11-10 2020-11-03 住友电气工业株式会社 Molded body, electromagnetic component, and method for producing molded body
US11101058B2 (en) 2015-11-10 2021-08-24 Sumitomo Electric Industries, Ltd. Compact, electromagnetic component, and method for producing compact

Similar Documents

Publication Publication Date Title
JP5050745B2 (en) Reactor core, manufacturing method thereof, and reactor
JP5027945B1 (en) Dust compact, manufacturing method of compact compact, reactor, converter, and power converter
EP2189994B1 (en) Core for reactors, its manufacturing method, and reactor
KR102195952B1 (en) Powder magnetic core manufacturing method, and powder magnetic core
EP2750151B1 (en) Compressed powder compact
JP5096605B2 (en) Outer core manufacturing method, outer core, and reactor
KR101352652B1 (en) Green compact, method of manufacturing the same, and core for reactor
JP2009070914A (en) Soft magnetic material, powder magnetic core, manufacturing method of soft magnetic material, and manufacturing method of powder magnetic core
JP5965190B2 (en) Method for producing green compact and green compact
JP5445801B2 (en) Reactor and booster circuit
CN108140472B (en) Molded body, electromagnetic component, and method for producing molded body
JP2012243912A (en) Production method of green compact, and green compact
US11192183B2 (en) Method for manufacturing powder magnetic core
JP2013016656A (en) Production method of green compact, and green compact
JP2012199568A (en) Green compact, production method of green compact, reactor, converter, and power converter
JP6174954B2 (en) Method for producing a green compact
WO2012147487A1 (en) Method for producing compressed powder compact, compressed powder compact, reactor, converter, and power conversion device
JP2004211129A (en) Metal powder for powder magnetic core, and powder magnetic core using it
JP6940674B2 (en) Manufacturing method of powder compact
JP2009206491A (en) Soft magnetic powder, soft magnetic material, and method for manufacturing soft magnetic material
JP5831941B2 (en) Manufacturing method of outer core
JP2013030756A (en) Green compact

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805