JP2013030756A - Green compact - Google Patents

Green compact Download PDF

Info

Publication number
JP2013030756A
JP2013030756A JP2012125851A JP2012125851A JP2013030756A JP 2013030756 A JP2013030756 A JP 2013030756A JP 2012125851 A JP2012125851 A JP 2012125851A JP 2012125851 A JP2012125851 A JP 2012125851A JP 2013030756 A JP2013030756 A JP 2013030756A
Authority
JP
Japan
Prior art keywords
green compact
trapezoidal
core
die
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012125851A
Other languages
Japanese (ja)
Other versions
JP5845141B2 (en
Inventor
Atsushi Sato
佐藤  淳
Masato Uozumi
真人 魚住
Koji Yamaguchi
浩司 山口
Kazutsugu Kusabetsu
和嗣 草別
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2012125851A priority Critical patent/JP5845141B2/en
Publication of JP2013030756A publication Critical patent/JP2013030756A/en
Application granted granted Critical
Publication of JP5845141B2 publication Critical patent/JP5845141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a green compact having low loss and high productivity, a core for a reactor having the green compact, and a magnetic circuit component.SOLUTION: A green compact 10 is formed by compression-molding coated soft magnetic material powders having insulation coats, and is a deformed frustum mainly consisting of a frustum part 113 sandwiched between plate-like parts 111, 112 disposed so as to face each other. A longitudinal section of the green compact 10 consists of a trapezoidal surface 113s, a rectangular-shaped surface 111s at long side connected to a long side of the trapezoidal surface 113s, a rectangular-shaped surface 112s at short side connected to a short side of the trapezoidal surface 113s. A sliding surface of a molding die mainly consists of an outer peripheral surface 113o of the frustum part 113. Friction between a compression molded product and the molding die is reduced and damage of insulation coats of the green compact 10 can be reduced because the outer peripheral surface 113o is inclined to the extraction direction of the compression molded product. Therefore the green compact 10 has low loss, and high productivity by shortening post-processing time.

Description

本発明は、リアクトルなどの磁気回路部品に具えられる磁心の素材に利用される圧粉成形体、リアクトル用コア、この圧粉成形体を具える磁気回路部品に関するものである。特に、低損失で、生産性に優れる圧粉成形体に関するものである。   The present invention relates to a green compact used for a magnetic core material provided in a magnetic circuit component such as a reactor, a core for a reactor, and a magnetic circuit component including the green compact. In particular, the present invention relates to a green compact with low loss and excellent productivity.

鉄やその合金などの軟磁性材料からなる磁心と、この磁心に配置されるコイルとを具える磁気回路部品が種々の分野で利用されている。上記磁心の素材として、圧粉成形体がある。圧粉成形体は、代表的には、貫通孔を有するダイと、ダイの貫通孔の一方の開口部を塞ぐように配置される下パンチとでつくられる成形空間に軟磁性材料からなる原料粉末を充填した後、上パンチと下パンチとで当該原料粉末を圧縮成形することで製造される。ダイから抜き出した圧縮成形物には、通常、歪み除去などを目的とした熱処理を施す。   Magnetic circuit components including a magnetic core made of a soft magnetic material such as iron or an alloy thereof and a coil disposed on the magnetic core are used in various fields. As a material for the magnetic core, there is a green compact. The green compact is typically a raw material powder made of a soft magnetic material in a molding space formed by a die having a through hole and a lower punch arranged to close one opening of the through hole of the die. After filling, the raw material powder is compression-molded with an upper punch and a lower punch. The compression molded product extracted from the die is usually subjected to heat treatment for the purpose of removing distortion.

上記磁気回路部品を交流磁場で使用すると、磁心には、鉄損(概ね、ヒステリシス損と渦電流損との和)が生じる。特に、数kHz以上といった高周波数で利用される場合、渦電流損が顕著になることから、磁心には、渦電流損の低減が望まれる。渦電流損を低減するために、原料粉末として、鉄粒子といった軟磁性材料からなる金属粒子の外周に絶縁被膜を具える被覆粉末を利用し、電気抵抗を高めることが提案されている(特許文献1参照)。また、圧縮成形物とダイの内周面との摺接などによって絶縁被膜が損傷し、絶縁被膜から露出すると共に変形した金属粒子同士が接触して導通可能となった部分(以下、ブリッジ部と呼ぶ)を除去するために、圧縮成形物に酸処理といった後処理を施すことがなされている(特許文献1参照)。   When the magnetic circuit component is used in an alternating magnetic field, iron loss (generally the sum of hysteresis loss and eddy current loss) occurs in the magnetic core. In particular, when used at a high frequency such as several kHz or more, eddy current loss becomes remarkable, and therefore it is desired for the magnetic core to reduce eddy current loss. In order to reduce eddy current loss, it has been proposed to increase the electric resistance by using a coating powder having an insulating coating on the outer periphery of a metal particle made of a soft magnetic material such as iron particles as a raw material powder (Patent Document). 1). In addition, the insulating coating is damaged due to sliding contact between the compression molded product and the inner peripheral surface of the die, and the portions exposed to the conductive coating and deformed metal particles come into contact with each other (hereinafter referred to as the bridge portion). In order to remove (refer to), the compression molded product is subjected to post-treatment such as acid treatment (see Patent Document 1).

特開2006-229203号公報JP 2006-229203 A

低損失で生産性に優れる圧粉成形体の開発が望まれている。   Development of a green compact with low loss and excellent productivity is desired.

昨今、磁気回路部品の作動周波数がますます高くなってきていることから、特に渦電流損が小さい磁心が望まれている。圧粉成形体の原料に、上述のように被覆粉末を利用し、特性の回復のために酸処理などの後処理を施すことで、渦電流損の低減を図ることができる。しかし、圧縮成形物とダイの内周面との摩擦が大きいと、圧縮成形物をダイから抜き出す際などで、ダイの内周面に摺接した圧縮成形物の表面だけではなく内部まで、絶縁被膜が損傷してブリッジ部が生成される恐れがある。圧縮成形物の内部に存在するブリッジ部をも除去するためには、上記後処理を十分に行う必要がある。その結果、処理時間が長くなり、圧粉成形体の生産性の低下を招く。また、ブリッジ部が多いと、上記後処理によって完全に除去できない場合もあり、低損失な圧粉成形体が得られない恐れがある。   In recent years, the operating frequency of magnetic circuit components has been increasing, so that a magnetic core with particularly low eddy current loss is desired. Reduction of eddy current loss can be achieved by using the coating powder as described above for the raw material of the green compact and subjecting it to a post-treatment such as an acid treatment to restore the characteristics. However, if the friction between the compression molded product and the inner peripheral surface of the die is large, when the compression molded product is extracted from the die, the insulation is not only applied to the surface of the compression molded product that is in sliding contact with the inner peripheral surface of the die. The coating may be damaged and a bridge portion may be generated. In order to remove the bridge portion existing inside the compression molded product, it is necessary to sufficiently perform the post-treatment. As a result, the processing time becomes longer, and the productivity of the green compact is reduced. Moreover, when there are many bridge | bridging parts, it may be unable to remove completely by the said post-processing, and there exists a possibility that a low-loss compacting body cannot be obtained.

そこで、本発明の目的の一つは、低損失で生産性に優れる圧粉成形体を提供することにある。また、本発明の他の目的は、低損失で生産性に優れるリアクトル用コア、磁気回路部品を提供することにある。   Then, one of the objectives of this invention is providing the compacting body which is low loss and excellent in productivity. Another object of the present invention is to provide a reactor core and a magnetic circuit component having low loss and excellent productivity.

上述のブリッジ部の生成を抑制すれば、特性の回復のために行う後処理時間の短縮や除去量の低減、確実な除去を図ることができる。ブリッジ部の低減には、絶縁被膜の損傷を低減、好ましくは防止することが効果的である。本発明者らは、種々検討した結果、圧粉成形体を特定の形状とすると、ダイから抜き出した圧縮成形物に施す後処理の時間が短くても、低損失な圧粉成形体が得られる、との知見を得た。この理由は、ダイから圧縮成形物を抜き出す際などで、絶縁被膜が損傷され難くなったため、と考えられる。そこで、本発明は、特定の形状の圧粉成形体を提案する。   If the generation of the bridge portion described above is suppressed, it is possible to shorten the post-processing time performed for the recovery of characteristics, reduce the removal amount, and reliably remove. For reducing the bridge portion, it is effective to reduce, preferably prevent, damage to the insulating coating. As a result of various studies, the present inventors have obtained a compacted green compact with a low loss even if the post-treatment time applied to the compacted molded product extracted from the die is short when the compacted compact is shaped into a specific shape. , And got the knowledge. The reason for this is considered to be that the insulating coating is less likely to be damaged when the compression molded product is extracted from the die. Then, this invention proposes the compacting body of a specific shape.

本発明圧粉成形体は、絶縁被膜を具える被覆軟磁性粒子を圧縮成形してなるものであり、この圧粉成形体の少なくとも一部の断面として、対向配置された長辺と短辺とを具える台形状面と、上記台形状面の長辺に繋がる長辺側矩形状面と、上記台形状面の短辺に繋がる短辺側矩形状面とから構成される面を有する。そして、本発明圧粉成形体は、上記台形状面の面積が上記長辺側矩形状面及び上記短辺側矩形状面の合計面積よりも大きい。   The green compact of the present invention is formed by compression-molding coated soft magnetic particles having an insulating coating, and as a cross-section of at least a part of the green compact, a long side and a short side arranged opposite to each other. And a long side rectangular surface connected to the long side of the trapezoidal surface, and a short side rectangular surface connected to the short side of the trapezoidal surface. In the green compact of the present invention, the area of the trapezoidal surface is larger than the total area of the long side rectangular surface and the short side rectangular surface.

本発明圧粉成形体は、直方体や円柱のように外表面を構成する任意の平面に平行な断面をとったときの断面積が一様な立体ではなく、断面積が異なる部分を有する立体である。具体的には、本発明圧粉成形体は、上述のように断面が台形状である台形状面が占める割合が大きい部分、代表的には、上記台形状面から構成される錘台体といった立体を主体とする部分を有する。上記立体は、その外周面が、主としてダイからの抜き出し方向に対して交差する傾斜面(上記台形状面の斜辺を構成する面)であり、直方体や円柱のような、ダイからの抜き出し方向に平行な外周面を有する立体と比較して、ダイの内周面との摩擦を低減できる。従って、ダイから抜き出された圧縮成形物において、少なくとも上記錘台体部分は、絶縁被膜の損傷領域が少なく、例えば、圧縮成形物のごく表面のみとすることができ、ブリッジ部の生成をも低減できる。このことから、本発明圧粉成形体は、ブリッジ部を除去するための後処理を省略したり、処理時間を短縮できる。また、ブリッジ部の生成が低減されることで、ブリッジ部の除去量も低減できることから、本発明圧粉成形体は、歩留まりの低下も抑制できる。以上から、本発明圧粉成形体は、生産性に優れる。また、後処理の処理時間が短くても、ブリッジ部を十分に除去できるため、本発明圧粉成形体を利用することで、低損失な磁心やリアクトルが得られる。従って、本発明圧粉成形体は、低損失な磁心やリアクトルの実現に寄与することができる。   The green compact of the present invention is not a solid having a uniform cross-sectional area when taking a cross section parallel to an arbitrary plane constituting the outer surface, such as a rectangular parallelepiped or a cylinder, but a solid having portions having different cross-sectional areas. is there. Specifically, the green compact of the present invention is a portion in which the trapezoidal surface having a trapezoidal cross section as described above occupies a large proportion, typically a frustum composed of the trapezoidal surface. It has a part mainly composed of a solid. The solid is an inclined surface whose outer peripheral surface mainly intersects with the direction of extraction from the die (the surface constituting the oblique side of the trapezoidal surface), and is in the direction of extraction from the die, such as a rectangular parallelepiped or a cylinder. Friction with the inner peripheral surface of the die can be reduced as compared with a solid body having parallel outer peripheral surfaces. Therefore, in the compression molded product extracted from the die, at least the frustum body portion has a small damaged area of the insulating coating, and can be, for example, only the very surface of the compression molded product, and can also generate a bridge portion. Can be reduced. From this, the green compact of the present invention can omit the post-treatment for removing the bridge portion and can shorten the processing time. Moreover, since the removal amount of a bridge | bridging part can also be reduced because the production | generation of a bridge | bridging part is reduced, this invention compacting body can also suppress the fall of a yield. As mentioned above, this invention compacting body is excellent in productivity. Moreover, since the bridge portion can be sufficiently removed even when the post-treatment time is short, a low-loss magnetic core and reactor can be obtained by using the green compact of the present invention. Therefore, this invention compacting body can contribute to realization of a low-loss magnetic core and a reactor.

かつ、本発明圧粉成形体は、上記台形状面を挟むように長辺側矩形状面及び短辺側矩形状面を具える。断面が矩形状面となる立体、代表的には、直方体や円柱などの対向する一対の面の面積が同じである柱状体を圧縮成形時の加圧方向に垂直に配置される箇所とする、代表的には、圧縮成形時の受圧箇所とすることで、上述のように錘台体を主体とする部分を有していても、本発明圧粉成形体は、寸法精度よく、かつ安定して成形できる。この点からも、本発明圧粉成形体は、生産性に優れる。   And this invention compacting body provides the long side rectangular surface and the short side rectangular surface so that the said trapezoid surface may be pinched | interposed. A solid whose cross-section is a rectangular surface, typically a columnar body having the same area of a pair of opposed surfaces such as a rectangular parallelepiped or a cylinder, as a place arranged perpendicular to the pressing direction at the time of compression molding, Typically, by adopting a pressure receiving portion at the time of compression molding, the green compact of the present invention is stable with high dimensional accuracy even if it has a portion mainly composed of a frustum body as described above. Can be molded. Also from this point, the green compact of the present invention is excellent in productivity.

その他、本発明圧粉成形体は、圧縮成形物と成形用金型との摩擦の低減により、当該金型の摩耗も低減でき、金型寿命の延長を図ることもできる。   In addition, the powder compact of the present invention can reduce the wear of the mold by reducing the friction between the compression molded product and the mold for molding, and can extend the life of the mold.

本発明圧粉成形体の代表的な形態は、上記台形状面と上記長辺側矩形状面との境界面を第一面、上記台形状面と上記短辺側矩形状面との境界面を第二面とするとき、上記第一面に平行な面(長辺側矩形状面において台形状面の長辺に平行な辺を構成する面)、上記第二面に平行な面(短辺側矩形状面において台形状面の短辺に平行な辺を構成する面)がいずれも、外表面を構成し、上述の錘台体を主体とする形態が挙げられる。その他、上記長辺側矩形状面に繋がる部分を有する形態が挙げられる。この形態は、上記第二面に平行な面が外表面となり、長辺側矩形状面と上記繋がる部分との境界面が上記第一面に平行な仮想面となり、当該繋がる部分の一部の面が外表面となり、上述の錘台体を主体とする形態である。   A representative form of the green compact of the present invention is that the boundary surface between the trapezoidal surface and the long-side rectangular surface is the first surface, and the boundary surface between the trapezoidal surface and the short-side rectangular surface Is a surface parallel to the first surface (a surface constituting a side parallel to the long side of the trapezoidal surface in the long side rectangular surface), a surface parallel to the second surface (short In the side-side rectangular surface, any surface that forms a side parallel to the short side of the trapezoidal surface constitutes the outer surface, and a form mainly composed of the above-described frustum body is exemplified. In addition, the form which has the part connected to the said long side rectangular surface is mentioned. In this form, the surface parallel to the second surface is the outer surface, the boundary surface between the long-side rectangular surface and the connected portion is a virtual surface parallel to the first surface, and a part of the connected portion is The surface is the outer surface, and the above-described frustum body is the main form.

本発明圧粉成形体の一形態として、上記台形状面と上記長辺側矩形状面との境界面を第一面、上記台形状面と上記短辺側矩形状面との境界面を第二面とするとき、第一面及び第二面の少なくとも一方の面に垂直な方向が加圧方向となるように成形された形態が挙げられる。   As one form of the green compact of the present invention, the boundary surface between the trapezoidal surface and the long side rectangular surface is the first surface, and the boundary surface between the trapezoidal surface and the short side rectangular surface is the first surface. When it is set as two surfaces, the form shape | molded so that the direction perpendicular | vertical to at least one surface of a 1st surface and a 2nd surface may turn into a pressurization direction is mentioned.

上記形態は、成形時、上述の錘台体を構成する第一面や第二面が加圧方向に直交に配置され、当該錘台体を構成する外周面(上記台形状面の斜辺を構成する面)が、例えば、ダイの内周面により成形される箇所となる。従って、上記形態は、上述のようにダイの内周面との摩擦を低減して、絶縁被膜の損傷を低減でき、低損失な圧粉成形体を生産性よく製造できる。   In the above form, the first surface and the second surface constituting the above-mentioned frustum body are arranged orthogonal to the pressurizing direction at the time of molding, and the outer peripheral surface constituting the frustum body (configures the hypotenuse of the trapezoidal surface) The surface to be formed becomes, for example, a portion formed by the inner peripheral surface of the die. Therefore, the said form can reduce the friction with the internal peripheral surface of die | dye as mentioned above, can reduce the damage of an insulating film, and can manufacture a low-loss compacting body with high productivity.

本発明圧粉成形体の一形態として、上記第一面に平行な面及び上記第二面に平行な面のいずれも加圧成形面である形態が挙げられる。   As one form of this invention compacting body, the form in which both the surface parallel to said 1st surface and the surface parallel to said 2nd surface are pressure-molding surfaces is mentioned.

加圧成形面は、主として、上パンチ又は下パンチにより成形された面であり、圧粉成形体の外表面を構成することから、上記形態は、上記第一面に平行な面及び上記第二面に平行な面の双方が圧粉成形体の外表面を構成する形態といえる。また、台形状面は、長辺側矩形状面及び短辺側矩形状面の両矩形状面に挟まれるように存在することから、上記形態は、断面が台形状面から構成される部分(錘台体部分)が加圧成形面に挟まれた形態といえる。すると、上記形態は、台形状面から構成される部分(錘台体部分)の外周面がダイの内周面により成形される箇所となることから、上述のように絶縁被膜の損傷を低減して、低損失な圧粉成形体を生産性よく製造できる。   The pressure molding surface is mainly a surface molded by the upper punch or the lower punch, and constitutes the outer surface of the powder compact. Therefore, the above-described form includes a surface parallel to the first surface and the second surface. It can be said that both surfaces parallel to the surface constitute the outer surface of the green compact. In addition, since the trapezoidal surface exists so as to be sandwiched between both rectangular surfaces of the long-side rectangular surface and the short-side rectangular surface, the above-described form is a portion in which the cross section is configured by a trapezoidal surface ( It can be said that the frustum body part) is sandwiched between the pressure molding surfaces. Then, the above form reduces the damage to the insulating coating as described above, because the outer peripheral surface of the portion (frustum body portion) composed of the trapezoidal surface becomes a portion formed by the inner peripheral surface of the die. Thus, a low-loss compact can be produced with high productivity.

本発明圧粉成形体の一形態として、上記台形状面を有する部分が、筒状のコイルが配置される箇所に利用される形態が挙げられる。この形態では、上記台形状面の斜辺を構成する面が、上記コイルの内周面に対向するように配置することが好ましい。   As one form of this invention compacting body, the form utilized for the location in which the part which has the said trapezoid-shaped surface is arrange | positioned with a cylindrical coil is mentioned. In this embodiment, it is preferable that the surface constituting the hypotenuse of the trapezoidal surface is disposed so as to face the inner peripheral surface of the coil.

台形状面の斜辺を構成する面は、代表的には、錘台体の外周面が挙げられる。この面は、上述のように絶縁被膜の損傷が低減されて、健全な絶縁被膜が存在し、この絶縁被膜によって軟磁性粒子同士が絶縁されている。或いは、この面に上述の後処理が施されている場合には、ブリッジ部が除去されて、絶縁被膜によって軟磁性粒子同士が絶縁されている。そのため、この面は、電気抵抗(表面抵抗)が高い。上記形態は、このような電気絶縁性に優れる面をコイルの内周面に対向するように配置することで、渦電流損を効果的に低減できる。   A typical example of the surface constituting the hypotenuse of the trapezoidal surface is the outer peripheral surface of the frustum body. On this surface, damage to the insulating coating is reduced as described above, and a healthy insulating coating exists, and the soft magnetic particles are insulated from each other by this insulating coating. Alternatively, when the above-described post-treatment is performed on this surface, the bridge portion is removed and the soft magnetic particles are insulated from each other by the insulating coating. Therefore, this surface has high electrical resistance (surface resistance). The said form can reduce an eddy current loss effectively by arrange | positioning such a surface excellent in electrical insulation so that the inner peripheral surface of a coil may be opposed.

本発明圧粉成形体の一形態として、上記台形状面と上記長辺側矩形状面との境界面を第一面、上記台形状面と上記短辺側矩形状面との境界面を第二面とするとき、第一面の面積に対する第二面の面積の比が80%以上99.8%以下である形態が挙げられる。また、本発明圧粉成形体の一形態として、上記台形状面の斜辺と、上記長辺側矩形状面の短辺の延長線とがつくるテーパ角が0.1°以上6°以下である形態が挙げられる。   As one form of the green compact of the present invention, the boundary surface between the trapezoidal surface and the long side rectangular surface is the first surface, and the boundary surface between the trapezoidal surface and the short side rectangular surface is the first surface. When two surfaces are used, a form in which the ratio of the area of the second surface to the area of the first surface is 80% or more and 99.8% or less can be given. Further, as one form of the green compact of the present invention, there is a form in which the taper angle formed by the oblique side of the trapezoidal surface and the extended line of the short side of the long side rectangular surface is 0.1 ° or more and 6 ° or less. Can be mentioned.

上記形態は、上記第一面と上記第二面との面積の比やテーパ角が上記特定の範囲を満たすことで、磁路面積を十分に確保しつつ、絶縁被膜の損傷を低減できる。従って、上記形態は、特に、筒状のコイルが配置される箇所を、直方体や円柱状といった一様な断面積を有する立体とする場合に比較して、遜色の無い磁気特性を有すると共に、低損失で生産性にも優れる。面積の比及びテーパ角の双方が上記特定の範囲を満たす形態とすることができる。長辺側矩形状面において台形状面の長辺に平行な辺が当該長辺と同じ長さであり、短辺側矩形状面において台形状面の短辺に平行な辺が当該短辺と同じ長さである場合、第一面の面積と第一面に平行な面の面積とが実質的に同じであり、第二面の面積と第二面に平行な面の面積とが実質的に同じである。従って、第一面に平行な面及び第二面に平行な面が圧粉成形体の外表面を構成する場合、上記第一面の面積は第一面に平行な面の面積、上記第二面の面積は第二面に平行な面の面積を利用することができる。或いは、上記第一面の面積は、台形状面と長辺側矩形状面との境界で切断した断面積、上記第二面の面積は、台形状面と短辺側矩形状面との境界で切断した断面積、その他、錘台体の軸方向に投影した投影面積を利用することができる。   The said form can reduce damage of an insulating film, ensuring sufficient magnetic path area because the ratio of the area of said 1st surface and said 2nd surface and a taper angle satisfy | fill the said specific range. Therefore, in particular, the above-described form has inferior magnetic characteristics and a low level compared to the case where the portion where the cylindrical coil is disposed is a solid having a uniform cross-sectional area such as a rectangular parallelepiped or a cylindrical shape. Loss and excellent productivity. Both the area ratio and the taper angle can satisfy the specific range. In the long side rectangular surface, the side parallel to the long side of the trapezoidal surface is the same length as the long side, and in the short side rectangular surface, the side parallel to the short side of the trapezoidal surface is the short side. When the length is the same, the area of the first surface and the area of the surface parallel to the first surface are substantially the same, and the area of the second surface and the area of the surface parallel to the second surface are substantially the same. Is the same. Therefore, when the surface parallel to the first surface and the surface parallel to the second surface constitute the outer surface of the green compact, the area of the first surface is the area of the surface parallel to the first surface, the second As the surface area, the surface area parallel to the second surface can be used. Alternatively, the area of the first surface is a cross-sectional area cut at the boundary between the trapezoidal surface and the long side rectangular surface, and the area of the second surface is the boundary between the trapezoidal surface and the short side rectangular surface. In addition to the cross-sectional area cut at, the projected area projected in the axial direction of the frustum body can be used.

本発明圧粉成形体は、リアクトルの磁心の素材に好適に利用することができる。そこで、本発明リアクトル用コアとして、本発明圧粉成形体を具える形態を提案する。或いは、本発明磁気回路部品として、本発明圧粉成形体を具える形態を提案する。本発明の磁気回路部品は、磁心と、磁心の一部に配置される筒状のコイルとを具える。上記磁心は、上記コイル内に配置される内側コア部と、上記コイルから露出されて、上記内側コア部と共に閉磁路を形成する露出コア部とを具える。そして、上記内側コア部は、上述の本発明圧粉成形体を具える。本発明磁気回路部品は、代表的にはリアクトルが挙げられる。   The green compact of the present invention can be suitably used as a material for a magnetic core of a reactor. Then, the form which provides this invention compacting body as a core for this invention reactor is proposed. Or the form which provides this invention compacting body as this invention magnetic circuit components is proposed. The magnetic circuit component of the present invention includes a magnetic core and a cylindrical coil disposed on a part of the magnetic core. The magnetic core includes an inner core portion disposed in the coil and an exposed core portion that is exposed from the coil and forms a closed magnetic path together with the inner core portion. And the said inner core part comprises the above-mentioned this invention compacting body. A typical example of the magnetic circuit component of the present invention is a reactor.

本発明圧粉成形体は、上述のように低損失な磁心が得られることから、本発明圧粉成形体を具える本発明リアクトル用コア、本発明圧粉成形体や本発明リアクトル用コアを具える本発明磁気回路部品は、低損失である。また、本発明圧粉成形体は、上述のように生産性に優れることから、本発明圧粉成形体を素材に用いる本発明リアクトル用コアや本発明磁気回路部品も生産性に優れる。   Since the present invention green compact provides a low-loss magnetic core as described above, the present reactor core comprising the present powder compact, the present powder compact or the present reactor core. The magnetic circuit component according to the present invention has a low loss. Moreover, since this invention compacting body is excellent in productivity as mentioned above, this invention core for reactors and this invention magnetic circuit components which use this invention compacting body as a raw material are also excellent in productivity.

上記特有の形状の本発明圧粉成形体は、例えば、適宜な形状に成形した圧縮成形物に切削加工といった加工を施すことによって製造できる。しかし、切削加工は、絶縁被膜を破壊する。そこで、本発明圧粉成形体の製造には、特定の形状の成形用金型を利用する以下の製造方法を好適に利用することができる。この製造方法は、ダイに設けられた貫通孔と、貫通孔に挿入した第一パンチとでつくられる成形空間に絶縁被膜を具える被覆軟磁性粉末を充填した後、上記第一パンチと上記貫通孔に挿入した第二パンチとで当該粉末を圧縮成形して圧粉成形体を製造する方法に係るものである。上記ダイは、上記貫通孔の軸方向に沿った断面をとったとき、上記貫通孔の各開口部側に設けられた直線部と、これら直線部に挟まれ、上記第二パンチが挿入される側から上記第一パンチが挿入される側に向かって先細りするテーパ部とを具える。そして、上記成形空間は、上記テーパ部を含むように形成する。   The green compact of the present invention having the above specific shape can be produced, for example, by subjecting a compression-molded product formed into an appropriate shape to a process such as cutting. However, the cutting process destroys the insulating coating. Therefore, the following manufacturing method using a molding die having a specific shape can be suitably used for manufacturing the green compact of the present invention. In this manufacturing method, after filling a molding space formed by a through hole provided in a die and a first punch inserted into the through hole with a coated soft magnetic powder having an insulating film, the first punch and the through hole are filled. The present invention relates to a method for producing a green compact by compression molding the powder with a second punch inserted into the hole. When the die has a cross section taken along the axial direction of the through hole, the die is sandwiched between the straight portions provided on the openings of the through holes and the straight portions, and the second punch is inserted. A taper portion that tapers from the side toward the side where the first punch is inserted. And the said shaping | molding space is formed so that the said taper part may be included.

上記製造方法は、上記テーパ部を具える特定の形状のダイを利用し、当該テーパ部を成形空間の一部とし、当該テーパ部によって圧縮成形物の外周面の一部を成形する。つまり、上記製造方法は、テーパ部によって、外周面の一部が、傾斜面から構成される部分を有する圧縮成形物を成形できる。このような圧縮成形物は、ダイから抜き出す際などで、上述のようにダイの内周面との摩擦を低減できるため、絶縁被膜の損傷を効果的に低減できる。また、得られた圧縮成形物は、絶縁被膜の損傷が少ない部分を有するため、ブリッジ部の除去といった後処理を省略できる、或いは処理時間を短縮できる。従って、上記製造方法は、低損失な圧粉成形体(代表的には本発明圧粉成形体)を生産性よく製造することができる。   The manufacturing method uses a die having a specific shape including the tapered portion, and uses the tapered portion as a part of the molding space, and forms a part of the outer peripheral surface of the compression molded product by the tapered portion. That is, the said manufacturing method can shape | mold the compression molding product in which a part of outer peripheral surface has a part comprised from an inclined surface by a taper part. Such a compression-molded product can reduce the friction with the inner peripheral surface of the die as described above at the time of extraction from the die, and therefore can effectively reduce the damage to the insulating coating. Moreover, since the obtained compression molding has a part with little damage of an insulating film, post-processing, such as removal of a bridge | bridging part, can be abbreviate | omitted or processing time can be shortened. Therefore, the above production method can produce a low-loss compacted product (typically, the compacted product of the present invention) with high productivity.

本発明圧粉成形体、本発明リアクトル用コア、磁気回路部品は、低損失で生産性に優れる。   The compact body of the present invention, the core for reactor of the present invention, and the magnetic circuit component have low loss and excellent productivity.

(A)は、実施形態1の圧粉成形体の概略斜視図、(B)は、(A)の(B)-(B)断面図、(C)はこの圧粉成形体をコイル内に配置した状態を説明する断面図である。(A) is a schematic perspective view of the green compact of Embodiment 1, (B) is a (B)-(B) cross-sectional view of (A), (C) is this powder compact in the coil It is sectional drawing explaining the state which has arrange | positioned. 実施形態1の圧粉成形体の製造手順の一例を説明する工程説明図である。FIG. 3 is a process explanatory diagram illustrating an example of a manufacturing procedure of the green compact of the first embodiment. 実施形態2のリアクトルの概略斜視図である。5 is a schematic perspective view of a reactor according to Embodiment 2. FIG. 実施形態2のリアクトルに具える磁心の分解斜視図である。5 is an exploded perspective view of a magnetic core provided in the reactor of Embodiment 2. FIG. 環状の圧粉成形体の製造に用いる成形用金型の一例を説明する説明図である。It is explanatory drawing explaining an example of the metal mold | die used for manufacture of a cyclic | annular compacting body. (A)は、ER型コアに利用される圧粉成形体の正面図、(B)は、この圧粉成形体の背面図である。(A) is a front view of a green compact used for an ER type core, and (B) is a rear view of this green compact. ER型コアに利用される圧粉成形体の製造に用いる成形用金型の一例を説明する説明図である。It is explanatory drawing explaining an example of the metal mold | die used for manufacture of the compacting body utilized for an ER type | mold core. (A)は、T型コアに利用される圧粉成形体の正面図、(B)は、この圧粉成形体の背面図である。(A) is a front view of a green compact used for a T-shaped core, and (B) is a rear view of this green compact. (A),(B)はいずれも、T型コアに利用される圧粉成形体の製造に用いる成形用金型の一例を説明する説明図である。(A) and (B) are explanatory views for explaining an example of a molding die used for manufacturing a green compact used for a T-shaped core.

以下、本発明の実施の形態を説明する。まず、図1,図2を参照して、本発明圧粉成形体を説明する。図面において、同一符号は同一名称物を示す。   Embodiments of the present invention will be described below. First, the green compact of the present invention will be described with reference to FIGS. In the drawings, the same reference numerals indicate the same names.

〔実施形態1〕
圧粉成形体10は、磁性粉末を成形用金型(代表的には、ダイ・上パンチ・下パンチを具えるもの)によって圧縮して成形され、磁心の素材に利用される磁性材料である。圧粉成形体10は、直方体に類似の立体であるが、直方体のように任意の外表面に平行な断面をとったときの断面積が一様ではなく、断面積が異なる部分を有する異形状の立体である点を最大の特徴とする。以下、より詳細に説明する。
Embodiment 1
The green compact 10 is a magnetic material that is formed by compressing magnetic powder with a molding die (typically, a die, an upper punch, and a lower punch) and is used as a magnetic core material. . The compact 10 is a solid similar to a rectangular parallelepiped, but has a non-uniform cross-sectional area when taking a cross-section parallel to an arbitrary outer surface, such as a rectangular parallelepiped, and has a different cross-sectional area. The point that is a solid is the greatest feature. This will be described in more detail below.

(圧粉成形体)
圧粉成形体10は、対向配置された板状部111,112と、これら板状部111,112に挟まれた錘台部113とを具え、錘台部113を主体とする変形錘台体である。圧粉成形体10を、一方の板状部111から他方の板状部112に向かう方向に沿った平面(板状部111,112の厚さ方向に平行な平面)で切断したとき、その断面(以下、この断面を縦断面と呼ぶ)は、図1(B)に示すように、対向配置された二つの矩形状面111s,112sと、これら矩形状面111s,112sに挟まれる台形状面113sとで構成される。両矩形状面111s,112sと台形状面113sとは滑らかに繋がっており、各矩形状面111s,112sは、台形状面113sの長辺に繋がる長辺側矩形状面111s、台形状面113sの短辺に繋がる短辺側矩形状面112sである。長辺側矩形状面111sにおける対向する二辺の長さは、台形状面113sの長辺の長さに等しい。短辺側矩形状面112sにおける対向する二辺の長さは、台形状面113sの短辺の長さに等しい。また、短辺側矩形状面112sの長辺(=台形状面113sの短辺)の長さは、長辺側矩形状面111sの長辺よりも短い。そのため、台形状面113sは、長辺側矩形状面111sから短辺側矩形状面112sに向かって先細りしている。
(Green compact)
The green compact 10 is a deformed frustum body that includes plate-like parts 111 and 112 arranged opposite to each other and a weight base part 113 sandwiched between the plate-like parts 111 and 112, and the weight base part 113 as a main component. When the green compact 10 is cut along a plane along the direction from one plate-like portion 111 to the other plate-like portion 112 (a plane parallel to the thickness direction of the plate-like portions 111, 112), the cross section (hereinafter referred to as the cross section) (This cross section is referred to as a longitudinal cross section), as shown in FIG.1 (B), two rectangular surfaces 111s and 112s arranged opposite to each other, and a trapezoidal surface 113s sandwiched between the rectangular surfaces 111s and 112s. Consists of. Both rectangular surfaces 111s and 112s and the trapezoidal surface 113s are smoothly connected, and each rectangular surface 111s and 112s is a long side rectangular surface 111s and a trapezoidal surface 113s connected to the long side of the trapezoidal surface 113s. The short side rectangular surface 112s connected to the short side. The length of the two opposing sides in the long side rectangular surface 111s is equal to the length of the long side of the trapezoidal surface 113s. The length of the two opposing sides in the short side rectangular surface 112s is equal to the length of the short side of the trapezoidal surface 113s. Further, the long side of the short side rectangular surface 112s (= the short side of the trapezoidal surface 113s) is shorter than the long side of the long side rectangular surface 111s. Therefore, the trapezoidal surface 113s tapers from the long side rectangular surface 111s toward the short side rectangular surface 112s.

なお、図では、板状部と錘台部との境界や錘台部の傾斜がわかり易いように強調して示すが、板状部が錘台部に比較して十分に厚さが小さく、かつ後述するテーパ角が小さい場合、圧粉成形体は、実質的に直方体状に見える。また、図1(B),図1(C),図2(B),後述する図5〜図9では、わかり易いように板状部と錘台部との境界や直線部とテーパ部との境界を一点鎖線で示すが、仮想線である。   In the figure, the boundary between the plate-like portion and the frustum portion and the inclination of the frustum portion are emphasized for easy understanding, but the plate-like portion is sufficiently small compared to the frustum portion, and When the taper angle to be described later is small, the green compact looks substantially a rectangular parallelepiped. In addition, in FIGS. 1 (B), 1 (C), 2 (B), and FIGS. 5 to 9 to be described later, the boundary between the plate-like portion and the frustum portion and the straight portion and the tapered portion are easily understood. Although the boundary is indicated by a one-dot chain line, it is a virtual line.

圧粉成形体10は、主として錘台部113から構成される。「主として」或いは後述する「主体とする」とは、縦断面をとったとき、錘台部113を構成する台形状面113sの面積S3が板状部111,112を構成する長辺側矩形状面111sの面積S1,短辺側矩形状面112sの面積S2の合計面積:S1+S2よりも大きいことをいう(S3>S1+S2)。板状部111,112は、後述するようにその厚さ(図1(B)において上下方向(縦断面の切断方向)の大きさ)が薄いほど好ましいことから、台形状面113sの面積S3は、合計面積:S1+S2よりも十分に大きいこと(S3≫S1+S2)がより好ましい。具体的には、台形状面113sの面積S3は、合計面積:S1+S2+S3に対して50%超、更に70%以上占めることが好ましい。   The green compact 10 is mainly composed of a frustum portion 113. “Mainly” or “mainly” to be described later means that when the longitudinal section is taken, the area S3 of the trapezoidal surface 113s constituting the frustum 113 is the long side rectangular surface 111s constituting the plate-like portions 111 and 112. The total area of the area S1 and the area S2 of the short-side rectangular surface 112s is larger than S1 + S2 (S3> S1 + S2). As described later, the plate-like portions 111 and 112 preferably have a smaller thickness (size in the vertical direction (cutting direction of the longitudinal section) in FIG. 1B), so that the area S3 of the trapezoidal surface 113s is a total. More preferably, the area is sufficiently larger than S1 + S2 (S3 >> S1 + S2). Specifically, the area S3 of the trapezoidal surface 113s preferably occupies more than 50% and more than 70% of the total area: S1 + S2 + S3.

錘台部113は、板状部111,112の平面形状に応じた錘台体であり、その外周面113o(縦断面における台形状面113sの斜辺を構成する面)は、平面(縦断面において台形状面113sの斜辺が直線)でも曲面(同曲線)でもよい(図1(A)では平面)。錘台部113は、板状部111,112の板状の面(後述する加圧成形面111f,112f)に平行な平面で切断したとき、その断面(以下、この断面を横断面と呼ぶ)の面積が、切断位置により異なる。一方の板状部111寄りの平面で切断したときの断面積は、他方の板状部112寄りの平面で切断したときの断面積より大きい。   The frustum portion 113 is a frustum body corresponding to the planar shape of the plate-like portions 111 and 112, and the outer peripheral surface 113o (the surface constituting the hypotenuse of the trapezoidal surface 113s in the longitudinal section) is a flat surface (the trapezoidal shape in the longitudinal section) The hypotenuse of the surface 113s may be a straight line) or a curved surface (the same curve) (a plane in FIG. 1A). When the frustum portion 113 is cut along a plane parallel to the plate-like surfaces of the plate-like portions 111 and 112 (pressure forming surfaces 111f and 112f described later), the area of the cross section (hereinafter, this cross-section is referred to as a transverse cross-section). However, it depends on the cutting position. The cross-sectional area when cut along a plane near one plate-like part 111 is larger than the cross-sectional area when cut along a plane near the other plate-like part 112.

錘台部113の外周面113oは、成形用金型のダイの内周面で成形される。従って、錘台部113の傾斜角度、具体的には、縦断面をとったとき、台形状面113sの斜辺(曲線の場合には、近似線又は接線又は弦)と、長辺側矩形状面111sの短辺の延長線とがつくる角(以下、テーパ角θと呼ぶ)を0.1°以上とすると、ダイの内周面との摩擦を低減して、絶縁被膜の損傷を効果的に低減できる。テーパ角θは、大きいほど絶縁被膜の損傷を抑制し易いが、大き過ぎると錘台部113と他方の板状部112との境界面の面積(台形状面113sの短辺の長さ)が小さくなり(短くなり)、磁路面積が減り、磁気特性の低下を招く。従って、テーパ角θは、6°以下が好ましい。錘台部113の厚さ(台形状面113sの高さ)にもよるが、テーパ角θは、0.1°以上3°以下、更に0.1°以上2°以下が好ましい。   The outer peripheral surface 113o of the frustum 113 is formed by the inner peripheral surface of the die of the molding die. Therefore, when the inclination angle of the frustum part 113, specifically, when taking a longitudinal section, the hypotenuse (the approximate line or tangent or chord in the case of a curve) of the trapezoidal surface 113s and the long side rectangular surface If the angle formed by the extension of the short side of 111s (hereinafter referred to as the taper angle θ) is 0.1 ° or more, the friction with the inner peripheral surface of the die can be reduced, and the damage to the insulating coating can be effectively reduced. . The greater the taper angle θ, the easier it is to prevent damage to the insulating film, but if it is too large, the area of the boundary surface between the frustum 113 and the other plate-like part 112 (the length of the short side of the trapezoidal surface 113s) will be increased. It becomes smaller (shorter), the magnetic path area is reduced, and the magnetic properties are lowered. Accordingly, the taper angle θ is preferably 6 ° or less. Although it depends on the thickness of the frustum 113 (the height of the trapezoidal surface 113s), the taper angle θ is preferably 0.1 ° to 3 °, and more preferably 0.1 ° to 2 °.

錘台部113は、その外周面113oの全周に亘ってテーパ角θが一様な形態であると、圧縮成形物とダイの内周面との摩擦を効果的に低減できる上に、均一的な加圧を行い易く寸法精度に優れる、金型が簡易な形状にできる、といった利点を有する。なお、錘台部113の外周面113oの一部のみが傾斜面から構成された形態とすることができる。例えば、錘台部113が角錘台状である場合、外周面を構成する面のうち、一面のみを傾斜面とすることができる。この形態は、ある断面をとったとき、この断面における台形状面に具える各斜辺についてのテーパ角がそれぞれ異なる形態となる。   When the taper angle 113 has a uniform taper angle θ over the entire circumference of the outer peripheral surface 113o, it is possible to effectively reduce the friction between the compression molded product and the inner peripheral surface of the die. There is an advantage that it is easy to perform a regular pressurization and is excellent in dimensional accuracy, and that the mold can be made in a simple shape. It should be noted that only a part of the outer peripheral surface 113o of the frustum portion 113 can be formed from an inclined surface. For example, when the frustum portion 113 has a truncated pyramid shape, only one of the surfaces constituting the outer peripheral surface can be an inclined surface. In this form, when a certain cross section is taken, the taper angle for each hypotenuse provided on the trapezoidal surface in this cross section is different.

板状部111,112の平面形状は、図1(A)に示すような長方形の他、円形、楕円形、レーストラック形状、長方形の角部を所望の角度に丸めた角丸め形状などが挙げられる。この平面形状は、例えば、図1(C)に示すように圧粉成形体10を筒状のコイル2内に挿入する場合、当該コイル2の内周形状に沿った形状とすると、圧粉成形体10をコイル2に近接でき、磁性部品の小型化を図ることができる。板状部111,112の平面形状が長方形である場合、圧粉成形体10は、四角錘台などの角錘台状となり、円形や楕円形などである場合、円錘台状や楕円錘台状となる。圧粉成形体10において板状部111における横断面の断面積、及び板状部112における横断面の断面積は、一様である。或いは、板状部111,112の平面形状は、円環状といった穴あき形状が挙げられる。この場合、圧粉成形体は、環状の錘台体を具える立体になる。   Examples of the planar shape of the plate-like portions 111 and 112 include a rectangle as shown in FIG. 1A, a circle, an ellipse, a race track shape, and a rounded corner shape obtained by rounding corners of the rectangle to a desired angle. For example, when the green compact 10 is inserted into the cylindrical coil 2 as shown in FIG. 1 (C), the planar shape is formed along the inner peripheral shape of the coil 2. The body 10 can be brought close to the coil 2 and the magnetic component can be miniaturized. When the planar shape of the plate-like portions 111 and 112 is a rectangle, the green compact 10 is a truncated pyramid shape such as a square frustum, and when it is a circle or an ellipse, a frustum shape or an elliptic frustum shape is used. Become. In the green compact 10, the cross-sectional area of the cross section of the plate-like portion 111 and the cross-sectional area of the cross-section of the plate-like portion 112 are uniform. Alternatively, the planar shape of the plate-like portions 111 and 112 may be a perforated shape such as an annular shape. In this case, the green compact is a solid body including an annular frustum body.

板状部111,112は、圧縮成形時の圧力を直接受けた受圧箇所である。受圧箇所として板状部111,112を具えることで、錘台部113を主体としても、圧粉成形体10は、精度よく成形できる。   The plate-like portions 111 and 112 are pressure receiving portions that directly receive pressure during compression molding. By providing the plate-like portions 111 and 112 as pressure receiving locations, the green compact 10 can be accurately formed even with the frustum portion 113 as a main component.

板状部111,112は、圧縮成形時に加圧を行う上パンチや下パンチによって成形された加圧成形面111f,112fを有する。ここでは、加圧成形面111fは、台形状面113sと長辺側矩形状面111sとの境界面に平行な面であり、長辺側矩形状面111sにおいて台形状面113sの長辺に平行な辺を構成する面である。加圧成形面112fは、台形状面113sと短辺側矩形状面112sとの境界面に平行な面であり、短辺側矩形状面112sにおいて台形状面113sの短辺に平行な辺を構成する面である。   The plate-like portions 111 and 112 have pressure forming surfaces 111f and 112f formed by an upper punch or a lower punch that applies pressure during compression molding. Here, the pressure molding surface 111f is a surface parallel to the boundary surface between the trapezoidal surface 113s and the long side rectangular surface 111s, and is parallel to the long side of the trapezoidal surface 113s in the long side rectangular surface 111s. It is a surface that constitutes a long side. The pressure molding surface 112f is a surface parallel to the boundary surface between the trapezoidal surface 113s and the short-side rectangular surface 112s, and the short-side rectangular surface 112s has a side parallel to the short side of the trapezoidal surface 113s. It is a surface to compose.

なお、圧粉成形体は、その形状(角Rの付け方など)や、断面における磁性粒子の変形状態(一般に、圧粉成形体を構成する粒子は、加圧方向に直交する方向に塑性変形して扁平になる)などにより加圧方向が判別できる。従って、加圧方向に直交する方向の外表面を加圧成形面と判別できる。また、対向する加圧成形面に挟まれる外表面は、代表的には、ダイの内周面により成形された面(摺接面)であると判別できる。その他、摺接面は、摺り痕の有無によって判別することもできる。   Note that the green compact has a shape (such as how to apply the corner R) and the deformation state of the magnetic particles in the cross section (generally, the particles constituting the green compact are plastically deformed in a direction perpendicular to the pressing direction. The direction of pressurization can be determined by, for example, flattening). Therefore, the outer surface in the direction orthogonal to the pressing direction can be determined as the pressure forming surface. Further, it can be determined that the outer surface sandwiched between the opposing pressure forming surfaces is typically a surface (sliding contact surface) formed by the inner peripheral surface of the die. In addition, the slidable contact surface can be determined based on the presence or absence of a rub mark.

板状部111,112の厚さはいずれも、錘台部113が成形可能な範囲で薄くてよく、0.3mm〜2mm程度であれば十分であると考えられる。板状部111,112の外周面111o,112oは、圧縮成形物においてダイからの抜き出し方向に平行な外周面であることから、板状部111,112の厚さが薄いほど、圧縮成形物と成形用金型との摩擦を低減して、絶縁被膜の損傷を低減できる。従って、板状部111,112の厚さは2mm以下(合計で4mm以下)、更に1mm以下(合計で2mm以下)が好ましい。   The thicknesses of the plate-like portions 111 and 112 may be thin as long as the frustum portion 113 can be formed, and it is considered that a thickness of about 0.3 mm to 2 mm is sufficient. Since the outer peripheral surfaces 111o, 112o of the plate-like portions 111, 112 are outer peripheral surfaces parallel to the extraction direction from the die in the compression-molded product, the thinner the plate-like portions 111, 112, the smaller the compression-molded product and the molding die. And the friction of the insulating film can be reduced. Accordingly, the thickness of the plate-like portions 111 and 112 is preferably 2 mm or less (total of 4 mm or less), and further preferably 1 mm or less (total of 2 mm or less).

ここで、長辺側矩形状面111sの長辺を構成する加圧成形面111fは、その面積が、錘台部113(台形状面113s)と板状部111(長辺側矩形状面111s)との境界面の面積、錘台部113(台形状面113s)と板状部111(長辺側矩形状面111s)との境界で切断した断面(横断面)の面積、上記境界面の投影面積のいずれとも等しい。短辺側矩形状面112sの長辺を構成する加圧成形面112fは、その面積が、錘台部113(台形状面113s)と板状部112(短辺側矩形状面112s)との境界面の面積、錘台部113(台形状面113s)と板状部112(短辺側矩形状面112s)との境界で切断した断面(横断面)の面積、上記境界面の投影面積のいずれとも等しい。上述のように両矩形状面111s,112sの長辺の長さが異なることから、これら加圧成形面111f,112fの面積も異なる。ここでは、板状部111の面積が板状部112よりも大きい。面積が大きい板状部111に対する面積が小さい板状部112の面積の比は、錘台部113の厚さ(台形状面113sの高さ)と上述のテーパ角θとによって変化する。例えば、錘台部113の厚さが一定の場合、テーパ角θが小さいほど、テーパ角θが一定の場合、錘台部113の厚さが小さいほど(薄いほど)、上記面積の比が大きくなる。板状部111,112を磁路に用いる場合、磁路面積を十分に確保できるように、上記面積の比は80%以上が好ましい。上記面積の比は、大きいほど大きな磁路面積を確保できるが、テーパ角θが小さくなって、絶縁被膜の損傷を低減する効果が小さくなることから、99.8%以下が好ましい。上記面積の比は、88.4%以上99.8%以下、更に92%以上99.8%以下が好ましい。   Here, the pressure-molded surface 111f constituting the long side of the long side rectangular surface 111s has areas of the weight base part 113 (trapezoidal surface 113s) and the plate part 111 (long side rectangular surface 111s). ), The area of the cross section (transverse section) cut at the boundary between the frustum 113 (trapezoidal surface 113s) and the plate-like part 111 (long-side rectangular surface 111s), Equal to any of the projected areas. The pressure molding surface 112f constituting the long side of the short side rectangular surface 112s has an area of the frustum portion 113 (trapezoidal surface 113s) and the plate portion 112 (short side rectangular surface 112s). The area of the boundary surface, the area of the cross section (transverse section) cut at the boundary between the frustum 113 (trapezoidal surface 113s) and the plate-like part 112 (short side rectangular surface 112s), the projected area of the boundary surface It is equal to both. As described above, since the lengths of the long sides of the rectangular surfaces 111s and 112s are different, the areas of the pressure molding surfaces 111f and 112f are also different. Here, the area of the plate-like portion 111 is larger than that of the plate-like portion 112. The ratio of the area of the plate-like portion 112 having a small area to the plate-like portion 111 having a large area varies depending on the thickness of the frustum portion 113 (the height of the trapezoidal surface 113s) and the taper angle θ described above. For example, when the thickness of the frustum portion 113 is constant, the smaller the taper angle θ, the smaller the taper angle θ, the smaller the thickness of the frustum portion 113 (thinner), the larger the ratio of the above areas. Become. When the plate-like portions 111 and 112 are used for the magnetic path, the ratio of the areas is preferably 80% or more so that a sufficient magnetic path area can be secured. The larger the area ratio, the larger the magnetic path area can be secured. However, since the taper angle θ becomes smaller and the effect of reducing damage to the insulating coating becomes smaller, it is preferably 99.8% or less. The area ratio is preferably 88.4% to 99.8%, more preferably 92% to 99.8%.

(製造方法)
{成形用金型}
上記特定の形状の圧粉成形体10は、例えば、図2に示す成形用金型100を用いて製造することができる。まず、成形用金型100を説明する。
(Production method)
{Mold for molding}
The powder compact 10 having the specific shape can be manufactured using, for example, a molding die 100 shown in FIG. First, the molding die 100 will be described.

成形用金型100は、貫通孔103hが設けられた筒状のダイ103と、ダイ103の貫通孔103hの各開口部からそれぞれ挿入されて、貫通孔103h内で対向配置される柱状の第一パンチ(下パンチ102)・第二パンチ(上パンチ101)とを具える。成形用金型100は、ダイ103の貫通孔103hに下パンチ102を挿入して形成される有底筒状の空間を成形空間とし、この空間に充填した原料粉末を上パンチ101と下パンチ102とで加圧・圧縮して圧粉成形体を成形する。この成形用金型100は、ダイ103の貫通孔103hが特定の形状を有する。   The molding die 100 includes a cylindrical die 103 provided with a through-hole 103h and a columnar first inserted through each opening of the through-hole 103h of the die 103 and arranged oppositely in the through-hole 103h. A punch (lower punch 102) and a second punch (upper punch 101) are provided. The molding die 100 has a bottomed cylindrical space formed by inserting the lower punch 102 in the through hole 103h of the die 103 as a molding space, and the raw powder filled in the space is used as the upper punch 101 and the lower punch 102. Press and compress to form a green compact. In the molding die 100, the through hole 103h of the die 103 has a specific shape.

ダイ103の貫通孔103hは、一方の開口部の開口面積と、他方の開口部の開口面積とが異なっており、貫通孔103hの軸方向の中間部が傾斜面で構成されている。具体的には、図2(A)に示すように、貫通孔103hの軸方向の断面をとったとき、貫通孔103hの各開口部側に設けられた直線部1011,1012と、これら直線部1011,1012に挟まれ、上パンチ101が挿入される側(図2では上側)から下パンチ102が挿入される側(図2では下側)に向かって先細りするテーパ部1013とを具える。ダイ103の一方の直線部1011から構成される内周面により、図1に示す圧粉成形体10の一方の板状部111の外周面111oが成形され、他方の直線部1012から構成される内周面により、圧粉成形体10の他方の板状部112の外周面112oが成形され、テーパ部1013から構成される傾斜面により、圧粉成形体10の錘台部113の外周面113oが成形される。板状部111,112の加圧成形面111f,112f(図1)は、上パンチ101における下パンチとの対向面(図2では押圧面101p)、下パンチ102における上パンチとの対向面(図2では押圧面102p)によって成形される。   In the through hole 103h of the die 103, the opening area of one opening is different from the opening area of the other opening, and the intermediate part in the axial direction of the through hole 103h is formed of an inclined surface. Specifically, as shown in FIG. 2 (A), when taking a cross section in the axial direction of the through-hole 103h, the straight portions 1011 and 1012 provided on each opening side of the through-hole 103h, and these straight portions A tapered portion 1013 that is sandwiched between 1011 and 1012 and tapers from a side where the upper punch 101 is inserted (upper side in FIG. 2) toward a side where the lower punch 102 is inserted (lower side in FIG. 2). An outer peripheral surface 111o of one plate-like portion 111 of the green compact 10 shown in FIG. 1 is formed by an inner peripheral surface constituted by one linear portion 1011 of the die 103, and is constituted by the other linear portion 1012. The outer peripheral surface 112o of the other plate-like portion 112 of the green compact 10 is formed by the inner peripheral surface, and the outer peripheral surface 113o of the frustum portion 113 of the green compact 10 is formed by the inclined surface constituted by the tapered portion 1013. Is formed. The pressure forming surfaces 111f and 112f (FIG. 1) of the plate-like portions 111 and 112 are the surfaces facing the lower punch in the upper punch 101 (the pressing surface 101p in FIG. 2), and the surfaces facing the upper punch in the lower punch 102 (FIG. 2). Then, it is formed by the pressing surface 102p).

テーパ部1013の角度(一方の直線部1011をつくる直線の延長線と、テーパ部1013をつくる斜辺とがなす角の大きさ)は、圧粉成形体10(図1)のテーパ角θに実質的に等しくなることから、テーパ角θが所望の値となるように、好ましくは上述の範囲を満たすように適宜選択するとよい。テーパ部1013における貫通孔103hの軸方向(図2では上下方向)に沿った長さは、圧粉成形体10の錘台部113(図1)の厚さに実質的に等しくなることから、錘台部113の厚さが所望の値となるように適宜選択するとよい。貫通孔103hの各開口部の開口面積、及び上パンチ101,下パンチ102の押圧面101p,102pの面積は、板状部111,112(図1)の面積(加圧成形面111f,112f(図1)の面積)に実質的に等しくなることから、板状部111,112の面積が所望の値となるように、好ましくは上述した面積の比を満たすように適宜選択するとよい。   The angle of the taper portion 1013 (the size of the angle formed by the straight extension line forming one straight portion 1011 and the hypotenuse forming the taper portion 1013) is substantially equal to the taper angle θ of the green compact 10 (FIG. 1). Therefore, the taper angle θ is preferably selected so as to satisfy the above-mentioned range so that the taper angle θ becomes a desired value. Since the length along the axial direction (vertical direction in FIG. 2) of the through hole 103h in the taper portion 1013 is substantially equal to the thickness of the frustum portion 113 (FIG. 1) of the green compact 10, The thickness of the frustum portion 113 may be appropriately selected so as to have a desired value. The opening area of each opening of the through-hole 103h and the areas of the pressing surfaces 101p, 102p of the upper punch 101 and the lower punch 102 are the areas of the plate-like portions 111, 112 (FIG. 1) (pressure forming surfaces 111f, 112f (FIG. 1 Therefore, the area of the plate-like portions 111 and 112 is preferably selected appropriately so as to satisfy the above-described area ratio.

なお、成形用金型100の構成材料には、従来、圧粉成形体(主として金属粉末から構成されるもの)の成形に利用されている適宜な高強度材料(高速度鋼など)が利用できる。   As a constituent material of the molding die 100, an appropriate high-strength material (such as high-speed steel) that has been conventionally used for molding a green compact (mainly composed of metal powder) can be used. .

上パンチ101及び下パンチ102の少なくとも一方とダイ103とは、相対的に移動可能である。図2に示す成形用金型100では、下パンチ102が図示しない本体装置に固定されて移動不可能であり、ダイ103及び上パンチ101が図示しない移動機構によりそれぞれ上下方向に移動可能な構成である。その他、ダイ103が固定されて両パンチ101,102が移動可能な構成、ダイ103及び両パンチ101,102のいずれもが移動可能な構成とすることができる。一方のパンチ(ここでは下パンチ102)を固定する形態は、移動機構が簡易で移動操作を制御し易い。   At least one of the upper punch 101 and the lower punch 102 and the die 103 are relatively movable. In the molding die 100 shown in FIG. 2, the lower punch 102 is fixed to a main body device (not shown) and cannot be moved, and the die 103 and the upper punch 101 are movable in the vertical direction respectively by a moving mechanism (not shown). is there. In addition, a configuration in which the die 103 is fixed and both the punches 101 and 102 can be moved, and a configuration in which both the die 103 and both the punches 101 and 102 are movable can be adopted. In the form of fixing one punch (here, the lower punch 102), the moving mechanism is simple and the moving operation is easy to control.

成形用金型100(特に、ダイ103の内周面103i)に潤滑剤を塗布すると、原料粉末や圧縮成形物と金型100との間の摩擦を低減することができる。潤滑剤は、ステアリン酸リチウムなどの金属石鹸、ステアリン酸アミドなどの脂肪酸アミド、エチレンビスステアリン酸アミドなどの高級脂肪酸アミドなどの固体潤滑剤、固体潤滑剤を水などの液媒に分散させた分散液、液状潤滑剤などが挙げられる。その他、金型を加熱した状態で成形する(温間成形する)と、成形性をより高められる。冷間成形でも勿論よい。   When a lubricant is applied to the molding die 100 (particularly, the inner peripheral surface 103i of the die 103), friction between the raw material powder or the compression molded product and the die 100 can be reduced. Lubricant is a metal soap such as lithium stearate, a fatty acid amide such as stearic acid amide, a solid lubricant such as higher fatty acid amide such as ethylenebisstearic acid amide, a solid lubricant dispersed in a liquid medium such as water. Examples thereof include liquids and liquid lubricants. In addition, if the mold is molded in a heated state (warm molding), the moldability can be further improved. Of course, cold forming may be used.

{成形手順}
次に、成形用金型100を用いて圧粉成形体10(図1)を製造する手順を説明する。ダイ103の貫通孔103hに下パンチ102を挿入して、ダイ103と下パンチ102とで所定の大きさの成形空間を形成する。上パンチ101は、上方に逃がしておく。
{Molding procedure}
Next, a procedure for manufacturing the green compact 10 (FIG. 1) using the molding die 100 will be described. The lower punch 102 is inserted into the through-hole 103h of the die 103, and the die 103 and the lower punch 102 form a molding space having a predetermined size. The upper punch 101 is allowed to escape upward.

後述する原料粉末:被覆軟磁性粉末を図示しない給粉装置により、上記成形空間に給粉する。   Raw material powder to be described later: coated soft magnetic powder is fed into the molding space by a powder feeding device (not shown).

上パンチ101を下方に移動してダイ103の貫通孔103hに挿入して、両パンチ101,102により、原料粉末Pを加圧・圧縮する(図2(B))。   The upper punch 101 is moved downward and inserted into the through-hole 103h of the die 103, and the raw material powder P is pressurized and compressed by both punches 101 and 102 (FIG. 2 (B)).

成形圧力は、5ton/cm2(≒490MPa)以上15ton/cm2(≒1470MPa)以下が挙げられる。5ton/cm2以上とすることで、原料粉末Pを十分に圧縮でき、圧粉成形体の相対密度を高められ、15ton/cm2以下とすることで、原料粉末Pを構成する被覆軟磁性粒子同士の接触による絶縁被膜の損傷を抑制できる。成形圧力は6ton/cm2以上10ton/cm2以下がより好ましい。 The molding pressure is 5 ton / cm 2 (≈490 MPa) or more and 15 ton / cm 2 (≈1470 MPa) or less. By setting it to 5 ton / cm 2 or more, the raw material powder P can be sufficiently compressed, and the relative density of the green compact can be increased. By setting it to 15 ton / cm 2 or less, the coated soft magnetic particles constituting the raw material powder P It is possible to suppress damage to the insulating coating due to contact between each other. Compacting pressure 6 ton / cm 2 or more 10ton / cm 2 or less being more preferred.

上パンチ101が原料粉末Pに接してから、上パンチ101と共に、ダイ103も下方に移動する。上パンチ101と共にダイ103も移動することで、成形空間内の原料粉末Pに加わる圧力を均一的にし易い。ダイ103及び上パンチ101の移動速度は、適宜選択することができる。なお、上パンチ101のみを移動することもできる。   After the upper punch 101 contacts the raw material powder P, the die 103 also moves downward together with the upper punch 101. By moving the die 103 together with the upper punch 101, it is easy to make the pressure applied to the raw material powder P in the molding space uniform. The moving speed of the die 103 and the upper punch 101 can be selected as appropriate. Only the upper punch 101 can be moved.

所定の加圧を行った後、成形空間には、図2(B)に示すように、上パンチ101と一方の直線部1011とで成形される断面長方形状の面1111と、下パンチ102と他方の直線部1012とで成形される断面長方形状の面1112と、テーパ部1013で成形され、両長方形状の面1111,1112に挟まれた断面台形状の面1113とを具える圧縮成形物が成形される。この圧縮成形物を取り出すため、ダイ103を下方に移動する。   After performing the predetermined pressurization, in the molding space, as shown in FIG.2 (B), a surface 1111 having a rectangular cross section formed by the upper punch 101 and one linear portion 1011, and the lower punch 102 Compression molded product comprising a surface 1112 having a rectangular cross section formed by the other straight portion 1012 and a trapezoidal surface 1113 formed by a tapered portion 1013 and sandwiched between both rectangular surfaces 1111 and 1112. Is formed. In order to take out the compression molded product, the die 103 is moved downward.

圧縮成形物がダイ103から完全に露出されたら、上パンチ101を上方に移動して、圧縮成形物を採取する。上パンチ101を上方に移動してから、ダイ103を下方に移動したり、上パンチ101とダイ103とを同時に移動してもよい。   When the compression molded product is completely exposed from the die 103, the upper punch 101 is moved upward to collect the compression molded product. After the upper punch 101 is moved upward, the die 103 may be moved downward, or the upper punch 101 and the die 103 may be moved simultaneously.

連続的に成形を行う場合、上述したように成形空間の形成→成形空間への原料粉末の充填→加圧・圧縮→取り出し、を繰り返し行うとよい。   In the case of continuous molding, as described above, formation of the molding space → filling of the raw material powder into the molding space → pressurization / compression → removal may be repeated.

得られた圧縮成形物はそのままでも用いることができるが、圧縮に伴う歪みなどを除去することなどを目的として、熱処理を施すことができる。歪みの除去により、ヒステリシス損といった損失を低減できる。熱処理条件は、加熱温度:300℃〜800℃ぐらい、保持時間:30分以上60分以下が挙げられる。加熱温度が高いほど、歪みを除去し易くヒステリシス損を低減できるが、絶縁被膜が熱分解して渦電流損が増加する恐れがあるため、熱分解温度未満とすることが好ましい。代表的には、絶縁被膜がリン酸鉄やリン酸亜鉛などの非晶質リン酸塩からなる場合、上記加熱温度は500℃程度までが好ましく、金属酸化物やシリコーン樹脂などの耐熱性に優れる絶縁材料からなる場合、上記加熱温度は550℃以上、更に600℃以上、特に650℃以上に高められる。加熱温度及び保持時間は、絶縁被膜の構成材料に応じて適宜選択するとよい。この熱処理時の雰囲気は特に問わないが、窒素雰囲気といった非酸化性雰囲気、或いは酸素濃度が低い低酸素雰囲気とすると、軟磁性粒子の酸化を防止できる。   The obtained compression-molded product can be used as it is, but it can be subjected to a heat treatment for the purpose of removing distortion caused by compression. By removing distortion, loss such as hysteresis loss can be reduced. The heat treatment conditions include heating temperature: about 300 ° C. to 800 ° C., holding time: 30 minutes to 60 minutes. The higher the heating temperature, the easier it is to remove the strain and the hysteresis loss can be reduced. However, since the insulating coating may be thermally decomposed to increase eddy current loss, it is preferable that the heating temperature is lower than the thermal decomposition temperature. Typically, when the insulating coating is made of an amorphous phosphate such as iron phosphate or zinc phosphate, the heating temperature is preferably up to about 500 ° C., and is excellent in heat resistance such as a metal oxide or silicone resin. In the case of an insulating material, the heating temperature is raised to 550 ° C. or higher, further 600 ° C. or higher, particularly 650 ° C. or higher. The heating temperature and holding time may be appropriately selected according to the constituent material of the insulating coating. The atmosphere during the heat treatment is not particularly limited, but the oxidation of the soft magnetic particles can be prevented if a non-oxidizing atmosphere such as a nitrogen atmosphere or a low oxygen atmosphere with a low oxygen concentration is used.

得られた圧縮成形物、或いは上述の熱処理を施した熱処理物に、軟磁性粒子が導通した箇所:ブリッジ部を除去することなどを目的として、酸エッチングなどの後処理を施すことができる。後処理は、例えば、損失が所定の大きさ以下となるように、処理時間や処理液の濃度を調整するとよい。   The obtained compression molded product or the heat-treated product subjected to the above heat treatment can be subjected to post-treatment such as acid etching for the purpose of removing the portion where the soft magnetic particles are conducted: the bridge portion. In the post-treatment, for example, the treatment time and the concentration of the treatment liquid may be adjusted so that the loss becomes a predetermined magnitude or less.

以上から、圧粉成形体10(図1)は、圧縮成形物のまま、熱処理物、及び上述の後処理を施した後処理物のいずれかの形態をとる。   From the above, the green compact 10 (FIG. 1) is in the form of either a heat-treated product or a post-processed product that has been subjected to the above-described post-treatment as a compression-molded product.

なお、環状の圧粉成形体を製造する場合には、例えば、図5に示すように筒状の下パンチ102に同軸に挿通配置され、下パンチ102に対して相対的に移動可能なコアロッド104を具える成形用金型110を利用するとよい。ダイ103の貫通孔103hの内周面103iには上述のようにテーパ部1013が設けられ、コアロッド104の外周面も、ダイ103iと同様なテーパ部を有する。例えば、コアロッド104の上パンチ101側の領域において、ダイ103のテーパ部1013と逆向きのテーパ部、つまり、上パンチ101側に向かって先細りするテーパ部を具えるコアロッド104を利用する。成形用金型110を用いることで、環状の圧粉成形体に具える貫通孔を構成する内周面と、コアロッド104の外周面との摩擦をも低減でき、絶縁被膜の損傷を低減できる。得られた環状の圧粉成形体において、貫通孔の軸を通る平面で切断した断面は、長辺側矩形状面111s及び短辺側矩形状面112sで挟まれる台形状面113sが当該軸を中心として対称に存在する形状である。   When manufacturing an annular compacted body, for example, as shown in FIG. 5, the core rod 104 is coaxially inserted into the cylindrical lower punch 102 and is movable relative to the lower punch 102. It is preferable to use a mold 110 for molding. As described above, the taper portion 1013 is provided on the inner peripheral surface 103i of the through hole 103h of the die 103, and the outer peripheral surface of the core rod 104 also has a taper portion similar to that of the die 103i. For example, in the region of the upper punch 101 side of the core rod 104, the core rod 104 having a tapered portion opposite to the tapered portion 1013 of the die 103, that is, a tapered portion that tapers toward the upper punch 101 side is used. By using the molding die 110, it is possible to reduce the friction between the inner peripheral surface constituting the through-hole provided in the annular powder compact and the outer peripheral surface of the core rod 104, and to reduce damage to the insulating coating. In the obtained annular compacted body, the cross-section cut along the plane passing through the axis of the through-hole has a trapezoidal surface 113s sandwiched between the long-side rectangular surface 111s and the short-side rectangular surface 112s. It is a shape that exists symmetrically as the center.

(原料粉末)
圧粉成形体10(図1)の原料粉末となる磁性粉末には、軟磁性材料からなる軟磁性粒子と、軟磁性粒子の表面に設けられた絶縁被膜とを具える被覆軟磁性粉末を用いる。
(Raw material powder)
The magnetic powder used as the raw powder of the green compact 10 (FIG. 1) is a coated soft magnetic powder comprising a soft magnetic particle made of a soft magnetic material and an insulating coating provided on the surface of the soft magnetic particle. .

軟磁性材料は、金属、特に、鉄を50質量%以上含有するものが好ましい。例えば、純鉄(Fe)、その他、Fe-Si系合金,Fe-Al系合金,Fe-N系合金,Fe-Ni系合金,Fe-C系合金,Fe-B系合金,Fe-Co系合金,Fe-P系合金,Fe-Ni-Co系合金,及びFe-Al-Si系合金から選択される1種の鉄合金が挙げられる。特に、99質量%以上がFeである純鉄からなる圧粉成形体は、透磁率及び磁束密度が高い磁心が得られ、鉄合金からなる圧粉成形体は、渦電流損を低減し易く、より低損失な磁心が得られる。   The soft magnetic material preferably contains a metal, particularly 50% by mass or more of iron. For example, pure iron (Fe), other Fe-Si alloys, Fe-Al alloys, Fe-N alloys, Fe-Ni alloys, Fe-C alloys, Fe-B alloys, Fe-Co alloys There is one kind of iron alloy selected from alloys, Fe-P alloys, Fe-Ni-Co alloys, and Fe-Al-Si alloys. In particular, a compacted body made of pure iron in which 99% by mass or more is Fe can obtain a magnetic core having a high magnetic permeability and magnetic flux density, and a compacted body made of an iron alloy can easily reduce eddy current loss, A lower loss magnetic core can be obtained.

軟磁性粒子は、その平均粒径が1μm以上70μm以下であることが好ましい。平均粒径が1μm以上であることで、流動性に優れる上にヒステリシス損の増加を抑制でき、70μm以下であることで、得られた圧粉成形体を磁心に用いたとき、1kHz以上といった高周波数で使用した場合でも、渦電流損を効果的に低減できる。平均粒径が50μm以上であると、ヒステリシス損の低減効果を得易い上に、粉末を取り扱い易い。上記平均粒径は、粒径のヒストグラム中、粒径の小さい粒子からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径(質量)をいう。   The soft magnetic particles preferably have an average particle size of 1 μm or more and 70 μm or less. When the average particle size is 1 μm or more, it is excellent in fluidity and can suppress an increase in hysteresis loss, and when it is 70 μm or less, when the obtained green compact is used as a magnetic core, it is as high as 1 kHz or more. Even when used at a frequency, eddy current loss can be effectively reduced. When the average particle size is 50 μm or more, it is easy to obtain the effect of reducing the hysteresis loss, and it is easy to handle the powder. The average particle diameter refers to a particle diameter of particles in which the sum of masses from particles having a small particle diameter reaches 50% of the total mass in the particle diameter histogram, that is, 50% particle diameter (mass).

絶縁被膜には、絶縁性に優れる適宜な絶縁材料が利用できる。例えば、絶縁材料には、Fe,Al,Ca,Mn,Zn,Mg,V,Cr,Y,Ba,Sr,及び希土類元素(Yを除く)などから選択された1種以上の金属元素の酸化物、窒化物、炭化物などの金属酸化物、金属窒化物、金属炭化物が挙げられる。或いは、絶縁材料には、上記金属酸化物、金属窒化物、金属炭化物以外の化合物、例えば、リン化合物、珪素化合物、ジルコニウム化合物及びアルミニウム化合物から選択された1種以上の化合物が挙げられる。その他の絶縁材料には、金属塩化合物、例えば、リン酸金属塩化合物(代表的には、リン酸鉄やリン酸マンガン、リン酸亜鉛、リン酸カルシウムなど)、硼酸金属塩化合物、珪酸金属塩化合物、チタン酸金属塩化合物などが挙げられる。特に、リン酸金属塩化合物は変形性に優れることから、リン酸金属塩化合物による絶縁被膜は、圧縮成形時、軟磁性粒子の変形に追従して容易に変形できて損傷し難く、当該絶縁被膜を具える粉末を利用すると、絶縁被膜が健全な状態で存在する圧粉成形体を得易い。また、リン酸金属塩化合物による絶縁被膜は、鉄系材料からなる軟磁性粒子に対する密着性が高く、当該粒子の表面から脱落し難い。   As the insulating film, an appropriate insulating material having excellent insulating properties can be used. For example, the insulating material includes oxidation of one or more metal elements selected from Fe, Al, Ca, Mn, Zn, Mg, V, Cr, Y, Ba, Sr, and rare earth elements (excluding Y). Metal oxides such as oxides, nitrides and carbides, metal nitrides and metal carbides. Alternatively, examples of the insulating material include compounds other than the metal oxide, metal nitride, and metal carbide, for example, one or more compounds selected from phosphorus compounds, silicon compounds, zirconium compounds, and aluminum compounds. Other insulating materials include metal salt compounds, such as metal phosphate compounds (typically iron phosphate, manganese phosphate, zinc phosphate, calcium phosphate, etc.), borate metal salt compounds, silicate metal salt compounds, Examples include titanic acid metal salt compounds. In particular, since the metal phosphate compound is excellent in deformability, the insulation coating made of the metal phosphate compound can easily be deformed following the deformation of the soft magnetic particles during compression molding and is not easily damaged. If the powder which comprises is used, it will be easy to obtain the compacting body in which an insulating film exists in a healthy state. In addition, the insulating coating made of a metal phosphate compound has high adhesion to soft magnetic particles made of an iron-based material and is difficult to drop off from the surface of the particles.

上記以外の絶縁材料として、熱可塑性樹脂や非熱可塑性樹脂といった樹脂や高級脂肪酸塩が挙げられる。特に、シリコーン樹脂といったシリコン系有機化合物は耐熱性に優れることから、得られた圧縮成形物に熱処理を施した際にも分解し難い。   Examples of insulating materials other than the above include resins such as thermoplastic resins and non-thermoplastic resins and higher fatty acid salts. In particular, a silicon-based organic compound such as a silicone resin is excellent in heat resistance, and thus hardly decomposes when the obtained compression-molded product is subjected to heat treatment.

絶縁被膜の形成には、例えば、リン酸塩化成処理といった化成処理を利用できる。その他、絶縁被膜の形成には、溶剤の吹きつけや前駆体を用いたゾルゲル処理が利用できる。シリコーン系有機化合物により絶縁被膜を形成する場合、有機溶剤を用いた湿式被覆処理や、ミキサーによる直接被覆処理などを利用できる。   For the formation of the insulating film, for example, a chemical conversion treatment such as a phosphate chemical conversion treatment can be used. In addition, for the formation of the insulating film, spraying of a solvent or sol-gel treatment using a precursor can be used. When the insulating coating is formed from a silicone organic compound, wet coating using an organic solvent or direct coating using a mixer can be used.

軟磁性粒子に具える絶縁被膜の厚さは、10nm以上1μm以下が挙げられる。10nm以上であると、軟磁性粒子間の絶縁を確保でき、1μm以下であると、絶縁被膜の存在により、圧粉成形体中の磁性成分の割合の低下を抑制できる。即ち、この圧粉成形体により磁心を作製した場合、磁束密度の著しい低下を抑制できる。絶縁被膜の厚さは、組成分析(透過型電子顕微鏡及びエネルギー分散型X線分光法を利用した分析装置:TEM-EDX)により得られる膜組成と、誘導結合プラズマ質量分析装置(ICP-MS)により得られる元素量とを鑑みて相当厚さを導出し、更に、TEM写真により直接、絶縁被膜を観察して、先に導出された相当厚さのオーダーが適正な値であることを確認して決定される平均的な厚さとする。   The thickness of the insulating coating provided in the soft magnetic particles is 10 nm or more and 1 μm or less. When the thickness is 10 nm or more, insulation between soft magnetic particles can be secured, and when the thickness is 1 μm or less, a decrease in the ratio of the magnetic component in the green compact can be suppressed due to the presence of the insulating coating. That is, when a magnetic core is produced with this compacting body, a significant decrease in magnetic flux density can be suppressed. The thickness of the insulating coating is determined by composition analysis (analyzer using transmission electron microscope and energy dispersive X-ray spectroscopy: TEM-EDX) and inductively coupled plasma mass spectrometer (ICP-MS). In view of the amount of element obtained by the above, the equivalent thickness is derived, and further, the insulation film is directly observed by the TEM photograph to confirm that the order of the equivalent thickness derived earlier is an appropriate value. The average thickness determined by

上記原料粉末に潤滑剤を添加することができる。この潤滑剤は、有機物からなる固体潤滑剤の他、窒化硼素やグラファイトなどの無機物が挙げられる。   A lubricant can be added to the raw material powder. Examples of the lubricant include organic lubricants and inorganic substances such as boron nitride and graphite.

上記原料粉末を用いることで、上述の軟磁性材料からなる軟磁性粒子であって、その外周に上述の絶縁材料(又は熱処理により変成されたものを含む)により構成される絶縁被膜を具えた被覆粒子からなる圧粉成形体10が得られる。   By using the raw material powder, it is a soft magnetic particle made of the above-described soft magnetic material, and the outer periphery thereof is provided with an insulating coating composed of the above-described insulating material (or one modified by heat treatment) A green compact 10 made of particles is obtained.

(効果)
圧粉成形体10は、断面が台形状面113sで構成される錘台部113を主体とすることで、成形用金型(ダイの内周面)に摺接する面(外周面113o)が、圧縮成形物の抜き出し方向に対して傾斜するため、摺接時の摩擦を効果的に低減できる。従って、圧縮成形物を成形用金型から抜き出し易い上に、抜き出した圧縮成形物の外周面及びその近傍を構成する被覆軟磁性粒子は、上記摩擦の低減により、絶縁被膜の損傷が低減されていたり、隣り合う軟磁性粒子が塑性変形により導通した箇所:ブリッジ部の生成が抑制されていたりする。そのため、上記圧縮成形物にブリッジ部を除去するための後処理を施す場合、処理時間の短縮や、ブリッジ部の除去量の低減を図ることができる。これらのことから、圧粉成形体10は、生産性に優れる。
(effect)
The green compact 10 is mainly composed of a frustum 113 having a trapezoidal surface 113s in cross section, and the surface (outer peripheral surface 113o) that is in sliding contact with the molding die (the inner peripheral surface of the die) Since it inclines with respect to the extraction direction of a compression molding, the friction at the time of sliding contact can be reduced effectively. Therefore, it is easy to extract the compression molded product from the molding die, and the coated soft magnetic particles constituting the outer peripheral surface of the extracted compression molded product and the vicinity thereof have reduced damage to the insulating coating due to the reduction of the friction. Or where adjacent soft magnetic particles are conducted by plastic deformation: generation of a bridge portion is suppressed. Therefore, when post-processing for removing the bridge portion is performed on the compression molded product, the processing time can be shortened and the amount of removal of the bridge portion can be reduced. For these reasons, the green compact 10 is excellent in productivity.

また、圧粉成形体10は、上述の後処理を施した場合には勿論、絶縁被膜の損傷やブリッジ部の生成が抑制されることで、後処理を施さずにそのままの状態で磁心の素材に用いた場合でも、低損失な磁心が得られると期待される。   In addition, the green compact 10 has a magnetic core material as it is without being subjected to post-treatment, as a result of suppressing the damage to the insulating coating and the generation of the bridge portion, of course, when the above-described post-treatment is performed. It is expected that a low-loss magnetic core can be obtained even when used in the above.

更に、圧粉成形体10は、成形用金型100との摩擦を低減できることで、金型寿命の延長が期待できる。また、ダイ103の貫通孔103hにおいて上パンチ101側の開口部が下パンチ102側の開口部よりも広いことで、給粉後、被覆磁性粒子間の空気が抜け易くなり、脱気時間を短縮できると期待される。これらのことからも、圧粉成形体10は、生産性に優れる。   Furthermore, the compacting body 10 can be expected to extend the life of the mold by reducing the friction with the mold 100 for molding. In addition, since the opening on the upper punch 101 side is wider than the opening on the lower punch 102 side in the through hole 103h of the die 103, air between the coated magnetic particles can be easily released after powder feeding, reducing the degassing time. It is expected to be possible. From these facts, the green compact 10 is excellent in productivity.

〔実施形態2〕
次に、図3,図4を参照して、本発明磁気回路部品の一例としてリアクトルを説明する。リアクトル1は、一対の筒状のコイル素子2a,2bを有するコイル2と、コイル2を励磁したときに閉磁路を形成する磁心3とを具える。磁心3は、コイル素子2a,2b内にそれぞれ挿入配置される一対の柱状の内側コア部31と、コイル2から露出され、一対の内側コア部31を連結して環状体を構成する露出コア部32とを具える。磁心3は、主として、圧粉成形体からなる複数のコア片により構成されている。リアクトル1の特徴とするところは、内側コア部31を構成する各コア片が実施形態1の圧粉成形体10から構成されているところにある。内側コア部31を構成するコア片以外の構成は、公知のリアクトルの構成を利用することができ、図3,図4に示す構成や後述する構成は一例である。
Embodiment 2
Next, referring to FIGS. 3 and 4, a reactor will be described as an example of the magnetic circuit component of the present invention. The reactor 1 includes a coil 2 having a pair of cylindrical coil elements 2a and 2b, and a magnetic core 3 that forms a closed magnetic path when the coil 2 is excited. The magnetic core 3 is a pair of columnar inner core portions 31 inserted and arranged in the coil elements 2a and 2b, respectively, and an exposed core portion that is exposed from the coil 2 and connects the pair of inner core portions 31 to form an annular body. With 32. The magnetic core 3 is mainly composed of a plurality of core pieces made of a green compact. A feature of the reactor 1 is that each core piece constituting the inner core portion 31 is formed of the green compact 10 of the first embodiment. A configuration other than the core piece constituting the inner core portion 31 can use a known reactor configuration, and the configurations shown in FIGS. 3 and 4 and the configurations described later are examples.

(コイル)
コイル2は、接合部の無い1本の連続する巻線2wを螺旋状に巻回してなる一対のコイル素子2a,2bと、両コイル素子2a,2bを連結する連結部2rとを具える。各コイル素子2a,2bは、互いに同一の巻数の中空の筒状体であり、各軸方向が平行するように並列(横並び)され、コイル2の他端側(図3では右側)において巻線2wの一部がU字状に屈曲されて連結部2rが形成されている。この構成により、両コイル素子2a,2bの巻回方向は同一となっている。
(coil)
The coil 2 includes a pair of coil elements 2a and 2b formed by spirally winding a single continuous winding 2w having no joint portion, and a connecting portion 2r for connecting both the coil elements 2a and 2b. Each coil element 2a, 2b is a hollow cylindrical body having the same number of turns, arranged in parallel (side by side) so that the respective axial directions are parallel, and wound on the other end side (right side in FIG. 3) of the coil 2 A part of 2w is bent into a U shape to form a connecting part 2r. With this configuration, the winding directions of both coil elements 2a and 2b are the same.

巻線2wは、銅やアルミニウム、その合金といった導電性材料からなる導体の外周に、絶縁材料からなる絶縁層(代表的には、ポリアミドイミドなどからなるエナメル層)を具える被覆線を好適に利用できる。巻線2wの導体は、断面円形状の丸線の他、断面矩形状の平角線を好適に利用できる。コイル素子2a,2bは、絶縁層を有する被覆平角線をエッジワイズ巻きして形成されたエッジワイズコイルである。   The winding 2w is preferably a covered wire having an insulating layer made of an insulating material (typically an enamel layer made of polyamideimide) on the outer periphery of a conductor made of a conductive material such as copper, aluminum, or an alloy thereof. Available. As the conductor of the winding 2w, a rectangular wire having a rectangular cross section as well as a round wire having a circular cross section can be suitably used. The coil elements 2a and 2b are edgewise coils formed by edgewise winding a covered rectangular wire having an insulating layer.

(磁心)
磁心3の説明は、図4を参照して行う。磁心3は、各コイル素子2a,2b(図3)に覆われる一対の柱状の内側コア部31と、コイル2(図3)が配置されず、コイル2から露出される一対の露出コア部32とを有する。各内側コア部31はそれぞれ、各コイル素子2a,2bの内周形状に沿った外形を有する柱状体(ここでは、実質的に直方体)であり、各露出コア部32はそれぞれ、一対の台形状面を有する柱状体である。磁心3は、離間して配置される内側コア部31を挟むように露出コア部32が配置され、各内側コア部31の端面と露出コア部32の内端面とを接触させて環状に形成される。
(core)
The magnetic core 3 will be described with reference to FIG. The magnetic core 3 includes a pair of columnar inner core portions 31 covered with the coil elements 2a and 2b (FIG. 3), and a pair of exposed core portions 32 that are not disposed with the coil 2 (FIG. 3) and are exposed from the coil 2. And have. Each inner core portion 31 is a columnar body (here, substantially a rectangular parallelepiped) having an outer shape along the inner peripheral shape of each coil element 2a, 2b, and each exposed core portion 32 is a pair of trapezoidal shapes, respectively. A columnar body having a surface. The exposed core portion 32 is disposed so as to sandwich the inner core portion 31 that is spaced apart, and the magnetic core 3 is formed in an annular shape by bringing the end surface of each inner core portion 31 and the inner end surface of the exposed core portion 32 into contact with each other. The

内側コア部31は、磁性材料からなるコア片31mと、コア片よりも透磁率が低い材料、代表的には非磁性材料から構成されるギャップ材31gとを交互に積層して構成された積層体である。露出コア部32も磁性材料からなるコア片である。   The inner core portion 31 is a laminate formed by alternately laminating a core piece 31m made of a magnetic material and a gap material 31g made of a material having a lower magnetic permeability than the core piece, typically a non-magnetic material. Is the body. The exposed core portion 32 is also a core piece made of a magnetic material.

ギャップ材31gは、インダクタンスの調整のために設けられる部材であり、具体的な構成材料としては、アルミナやガラスエポキシ樹脂、不飽和ポリエステル(いずれも非磁性材料)、その他、セラミックスやフェノール樹脂などの非磁性材料に磁性粉末(例えば、フェライト、Fe,Fe-Si,センダスト)が分散した混合材料などが挙げられる。   The gap material 31g is a member provided for adjusting the inductance, and specific constituent materials include alumina, glass epoxy resin, unsaturated polyester (all non-magnetic materials), ceramics, phenol resin, etc. Examples thereof include a mixed material in which magnetic powder (for example, ferrite, Fe, Fe-Si, Sendust) is dispersed in a nonmagnetic material.

上記コア片同士の一体化やコア片31mとギャップ材31gとの一体化には、例えば、接着剤や粘着テープなどを利用できる。内側コア部31の形成に粘着テープを用い、内側コア部31と露出コア部32とを接着剤で接合する形態としてもよい。   For the integration of the core pieces or the integration of the core piece 31m and the gap material 31g, for example, an adhesive or an adhesive tape can be used. An adhesive tape may be used to form the inner core portion 31, and the inner core portion 31 and the exposed core portion 32 may be joined with an adhesive.

そして、内側コア部31の各コア片31mはいずれも、実施形態1で説明した圧粉成形体10により構成されている。特に、内側コア部31を構成するコア片31mはいずれも、圧粉成形体10(コア片31m)において錘台部113の外周面113o及び板状部111,112の外周面がコイル素子2a,2b(図3)の内周面に対向するように配置される(図1(C)参照)。換言すれば、内側コア部31を構成するコア片31mはいずれも、圧粉成形体10(コア片31m)に具える板状部111,112の加圧成形面111f,112fがコイル素子2a,2bの軸方向に直交するようにコイル素子2a,2b内に挿入配置される。そのため、錘台部113の外周面113oは、コイル2を励磁したとき、コイル素子2a,2bがつくる磁束の方向に対してテーパ角θだけ交差するように配置される。また、内側コア部31を上述のように配置した状態において、磁束の方向に直交する面で切断すると、断面積が異なる部分(錘台部113)を有する。テーパ角θ及び面積の比が上述の特定の範囲である場合、特に、テーパ角θが十分に小さく面積の比が十分に大きいことで、錘台部113の外周面113oは、磁束の方向に実質的に平行に配置される。ギャップ材31gは、圧粉成形体10(コア片31m)の板状部111,112に接して配置される。   Each core piece 31m of the inner core portion 31 is constituted by the green compact 10 described in the first embodiment. In particular, the core pieces 31m constituting the inner core portion 31 are all formed on the coil elements 2a, 2b (the outer peripheral surface 113o of the weight base portion 113 and the outer peripheral surfaces of the plate-like portions 111, 112 in the green compact 10 (core piece 31m). It is arranged so as to face the inner peripheral surface of FIG. 3) (see FIG. 1C). In other words, each of the core pieces 31m constituting the inner core portion 31 has the pressure-formed surfaces 111f and 112f of the plate-like portions 111 and 112 included in the green compact 10 (core piece 31m) of the coil elements 2a and 2b. The coil elements 2a and 2b are inserted and arranged so as to be orthogonal to the axial direction. Therefore, the outer peripheral surface 113o of the frustum portion 113 is arranged so as to intersect the direction of the magnetic flux generated by the coil elements 2a and 2b by a taper angle θ when the coil 2 is excited. In addition, when the inner core portion 31 is disposed as described above, a section (frustum portion 113) having a different cross-sectional area is obtained by cutting along a plane perpendicular to the direction of the magnetic flux. When the ratio of the taper angle θ and the area is in the specific range described above, in particular, the taper angle θ is sufficiently small and the ratio of the area is sufficiently large, so that the outer peripheral surface 113o of the frustum portion 113 is in the direction of the magnetic flux. They are arranged substantially in parallel. The gap material 31g is disposed in contact with the plate-like portions 111 and 112 of the green compact 10 (core piece 31m).

(その他の構成部材)
その他、コイル2と磁心3との間の絶縁性を高めるために、絶縁性樹脂から構成されるインシュレータを具えたり、コイル2と磁心3との組合体の外周を絶縁性樹脂で覆った一体化物としたり、組合体を金属材料などからなるケースに収納したり、ケースに収納した組合体を封止樹脂により覆ったりすることができる。
(Other components)
In addition, in order to improve the insulation between the coil 2 and the magnetic core 3, an insulator made of an insulating resin is provided, or the outer periphery of the combination of the coil 2 and the magnetic core 3 is covered with an insulating resin. The combination can be stored in a case made of a metal material or the like, or the combination stored in the case can be covered with a sealing resin.

(効果)
リアクトル1は、磁心3において、特に、コイル2内に収納される箇所(内側コア部31)の素材に圧粉成形体10を用いていることで、当該素材が生産性に優れることから、リアクトル1自体の生産性にも優れる。また、後述する試験例に示すようにリアクトル1は、磁心3において、特に、コイル2内に収納される箇所(内側コア部31)、つまり渦電流損が生じ易い箇所の素材に低損失な圧粉成形体10を用いていることで、低損失である。
(effect)
Reactor 1 is a reactor in which the core 3 is used for the material of the portion (inner core portion 31) housed in the coil 2, and the material is excellent in productivity. 1 itself has excellent productivity. Further, as shown in a test example to be described later, the reactor 1 has a low loss pressure in the magnetic core 3, particularly in a material housed in the coil 2 (inner core portion 31), that is, in a material where eddy current loss is likely to occur. By using the powder molded body 10, the loss is low.

〔変形例〕
実施形態2では、一対のコイル素子を具えるリアクトルを説明した。その他、一つの筒状のコイルを具え、磁心として、筒状のコイルが配置される柱状の内側コア部と、筒状のコイルの外周に配置される外周コア部と、筒状のコイルの端面に対向して配置され、内側コア部と外周コア部とを連結する端面コア部とを具える形態が挙げられる。この形態では、外周コア部及び端面コア部が露出コア部となる。代表的には、ER型コア、E型コア、I型コアを組み合せて構成されるE-I形態、E-E形態、ポット形態などと呼ばれる形態が挙げられる。
[Modification]
In the second embodiment, a reactor including a pair of coil elements has been described. In addition, one cylindrical coil is provided, and as a magnetic core, a columnar inner core part in which the cylindrical coil is arranged, an outer core part arranged on the outer periphery of the cylindrical coil, and an end face of the cylindrical coil And an end face core portion that connects the inner core portion and the outer peripheral core portion. In this embodiment, the outer peripheral core portion and the end face core portion are exposed core portions. Typically, there are forms called an EI form, an EE form, a pot form, etc. configured by combining an ER type core, an E type core, and an I type core.

この変形例は、実施形態2のリアクトル1のように、磁心を複数のコア片を組み合せた構成とし、少なくとも内側コア部を構成するコア片に実施形態1の圧粉成形体10を利用した形態が挙げられる。この形態は、内側コア部の素材に実施形態1の圧粉成形体10を利用することで、低損失な磁心を具えるリアクトルを生産性よく製造することができる。   This modification is a configuration in which a magnetic core is combined with a plurality of core pieces, like the reactor 1 of the second embodiment, and at least the powder compact 10 of the first embodiment is used for the core pieces constituting the inner core portion. Is mentioned. In this embodiment, a reactor having a low-loss magnetic core can be manufactured with high productivity by using the green compact 10 of Embodiment 1 as a material for the inner core portion.

或いは、磁心として、一体成形されたER型コアやE型コアを具える形態、一体成形されたT型コアと]状コアとを具える形態とすることができる。例えば、ER型コアは、図6(A)に示すように、3本の脚部のうち、筒状のコイル内に配置される中央の脚部が実施形態1の圧粉成形体10と同様に、コイルの軸方向の断面をとったとき、この断面が台形状面となる錘台部113を具える圧粉成形体11を利用できる。圧粉成形体11は、錘台部113と、錘台部113の長辺側に連結される]状部と、錘台部113の短辺側に連結され、上記断面が矩形状面となる板状部112とを具える。]状片の一部は、上記断面が矩形状となる部分を有し、この部分を板状部111と見なすことができる(但し、板状部111は、上記断面における3本の脚部を台形状面の長辺の延長線で切断して両側の2本を除いたとき、板状部111を構成する長辺側矩形状面の面積S1+板状部112を構成する短辺側矩形状面の面積S2<錘台部113を構成する台形状面の面積S3を満たすものとする)。この圧粉成形体11は、板状部111の断面(長辺側矩形状面)に具える対向する二辺は、錘台部113の断面(台形状面)の長辺よりも長く、板状部112の断面(短辺側矩形状面)に具える対向する二辺は、錘台部113の断面(台形状面)の短辺と等しい立体である。この圧粉成形体11も、錘台部113(台形状面)と板状部111(長辺側矩形状面)との境界面の面積に対する錘台部113(台形状面)と板状部112(短辺側矩形状面)との境界面の面積の比が80%〜99.8%を満たすことが好ましい。   Alternatively, the magnetic core may have a form including an integrally formed ER type core or E type core, or a form including an integrally formed T type core and a] -shaped core. For example, as shown in FIG. 6 (A), the ER type core has a central leg portion arranged in a cylindrical coil among the three leg portions, similar to the green compact 10 of the first embodiment. In addition, when a cross section in the axial direction of the coil is taken, the green compact 11 having the frustum portion 113 whose cross section becomes a trapezoidal surface can be used. The green compact 11 is connected to the frustum portion 113, the shape portion connected to the long side of the frustum portion 113, and the short side of the frustum portion 113, and the cross section is a rectangular surface. And a plate-like portion 112. ] A part of the piece has a portion in which the cross section is rectangular, and this portion can be regarded as a plate-like portion 111 (however, the plate-like portion 111 has three legs in the cross-section. When cutting along the extension line of the long side of the trapezoidal surface and removing the two on both sides, the area S1 of the long side rectangular surface constituting the plate-like part 111 + the short side rectangular shape constituting the plate-like part 112 The area S2 of the surface <the area S3 of the trapezoidal surface constituting the frustum 113 is assumed to be satisfied). The green compact 11 has two opposite sides included in the cross section (long-side rectangular surface) of the plate-like part 111, and is longer than the long side of the cross-section (trapezoidal face) of the frustum part 113. The two opposite sides of the cross section (short side rectangular surface) of the shape portion 112 are a solid that is equal to the short side of the cross section (trapezoid surface) of the frustum portion 113. This green compact 11 also has a frustum portion 113 (trapezoid surface) and a plate-like portion with respect to the area of the boundary surface between the frustum portion 113 (trapezoidal surface) and the plate-like portion 111 (long-side rectangular surface). It is preferable that the ratio of the area of the boundary surface to 112 (short side rectangular surface) satisfies 80% to 99.8%.

圧粉成形体11は、例えば、図7に示す成形用金型120を用いて成形することができる。成形用金型120は、平坦な表面からなる貫通孔103hを有するダイ103と、組み合わされて柱状となる下パンチ102A〜102Cと、柱状の上パンチ101とを具える。筒状の下パンチ102Bの貫通孔において上パンチ101側の領域には、上述の成形用金型100のダイ103のテーパ部1013と同様のテーパ部1213と、テーパ部1213に繋がる直線部1212とを具える。下パンチ102Bのテーパ部1213の周縁が当該下パンチ102Bの貫通孔の開口部をつくる。この筒状の下パンチ102Bの貫通孔に、柱状の下パンチ102Cの端面(押圧面102p)を挿入し、押圧面102pが直線部1212の上端近傍に位置するように下パンチ102Cを配置する。こうすることで、下パンチ102B,102Cにより、図7に示すように断面が台形状面となる領域と、この台形状面の短辺側に隣接し、断面が矩形状面となる領域とを形成することができる。下パンチ102A〜102Cをダイ103の貫通孔103hに挿入配置することで、断面がE字状の成形空間を形成することができる。下パンチ102Aの端面、下パンチ102Cの押圧面102p、及び下パンチ102Bの端面及び周面でつくられる成形空間に充填した原料粉末(図示せず)を押圧面101p,102pで圧縮成形することで、圧粉成形体11が得られる。圧粉成形体11の板状部112の表面と、]状部において板状部112の表面に平行な表面は、加圧成形面111f,112fであり、成形時の加圧方向に直交する面である。錘台部113にコイルを配置した場合、圧粉成形体11においてコイルの軸方向が、成形時の加圧方向である。圧粉成形体11の]状部において板状部112の表面に平行な表面(加圧成形面111f)は、成形用金型120からの抜き出し方向の先端側に配置された面となる。   The green compact 11 can be molded using, for example, a molding die 120 shown in FIG. The molding die 120 includes a die 103 having a through hole 103h having a flat surface, lower punches 102A to 102C that are combined to form a columnar shape, and a columnar upper punch 101. In the region of the upper punch 101 side in the through hole of the cylindrical lower punch 102B, a tapered portion 1213 similar to the tapered portion 1013 of the die 103 of the molding die 100 described above, and a linear portion 1212 connected to the tapered portion 1213, With The peripheral edge of the tapered portion 1213 of the lower punch 102B forms an opening of the through hole of the lower punch 102B. The end surface (pressing surface 102p) of the columnar lower punch 102C is inserted into the through hole of the cylindrical lower punch 102B, and the lower punch 102C is disposed so that the pressing surface 102p is positioned in the vicinity of the upper end of the linear portion 1212. By doing so, the lower punch 102B, 102C, as shown in FIG. 7, a region where the cross section becomes a trapezoidal surface, and a region adjacent to the short side of the trapezoidal surface and the cross section becomes a rectangular surface Can be formed. By inserting the lower punches 102A to 102C into the through holes 103h of the die 103, a molding space having an E-shaped cross section can be formed. By compressing the raw material powder (not shown) filled in the molding space formed by the end surface of the lower punch 102A, the pressing surface 102p of the lower punch 102C, and the end surface and peripheral surface of the lower punch 102B with the pressing surfaces 101p and 102p, Thus, a green compact 11 is obtained. The surface of the plate-shaped portion 112 of the green compact 11 and the surface parallel to the surface of the plate-shaped portion 112 in the] -shaped portion are pressure-molded surfaces 111f and 112f, and are surfaces orthogonal to the pressure direction during molding. It is. When a coil is arranged on the frustum 113, the axial direction of the coil in the green compact 11 is the pressing direction during molding. The surface (pressure forming surface 111f) parallel to the surface of the plate-like portion 112 in the] -like portion of the green compact 11 is a surface disposed on the front end side in the direction of extraction from the molding die 120.

T型コアは、図8に示すように、実施形態1の圧粉成形体10と同様に、断面(例えば、コイルの軸方向の断面)が台形状面となる錘台部113を具える圧粉成形体12を利用できる。圧粉成形体12は、錘台部113と、錘台部113の長辺側に連結され、上記断面が矩形状面となる板状部111と、錘台部113の短辺側に連結され、上記断面が矩形状面となる板状部112とを具える。但し、板状部111は、錘台部113の周縁から突出している。従って、圧粉成形体12は、上記断面をとったとき、板状部111を構成する長辺側矩形状面が、台形状面の長辺の延長線に繋がる。つまり、圧粉成形体12も、板状部111の断面(長辺側矩形状面)に具える対向する二辺は、錘台部113の断面(台形状面)の長辺よりも長く、板状部112の断面(短辺側矩形状面)に具える対向する二辺は、錘台部113の断面(台形状面)の短辺と等しい立体である。この板状部111は、板状部111を構成する長辺側矩形状面の面積S1+板状部112を構成する短辺側矩形状面の面積S2<錘台部113を構成する台形状面の面積S3を満たす。この圧粉成形体12も、錘台部113(台形状面)と板状部111(長辺側矩形状面)との境界面の面積に対する錘台部113(台形状面)と板状部112(短辺側矩形状面)との境界面の面積の比は、80%〜99.8%が好ましい。このようなT型コアは例えば、モータコアにも利用できる。   As shown in FIG. 8, the T-shaped core has a pressure plate portion 113 having a cross section (for example, a cross section in the axial direction of the coil) having a trapezoidal shape, like the green compact 10 of the first embodiment. The powder compact 12 can be used. The green compact 12 is connected to the weight base 113 and the long side of the weight base 113, and is connected to the plate-like part 111 whose cross section is a rectangular surface and the short side of the weight base 113. And a plate-like portion 112 having a rectangular cross section. However, the plate-like part 111 protrudes from the periphery of the frustum part 113. Therefore, when the powder compact 12 has the above cross section, the long side rectangular surface constituting the plate-like portion 111 is connected to the extended line of the long side of the trapezoidal surface. That is, the green compact 12 also has two opposite sides provided in the cross section (long-side rectangular surface) of the plate-like part 111, which is longer than the long side of the cross-section (trapezoidal surface) of the frustum part 113, Two opposing sides of the cross-section (short-side rectangular surface) of the plate-like part 112 are a solid that is equal to the short side of the cross-section (trapezoidal surface) of the frustum part 113. This plate-like portion 111 has an area S1 of the long-side rectangular surface constituting the plate-like portion 111 + an area S2 of the short-side rectangular surface constituting the plate-like portion 112 <the trapezoidal surface constituting the frustum portion 113 Satisfies area S3. The green compact 12 also includes a weight base 113 (trapezoidal surface) and a plate-like part with respect to the area of the boundary surface between the weight base 113 (trapezoidal surface) and the plate-like part 111 (long-side rectangular surface). The ratio of the area of the boundary surface with 112 (short side rectangular surface) is preferably 80% to 99.8%. Such a T-type core can also be used for a motor core, for example.

圧粉成形体12は、例えば、図9(A)に示す成形用金型130を用いて成形することができる。成形用金型130は、実施形態1の成形用金型100とほぼ同様であり、上パンチ101と、下パンチ102と、貫通孔103hを有するダイ103とを具え、ダイ103は、テーパ部1013と、直線部1011,1012とを具える。但し、ダイ103の開口側は、段差形状となっており、テーパ部1013の上パンチ101側の周縁から、貫通孔103hの軸に直交方向に突出するように直線部1011が設けられている。このような段差溝を有するダイ103を利用することで、上述のように錘台部113から突出した板状部111を有する圧粉成形体12を成形できる。長辺側矩形状面の面積S1が所望の量となるように、直線部1011(段差溝)の高さ(深さ)及び上パンチ101におけるダイ103への挿入量を選択するとよい。   The green compact 12 can be molded using, for example, a molding die 130 shown in FIG. 9 (A). The molding die 130 is substantially the same as the molding die 100 of the first embodiment, and includes an upper punch 101, a lower punch 102, and a die 103 having a through hole 103h. The die 103 has a tapered portion 1013. And straight portions 1011 and 1012. However, the opening side of the die 103 has a step shape, and a linear portion 1011 is provided so as to protrude in a direction orthogonal to the axis of the through hole 103h from the peripheral edge of the tapered portion 1013 on the upper punch 101 side. By using the die 103 having such a step groove, the green compact 12 having the plate-like portion 111 protruding from the frustum portion 113 can be formed as described above. The height (depth) of the straight portion 1011 (step groove) and the amount of insertion into the die 103 in the upper punch 101 may be selected so that the area S1 of the long side rectangular surface becomes a desired amount.

或いは、圧粉成形体12は、例えば、図9(B)に示す成形用金型140を用いて成形することができる。成形用金型140は、平坦な表面からなる貫通孔103hを有するダイ103と、同心状に配置された筒状の下パンチ102α及び柱状の下パンチ102βと、柱状の上パンチ101とを具える。筒状の下パンチ102αの貫通孔において上パンチ101側の領域には、上述の成形用金型100のダイ103のテーパ部1013と同様のテーパ部1413と、テーパ部1413に繋がる直線部1412とを具える。下パンチ102αのテーパ部1413の周縁が当該下パンチ102αの貫通孔の開口部をつくる。この筒状の下パンチ102αの貫通孔に、柱状の下パンチ102βの端面(押圧面102p)を挿入し、押圧面102pが直線部1412の途中に位置するように下パンチ102α,102βを配置する。こうすることで、下パンチ102α,102βにより、図9(B)に示すように断面が台形状面となる領域と、この台形状面の短辺側に隣接し、断面が矩形状面となる領域とを形成することができる。更に、ダイ103の貫通孔103hに、下パンチ102α,103βを挿入配置することで、下パンチ102αの端面(上パンチ101との対向面)とダイ103の貫通孔103hとで、直線部1411を設けられ、断面がT字状の成形空間を形成することができる。   Alternatively, the green compact 12 can be molded using, for example, a molding die 140 shown in FIG. 9 (B). The molding die 140 includes a die 103 having a through hole 103h having a flat surface, a cylindrical lower punch 102α and a columnar lower punch 102β that are concentrically arranged, and a columnar upper punch 101. . In a region on the upper punch 101 side in the through hole of the cylindrical lower punch 102α, a taper portion 1413 similar to the taper portion 1013 of the die 103 of the molding die 100 described above, and a linear portion 1412 connected to the taper portion 1413, With The peripheral edge of the tapered portion 1413 of the lower punch 102α forms an opening of the through hole of the lower punch 102α. The end surface (pressing surface 102p) of the columnar lower punch 102β is inserted into the through hole of the cylindrical lower punch 102α, and the lower punches 102α and 102β are arranged so that the pressing surface 102p is located in the middle of the straight portion 1412. . In this way, the lower punches 102α and 102β allow the cross section to be a trapezoidal surface as shown in FIG. 9 (B) and the short side of the trapezoidal surface to have a rectangular cross section. Regions can be formed. Further, by inserting and arranging the lower punches 102α and 103β into the through hole 103h of the die 103, the linear portion 1411 is formed between the end surface of the lower punch 102α (the surface facing the upper punch 101) and the through hole 103h of the die 103. A forming space having a T-shaped cross section can be formed.

[参考例]
特定の錘台体部分を有し、かつ加圧成形面を具える立体をこの錘台体に隣接して具える圧粉成形体は、板状部111を構成する長辺側矩形状面の面積S1+板状部112を構成する短辺側矩形状面の面積S2≧錘台部113を構成する台形状面の面積S3となる場合でも、上述の実施形態1の圧粉成形体10などと同様に低損失で生産性に優れる。この圧粉成形体は、絶縁被膜を具える被覆軟磁性粒子を圧縮成形してなり、
筒状のコイル内に配置される内側部分と、
前記内側部分に隣接され、前記圧縮成形体の外表面を構成する第一面を有する第一部分と、
前記内側部分に隣接され、前記圧縮成形体の外表面を構成し、前記第一面に対向配置される第二面を有する第二部分とを具え、
前記内側部分について前記コイルの軸方向の断面をとったとき、前記内側部分と前記第一部分との境界線が前記内側部分と前記第二部分との境界線よりも長く、
前記内側部分と前記第一部分との境界面の面積に対する前記第二部分との境界面の面積の比が80%以上99.8%以下であり、
前記コイルの軸方向を成形時の加圧方向として成形され、
前記第一面が成形用金型からの抜き出し方向の先端側に配置された形態が挙げられる。上記形態は、コイルの軸方向が成形時の加圧方向であるため、上記第一面及び上記第二面はいずれも、加圧成形面となる。上記形態は、代表的には、上記内側部分が錘台体であり、上記第一部分及び上記第二部分が上述した板状部と同様に、直方体や円柱などの柱状体である立体である。より具体的な形態としては、上述したE型コアやER型コア、T型コアなどであって、長辺側矩形状面が台形状面よりも大きな形態が挙げられる。
[Reference example]
The green compact body having a specific frustum body portion and having a pressure molding surface adjacent to the frustum body has a rectangular shape on the long side of the plate-like portion 111. Even if the area S1 + the area S2 of the rectangular side surface constituting the plate-like part 112 ≧ the area S3 of the trapezoidal surface constituting the frustum part 113, and the like, the green compact 10 of the first embodiment and the like Similarly, low loss and excellent productivity. This compacted body is formed by compression molding coated soft magnetic particles having an insulating coating,
An inner part arranged in a cylindrical coil;
A first portion adjacent to the inner portion and having a first surface constituting the outer surface of the compression molded body;
A second portion having a second surface adjacent to the inner portion, constituting an outer surface of the compression molded body, and disposed opposite to the first surface;
When the axial section of the coil is taken for the inner part, the boundary line between the inner part and the first part is longer than the boundary line between the inner part and the second part,
The ratio of the area of the interface between the second part and the area of the interface between the inner part and the first part is 80% or more and 99.8% or less,
Molded with the axial direction of the coil as the pressing direction during molding,
The form which said 1st surface has been arrange | positioned at the front end side of the extraction direction from the metal mold | die for shaping | molding is mentioned. In the above aspect, since the axial direction of the coil is the pressing direction during molding, the first surface and the second surface are both pressure-molded surfaces. Typically, the said form is a solid which the said inner part is a frustum body, and said 1st part and said 2nd part are columnar bodies, such as a rectangular parallelepiped and a cylinder, like the plate-shaped part mentioned above. More specific forms include the above-described E-type core, ER-type core, T-type core, and the like, in which the long-side rectangular surface is larger than the trapezoidal surface.

〔試験例〕
圧粉成形体を作製し、得られた圧粉成形体を用いてリアクトルを作製し、このリアクトルの渦電流損を調べた。また、後処理の処理時間、成形用金型の摩耗量を調べた。
[Test example]
A compacted body was produced, a reactor was produced using the obtained compacted body, and the eddy current loss of the reactor was examined. In addition, the post-treatment time and the wear amount of the molding die were examined.

この試験では、試料No.1として、図2に示す成形用金型100(ダイ103の貫通孔103hがテーパ部1013を有するもの)を用いて、対向配置される板状部を具え、錘台部を主体とする変形四角錘台状の圧粉成形体を複数作製した。試料No.100として、別の成形用金型を用いて、直方体状の圧粉成形体を複数作製した。試料No.100に用いた成形用金型は、ダイの貫通孔が直方体状のもの、つまり一方の開口部から他方の開口部に亘って一様な面積を有するものを用いた。いずれの試料も成形圧力は7ton/cm2(≒690MPa)とし、冷間で成形した。 In this test, as a sample No. 1, a molding die 100 shown in FIG. 2 (having a through hole 103h of the die 103 having a taper portion 1013) was used to provide a plate-like portion disposed opposite to each other. A plurality of deformed square frustum-shaped compacts having a main part were produced. As sample No. 100, a plurality of cuboid compacts were produced using another molding die. As the molding die used for sample No. 100, a die having a rectangular parallelepiped through-hole, that is, one having a uniform area from one opening to the other opening was used. All of the samples were molded in a cold state with a molding pressure of 7 ton / cm 2 (≈690 MPa).

いずれの試料も、原料粉末には、水アトマイズ法により製造された純鉄粉(平均粒径:50μm)に、化成処理によりリン酸金属塩化合物からなる絶縁被膜(厚さ:20nm以下程度)を形成した被覆軟磁性粒子からなる被覆粉末を用意した。この試験では、いずれの試料も、上記被覆粉末にステアリン酸亜鉛の粉末を混合した混合粉末(ステアリン酸亜鉛の混合量:混合粉末全体に対して0.6質量%)を用いた。   In any sample, the raw material powder is pure iron powder (average particle size: 50 μm) manufactured by the water atomization method, and an insulating coating (thickness: about 20 nm or less) made of a metal phosphate compound by chemical conversion treatment. A coating powder composed of the formed coated soft magnetic particles was prepared. In each test, a mixed powder obtained by mixing the powdered zinc stearate with the above-described coating powder (mixed amount of zinc stearate: 0.6% by mass with respect to the whole mixed powder) was used.

ダイから抜き出した試料No.1,100の圧縮成形物に熱処理(400℃×30分、窒素雰囲気)を施して、熱処理物を得た。得られた試料No.1,100の熱処理物(圧粉成形体の一形態)の寸法を測定した。   The compression molded product of sample No. 1,100 extracted from the die was subjected to heat treatment (400 ° C. × 30 minutes, nitrogen atmosphere) to obtain a heat treated product. The dimensions of the heat-treated product (one form of compacted body) of the obtained sample No. 1,100 were measured.

試料No.1の圧粉成形体は、一方の板状部の加圧成形面の面積:40mm×20mm、他方の板状部の加圧成形面の面積:39.9mm×19.9mm、各板状部の厚さ:1mm、錘台部の厚さ:10mm、テーパ角:約0.29°、面積の比:(39.9mm×19.9mm/40mm×20mm)は、約99.3%である。ここでは、加圧成形面の面積は、板状部と錘台部との境界面の面積に等しい。加圧成形面に直交方向に切断した断面(縦断面)において、錘台部を構成する台形状面の面積:399.5mm2は、当該台形状面に繋がり、各板状部を構成する長辺側矩形状面及び短辺側矩形状面の合計面積:40+39.9=79.9mm2よりも十分に大きく、断面においてこの台形状面の占める面積割合は、約83%である。また、別の縦断面において、台形状面の面積:199.5mm2は、当該台形状面に繋がり、各板状部を構成する長辺側矩形状面及び短辺側矩形状面の合計面積:20+19.9=39.9mm2よりも十分に大きく、断面においてこの台形状面の占める面積割合は、約83%である。 Sample No. 1 compacted body has one plate-shaped part with a pressure-molded surface area of 40 mm x 20 mm, the other plate-shaped part with a pressure-molded surface: 39.9 mm x 19.9 mm, each plate Part thickness: 1 mm, frustum part thickness: 10 mm, taper angle: about 0.29 °, area ratio: (39.9 mm × 19.9 mm / 40 mm × 20 mm) is about 99.3%. Here, the area of the pressure molding surface is equal to the area of the boundary surface between the plate-like portion and the frustum portion. In the cross section (longitudinal cross section) cut in the direction orthogonal to the pressure molding surface, the area of the trapezoidal surface constituting the frustum part: 399.5 mm 2 is connected to the trapezoidal surface and the long side constituting each plate-like part The total area of the side rectangular surface and the short side rectangular surface is sufficiently larger than 40 + 39.9 = 79.9 mm 2 , and the area ratio of the trapezoidal surface in the cross section is about 83%. Further, in another longitudinal section, the area of the trapezoidal surface: 199.5 mm 2 is connected to the trapezoidal surface, the total area of the long side rectangular surface and the short side rectangular surface constituting each plate-like part: It is sufficiently larger than 20 + 19.9 = 39.9 mm 2 , and the area ratio of this trapezoidal surface in the cross section is about 83%.

試料No.100の圧粉成形体は、試料No.1の一方の板状部の加圧成形面と同じ大きさ:40mm×20mmの一対の加圧成形面を有し、試料No.1の圧粉成形体の合計厚さと同じ厚さ:12mmを有する直方体である。   The compact molded body of sample No. 100 has a pair of pressure molding surfaces of the same size as the pressure molding surface of one plate-like part of sample No. 1: 40 mm x 20 mm. It is a rectangular parallelepiped having the same thickness as the total thickness of the green compact: 12 mm.

得られた各熱処理物に後処理を施した。この後処理は、各熱処理物において、ダイの内周面により成形された面(試料No.1は、板状部及び錘台部の外周面、試料No.100は、一対の加圧成形面に繋がる外周面)を塩酸(濃度:35質量%)によってエッチングすることで行った。   Each heat-treated product obtained was post-treated. This post-treatment is performed on each heat-treated product by the surface formed by the inner peripheral surface of the die (sample No. 1 is the outer peripheral surface of the plate-like portion and the frustum portion, and sample No. 100 is a pair of pressure-formed surfaces. This was performed by etching the outer peripheral surface connected to the surface with hydrochloric acid (concentration: 35 mass%).

試料No.1,100について、後処理を施した後処理物を複数用意して、環状に組み合せて試験用磁心を作製し、各試験用磁心にそれぞれ、巻線で構成したコイル(いずれの試料も同様の仕様のもの)を配置して測定部材(リアクトルに相当)を作製した。ここでは、実施形態2で説明した一対のコイル素子を具えるリアクトルを作製した。具体的には、各試料について、複数の後処理物を用いて内側コア部を作製し、後処理を施した面(試料No.1:板状部及び錘台部の外周面、試料No.100:一対の加圧成形面に繋がる外周面)がコイル素子の内周面に対向するように(図1(C)参照)、作製した内側コア部を各コイル素子に挿入配置した。試料No.1,100のいずれも、露出コア部及びギャップ材は同じ仕様のものを用いた。このリアクトルに対して、AC-BHカーブトレーサを用いて、励起磁束密度Bm:1kG(=0.1T)、測定周波数:5kHzにおける渦電流損We(W)を測定した。その結果を表1に示す。この評価は、試料No.1,100に対して、上述の後処理の処理時間(エッチング時間)を同じ時間にして後処理物を作製し、この後処理物を用いて作製したリアクトルを用いて行った。   For sample No. 1,100, prepare multiple post-processed products and combine them in a ring to produce test cores. Each test core is composed of a coil composed of windings (same for all samples) The measurement member (corresponding to a reactor) was prepared. Here, a reactor including the pair of coil elements described in the second embodiment was manufactured. Specifically, for each sample, an inner core part was prepared using a plurality of post-processed products, and the surface subjected to post-processing (sample No. 1: outer surface of plate-like part and frustum part, sample No. 100: The produced inner core portion was inserted and arranged in each coil element so that the outer peripheral surface connected to the pair of pressure forming surfaces was opposed to the inner peripheral surface of the coil element (see FIG. 1 (C)). Samples Nos. 1 and 100 used the same specifications for the exposed core and the gap material. For this reactor, an AC-BH curve tracer was used to measure the eddy current loss We (W) at an excitation magnetic flux density Bm: 1 kG (= 0.1 T) and a measurement frequency: 5 kHz. The results are shown in Table 1. This evaluation was performed on a sample No. 1 and 100 using a reactor manufactured using the post-processed product after the post-processed processing time (etching time) described above was set to the same time. .

また、渦電流損が所定の値を満たすために必要な後処理の処理時間を調べた。その結果を表1に示す。この評価は、種々の処理時間で後処理を行った後処理物を用いて上述のようにリアクトルを作製して渦電流損を測定し、この渦電流損が所定の値を満たす後処理物が得られたときの処理時間を求めることで行った。   In addition, the post-processing time required for the eddy current loss to satisfy a predetermined value was examined. The results are shown in Table 1. In this evaluation, after the post-treatment was performed at various treatment times, a reactor was prepared as described above, and the eddy current loss was measured. This was done by determining the processing time when obtained.

更に、上述の圧縮成形物を連続成形した後の成形用金型の摩耗量を調べた。その結果を表1に示す。ここでは、摩耗量は、ダイの内周面における以下の箇所を測定領域とし、この測定領域の輪郭形状(プロフィール)を3次元形状測定機で測定して求めた。測定領域は、原料粉末を完全に圧縮した状態において、成形された圧縮成形物の外周面のうち、厚さ方向の中心部に接触する箇所とする。そして、成形前の測定領域の輪郭形状と、2万個の圧縮成形物を成形後の測定領域の輪郭形状との差を調べ、この差の最大値を摩耗量(金型摩耗量)とする。   Furthermore, the amount of wear of the molding die after continuously molding the above-mentioned compression molded product was examined. The results are shown in Table 1. Here, the wear amount was obtained by measuring the contour shape (profile) of the measurement region with a three-dimensional shape measuring machine using the following locations on the inner peripheral surface of the die as the measurement region. The measurement region is a portion in contact with the central portion in the thickness direction on the outer peripheral surface of the molded compression molded product in a state where the raw material powder is completely compressed. Then, the difference between the contour shape of the measurement region before molding and the contour shape of the measurement region after molding 20,000 compression molded products is examined, and the maximum value of this difference is defined as the wear amount (die wear amount). .

Figure 2013030756
Figure 2013030756

表1に示すように、特定の形状の圧粉成形体を用いた試料No.1は、試料No.100と比較して、後処理の時間が短くても、渦電流損が小さいことが分かる。従って、試料No.1のリアクトルは、高周波数で利用される場合にも損失が小さく、高周波数特性に優れるといえる。この理由は、試料No.1の圧縮成形物は、ダイの内周面との摩擦が低減されて、被覆軟磁性粒子の絶縁被膜の損傷やブリッジ部の生成が抑制され、軟磁性粒子同士の絶縁を十分に確保できたためである、と考えられる。また、この特定の形状の圧粉成形体を利用することで、後処理の時間を一定とすると、渦電流損がより小さいリアクトルが得られることが分かる。この理由は、試料No.1の圧縮成形物は、その内部にまでブリッジ部が生成されておらず、表面部分に生成されたブリッジ部が十分に除去されることで、或いは上述のように絶縁被膜の損傷が抑制されることで、軟磁性粒子同士の絶縁を十分に確保できたためである、と考えられる。更に、この特定の形状の圧粉成形体とすることで、成形用金型の摩耗も低減でき、金型寿命を延長できることが分かる。この理由は、上述のように摩擦が低減されたためであると考えられる。   As shown in Table 1, it can be seen that sample No. 1 using a green compact with a specific shape has a small eddy current loss even when the post-treatment time is short compared to sample No. 100. . Therefore, it can be said that the reactor of sample No. 1 has low loss even when used at a high frequency and is excellent in high frequency characteristics. The reason for this is that the compression molding of sample No. 1 reduces friction with the inner peripheral surface of the die, suppresses damage to the insulating coating of the coated soft magnetic particles and the generation of bridge portions, This is probably because the insulation was sufficiently secured. Further, it can be seen that a reactor having a smaller eddy current loss can be obtained by using the powder compact of this specific shape and keeping the post-processing time constant. The reason for this is that the compression molding of sample No. 1 has no bridge portion formed inside, and the bridge portion generated on the surface portion is sufficiently removed or insulated as described above. This is probably because the insulation between the soft magnetic particles was sufficiently ensured by suppressing damage to the coating. Furthermore, it turns out that it is possible to reduce the wear of the molding die and to extend the life of the die by using the powder compact of this specific shape. The reason for this is considered to be because the friction is reduced as described above.

以上から、断面が台形状になる立体(錘台体)を主体とする部分を有する本発明圧粉成形体や本発明圧粉成形体を具える本発明リアクトル用コアは、生産性に優れ、リアクトルの磁心の素材に利用した場合、低損失である、といえる。また、本発明圧粉成形体を具える本発明磁気回路部品は、磁心の素材が生産性に優れる上に低損失であることで、低損失で生産性に優れる、といえる。   From the above, the core for the reactor of the present invention comprising the compact body of the present invention and the compact body of the present invention having a portion mainly composed of a solid body (frustum body) having a trapezoidal cross section is excellent in productivity, When used as a material for reactor cores, it can be said that the loss is low. Moreover, it can be said that the magnetic circuit component of the present invention including the green compact of the present invention is excellent in productivity due to low loss because the magnetic core material is excellent in productivity and low loss.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更することができる。例えば、軟磁性粒子の材質・粒径、絶縁被膜の材質・厚さ、台形状面や各矩形状面の大きさ(面積割合、投影面積)、平面形状などを適宜変更することができる。   In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably. For example, the material and particle size of the soft magnetic particles, the material and thickness of the insulating coating, the size of the trapezoidal surface and each rectangular surface (area ratio, projected area), the planar shape, and the like can be appropriately changed.

本発明圧粉成形体は、各種の磁気回路部品(リアクトル、トランス、モータ、チョークコイルなど)の磁心の素材、特に、高周波特性に優れる磁心の素材に好適に利用することができる。本発明磁気回路部品は、各種のリアクトル(車載部品、発電・変電設備の部品など)に好適に利用することができる。特に、本発明磁気回路部品は、ハイブリッド自動車や電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータといった車載用電力変換装置に具えるリアクトルに好適に利用することができる。本発明リアクトル用コアは、上記リアクトルといった本発明磁気回路部品の磁心の素材に好適に利用することができる。   The green compact of the present invention can be suitably used for magnetic core materials of various magnetic circuit components (reactors, transformers, motors, choke coils, etc.), in particular, magnetic core materials having excellent high frequency characteristics. The magnetic circuit component of the present invention can be suitably used for various reactors (on-vehicle components, components for power generation / transforming equipment, etc.). In particular, the magnetic circuit component of the present invention can be suitably used for a reactor provided in an in-vehicle power conversion device such as an in-vehicle converter mounted on a vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle. The reactor core of the present invention can be suitably used as a material for the magnetic core of the magnetic circuit component of the present invention such as the reactor described above.

1 リアクトル 2 コイル 2w 巻線 2a,2b コイル素子 2r 連結部
3 磁心 31 内側コア部 31m コア片 31g ギャップ材 32 露出コア部
10,11,12 圧粉成形体 111,112 板状部 111f,112f 加圧成形面
111s 長辺側矩形状面 112s 短辺側矩形状面 111o,112o,113o 外周面
113 錘台部 113s 台形状面
1111,1112 長方形状の面 1113 台形状の面
100,110,120,130,140 成形用金型
101 上パンチ 101p,102p 押圧面
102,102A,102B,102C,102α,102β 下パンチ 103 ダイ 103h 貫通孔
103i 内周面 1011,1012,1212,1411,1412 直線部
1013,1213,1413 テーパ部 104 コアロッド
P 原料粉末
1 Reactor 2 Coil 2w Winding 2a, 2b Coil element 2r Connection
3 Magnetic core 31 Inner core 31m Core piece 31g Gap material 32 Exposed core
10,11,12 Compact body 111,112 Plate part 111f, 112f Press-molded surface
111s Long side rectangular surface 112s Short side rectangular surface 111o, 112o, 113o Outer peripheral surface
113 Weight base 113s Trapezoidal surface
1111,1112 Rectangular surface 1113 Trapezoidal surface
100,110,120,130,140 Mold for molding
101 Upper punch 101p, 102p Press surface
102,102A, 102B, 102C, 102α, 102β Lower punch 103 Die 103h Through hole
103i Inner peripheral surface 1011,1012,1212,1411,1412 Straight part
1013,1213,1413 Taper 104 Core rod
P Raw material powder

Claims (8)

絶縁被膜を具える被覆軟磁性粒子を圧縮成形してなる圧粉成形体であって、
この圧粉成形体の少なくとも一部の断面として、
対向配置された長辺と短辺とを具える台形状面と、
前記台形状面の長辺に繋がる長辺側矩形状面と、
前記台形状面の短辺に繋がる短辺側矩形状面とから構成される面を有し、
前記台形状面の面積が前記長辺側矩形状面及び前記短辺側矩形状面の合計面積よりも大きいことを特徴とする圧粉成形体。
A compacted body formed by compression-molding coated soft magnetic particles having an insulating coating,
As a cross section of at least a part of this green compact,
A trapezoidal surface having a long side and a short side opposed to each other;
A long side rectangular surface connected to the long side of the trapezoidal surface;
Having a surface composed of a short side rectangular surface connected to the short side of the trapezoidal surface;
The compacted body, wherein an area of the trapezoidal surface is larger than a total area of the long side rectangular surface and the short side rectangular surface.
前記台形状面と前記長辺側矩形状面との境界面を第一面、前記台形状面と前記短辺側矩形状面との境界面を第二面とするとき、第一面及び第二面の少なくとも一方の面に垂直な方向が加圧方向となるように成形されていることを特徴とする請求項1に記載の圧粉成形体。   When the boundary surface between the trapezoidal surface and the long side rectangular surface is the first surface, and the boundary surface between the trapezoidal surface and the short side rectangular surface is the second surface, the first surface and the first surface 2. The green compact according to claim 1, wherein the green compact is formed such that a direction perpendicular to at least one of the two surfaces is a pressing direction. 前記第一面に平行な面及び前記第二面に平行な面はいずれも、加圧成形面であることを特徴とする請求項2に記載の圧粉成形体。   3. The green compact according to claim 2, wherein both the surface parallel to the first surface and the surface parallel to the second surface are pressure forming surfaces. 前記台形状面と前記長辺側矩形状面との境界面を第一面、前記台形状面と前記短辺側矩形状面との境界面を第二面とするとき、第一面の面積に対する第二面の面積の比が80%以上99.8%以下であることを特徴とする請求項1〜3のいずれか1項に記載の圧粉成形体。   When the boundary surface between the trapezoidal surface and the long side rectangular surface is the first surface, and the boundary surface between the trapezoidal surface and the short side rectangular surface is the second surface, the area of the first surface The green compact according to any one of claims 1 to 3, wherein a ratio of the area of the second surface to 80% or more and 99.8% or less. 前記台形状面を有する部分は、筒状のコイルが配置される箇所に利用され、
前記台形状面の斜辺を構成する面が、前記コイルの内周面に対向するように配置されることを特徴とする請求項1〜4のいずれか1項に記載の圧粉成形体。
The portion having the trapezoidal surface is used in a place where a cylindrical coil is disposed,
5. The green compact according to any one of claims 1 to 4, wherein a surface constituting a hypotenuse of the trapezoidal surface is disposed so as to face an inner peripheral surface of the coil.
請求項1〜5のいずれか1項に記載の圧粉成形体を具えることを特徴とするリアクトル用コア。   A reactor core comprising the green compact according to any one of claims 1 to 5. 磁心と、磁心の一部に配置される筒状のコイルとを具える磁気回路部品であって、
前記磁心は、前記コイル内に配置される内側コア部と、前記コイルから露出されて、前記内側コア部と共に閉磁路を形成する露出コア部とを具え、
前記内側コア部は、請求項1〜5のいずれか1項に記載の圧粉成形体を具えることを特徴とする磁気回路部品。
A magnetic circuit component comprising a magnetic core and a cylindrical coil disposed in a part of the magnetic core,
The magnetic core includes an inner core portion disposed in the coil, and an exposed core portion that is exposed from the coil and forms a closed magnetic path together with the inner core portion,
6. The magnetic circuit component, wherein the inner core portion includes the green compact according to any one of claims 1 to 5.
前記磁気回路部品は、リアクトルであることを特徴とする請求項7に記載の磁気回路部品。   8. The magnetic circuit component according to claim 7, wherein the magnetic circuit component is a reactor.
JP2012125851A 2012-06-01 2012-06-01 Compact body, reactor core, and magnetic circuit component Active JP5845141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012125851A JP5845141B2 (en) 2012-06-01 2012-06-01 Compact body, reactor core, and magnetic circuit component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125851A JP5845141B2 (en) 2012-06-01 2012-06-01 Compact body, reactor core, and magnetic circuit component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011164726A Division JP5032690B1 (en) 2011-07-27 2011-07-27 Compacted body

Publications (2)

Publication Number Publication Date
JP2013030756A true JP2013030756A (en) 2013-02-07
JP5845141B2 JP5845141B2 (en) 2016-01-20

Family

ID=47787470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125851A Active JP5845141B2 (en) 2012-06-01 2012-06-01 Compact body, reactor core, and magnetic circuit component

Country Status (1)

Country Link
JP (1) JP5845141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108323A (en) * 2018-12-28 2020-07-09 住友電気工業株式会社 Core, stator, and rotary electric machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168201A (en) * 1990-10-31 1992-06-16 Kobe Steel Ltd Manufacture of ceramic reinforced al alloy composite material
JPH07173504A (en) * 1993-10-27 1995-07-11 Unisia Jecs Corp Die assembly for compacting
JPH10296499A (en) * 1997-04-30 1998-11-10 Kyocera Corp Method for press-forming green compact and die press forming die
JP2000144211A (en) * 1998-11-06 2000-05-26 Toshiba Tungaloy Co Ltd Die for powder molding, forming method of green compact, and positive tip
JP2006229203A (en) * 2005-01-24 2006-08-31 Sumitomo Electric Ind Ltd Method of manufacturing powder compacting magnetic substance core
JP2007201206A (en) * 2006-01-27 2007-08-09 Tdk Corp Ferrite core and inductance element
JP2008160020A (en) * 2006-12-26 2008-07-10 Toyota Motor Corp Reactor core and reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168201A (en) * 1990-10-31 1992-06-16 Kobe Steel Ltd Manufacture of ceramic reinforced al alloy composite material
JPH07173504A (en) * 1993-10-27 1995-07-11 Unisia Jecs Corp Die assembly for compacting
JPH10296499A (en) * 1997-04-30 1998-11-10 Kyocera Corp Method for press-forming green compact and die press forming die
JP2000144211A (en) * 1998-11-06 2000-05-26 Toshiba Tungaloy Co Ltd Die for powder molding, forming method of green compact, and positive tip
JP2006229203A (en) * 2005-01-24 2006-08-31 Sumitomo Electric Ind Ltd Method of manufacturing powder compacting magnetic substance core
JP2007201206A (en) * 2006-01-27 2007-08-09 Tdk Corp Ferrite core and inductance element
JP2008160020A (en) * 2006-12-26 2008-07-10 Toyota Motor Corp Reactor core and reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108323A (en) * 2018-12-28 2020-07-09 住友電気工業株式会社 Core, stator, and rotary electric machine

Also Published As

Publication number Publication date
JP5845141B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5032690B1 (en) Compacted body
JP5096605B2 (en) Outer core manufacturing method, outer core, and reactor
JP5118783B2 (en) Compacted body, method for producing the same, and reactor core
JP5027945B1 (en) Dust compact, manufacturing method of compact compact, reactor, converter, and power converter
JP5965190B2 (en) Method for producing green compact and green compact
JP5922887B2 (en) Method for producing a green compact, a green compact, and a reactor
JP5845141B2 (en) Compact body, reactor core, and magnetic circuit component
JP5845022B2 (en) Magnetic circuit parts
JP6174954B2 (en) Method for producing a green compact
JP2011228456A (en) Method of manufacturing reactor, and reactor
JP5831941B2 (en) Manufacturing method of outer core
JP2012199568A (en) Green compact, production method of green compact, reactor, converter, and power converter
JP2013038132A (en) Magnetic circuit component
JP2023125565A (en) Green compact, powder magnetic core, and manufacturing methods therefor
JP2012238832A (en) Production method of green compact, green compact, reactor, converter and power converter
JP2013016656A (en) Production method of green compact, and green compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151120

R150 Certificate of patent or registration of utility model

Ref document number: 5845141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250