JP2006024869A - Dust core and manufacturing method thereof - Google Patents

Dust core and manufacturing method thereof Download PDF

Info

Publication number
JP2006024869A
JP2006024869A JP2004203969A JP2004203969A JP2006024869A JP 2006024869 A JP2006024869 A JP 2006024869A JP 2004203969 A JP2004203969 A JP 2004203969A JP 2004203969 A JP2004203969 A JP 2004203969A JP 2006024869 A JP2006024869 A JP 2006024869A
Authority
JP
Japan
Prior art keywords
powder
magnetic
dust core
insulating layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004203969A
Other languages
Japanese (ja)
Inventor
Masaki Sugiyama
昌揮 杉山
Toshiya Yamaguchi
登士也 山口
Hideshi Kishimoto
秀史 岸本
Shin Tajima
伸 田島
Takeshi Hattori
毅 服部
Kokuho Cho
国鋒 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Sinter Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Fine Sinter Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Sinter Co Ltd, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Fine Sinter Co Ltd
Priority to JP2004203969A priority Critical patent/JP2006024869A/en
Priority to PCT/JP2005/012717 priority patent/WO2006006545A1/en
Publication of JP2006024869A publication Critical patent/JP2006024869A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-performance dust core suitable for using in a low-frequency range. <P>SOLUTION: In the dust core obtained by pressurizing and forming powder for a magnetic core obtained by coating magnetic powder consisting mainly of Fe with an insulating coat, the magnetic powder contains Si of ≤1.5 %mass, its volume mean particle diameter is 80 to 300 μm, its density ratio is ≥96%, and the dust core is used in an alternate magnetic field of a 100 to 2,000 Hz frequency. When the dust core is used in a frequency range like this, the dust core shows a low iron loss equal to or lower and high magnetic flux density equal to or higher than those of an electromagnetic steel board used conventionally. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低損失で磁気特性に優れる圧粉磁心およびその製造方法に関するものである。   The present invention relates to a dust core having low loss and excellent magnetic properties, and a method for manufacturing the same.

変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、我々の周囲には電磁気を利用した製品が多々ある。これらの製品は交番磁界を利用したものが多く、局所的に大きな交番磁界を効率的に得るために、通常、磁心(軟磁石)をその交番磁界中に設けている。   There are many products that use electromagnetism around us, such as transformers, motors, generators, speakers, induction heaters, and various actuators. Many of these products use an alternating magnetic field. In order to efficiently obtain a large alternating magnetic field locally, a magnetic core (soft magnet) is usually provided in the alternating magnetic field.

このような磁心は、その性質上、先ず、交番磁界中で大きな磁束密度が得られることが求められる。次に、交番磁界中で使用したときに、その周波数に応じて生じる高周波損失(以下、磁心の材質に拘らず、単に「鉄損」という。)が少ないことが求められる。この鉄損には、渦電流損失、ヒステリシス損失および残留損失があるが、主に問題となるのは、渦電流損失とヒステリシス損失である。さらに、磁心が交番磁界に追従して素早く高磁束密度となるにはその保磁力が小さいことも重要である。なお、この保磁力を低減することで、(初期)透磁率の向上とヒステリシス損失の低減とを併せて図れる。   Due to the nature of such a magnetic core, first, it is required that a large magnetic flux density be obtained in an alternating magnetic field. Next, when used in an alternating magnetic field, it is required that the high frequency loss (hereinafter simply referred to as “iron loss”) regardless of the material of the magnetic core is reduced. The iron loss includes eddy current loss, hysteresis loss, and residual loss. The main problems are eddy current loss and hysteresis loss. Furthermore, it is also important that the coercive force is small so that the magnetic core can follow the alternating magnetic field and quickly reach a high magnetic flux density. By reducing the coercive force, it is possible to improve the (initial) magnetic permeability and reduce the hysteresis loss.

ところが、高磁束密度、低渦電流損失および低ヒステリシス損失を同時に両立させることは容易ではない。単なる鉄塊は勿論、薄いケイ素鋼板を積層したものでは、高磁束密度が得られたとしても、渦電流損失やヒステリシス損失が大きくなる。   However, it is not easy to simultaneously achieve high magnetic flux density, low eddy current loss and low hysteresis loss. When a thin silicon steel plate is laminated as well as a simple iron ingot, eddy current loss and hysteresis loss increase even if a high magnetic flux density is obtained.

最近では、絶縁被膜で被覆した磁性粉末(磁心用粉末)を加圧成形して得た、高磁気特性で低損失の圧粉磁心が開発されつつある(特許文献1、特許文献2)。この圧粉磁心の鉄損をさらに低減するために、様々な形態や組成をもつ磁性粉末や絶縁被膜が開発されている(特許文献3〜14)。   Recently, dust cores having high magnetic properties and low loss, which are obtained by press-molding magnetic powder (magnetic core powder) coated with an insulating coating, are being developed (Patent Documents 1 and 2). In order to further reduce the iron loss of the dust core, magnetic powders and insulating coatings having various forms and compositions have been developed (Patent Documents 3 to 14).

特表2000−504785号公報JP 2000-504785 gazette 特開2003−297624号公報JP 2003-297624 A 特開2003−297624号公報JP 2003-297624 A 特開2001−85211号公報JP 2001-85211 A 特開2003−303711号公報JP 2003-303711 A 特許2710152号公報Japanese Patent No. 2710152 特開2000−30924号公報JP 2000-30924 A 特開平11−54314号公報JP 11-54314 A 特開2002−43113号公報JP 2002-43113 A 特開2002−141213号公報JP 2002-141213 A 特公平7−15124号公報Japanese Patent Publication No. 7-15124 特開2003−272909号公報JP 2003-272909 A 特開2003−105403号公報JP 2003-105403 A 特開2001−102207号公報JP 2001-102207 A

ところが、磁性粉末や絶縁被膜に関する個々の提案はあるとしても、使用周波数域が数kHz以下程度の低周波数域で使用される圧粉磁心に関していえば、全体的な磁気特性の向上と鉄損の低減とを高次元で両立させたものはこれまで存在しなかった。   However, even though there are individual proposals regarding magnetic powder and insulating coatings, when it comes to dust cores used in the low frequency range where the operating frequency range is several kHz or less, the overall magnetic characteristics are improved and the iron loss is reduced. Until now, there has never been a reduction in both dimensions.

従来は、上記特許文献7、10、12、13、14等にもあるように、使用周波数が20〜100kHz前後の高周波数域で用いられるリアクトル用として、圧粉磁心の高磁束密度化と低損失化を図るものが殆どであった。このような高周波数域で使用される圧粉磁心の鉄損を低減するには、その周波数の2乗に比例して大きくなる渦電流損失の低減が重要とされていた。   Conventionally, as described in Patent Documents 7, 10, 12, 13, 14 and the like, as a reactor for use in a high frequency range where the operating frequency is about 20 to 100 kHz, a high magnetic flux density and a low magnetic core are used. Most of them tried to lose. In order to reduce the iron loss of the dust core used in such a high frequency range, it has been important to reduce the eddy current loss that increases in proportion to the square of the frequency.

これに対して、低周波数域で使用される圧粉磁心の鉄損を低減するには、その周波数に比例して大きくなるヒステリシス損失の低減が重要となる。高周波数域での使用を前提に開発された従来の圧粉磁心を、そのまま低周波数域で使用される圧粉磁心に適用しても、好ましい特性は得られない。   On the other hand, in order to reduce the iron loss of the dust core used in the low frequency range, it is important to reduce the hysteresis loss that increases in proportion to the frequency. Even if a conventional dust core developed on the premise of use in a high frequency range is applied to a dust core used in a low frequency range as it is, preferable characteristics cannot be obtained.

本発明は、このような事情に鑑みて為されたものであり、比較的低い周波数域で使用されることを前提に、高磁気特性(高磁束密度)および低損失な圧粉磁心およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and on the premise that it is used in a relatively low frequency range, a high magnetic property (high magnetic flux density) and a low loss dust core and its manufacture It aims to provide a method.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、低周波数域で使用される圧粉磁心の高磁束密度化および低損失化を図るのに適した、磁性粉末の粒子形態、組成等を新たに見出し、本発明を完成させるに至ったものである。   As a result of extensive research and trial and error, the present inventor has conducted a trial and error, and as a result, a magnetic powder suitable for increasing the magnetic flux density and reducing the loss of a dust core used in a low frequency range has been developed. The inventors have newly found out the particle form, composition, etc., and completed the present invention.

(圧粉磁心)
すなわち、本発明の圧粉磁心は、鉄(Fe)を主成分とする磁性粉末を絶縁被膜で被覆した磁心用粉末を加圧成形してなる圧粉磁心において、
前記磁性粉末は、ケイ素(Si)を1.5質量%以下含み、体積平均粒径が80〜300μmであり、該磁性粉末の真密度(ρ0)に対する該圧粉磁心の嵩密度(ρ)の比である密度比(ρ/ρ0:%)が96%以上であり、周波数が100〜2000Hzの交番磁界中で使用されることを特徴とする。
(Dust core)
That is, the powder magnetic core of the present invention is a powder magnetic core obtained by press-molding a magnetic core powder in which a magnetic powder mainly composed of iron (Fe) is coated with an insulating film.
The magnetic powder contains 1.5% by mass or less of silicon (Si), has a volume average particle size of 80 to 300 μm, and a bulk density (ρ) of the dust core with respect to a true density (ρ 0 ) of the magnetic powder. The density ratio (ρ / ρ 0 :%) is a ratio of 96% or more and is used in an alternating magnetic field having a frequency of 100 to 2000 Hz.

本発明の圧粉磁心は、100〜2000Hzといった比較的低周波数域の交番磁界中で使用した場合に、磁気特性に優れるのみならず鉄損も非常に少ない。本発明の圧粉磁心がこのような優れた特性を発現する理由は必ずしも定かではないが、現状次のよう考えられる。   The dust core of the present invention has not only excellent magnetic properties but also very low iron loss when used in an alternating magnetic field in a relatively low frequency range of 100 to 2000 Hz. The reason why the powder magnetic core of the present invention exhibits such excellent characteristics is not necessarily clear, but it is considered as follows.

先ず、本発明の圧粉磁心を構成する磁性粉末は、強磁性を示すFeを主成分とし、常磁性であるSiの含有量が少ない。さらに、圧粉磁心の密度比は96%以上と非常に高密度である。両者の融合によって、本発明の圧粉磁心は優れた磁気特性を発現するに至ったと考えられる。   First, the magnetic powder constituting the dust core of the present invention is mainly composed of Fe exhibiting ferromagnetism and has a small content of paramagnetic Si. Furthermore, the density ratio of the dust core is as high as 96% or higher. It is considered that the dust core of the present invention has developed excellent magnetic properties by the fusion of both.

次に、本発明の圧粉磁心を構成する磁性粉末はその粒径が比較的大きいので、磁性粉末の保磁力は小さくなる。この結果、圧粉磁心のヒステリシス損失の低減が図られる。例えば、磁性粉末がアトマイズ粉の場合、粒径が大きいと結晶粒径も通常大きくなり、磁化されたときの磁壁の移動が容易となり、さらなる保磁力の低減ひいてはヒステリシス損失の低減が図られる。   Next, since the magnetic powder constituting the powder magnetic core of the present invention has a relatively large particle size, the coercive force of the magnetic powder is reduced. As a result, the hysteresis loss of the dust core can be reduced. For example, when the magnetic powder is atomized powder, if the particle size is large, the crystal particle size is usually large, and the domain wall is easily moved when magnetized, thereby further reducing the coercive force and thus reducing the hysteresis loss.

なお、磁性粉末の粒径拡大は、体積比抵抗値(以下、適宜単に「比抵抗」という。)を低下させ、渦電流損失の増加要因となる。しかし、本発明の圧粉磁心は前述した低周波数域での使用を前提としているので、鉄損全体に占めるその影響は小さい。つまり、本発明の圧粉磁心によれば、磁性粉末の粒径を上述した範囲内とすることで、ヒステリシス損失が大きく低減されて、結果的に全体として、鉄損も十分に低減される。   Note that the increase in the particle size of the magnetic powder decreases the volume specific resistance value (hereinafter simply referred to as “specific resistance” as appropriate), and causes an increase in eddy current loss. However, since the dust core of the present invention is premised on the use in the low frequency region described above, its influence on the entire iron loss is small. That is, according to the dust core of the present invention, by setting the particle size of the magnetic powder within the above-described range, the hysteresis loss is greatly reduced, and as a result, the iron loss is sufficiently reduced as a whole.

(圧粉磁心の製造方法)
本発明は、上記圧粉磁心のみならず、その製造方法としても把握できる。
すなわち、本発明は、Feを主成分としSiが1.5質量%以下であると共に体積平均粒径が80〜300μmである磁性粉末を絶縁被膜で被覆した磁心用粉末を金型に充填する充填工程と、該金型内の磁心用粉末を加圧成形する成形工程とからなり、上述した本発明の圧粉磁心が得られることを特徴とする圧粉磁心の製造方法としても良い。
(Production method of dust core)
The present invention can be grasped not only as the powder magnetic core but also as a manufacturing method thereof.
That is, the present invention fills a mold with a magnetic core powder in which a magnetic powder having Fe as a main component, Si of 1.5% by mass or less and a volume average particle size of 80 to 300 μm is coated with an insulating coating. It is good also as the manufacturing method of the powder magnetic core which consists of a process and the shaping | molding process which press-molds the powder for magnetic cores in this metal mold | die, and obtains the powder magnetic core of this invention mentioned above.

次に、実施形態を挙げ、本発明をより詳しく説明する。なお、以下の実施形態を含め、本明細書で説明する内容は、本発明の圧粉磁心のみならずその製造方法にも、適宜適用できるものであることを断っておく。   Next, the present invention will be described in more detail with reference to embodiments. It should be noted that the contents described in this specification, including the following embodiments, are applicable not only to the dust core of the present invention but also to the manufacturing method thereof.

(1)磁性粉末
本発明に係る磁性粉末は、Feを主成分としてSiを1.5質量%以下含有する粉末からなる。Siは粉末粒子の電気抵抗率を高める元素である。Siを含有した磁性粉末からなる圧粉磁心は、その比抵抗が高く、渦電流損失が低減する。但し、Si含有量が多くなると、圧粉磁心の磁気特性(磁束密度)は低下し易い。そこで、本発明では、磁性粉末中のSi含有量を抑制して圧粉磁心の磁束密度を高めた。ここで本発明の場合、磁性粉末中のSi含有量が減少しても、その磁性粉末自体は絶縁被膜によって被覆されているので、圧粉磁心の渦電流損失が急増することはない。さらに、渦電流損失は交番磁界の周波数(f)の2乗(f2)に比例して増大するが、本発明の圧粉磁心の場合、使用周波数域が低いので、渦電流損失自体が全体的な鉄損に占める割合はそもそも低い。
(1) Magnetic powder The magnetic powder which concerns on this invention consists of a powder which contains Fe as a main component and contains Si 1.5 mass% or less. Si is an element that increases the electrical resistivity of the powder particles. A powder magnetic core made of magnetic powder containing Si has a high specific resistance and reduces eddy current loss. However, when the Si content increases, the magnetic properties (magnetic flux density) of the dust core are likely to decrease. Therefore, in the present invention, the magnetic flux density of the dust core is increased by suppressing the Si content in the magnetic powder. Here, in the case of the present invention, even if the Si content in the magnetic powder is reduced, the magnetic powder itself is covered with the insulating coating, so that the eddy current loss of the dust core does not increase rapidly. Furthermore, the eddy current loss increases in proportion to the square (f 2 ) of the frequency (f) of the alternating magnetic field. However, in the case of the dust core of the present invention, the operating frequency range is low, so the eddy current loss itself is the whole. In the first place, the ratio of the total iron loss is low.

磁性粉末中のSi含有量は、磁性粉末全体を100質量%として1.5質量%以下、1.2質量%以下、1.0質量%以下、0.8質量%さらには0.5質量%であると好ましい。圧粉磁心の磁気特性を高める観点から、磁性粉末は純度99.5%以上、99.7%以上さらには99.8%以上の純鉄粉であると好ましい。なお、磁性粉末は、Siと残部がFeと不可避不純物とからなるものであっても良いし、適宜、磁気特性向上元素または鉄損低減元素等を含有しても良い。そのような元素として、例えば、アルミニウム(Al)、ニッケル(Ni)、コバルト(Co)等がある。   The Si content in the magnetic powder is 1.5% by mass or less, 1.2% by mass or less, 1.0% by mass or less, 0.8% by mass or 0.5% by mass with respect to 100% by mass of the entire magnetic powder. Is preferable. From the viewpoint of enhancing the magnetic properties of the dust core, the magnetic powder is preferably pure iron powder having a purity of 99.5% or more, 99.7% or more, and further 99.8% or more. The magnetic powder may be composed of Si, the balance being Fe and inevitable impurities, and may contain a magnetic property improving element or an iron loss reducing element as appropriate. Examples of such elements include aluminum (Al), nickel (Ni), and cobalt (Co).

本発明の磁性粉末は、体積平均粒径が80〜300μmの粒子からなる。これにより、低周波数域で使用される圧粉磁心の渦電流損失を抑制しつつも、ヒステリシス損失の大幅な低減を図ることができる。この体積平均粒径が過小ではヒステリシス損失の低減を図ることが困難となる。一方、体積平均粒径が過大では、比抵抗値が低下して渦電流損失が増大するので好ましくない。体積平均粒径の下限は、100μm、120μmさらに150μmであると好ましい。体積平均粒径の上限は、280μm、250μmさらには200μmであると好ましい。   The magnetic powder of the present invention comprises particles having a volume average particle size of 80 to 300 μm. Thereby, the hysteresis loss can be greatly reduced while suppressing the eddy current loss of the dust core used in the low frequency range. If the volume average particle size is too small, it is difficult to reduce the hysteresis loss. On the other hand, an excessive volume average particle size is not preferable because the specific resistance value decreases and eddy current loss increases. The lower limit of the volume average particle diameter is preferably 100 μm, 120 μm, or 150 μm. The upper limit of the volume average particle diameter is preferably 280 μm, 250 μm, or even 200 μm.

本明細書でいう体積平均粒径とは、所定数(N=100)の構成粒子それぞれについて求めた体積粒径(d0)の平均値(Σd0/N)である。体積粒径(d0)は、構成粒子1つあたりの質量(m)と同じ質量をもつ中実球体の直径として定義される。つまり、d0=(3m/4πρ01/3 である。ここで、ρ0は磁性粉末の組成から求まる真密度である。 The volume average particle diameter referred to in this specification is an average value (Σd 0 / N) of volume particle diameters (d 0 ) determined for each of a predetermined number (N = 100) of constituent particles. The volume particle size (d 0 ) is defined as the diameter of a solid sphere having the same mass as the mass (m) per constituent particle. That is, d 0 = (3m / 4πρ 0 ) 1/3 . Here, ρ 0 is the true density obtained from the composition of the magnetic powder.

磁性粉末の粒子形状は特に問わないが、平均厚みが20〜100μmさらには20〜50μmの略小判状をした扁平粒子からなると好適である。扁平粒子からなる磁性粉末を使用すると、圧粉磁心の扁平粉の長尺方向に流れる磁束に対して渦電流の発生を抑制できるため、渦電流損失を一層低減できるからである。   The particle shape of the magnetic powder is not particularly limited, but it is preferably composed of flat particles having a substantially oval shape with an average thickness of 20 to 100 μm, further 20 to 50 μm. This is because the use of magnetic powder made of flat particles can suppress the generation of eddy currents with respect to the magnetic flux flowing in the longitudinal direction of the flat powder of the powder magnetic core, thereby further reducing eddy current loss.

扁平粒子の厚み(h0)は、最大厚み(h1)と最小厚み(h2)の平均((h1+h2)/2)から求まり、平均厚みは所定数(N=100)の扁平粒子それぞれについて求めた厚み(h0)の平均値(Σh0/N)として求まる。 The thickness (h 0 ) of the flat particles is obtained from the average ((h 1 + h 2 ) / 2) of the maximum thickness (h 1 ) and the minimum thickness (h 2 ), and the average thickness is a predetermined number (N = 100) of flatness. It is obtained as an average value (Σh 0 / N) of the thickness (h 0 ) obtained for each particle.

なお、扁平粒子は、例えば、略球状をした粉末粒子を圧延、鍛造等によって押潰すことにより製造できる。上記体積平均粒径をもつ粉末粒子を平均厚みが20〜100μmの略小判状にした場合、その二次元平均粒径は80〜1500μm程度となる。二次元平均粒径とは、所定数(N)の構成粒子それぞれについて長径(d’1)および短径(d’2)の平均値である二次元粒径(d’0=(d’1+d’2)/2)を求め、さらに所定数(N)についてその平均値(Σd’0/N)を求めたものである。長径は構成粒子の最長径であり、短径は長径の中点を通り長径方向に直交する方向で測定した長さである。二次元粒径の測定面は扁平粒子の厚み方向の直交面とする。 The flat particles can be produced, for example, by crushing substantially spherical powder particles by rolling, forging, or the like. When the powder particles having the above volume average particle size are formed into a substantially oval shape having an average thickness of 20 to 100 μm, the two-dimensional average particle size is about 80 to 1500 μm. The two-dimensional average particle diameter is a two-dimensional particle diameter (d ′ 0 = (d ′ 1 ) that is an average value of the major axis (d ′ 1 ) and the minor axis (d ′ 2 ) for each of a predetermined number (N) of the constituent particles. + D ′ 2 ) / 2) and the average value (Σd ′ 0 / N) of the predetermined number (N). The major axis is the longest diameter of the constituent particles, and the minor axis is the length measured in the direction perpendicular to the major axis direction through the midpoint of the major axis. The measurement surface of the two-dimensional particle diameter is a plane orthogonal to the thickness direction of the flat particles.

磁性粉末は、構成粒子の単位質量あたりの表面積である比表面積を平均した平均比表面積が5x10-32/g以下さらには3x10-32/g以下であると好適である。平均比表面積が過大になると、構成粒子の表面を被覆する絶縁被膜の全体量がその膜厚に対して増加し、圧粉磁心の磁気特性の低下を招く。その絶縁被膜の全体量を一定にして考えると、膜厚が相対的に薄くなる。その結果、圧粉磁心の比抵抗が低下して渦電流損失の増加を招く。いずれにしても、平均比表面積の増加は好ましくない。 Magnetic powder, the surface area in which the specific surface area per unit mass of constituent particles average specific surface area on average 5x10 -3 m 2 / g or less and more preferably is not more than 3x10 -3 m 2 / g. When the average specific surface area becomes excessive, the total amount of the insulating coating covering the surface of the constituent particles increases with respect to the film thickness, which causes a decrease in the magnetic properties of the dust core. If the total amount of the insulating coating is considered constant, the film thickness becomes relatively thin. As a result, the specific resistance of the dust core is reduced, leading to an increase in eddy current loss. In any case, an increase in the average specific surface area is not preferable.

本明細書でいう平均比表面積は、所定数(N=100)の構成粒子について求めた比表面積の平均値である。比表面積は(ΣS0’)/Nにより求まる。ここで、S0’=S/(V・ρ)=4πr2/(4πr3ρ/3)=3/(ρ・r)、r:粉末半径、ρ:粉末定数である。 The average specific surface area as used herein is an average value of specific surface areas determined for a predetermined number (N = 100) of constituent particles. The specific surface area is determined by (ΣS 0 ′) / N. Here, S 0 ′ = S / (V · ρ) = 4πr 2 / (4πr 3 ρ / 3) = 3 / (ρ · r), r: powder radius, ρ: powder constant.

磁性粉末の構成粒子の形状が球状に近い程、その単位質量あたりの表面積は小さくなる。このような磁性粉末としてアトマイズ粉がある。特に、冷却速度の大きな水アトマイズ粉よりも、冷却速度の小さい水ガスアトマイズ粉さらにはガスアトマイズ粉の方が球状に近い粒子が得られるので好ましい。   The closer the shape of the constituent particles of the magnetic powder is to a sphere, the smaller the surface area per unit mass. An example of such magnetic powder is atomized powder. In particular, water gas atomized powder having a low cooling rate and further gas atomized powder are preferred because water-atomized powder having a low cooling rate can be obtained as particles having a nearly spherical shape.

磁性粉末は、構成粒子の平均結晶粒径が50μm以上さらには200μm以上であると好適である。構成粒子の結晶粒径が大きい程、磁壁の移動が容易となり保磁力が低下するので、ヒステリシス損失の低減を図り易い。ここでいう平均結晶粒径は、所定数(N=100)の構成粒子について求めた結晶粒径の平均値である。各構成粒子あたりの結晶粒径は全相観察の画像解析から求めた。   The magnetic powder preferably has an average crystal grain size of the constituent particles of 50 μm or more, further 200 μm or more. The larger the crystal grain size of the constituent particles, the easier the movement of the domain wall and the lower the coercive force, so it is easier to reduce the hysteresis loss. The average crystal grain size here is an average value of crystal grain sizes obtained for a predetermined number (N = 100) of constituent particles. The crystal grain size per each constituent particle was obtained from image analysis of all phase observation.

磁性粉末の構成粒子の結晶粒径は、結晶が成長し易いもの程大きい。アトマイズ粉を例にとれば、冷却速度の大きな水アトマイズ粉よりも、冷却速度の小さい水ガスアトマイズ粉さらにはガスアトマイズ粉の方が好ましい。上述した比表面積および結晶粒径の双方から、磁性粉末がガスアトマイズ粉からなると非常に好ましい。   The crystal grain size of the constituent particles of the magnetic powder is larger as the crystal grows more easily. Taking atomized powder as an example, water gas atomized powder having a low cooling rate and gas atomized powder are more preferable than water atomized powder having a large cooling rate. From both the specific surface area and the crystal grain size described above, it is very preferable that the magnetic powder is made of gas atomized powder.

なお、磁性粉末がガスアトマイズ粉からなるとしても、磁性粉末は必ずしもそのガスアトマイズ時の形態である必要はない。つまり、磁性粉末は、ガスアトマイズ粉を圧延等した前述の扁平粒子からなる粉末であっても良い。ガスアトマイズ粉に圧延処理等を施すことで、処理前のガスアトマイズ粉に比較して、構成粒子の比表面積が多少増加し得る。しかし、粒子表面が歪な水アトマイズ粉と比較すれば、ガスアトマイズ粉からなる構成粒子の比表面積は遙かに小さい。   In addition, even if magnetic powder consists of gas atomized powder, magnetic powder does not necessarily need to be the form at the time of the gas atomization. In other words, the magnetic powder may be a powder made of the above-described flat particles obtained by rolling a gas atomized powder. By subjecting the gas atomized powder to a rolling process or the like, the specific surface area of the constituent particles can be slightly increased as compared with the gas atomized powder before the process. However, the specific surface area of the constituent particles made of gas atomized powder is much smaller than that of water atomized powder whose particle surface is distorted.

さらに、磁性粉末を高圧成形する場合を考えれば、上述した理由以外にも、ガスアトマイズ粉のような表面形状の滑らかな粒子を使用する方が、渦電流損失およびヒステリシス損失のさらなる低減を図れるので好ましい。何故なら、磁性粉末を加圧成形する際、構成粒子の表面が滑らかであると、相互に接触する粒子間での攻撃性が低下する。例えば、ある粒子の突起等が隣接する他の粒子へ突刺さり、各粒子表面に形成されていた絶縁被膜が破壊されるといった状況が回避される。その結果、本来予定した比抵抗が得易く、圧粉磁心の渦電流損失の低減を図り易い。   Furthermore, considering the case of high-pressure molding of magnetic powder, it is preferable to use smooth particles having a surface shape such as gas atomized powder, in addition to the above-mentioned reasons, because eddy current loss and hysteresis loss can be further reduced. . This is because, when the magnetic powder is pressed, if the surface of the constituent particles is smooth, the aggression between the particles in contact with each other decreases. For example, it is possible to avoid a situation in which a projection or the like of a certain particle pierces another adjacent particle and the insulating coating formed on the surface of each particle is destroyed. As a result, it is easy to obtain the originally planned specific resistance, and it is easy to reduce the eddy current loss of the dust core.

構成粒子の表面が滑らかであると、構成粒子の一部にのみに大きな歪みや応力が加わることも抑制されるので、残留歪や残留応力に起因した保磁力やヒステリシス損失の増加も少なくなる。このような事情は、磁性粉末が前述した扁平粒子からなる場合でも同様である。   When the surface of the constituent particles is smooth, it is possible to suppress large strain and stress from being applied only to a part of the constituent particles, so that the increase in coercive force and hysteresis loss due to residual strain and residual stress is reduced. Such a situation is the same even when the magnetic powder is composed of the above-described flat particles.

上述したアトマイズ粉の製造方法の一例を示すと、ガスアトマイズ粉は所定組成の溶湯流にガスを吹付けてアトマイズ化するガス噴霧アトマイズ法により得られる。水アトマイズ粉はその溶湯流に水を吹付けてアトマイズ化する水噴霧アトマイズ法により得られる。   If an example of the manufacturing method of the atomized powder mentioned above is shown, gas atomized powder will be obtained by the gas spray atomization method which sprays gas to the molten metal flow of a predetermined composition, and is atomized. Water atomized powder is obtained by a water spray atomization method in which water is sprayed on the molten metal stream to atomize it.

勿論、磁性粉末に上述したアトマイズ粉以外の粉末を用いても良い。例えば、合金インゴットをボールミル等で粉砕した粉砕粉を使用しても良い。粉砕粉を使用する場合、その後の熱処理(例えば、不活性雰囲気中(N2ガス中、Arガス中等)で800℃以上の加熱処理)によって結晶粒径を大きくすることも可能であるし、圧延処理等によって、表面形状の比較的滑らかな扁平粒子からなる粉末を得ることも可能である。   Of course, a powder other than the atomized powder described above may be used as the magnetic powder. For example, pulverized powder obtained by pulverizing an alloy ingot with a ball mill or the like may be used. When pulverized powder is used, the crystal grain size can be increased by subsequent heat treatment (for example, heat treatment at 800 ° C. or higher in an inert atmosphere (N 2 gas, Ar gas, etc.), or rolling treatment. For example, it is possible to obtain a powder composed of flat particles having a relatively smooth surface shape.

(2)絶縁被膜
磁性粉末の表面を被覆する絶縁被膜は、圧粉磁心の比抵抗を高め、その渦電流損失を低減させる。絶縁被膜が厚いほど、圧粉磁心の比抵抗は大きくなる。しかし、絶縁被膜があまり厚いと、圧粉磁心の磁束密度は低下する。圧粉磁心の磁束密度と比抵抗とを確保する観点から、膜厚は、10〜100nmさらには10〜50nmであると好ましい。その存在割合を質量%でいうなら、絶縁被膜は、圧粉磁心全体を100質量%としたときに、0.1〜0.3質量%であると好ましい。これを体積%に換算すると、圧粉磁心全体を100体積%としたときに絶縁被膜は1〜3体積%さらには1.5〜2.5体積%であると好ましい。なお、言うまでもないことであるが、絶縁被膜は本来、粉末粒子の一粒一粒毎に形成されていることが理想的である。しかし、実際には、当然に、数個の粒子が固まった状態でその周りに絶縁被膜が形成されていることもあり、このような状態も本発明の想定するところである。
(2) Insulating coating The insulating coating covering the surface of the magnetic powder increases the specific resistance of the dust core and reduces its eddy current loss. The thicker the insulation coating, the greater the specific resistance of the dust core. However, if the insulating coating is too thick, the magnetic flux density of the dust core will decrease. From the viewpoint of ensuring the magnetic flux density and specific resistance of the dust core, the film thickness is preferably 10 to 100 nm, more preferably 10 to 50 nm. In terms of the mass ratio, the insulating coating is preferably 0.1 to 0.3 mass% when the entire dust core is 100 mass%. In terms of volume%, the insulating coating is preferably 1 to 3% by volume, and more preferably 1.5 to 2.5% by volume, when the entire powder magnetic core is 100% by volume. Needless to say, it is ideal that the insulating coating is originally formed for each of the powder particles. However, in practice, naturally, an insulating film may be formed around several particles in a solid state, and such a state is also assumed by the present invention.

絶縁被膜には、酸化被膜、リン酸塩被膜、樹脂被膜(シリコーン樹脂、アミド樹脂、イミド樹脂、フェノール樹脂等の被膜)がある。本発明の絶縁被膜はいずれでも良いが、耐熱性を考慮すると、酸化被膜やリン酸塩被膜が好ましい。   The insulating coating includes an oxide coating, a phosphate coating, and a resin coating (a coating made of silicone resin, amide resin, imide resin, phenol resin, etc.). Any of the insulating coatings of the present invention may be used, but in view of heat resistance, an oxide coating or a phosphate coating is preferable.

酸化被膜には、代表的なSiO2被膜の他、Al23被膜、TiO2被膜、ZrO2、これらの複合酸化物系絶縁被膜(FeSiO3、FeAl24、NiFe24などの被膜)等がある。磁性粉末がSiを0.3〜1.5質量%含有する場合、SiO2被膜は磁性粉末の表面酸化によっても形成され得る。しかし、所定量のSiO2被膜を磁性粉末の表面に確実に設けるには、シリコーン樹脂を用いると良い。 As the oxide film, in addition to a typical SiO 2 film, an Al 2 O 3 film, a TiO 2 film, ZrO 2 , a composite oxide insulating film thereof (FeSiO 3 , FeAl 2 O 4 , NiFe 2 O 4, etc.) Coating). When the magnetic powder contains 0.3 to 1.5 mass% of Si, the SiO 2 film can also be formed by surface oxidation of the magnetic powder. However, in order to reliably provide a predetermined amount of the SiO 2 coating on the surface of the magnetic powder, it is preferable to use a silicone resin.

シリコーン樹脂は、シロキサン結合を備えた合成樹脂である。シリコーン樹脂被膜は、それ自体、バインダや絶縁被膜として機能する。しかし、それを高温加熱(700〜900℃)すると、耐熱性に優れたSiO2被膜に変化する。なお、シリコーン樹脂の加熱は、圧粉磁心の成形後に行うのが好ましい。成形後に加熱することで、SiO2被膜の形成と併せて、成形時に導入された粉末成形体(磁性粉末)内の残留歪みまたは残留応力が除去され、保磁力やヒステリシス損失の少ない圧粉磁心が得られるからである。 The silicone resin is a synthetic resin having a siloxane bond. The silicone resin film itself functions as a binder or an insulating film. However, when it is heated at a high temperature (700 to 900 ° C.), it changes to a SiO 2 film excellent in heat resistance. The heating of the silicone resin is preferably performed after the powder magnetic core is formed. By heating after molding, together with the formation of the SiO 2 film, residual strain or residual stress in the powder compact (magnetic powder) introduced during molding is removed, and a dust core with less coercive force and hysteresis loss is obtained. It is because it is obtained.

ところで、SiO2被膜を磁性粉末の表面に直接的にかつ安定的に形成するには、磁性粉末がSiを0.8質量%以上含有している程良い。理由は定かではないが、磁性粉表面のSi原子にシリコーン樹脂が化学吸着し易いためと思われる。 By the way, in order to form the SiO 2 film directly and stably on the surface of the magnetic powder, it is better that the magnetic powder contains 0.8 mass% or more of Si. The reason is not clear, but it seems that the silicone resin is easily chemically adsorbed to Si atoms on the surface of the magnetic powder.

一方、磁性粉末中のSi含有量が少ない場合(磁性粉末が例えば、純鉄粉の場合)、磁性粉末の表面を直接被覆したSiO2被膜は、耐久性(経年劣化のみならず成形中に破壊されない耐久性)等が必ずしも十分ではない。ここでSi量が少ない場合とは、具体的には、磁性粉末全体を100質量%としたときにSi量が0.8質量%以下さらには0.5質量%以下の場合である。 On the other hand, when the Si content in the magnetic powder is low (when the magnetic powder is pure iron powder, for example), the SiO 2 coating directly coated on the surface of the magnetic powder is durable (not only deteriorated over time but also destroyed during molding) Durability) is not necessarily sufficient. Here, the case where the amount of Si is small is specifically a case where the amount of Si is 0.8% by mass or less, further 0.5% by mass or less when the entire magnetic powder is 100% by mass.

本発明者は、シリコーン樹脂被膜(またはSiO2被膜)を磁性粉末の表面に安定的に形成するために、その下地処理として、磁性粉末の表面にリン酸塩被膜を設けると好ましいことを新たに見出した。従って本発明の絶縁被膜は、磁性粉末中のSi量が0.8%以下の場合はリン酸塩被膜からなる第1絶縁層と、この第1絶縁層を被覆するシリコーン樹脂からなる第2絶縁層とによって形成されていると好ましい。 In order to stably form a silicone resin film (or SiO 2 film) on the surface of the magnetic powder, the present inventor has newly proposed that it is preferable to provide a phosphate film on the surface of the magnetic powder as the base treatment. I found it. Therefore, the insulating coating of the present invention has a first insulating layer made of a phosphate coating and a second insulating made of a silicone resin covering the first insulating layer when the amount of Si in the magnetic powder is 0.8% or less. It is preferable that it is formed of layers.

この第1絶縁層および第2絶縁層からなる絶縁被膜は非常に耐熱性にも優れる。この絶縁被膜で被覆された磁性粉末からなる圧粉磁心を、400℃以上、450℃以上さらには500℃以上の高温で焼鈍した場合でも、その絶縁被膜は存在形態を変化させ得るとしても、完全に破壊されることない。つまり、その圧粉磁心は、焼鈍加熱後であっても十分な比抵抗を発現する。このような絶縁被膜の耐熱性は、本発明のような比較的低周波数域で使用される圧粉磁心においても非常に重要である。圧粉磁心を焼鈍等して、その内部に蓄積された残留歪みや残留応力を除去し、圧粉磁心のヒステリシス損失を低減させたとしても、その焼鈍等の際に、絶縁被膜が大きく破壊されて比抵抗が急減すれば、いくら低周波数域で使用する圧粉磁心とはいえ、却って鉄損が増加することにもなるからである。従って、本発明のような比較的低周波数域で使用される圧粉磁心であっても、絶縁被膜の耐熱性は高い程好ましい。絶縁被膜の耐熱性が高ければ、比抵抗の低下を抑制しつつも、より高温で焼鈍を行える。これにより、圧粉磁心の内部に蓄積された残留歪み等が一層除去され易くなり、ヒステリシス損失のさらなる低減を図れるからである。   The insulating film composed of the first insulating layer and the second insulating layer is very excellent in heat resistance. Even when the powder magnetic core made of magnetic powder coated with this insulating coating is annealed at a high temperature of 400 ° C. or higher, 450 ° C. or higher, or even 500 ° C. or higher, the insulating coating is completely Will not be destroyed. That is, the dust core exhibits a sufficient specific resistance even after annealing. Such heat resistance of the insulating coating is very important even in a dust core used in a relatively low frequency region as in the present invention. Even if the powder core is annealed to remove residual strain and residual stress accumulated inside it, and the hysteresis loss of the powder core is reduced, the insulation film is greatly destroyed during the annealing. This is because, if the specific resistance decreases rapidly, the iron loss increases even though the powder magnetic core is used in a low frequency range. Therefore, it is preferable that the heat resistance of the insulating coating is higher even in the case of a dust core used in a relatively low frequency region as in the present invention. If the heat resistance of the insulating coating is high, annealing can be performed at a higher temperature while suppressing a decrease in specific resistance. This is because residual strain and the like accumulated inside the dust core are more easily removed, and hysteresis loss can be further reduced.

さらに本発明者は、第1絶縁層および第2絶縁層に酸化物粒子を組合わせた、非常に耐熱性に優れる絶縁被膜を新たに開発している。酸化物粒子の組合わせ方として、次のようなものが考えられる。一つは、前記シリコーン樹脂中に酸化物粒子が分散した複合絶縁層で前記第2絶縁層を形成する場合である。もう一方は、シリコーン樹脂被膜単体またはその複合絶縁層からなる第2絶縁層上に、酸化物粒子から主になる第3絶縁層をさらに設ける場合である。但し、いずれの場合であっても重要なことは、絶縁被膜の構造や形態そのものではなく、加熱後でも圧粉磁心の比抵抗が安定して維持され、渦電流損失が抑制されることである。現実問題として、100μm前後の磁性粉末の表面を被覆する絶縁被膜の膜厚は100nm前後と非常に薄いので、絶縁被膜の構造等を明確に特定すること自体も困難である。また、成形直後の圧粉磁心を焼鈍加熱等したり、それを高温雰囲気で使用した場合、磁性粉末を被覆する絶縁被膜の存在形態が、当初の状態から大きく変化することは容易に予想される。このような点からも、絶縁被膜の構造や形態自体にあまり意味はなく、結果的に十分な比抵抗が確保され得る絶縁被膜であれば十分ということになる。
上述した第1絶縁層、第2絶縁層、第3絶縁層および酸化物粒子についてさらに詳細に説明する。
Furthermore, the present inventor has newly developed an insulating film having excellent heat resistance, in which oxide particles are combined with the first insulating layer and the second insulating layer. The following can be considered as a method of combining oxide particles. One is a case where the second insulating layer is formed of a composite insulating layer in which oxide particles are dispersed in the silicone resin. The other is a case where a third insulating layer mainly composed of oxide particles is further provided on the second insulating layer formed of the silicone resin coating alone or a composite insulating layer thereof. However, in any case, what is important is that the specific resistance of the powder magnetic core is stably maintained even after heating, and the eddy current loss is suppressed, not the structure or form of the insulating coating itself. . As an actual problem, since the film thickness of the insulating film covering the surface of the magnetic powder of about 100 μm is very thin, about 100 nm, it is difficult to clearly specify the structure of the insulating film. In addition, when the powder magnetic core immediately after molding is annealed or used in a high-temperature atmosphere, it is easily expected that the form of the insulating coating covering the magnetic powder will greatly change from the initial state. . From this point of view, the structure and form of the insulating coating itself are not meaningful, and as a result, an insulating coating that can ensure a sufficient specific resistance is sufficient.
The first insulating layer, the second insulating layer, the third insulating layer, and the oxide particles described above will be described in more detail.

(a)第1絶縁層
第1絶縁層であるリン酸塩被膜はその種類を問わない。例えば、第1絶縁層は、特許文献1にあるように、所定濃度のリン酸に磁性粉末を接触させて、磁性粉末の表面にリン酸鉄を形成させてなるリン酸塩被膜でも良い。また、特許文献6に記載されたようなMg−(Fe)−B−P−O系絶縁層でも良い。
(A) 1st insulating layer The phosphate film which is a 1st insulating layer does not ask | require the kind. For example, as disclosed in Patent Document 1, the first insulating layer may be a phosphate coating formed by bringing a magnetic powder into contact with a predetermined concentration of phosphoric acid to form iron phosphate on the surface of the magnetic powder. Further, an Mg— (Fe) —B—P—O-based insulating layer as described in Patent Document 6 may be used.

もっとも、本発明者はこれらのリン酸塩被膜とは異なり、耐熱性に一層優れたリン酸塩被膜を新たに開発した。そして、このリン酸塩被膜を第1絶縁層として、その上に前述の第2絶縁層さらには第3絶縁層を形成すると、著しく耐熱性に優れた絶縁被膜が得られることを確認している。この第1絶縁層は、少なくともリン(P)および酸素(O)からなる第1元素群とシャノン(Shannon,R,D)により定義された6配位のイオン半径が0.073nm以上である2価以上の陽イオンを生じ得る第2元素とからなる。この第1絶縁層中には、磁性粉末から溶け出したFeが含まれることもある。また、単なるリン酸塩被膜ではなく、ホウ素(B)を含むホウリン酸塩被膜(本明細書では、このような被膜も「リン酸塩被膜」に含める。)はより耐熱性に優れる。   However, the present inventors have newly developed a phosphate coating that is more excellent in heat resistance, unlike these phosphate coatings. Then, it has been confirmed that when this phosphate coating is used as the first insulating layer and the above-described second insulating layer and further the third insulating layer are formed thereon, an insulating coating having extremely excellent heat resistance can be obtained. . This first insulating layer has a 6-coordinate ion radius defined by Shannon (R, D) and at least 0.073 nm defined by Shannon (R, D) and at least a first element group consisting of phosphorus (P) and oxygen (O) 2 And a second element capable of generating a cation higher than the valence. The first insulating layer may contain Fe dissolved from the magnetic powder. Further, a borophosphate coating containing boron (B) (in this specification, such a coating is also included in the “phosphate coating”) is more excellent in heat resistance than a simple phosphate coating.

ところで、この場合の第1絶縁層は非晶質のリン酸塩系ガラス被膜であると考えられる。そこで、ガラスを構成する網目形成体(網目形成イオン)と網目修飾体(網目修飾イオン)とに関する法則であるザッカライゼン則に従って、第2元素を適切に抽出、選択すると良い。第1元素群からなる網目形成体中に、イオン半径の大きな第2元素である網目修飾体が入って構成される非晶質のガラス状絶縁層は、結晶化し難く、粘度が高まって焼結・凝集を生じ難くなる。第2元素の陽イオンを2価以上としたのは、1価の陽イオン(例えば、Na+、K+)は、水と反応し易く、長期安定性を考慮すると、存在しない方が好ましいからである。また、第2元素のイオン半径として、シャノンのイオン半径を用いたのは、それが現在最も広く用いられているからである。その中でも特に、6配位のイオン半径としたのは、配位数でイオン半径が異なるため、比較対象を明確にするためである。そして、本発明者が、種々の元素について検討したところ、第2元素のイオン半径が0.073nm以上である場合に、その被膜が優れた耐熱性を発現することを見いだした。逆に、イオン半径が0.073nm未満では、耐熱性が従来レベルであり、耐熱性の向上を図れない。なお、イオン半径は0.075nm以上、さらには0.080nm以上であるとより好ましい。また、イオン半径の上限は取扱性等を考慮して0.170nm以下が好ましい。 By the way, the first insulating layer in this case is considered to be an amorphous phosphate glass coating. Therefore, it is preferable to appropriately extract and select the second element according to the Zacca Raisen rule, which is a rule relating to a network forming body (network forming ion) and a network modifying body (network modifying ion) constituting the glass. An amorphous glassy insulating layer composed of a network-forming body composed of a first element group and a network-modified body that is a second element having a large ionic radius is difficult to crystallize, increases in viscosity, and sinters. -Aggregation hardly occurs. The reason why the cation of the second element is divalent or higher is that monovalent cations (for example, Na + , K + ) are easy to react with water, and it is preferable that they do not exist in consideration of long-term stability. It is. The reason why Shannon's ionic radius is used as the ionic radius of the second element is that it is currently most widely used. Among them, the reason why the six-coordinate ionic radius is used is that the ionic radius differs depending on the number of coordination, and thus the comparison target is clarified. And when this inventor examined various elements, when the ion radius of the 2nd element was 0.073 nm or more, it discovered that the coating film expressed the outstanding heat resistance. On the contrary, if the ion radius is less than 0.073 nm, the heat resistance is at the conventional level, and the heat resistance cannot be improved. The ionic radius is more preferably 0.075 nm or more, and further preferably 0.080 nm or more. In addition, the upper limit of the ion radius is preferably 0.170 nm or less in consideration of handleability and the like.

このような第2元素として、具体的には、例えば、アルカリ土類金属元素や希土類元素(R.E.)を挙げることができる。アルカリ土類金属元素には、ベリリウム(Be)、Mg、Ca、Sr、バリウム(Ba)、ラジウム(Ra)があるが、BeおよびMgは、6配位のイオン半径が0.073nm未満であるため除かれる。取扱性、安全性、好環境性等を考慮すると、アルカリ土類金属元素から第2元素としては、CaまたはSrが好ましい。また、希土類元素には、スカンジウム(Sc)、Y、ランタノイド元素、アクチノイド元素があるが、同様に、取扱性等を考慮して、Yが好ましい。その他、第2元素となり得る元素として、ランタノイド(La〜Lu)、ビスマス(Bi)を挙げることができる。これらの各元素のイオン半径を価数と共に表6に参考として示した。なお、これらの第2元素は、1種の元素のみならず複数種の元素であっても良いことはいうまでもない。こうして本発明の第1層を構成する耐熱性に優れた絶縁被膜(第1絶縁層)が得られた。   Specific examples of such a second element include an alkaline earth metal element and a rare earth element (RE). Alkaline earth metal elements include beryllium (Be), Mg, Ca, Sr, barium (Ba), and radium (Ra), but Be and Mg have a six-coordinate ion radius of less than 0.073 nm. Will be excluded. In consideration of handleability, safety, environmental friendliness, etc., Ca or Sr is preferable as the second element from the alkaline earth metal element. The rare earth elements include scandium (Sc), Y, lanthanoid elements, and actinoid elements. Similarly, Y is preferable in consideration of handling properties and the like. Other elements that can be the second element include lanthanoids (La to Lu) and bismuth (Bi). The ionic radii of each of these elements are shown in Table 6 together with the valence for reference. Needless to say, these second elements may be not only one kind of element but also a plurality of kinds of elements. Thus, an insulating film (first insulating layer) excellent in heat resistance constituting the first layer of the present invention was obtained.

(b)第2絶縁層
第2絶縁層は、第1絶縁層上に形成され、シリコーン樹脂からなる。この第2絶縁層の存在によって、第1絶縁層単体よりも高い耐熱性を発現する本発明の絶縁被膜が得られた。この優れた効果が発現される詳細なメカニズムは現状不明であるが、絶縁層の単なる重複によって耐熱性が向上したのではなく、第1絶縁層と第2絶縁層との相乗効果によって絶縁被膜の耐熱性が一層向上したと考えられる。
(B) Second insulating layer The second insulating layer is formed on the first insulating layer and is made of silicone resin. Due to the presence of the second insulating layer, an insulating coating of the present invention that exhibits higher heat resistance than the first insulating layer alone was obtained. Although the detailed mechanism at which this excellent effect is manifested is unknown at present, the heat resistance is not improved by mere duplication of the insulating layer, but the insulating film has a synergistic effect between the first insulating layer and the second insulating layer. It is thought that the heat resistance was further improved.

シリコーン樹脂は、磁性粉末全体を100質量%として、0.05〜0.8質量%さらには0.1〜0.3質量%の割合で含まれると好ましい。シリコーン樹脂が過少では絶縁被膜の耐熱性向上効果が小さく、シリコーン樹脂が過多になると圧粉磁心の磁束密度の低下を招き好ましくないからである。このシリコーン樹脂量は、後述する酸化物粒子を含む場合であってもほぼ同様であるが、酸化物粒子の有無によってその割合を多少変動させても良い。   The silicone resin is preferably contained in a proportion of 0.05 to 0.8% by mass, further 0.1 to 0.3% by mass, based on 100% by mass of the entire magnetic powder. This is because if the amount of silicone resin is too small, the effect of improving the heat resistance of the insulating coating is small, and if the amount of silicone resin is excessive, the magnetic flux density of the dust core is reduced, which is not preferable. The amount of the silicone resin is substantially the same even when the oxide particles described later are included, but the ratio may be slightly varied depending on the presence or absence of the oxide particles.

シリコーン樹脂は、分子内に1官能性(M単位)、2官能性(D単位)、3官能性(T単位)、あるいは4官能性(Q単位)のシロキサン単位を含有するポリオルガノシロキサンをさす。このシリコーン樹脂は、シリコーンオイルやシリコーンゴムなどに比べ架橋密度が高く、硬化したものは硬いという特徴がある。シリコーン樹脂には、成分がシリコーンのみから構成されるストレートシリコーン樹脂と、シリコーン成分と有機樹脂の共重合体であるシリコーン変成有機樹脂に大別されるが、本発明で使用するシリコーン樹脂はそのいずれでも良い。   Silicone resin refers to a polyorganosiloxane containing a monofunctional (M unit), bifunctional (D unit), trifunctional (T unit), or tetrafunctional (Q unit) siloxane unit in the molecule. . This silicone resin is characterized in that it has a higher crosslink density than silicone oil or silicone rubber, and is hard when cured. Silicone resins are roughly classified into straight silicone resins whose components are composed solely of silicone and silicone-modified organic resins that are copolymers of silicone components and organic resins. The silicone resins used in the present invention are any of them. But it ’s okay.

ストレートシリコーン樹脂は、MQレジンとDTレジンに大別されるがいずれでも良い。シリコーン変成有機樹脂には、アルキッド変成型、エポキシ変成型、ポリエステル変成型、アクリル変成型、フェノール変成型などが挙げられるがいずれでも良い。   Straight silicone resins are broadly classified into MQ resins and DT resins, and any of them may be used. Examples of the silicone-modified organic resin include alkyd modification, epoxy modification, polyester modification, acrylic modification, and phenol modification.

シリコーン樹脂には、加熱して硬化するタイプ(加熱硬化型)と、室温においても硬化が進行するタイプ(室温硬化型)とあるがいずれでも良い。加熱硬化型シリコーン樹脂の硬化機構には、大別して、脱水縮合反応、付加反応、過酸化物反応等によるものがあり、室温硬化型シリコーン樹脂の硬化機構には、脱オキシム反応、脱アルコール反応によるものがある。本発明で使用するシリコーン樹脂はそれらのいずれでも良い。   Silicone resins include a type that cures by heating (heat curing type) and a type that cures even at room temperature (room temperature curing type). The curing mechanism of thermosetting silicone resin is roughly divided into dehydration condensation reaction, addition reaction, peroxide reaction, etc., and the curing mechanism of room temperature curable silicone resin is based on deoxime reaction and dealcoholization reaction. There is something. Any of these may be used for the silicone resin used in the present invention.

このようなシリコーン樹脂の具体例として、例えば、東レダウコーニングシリコーン社製の、SH 805、SH 806A、SH 840、SH 997、SR 620、SR 2306、SR 2309、SR 2310、SR 2316、DC12577、SR2400、SR2402、SR2404、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420、SR2107、SR2115、SR2145、SH6018、DC-2230、DC3037、QP8-5314などがある。また、信越化学工業 (株)製の、KR251、KR255、KR114A、KR112、KR2610B、KR2621-1、KR230B、KR220、KR285、K295、KR2019、KR2706、KR165、KR166、KR169、KR2038、KR221、KR155、KR240、KR101-10、KR120、KR105、KR271、KR282、KR311、KR211、KR212、KR216、KR213、KR217、KR9218、SA-4、KR206、ES1001N、ES1002T、ES1004、KR9706、KR5203、KR5221などがある。勿論、これらの銘柄以外のシリコーン樹脂であっても良い。   Specific examples of such silicone resins include, for example, SH 805, SH 806A, SH 840, SH 997, SR 620, SR 2306, SR 2309, SR 2310, SR 2316, DC12577, SR2400, manufactured by Toray Dow Corning Silicone. SR2402, SR2404, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420, SR2107, SR2115, SR2145, SH6018, DC-2230, DC3037, QP8-5314, and the like. Also available from Shin-Etsu Chemical Co., Ltd. , KR101-10, KR120, KR105, KR271, KR282, KR311, KR211, KR212, KR216, KR213, KR217, KR9218, SA-4, KR206, ES1001N, ES1002T, ES1004, KR9706, KR5203, KR5221 and so on. Of course, silicone resins other than these brands may be used.

本発明で使用するシリコーン樹脂は、溶媒に分散してコロイド状となるような微粒子状のシリコーン樹脂でも良いし、上記原料物質を変成したシリコーン樹脂でも良い。さらに、種類、分子量、官能基が異なる2種類以上のシリコーン樹脂を、適当な割合で混合したシリコーン樹脂を使用しても良い。   The silicone resin used in the present invention may be a finely divided silicone resin dispersed in a solvent to form a colloidal shape, or may be a silicone resin obtained by modifying the raw material. Furthermore, you may use the silicone resin which mixed the 2 or more types of silicone resin from which a kind, molecular weight, and a functional group differ in a suitable ratio.

ところで、このようなシリコーン樹脂中に酸化物粒子が分散してなる第2絶縁層の場合、前述したように、絶縁被膜の耐熱性が一層向上する。この理由は必ずしも定かではないが、現状、次のように考えられる。   By the way, in the case of the second insulating layer in which oxide particles are dispersed in such a silicone resin, as described above, the heat resistance of the insulating coating is further improved. The reason for this is not necessarily clear, but it can be considered as follows.

本発明者が種々実験したところ、シリコーン樹脂溶液に微細な酸化物粒子(SiO2)を添加した処理液は、シリコーン樹脂溶液単体よりも流動性が高くなる。この酸化物粒子が添加された処理液を使用すれば、第1絶縁層が形成されている磁性粉末の表面へ第2絶縁層を形成し易くなった。このことは、第1絶縁層上に形成される第2絶縁層の均一性、ひいては絶縁被膜の均一性に寄与したと考えられる。ここで絶縁被膜の均一性が必要となるのは、絶縁被膜による被覆状態が不均一であると、例えば、膜厚の薄い部分が優先的に攻撃されて、その部分で磁性粉末の粒子同士の直接接触、さらには焼結等を生じて、圧粉磁心の比抵抗値が低下するからである。 As a result of various experiments conducted by the present inventor, the treatment liquid obtained by adding fine oxide particles (SiO 2 ) to the silicone resin solution has higher fluidity than the silicone resin solution alone. When the treatment liquid to which the oxide particles are added is used, the second insulating layer can be easily formed on the surface of the magnetic powder on which the first insulating layer is formed. This is considered to have contributed to the uniformity of the second insulating layer formed on the first insulating layer, and consequently the uniformity of the insulating film. Here, the uniformity of the insulating coating is required because, for example, when the coating state by the insulating coating is non-uniform, the thin film portion is preferentially attacked, and the magnetic powder particles are This is because direct contact, further sintering, and the like occur, and the specific resistance value of the dust core decreases.

また、酸化物粒子は非常に耐熱性(高温絶縁性)に優れた粒子である。この酸化物粒子が磁性粉末の表面に均一に存在し、その構成粒子間に介在して、それらの直接接触が積極的に抑制され、本発明の絶縁被膜の耐熱性が一層高くなったとも考えられる。   In addition, the oxide particles are very excellent in heat resistance (high temperature insulation). It is considered that the oxide particles are present uniformly on the surface of the magnetic powder, are interposed between the constituent particles, and their direct contact is actively suppressed, and the heat resistance of the insulating coating of the present invention is further increased. It is done.

この酸化物粒子を構成する酸化物は、高い絶縁性と耐熱性を有するものであれば、その種類は問わない。このような酸化物として、例えば、SiO2、Al23、ZrO2、MgOおよび複合酸化物のスピネル、ガーネット等がある。その入手性、コスト等を考慮して、酸化物粒子がSi、Zr、MgまたはAlの1種以上の酸化物が好適である。酸化物粒子は、2種以上の金属を合金化したものの酸化物であっても良い。また、コロイド状の酸化物を用いても良い。 As long as the oxide which comprises this oxide particle has high insulation and heat resistance, the kind will not ask | require. Examples of such oxides include SiO 2 , Al 2 O 3 , ZrO 2 , MgO, and composite oxide spinels and garnets. In view of availability, cost, etc., the oxide particles are preferably one or more oxides of Si, Zr, Mg, or Al. The oxide particles may be oxides of alloys of two or more metals. A colloidal oxide may be used.

酸化物粒子の平均粒径は、100nm以下さらには70nm以下が好ましい。一方、酸化物粒子の製造性、入手性等を考慮して、その粒径の下限は、50nmさらには30nmが好ましい。特に、磁性粉末の体積平均粒径(D)と酸化物粒子の粒径(d)との粒径比(d/D)が1/10〜1/100000さらには1/100〜1/10000であると好ましい。   The average particle diameter of the oxide particles is preferably 100 nm or less, more preferably 70 nm or less. On the other hand, considering the manufacturability and availability of the oxide particles, the lower limit of the particle size is preferably 50 nm, more preferably 30 nm. In particular, the particle size ratio (d / D) between the volume average particle size (D) of the magnetic powder and the particle size (d) of the oxide particles is 1/10 to 1/100000, or 1/100 to 1/10000. Preferably there is.

シリコーン樹脂に対する酸化物粒子の混合比(酸化物粒子/シリコーン樹脂)は、重量比で0.1〜10さらには0.3〜3が好ましい。   The mixing ratio of the oxide particles to the silicone resin (oxide particles / silicone resin) is preferably 0.1 to 10, and more preferably 0.3 to 3 by weight.

なお、本発明でいう酸化物粒子の平均粒径は、顕微鏡により観察した定方向径の個数平均粒径とする。   In addition, let the average particle diameter of the oxide particle said by this invention be the number average particle diameter of the fixed direction diameter observed with the microscope.

(c)第3絶縁層
第2絶縁層上に、上述した酸化物粒子から主になる第3絶縁層が形成されていると好適である。
(C) 3rd insulating layer It is suitable when the 3rd insulating layer mainly consisting of the oxide particle mentioned above is formed on the 2nd insulating layer.

この第3絶縁層の下層となる第2絶縁層は、シリコーン樹脂のみからなる絶縁層でも良いし、そのシリコーン樹脂中に酸化物粒子が分散した複合絶縁層でも良い。この場合に本発明の絶縁被膜の耐熱性が向上する理由は必ずしも定かではないが、現状、前述した理由とほぼ同様であると考えられる。
酸化物粒子から主になる第3絶縁層を第2絶縁層上に形成する方法として、機械的な混合、各種コーティング液に酸化物粒子を予め添加する方法等が考えられる。
The second insulating layer which is the lower layer of the third insulating layer may be an insulating layer made of only a silicone resin, or a composite insulating layer in which oxide particles are dispersed in the silicone resin. In this case, the reason why the heat resistance of the insulating coating of the present invention is improved is not necessarily clear, but at present, it is considered to be almost the same as the reason described above.
As a method for forming the third insulating layer mainly composed of oxide particles on the second insulating layer, mechanical mixing, a method of adding oxide particles in advance to various coating solutions, and the like are conceivable.

ところで、磁心用粉末を考えた場合、酸化物粒子を第2絶縁層中に混在させるか第2絶縁層上に分散させるかを問わず、酸化物粒子は、磁性粉末全体を100質量%として、0.05〜0.5質量%さらには0.08〜0.3質量%の割合で含まれると好ましい。酸化物粒子が過少では絶縁被膜の耐熱性向上効果が小さく、酸化物粒子が過多になると圧粉磁心の磁束密度の低下を招き好ましくないからである。このときのシリコーン樹脂量は前述した通りである。   By the way, when considering the powder for the magnetic core, regardless of whether the oxide particles are mixed in the second insulating layer or dispersed on the second insulating layer, the oxide particles are 100% by mass as a whole, It is preferable that it is contained at a ratio of 0.05 to 0.5 mass%, further 0.08 to 0.3 mass%. This is because if the amount of oxide particles is too small, the effect of improving the heat resistance of the insulating coating is small, and if the amount of oxide particles is excessive, the magnetic flux density of the dust core is reduced, which is not preferable. The amount of silicone resin at this time is as described above.

本発明の絶縁被膜は、被覆時に上述した第1絶縁層および第2絶縁層が存在すれば良い。さらにいえば、被覆時の段階から、両層が渾然一体等となり全体として1層の絶縁被膜を形成していても良い。いずれにしても、絶縁被膜は、被覆当初の状態を必ずしも維持している必要はない。絶縁被膜は、その後の加熱等によって第1絶縁層および第2絶縁層が変化、変質または変態等したものでも良い。そのような結果物として得られた圧粉磁心も本発明の範囲に含まれる。   The insulating coating of this invention should just have the 1st insulating layer and the 2nd insulating layer which were mentioned above at the time of a coating | cover. Furthermore, from the stage of coating, both layers may be integrated as a whole to form a single insulating film as a whole. In any case, the insulating coating does not necessarily have to maintain the initial coating state. The insulating coating may be one in which the first insulating layer and the second insulating layer are changed, altered, or transformed by subsequent heating or the like. The dust core obtained as such a product is also included in the scope of the present invention.

なお、上述した絶縁被膜は、焼鈍加熱等によって高温状態下に曝される場合のみを前提としている訳ではない。非加熱状態または室温域等で使用される場合であっても良い。その場合は言うまでもなく、本発明の絶縁被膜は非常に高い絶縁性(高抵抗値)を安定的に発揮する。   Note that the above-described insulating coating is not necessarily premised on the case where it is exposed to a high temperature state by annealing or the like. It may be a case where it is used in an unheated state or at room temperature. In that case, needless to say, the insulating coating of the present invention stably exhibits a very high insulating property (high resistance value).

(3)絶縁被膜の形成方法(磁心用粉末の製造方法)
絶縁被膜は、その種類に応じた適当な方法によって、磁性粉末の表面に形成される。例えば、シリコーン樹脂被膜の場合であれば、磁性粉末にシリコーン樹脂溶液を加えて撹拌、混練等して形成される。これにより、磁性粉末の表面がシリコーン樹脂で被覆された磁心用粉末が得られる。SiO2被膜の場合であれば、シリコーン樹脂で被覆された磁性粉末を高温加熱等して形成される。また、磁性粉末自体を適当な酸化雰囲気で酸化させることで、その表面に酸化被膜を形成することもできる。このような絶縁被膜の形成方法は、従来から周知なところである。以下では、上述した第1絶縁層および第2絶縁層さらには第3絶縁層からなる絶縁被膜の形成方法について説明する。
(3) Formation method of insulating coating (manufacturing method of magnetic core powder)
The insulating coating is formed on the surface of the magnetic powder by an appropriate method according to the type. For example, in the case of a silicone resin coating, it is formed by adding a silicone resin solution to magnetic powder and stirring, kneading, or the like. Thereby, the magnetic core powder in which the surface of the magnetic powder is coated with the silicone resin is obtained. In the case of the SiO 2 coating, the magnetic powder coated with the silicone resin is formed by heating at high temperature. In addition, an oxide film can be formed on the surface of the magnetic powder itself by oxidizing it in an appropriate oxidizing atmosphere. Such a method for forming an insulating film is well known in the art. Below, the formation method of the insulating film which consists of a 1st insulating layer mentioned above, a 2nd insulating layer, and also a 3rd insulating layer is demonstrated.

この絶縁被膜の形成方法(磁心用粉末の製造方法と考えても同様)は、基本的に第1絶縁層形成工程と第2絶縁層形成工程とからなる。勿論、絶縁被膜が第3絶縁層を備える場合には、磁性粉末の第2絶縁層上に第3絶縁層を形成する第3絶縁層形成工程を備える。   This insulating film forming method (even if considered as a magnetic core powder manufacturing method) basically comprises a first insulating layer forming step and a second insulating layer forming step. Of course, when the insulating film includes the third insulating layer, a third insulating layer forming step of forming the third insulating layer on the second insulating layer of the magnetic powder is provided.

(a)第1絶縁層形成工程
第1絶縁層形成工程は、第1被覆処理液を磁性粉末に接触させる接触工程と、その後に磁性粉末を乾燥させる乾燥工程とからなる。
(A) First insulating layer forming step The first insulating layer forming step includes a contact step in which the first coating treatment liquid is brought into contact with the magnetic powder, and a drying step in which the magnetic powder is subsequently dried.

先ず、第1被覆処理液は、リン酸および本発明でいう第2元素とを含む溶液である。これは、水溶液には限らず、エタノール、メタノール、イソプロピルアルコール、アセトン、グリセリン等の有機溶媒を用いた溶液でも良い。いずれにしても、第1被覆処理液は、それらの溶媒中にリン酸を混合し、アルカリ土類金属元素や希土類元素の化合物や塩を溶解させてなる。その他、磁性粉末(例えば、Fe粉)との濡れ性を向上させ均一な被膜を形成させるのに有効な界面活性剤や磁性粉末(例えば、Fe粉)の酸化を防止するための防錆剤等をそこへ適宜添加しても良い。   First, the first coating treatment liquid is a solution containing phosphoric acid and the second element referred to in the present invention. This is not limited to an aqueous solution, but may be a solution using an organic solvent such as ethanol, methanol, isopropyl alcohol, acetone, glycerin or the like. In any case, the first coating treatment liquid is prepared by mixing phosphoric acid in these solvents and dissolving a compound or salt of an alkaline earth metal element or a rare earth element. In addition, surfactants effective for improving wettability with magnetic powder (for example, Fe powder) and forming a uniform film, rust preventive agent for preventing oxidation of magnetic powder (for example, Fe powder), etc. May be appropriately added thereto.

接触工程は、例えば、第1被覆処理液を被処理材に噴霧する溶液噴霧法(噴霧工程)、第1被覆処理液中に浸漬する溶液浸漬法(浸漬工程)等、種々の方法(工程)により行える。溶液噴霧法、溶液浸漬法は大量処理が可能であり、工業的にも有効な方法である。これらの方法に限らず、めっきの如く、電気化学的反応を利用して、被処理材の表面に薄く均一な絶縁被膜を形成しても良い。この場合、絶縁被膜によって被覆された被処理材の表面は電気的に絶縁されるため、被覆されていない表面部分(露出している部分)が、自然に優先的に第1被覆処理液と反応する。その結果、被処理材(磁性粉末)の表面が順次コーティングされ、被処理材の全面がピンホールなく均一に被覆されることとなる。   The contact process includes various methods (processes) such as a solution spraying method (spraying process) in which the first coating treatment liquid is sprayed on the material to be treated and a solution immersion method (immersion process) in which the first coating treatment liquid is immersed in the first coating treatment liquid. Can be done. The solution spraying method and the solution dipping method can be processed in large quantities, and are industrially effective methods. The method is not limited to these methods, and a thin and uniform insulating film may be formed on the surface of the material to be processed using an electrochemical reaction, such as plating. In this case, since the surface of the material to be treated coated with the insulating coating is electrically insulated, the uncovered surface portion (exposed portion) naturally reacts preferentially with the first coating treatment liquid. To do. As a result, the surface of the material to be treated (magnetic powder) is sequentially coated, and the entire surface of the material to be treated is uniformly coated without pinholes.

この接触工程で用いる第1被覆処理液の濃度を変更することで、形成される絶縁被膜の膜厚を調整することが可能である。第1被覆処理液の濃度を濃くすると、膜厚の厚い絶縁被膜が得られ、薄くすると、膜厚の薄い絶縁被膜が得られる。勿論、薄い膜厚を重ねて形成し、全体的に厚い絶縁被膜としても良い。また、被処理材と第1被覆処理液との接触時間もその膜厚に影響するとも考えられる。しかし、現実には、両者の反応時間が短いこともあり、一旦、被処理材の表面が被覆されると、接触時間を長くしても、膜厚の変化は少ない。   By changing the concentration of the first coating treatment liquid used in this contact step, it is possible to adjust the film thickness of the insulating coating to be formed. When the concentration of the first coating treatment liquid is increased, a thick insulating film is obtained, and when the concentration is reduced, a thin insulating film is obtained. Of course, it may be formed by overlapping thin films to form a thick insulating film as a whole. Further, the contact time between the material to be treated and the first coating treatment liquid may also affect the film thickness. However, in reality, the reaction time between the two may be short, and once the surface of the material to be treated is coated, the change in film thickness is small even if the contact time is increased.

乾燥工程は、被処理材に付着した余分な第1被覆処理液やその溶媒を発散させる行程である。この乾燥工程は、加熱乾燥は勿論、自然乾燥でも良い。もっとも、被処理材の表面に絶縁被膜を安定的に、素早く定着させるためには、加熱乾燥(加熱乾燥工程)が好ましい。加熱温度は、80〜350℃程度、加熱時間は、10〜180min程度が好ましい。なお、加熱雰囲気は、真空脱気中や窒素中でも良いし大気中でも良い。   The drying process is a process of diverging excess first coating treatment liquid and its solvent adhering to the material to be treated. This drying step may be natural drying as well as heat drying. However, heat drying (heat drying step) is preferable in order to stably and quickly fix the insulating coating on the surface of the material to be processed. The heating temperature is preferably about 80 to 350 ° C., and the heating time is preferably about 10 to 180 minutes. The heating atmosphere may be vacuum degassing, nitrogen, or air.

(b)第2絶縁層形成工程
第2絶縁層形成工程は、被処理材の第1絶縁層上にシリコーン樹脂からなる第2絶縁層を形成する工程である。この際、第2絶縁層を均一に形成するために、シリコーン樹脂を溶剤等に溶解または分散等させた第2被覆処理液を用いると好適である。このような溶剤には、例えば、エタノールやメタノールに代表されるアルコール系溶剤、アセトンやメチルエチルケトンに代表されるケトン系溶剤、ベンゼン、トルエン、キシレン、フェノール、安息香酸などに代表される芳香族系溶剤、リグロイン、ケロシンなどの石油系溶剤等がある。特に、シリコーン樹脂を溶解し易い芳香族系溶剤が好ましい。シリコーン樹脂が可溶あるいは分散可能なら、溶媒に水を用いても良い。溶剤にシリコーン樹脂を溶解等させた処理液(第2被覆処理液)の濃度は、施工のし易さや乾燥時間等を考慮して決定すれば良い。
(B) Second insulating layer forming step The second insulating layer forming step is a step of forming a second insulating layer made of silicone resin on the first insulating layer of the material to be processed. At this time, in order to uniformly form the second insulating layer, it is preferable to use a second coating treatment liquid in which a silicone resin is dissolved or dispersed in a solvent or the like. Examples of such solvents include alcohol solvents such as ethanol and methanol, ketone solvents such as acetone and methyl ethyl ketone, and aromatic solvents such as benzene, toluene, xylene, phenol, and benzoic acid. , Petroleum solvents such as ligroin and kerosene. In particular, an aromatic solvent that easily dissolves the silicone resin is preferable. If the silicone resin is soluble or dispersible, water may be used as a solvent. The concentration of the treatment liquid (second coating treatment liquid) in which a silicone resin is dissolved in a solvent may be determined in consideration of ease of construction, drying time, and the like.

第2絶縁層形成工程も、第1絶縁層の形成された磁性粉末に第2被覆処理液を接触させる接触工程と、その後にそれを乾燥させる乾燥工程とからなる点は、上記第1絶縁層形成工程と同様である。また、接触工程および乾燥工程の内容もほぼ同様である。但し、シリコーン樹脂の溶剤に揮発性のもの(例えば、エタノール等)を使用した場合は、加熱乾燥等をさせるまでもなく、溶剤が自然に揮発して実質的に乾燥工程が終了することとなる。なお、第2絶縁層中に酸化物粒子を混在させる場合は、溶剤中にシリコーン樹脂と共に酸化物粒子を添加して撹拌、混合しておけば良い。   The second insulating layer forming step also includes a contact step in which the second coating treatment liquid is brought into contact with the magnetic powder on which the first insulating layer is formed, and then a drying step in which it is dried. This is the same as the forming process. The contents of the contact process and the drying process are substantially the same. However, when a volatile solvent (such as ethanol) is used as the solvent for the silicone resin, the solvent will spontaneously volatilize and the drying process will be substantially completed, without needing to dry by heating. . In the case where oxide particles are mixed in the second insulating layer, the oxide particles may be added together with the silicone resin in a solvent and stirred and mixed.

(c)第3絶縁層形成工程
第3絶縁層形成工程は、被処理材の第2絶縁層上に酸化物粒子からなる第3絶縁層を形成する工程である。
(C) Third insulating layer forming step The third insulating layer forming step is a step of forming a third insulating layer made of oxide particles on the second insulating layer of the material to be processed.

第3絶縁層形成工程も、第2絶縁層の形成された磁性粉末に第3被覆処理液を接触させる接触工程と、その後にそれを乾燥させる乾燥工程とからなる点は、上記第1絶縁層形成工程や第2絶縁層形成工程と同様である。また、接触工程および乾燥工程の内容も、それらの場合とほぼ同様にできる。   The third insulating layer forming step also includes the contact step of bringing the third coating treatment liquid into contact with the magnetic powder on which the second insulating layer is formed, and the subsequent drying step of drying the first insulating layer. This is the same as the forming step and the second insulating layer forming step. In addition, the contents of the contacting step and the drying step can be substantially the same as those cases.

(4)圧粉磁心の製造方法
圧粉磁心の製造方法は、上述の磁心用粉末を成形用金型(単に「金型」という。)に充填する充填工程と、充填された磁心用粉末を加圧成形する成形工程とから基本的になる。この成形工程は磁場中成形でも非磁場中成形でも良いが、いずれにしても、圧粉磁心の磁気特性に大きな影響を与える。特にその成形圧力が、圧粉磁心の高密度化、およびそれに伴う圧粉磁心の高磁束密度化等に大きく影響する。もっとも、その成形圧力を大きくすると、金型の内面と磁心用粉末との間でかじりを生じたり、抜圧が過大となったり、金型寿命を極端に低下させたりし易い。このため、従来の成形方法では、その成形圧力を大きくすることが現実には困難であった。
(4) Manufacturing Method of Dust Core A manufacturing method of a dust core includes a filling step of filling the above-described magnetic core powder into a molding die (simply referred to as “mold”), and filling the filled magnetic core powder. It basically consists of a molding process for pressure molding. This molding process may be performed in a magnetic field or in a non-magnetic field, but in any case, it greatly affects the magnetic properties of the dust core. In particular, the molding pressure greatly affects the increase in the density of the dust core and the accompanying increase in the magnetic flux density of the dust core. However, when the molding pressure is increased, galling is likely to occur between the inner surface of the mold and the magnetic core powder, the pressure is excessively increased, and the mold life is extremely reduced. For this reason, in the conventional molding method, it was actually difficult to increase the molding pressure.

本発明者は、画期的な温間高圧成形法を確立し、それらの課題を解決済である。この温間高圧成形法は、前記充填工程を高級脂肪酸系潤滑剤を内面に塗布した金型へ磁心用粉末を充填する工程とし、前記成形工程をその磁心用粉末と金型の内面との間に金属石鹸皮膜が生成される温間高圧成形工程とするものである。   The present inventor has established an epoch-making warm high-pressure molding method and has solved these problems. In this warm high-pressure molding method, the filling step is a step of filling a metal mold coated with a higher fatty acid-based lubricant with a magnetic core powder, and the molding step is performed between the magnetic core powder and the inner surface of the mold. This is a warm high pressure forming process in which a metal soap film is formed.

一例を挙げると、磁性粉末をFeを主成分とする粉末とし、高級脂肪酸系潤滑剤をステアリン酸リチウムとした場合、金型の内面に接する圧粉磁心の外表面には、潤滑性に優れたステアリン酸鉄からなる金属石鹸皮膜が形成される。このステアリン酸鉄皮膜の存在によって、かじり等が生じず、また、非常に低い抜圧で圧粉磁心が金型から取出される。そして、金型の長寿命化も図れる。   For example, when the magnetic powder is a powder containing Fe as a main component and the higher fatty acid-based lubricant is lithium stearate, the outer surface of the dust core in contact with the inner surface of the mold has excellent lubricity. A metal soap film made of iron stearate is formed. The presence of this iron stearate film does not cause galling or the like, and the dust core is taken out from the mold with a very low pressure. In addition, the life of the mold can be extended.

次に、この製造方法をさらに詳細に説明する。
(a)充填工程
充填工程に際して、金型の内面に高級脂肪酸系潤滑剤を塗布する必要がある(塗布工程)。
塗布する高級脂肪酸系潤滑剤としては、高級脂肪酸自体の他、高級脂肪酸の金属塩であると好適である。高級脂肪酸の金属塩には、リチウム塩、カルシウム塩又は亜鉛塩等がある。特に、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸亜鉛が好ましい。この他、ステアリン酸バリウム、パルミチン酸リチウム、オレイン酸リチウム、パルミチン酸カルシウム、オレイン酸カルシウム等を用いることもできる。
Next, this manufacturing method will be described in more detail.
(A) Filling step In the filling step, it is necessary to apply a higher fatty acid-based lubricant to the inner surface of the mold (application step).
The higher fatty acid lubricant to be applied is preferably a metal salt of a higher fatty acid in addition to the higher fatty acid itself. Examples of the higher fatty acid metal salts include lithium salts, calcium salts, and zinc salts. In particular, lithium stearate, calcium stearate, and zinc stearate are preferable. In addition, barium stearate, lithium palmitate, lithium oleate, calcium palmitate, calcium oleate, and the like can also be used.

この塗布工程は、加熱された金型内に水または水溶液に分散させた高級脂肪酸系潤滑剤を噴霧する工程であると、好適である。   This coating step is preferably a step of spraying a higher fatty acid lubricant dispersed in water or an aqueous solution into a heated mold.

高級脂肪酸系潤滑剤が水等に分散していると、金型の内面へ高級脂肪酸系潤滑剤を均一に噴霧することが容易となる。さらに、加熱された金型内にそれを噴霧すると、水分が素早く蒸発して、金型の内面へ高級脂肪酸系潤滑剤を均一に付着させることができる。そのときの金型の加熱温度は、後述の成形工程の温度を考慮する必要があるが、例えば、100℃以上に加熱しておけば足る。もっとも、高級脂肪酸系潤滑剤の均一な膜を形成するために、その加熱温度を高級脂肪酸系潤滑剤の融点未満にすることが好ましい。例えば、高級脂肪酸系潤滑剤としてステアリン酸リチウムを用いた場合、その加熱温度を220℃未満とすると良い。   When the higher fatty acid lubricant is dispersed in water or the like, it becomes easy to uniformly spray the higher fatty acid lubricant on the inner surface of the mold. Furthermore, when it is sprayed into a heated mold, the moisture quickly evaporates, and the higher fatty acid-based lubricant can be uniformly attached to the inner surface of the mold. The heating temperature of the mold at that time needs to take into consideration the temperature of the molding process described later, but it is sufficient to heat it to 100 ° C. or higher, for example. However, in order to form a uniform film of a higher fatty acid-based lubricant, it is preferable that the heating temperature be lower than the melting point of the higher fatty acid-based lubricant. For example, when lithium stearate is used as the higher fatty acid-based lubricant, the heating temperature is preferably less than 220 ° C.

なお、高級脂肪酸系潤滑剤を水等に分散させる際、その水溶液全体の質量を100質量%としたときに、高級脂肪酸系潤滑剤が0.1〜5質量%、さらには、0.5〜2質量%の割合で含まれるようにすると、均一な潤滑膜が金型の内面に形成されて好ましい。   When the higher fatty acid-based lubricant is dispersed in water or the like, when the total weight of the aqueous solution is 100% by mass, the higher fatty acid-based lubricant is 0.1 to 5% by mass, If it is contained at a ratio of 2% by mass, a uniform lubricating film is preferably formed on the inner surface of the mold.

また、高級脂肪酸系潤滑剤を水等へ分散させる際、界面活性剤をその水に添加しておくと、高級脂肪酸系潤滑剤の均一な分散が図れる。そのような界面活性剤として、例えば、アルキルフェノール系の界面活性剤、ポリオキシエチレンノニルフェニルエーテル(EO)6、ポリオキシエチレンノニルフェニルエーテル(EO)10、アニオン性非イオン型界面活性剤、ホウ酸エステル系エマルボンT−80等を用いることができる。これらを2種以上組合わせて使用しても良い。例えば、高級脂肪酸系潤滑剤としてステアリン酸リチウムを用いた場合、ポリオキシエチレンノニルフェニルエーテル(EO)6、ポリオキシエチレンノニルフェニルエーテル(EO)10及びホウ酸エステルエマルボンT−80の3種類の界面活性剤を同時に用いると好ましい。それらの1種のみを添加する場合に較べて複合添加した場合、ステアリン酸リチウムの水等への分散性が一層活性化されるからである。   Further, when the higher fatty acid-based lubricant is dispersed in water or the like, if the surfactant is added to the water, the higher fatty acid-based lubricant can be uniformly dispersed. Examples of such surfactants include alkylphenol surfactants, polyoxyethylene nonylphenyl ether (EO) 6, polyoxyethylene nonyl phenyl ether (EO) 10, anionic nonionic surfactants, and boric acid. Ester-based Emulbon T-80 or the like can be used. Two or more of these may be used in combination. For example, when lithium stearate is used as a higher fatty acid-based lubricant, three types of polyoxyethylene nonylphenyl ether (EO) 6, polyoxyethylene nonylphenyl ether (EO) 10 and borate ester Emulbon T-80 are available. It is preferable to use a surfactant at the same time. This is because the dispersibility of lithium stearate in water or the like is further activated when added in combination as compared with the case of adding only one of them.

また、噴霧に適した粘度の高級脂肪酸系潤滑剤の水溶液を得るために、その水溶液全体を100体積%とした場合、界面活性剤の割合を1.5〜15体積%とすると好ましい。   In order to obtain an aqueous solution of a higher fatty acid-based lubricant having a viscosity suitable for spraying, when the total amount of the aqueous solution is 100% by volume, the ratio of the surfactant is preferably 1.5 to 15% by volume.

この他、少量の消泡剤(例えば、シリコン系の消泡剤等)を添加しても良い。水溶液の泡立ちが激しいと、それを噴霧したときに金型の内面に均一な高級脂肪酸系潤滑剤の被膜が形成され難いからである。消泡剤の添加割合は、その水溶液の全体積を100体積%としたときに、例えば0.1〜1体積%程度であればよい。
水等に分散した高級脂肪酸系潤滑剤の粒子は、最大粒径が30μm未満であると、好適である。
In addition, a small amount of an antifoaming agent (for example, a silicon-based antifoaming agent) may be added. This is because when the foaming of the aqueous solution is severe, it is difficult to form a uniform higher fatty acid-based lubricant film on the inner surface of the mold when sprayed. The addition ratio of the antifoaming agent may be, for example, about 0.1 to 1% by volume when the total volume of the aqueous solution is 100% by volume.
The higher fatty acid-based lubricant particles dispersed in water or the like preferably have a maximum particle size of less than 30 μm.

最大粒径が30μm以上となると、高級脂肪酸系潤滑剤の粒子が水溶液中に沈殿し易く、金型の内面に高級脂肪酸系潤滑剤を均一に塗布することが困難となるからである。
高級脂肪酸系潤滑剤の分散した水溶液の塗布には、例えば、塗装用のスプレーガンや静電ガン等を用いて行うことができる。
When the maximum particle size is 30 μm or more, the higher fatty acid-based lubricant particles are likely to precipitate in the aqueous solution, and it becomes difficult to uniformly apply the higher fatty acid-based lubricant to the inner surface of the mold.
Application of the aqueous solution in which the higher fatty acid-based lubricant is dispersed can be performed using, for example, a spray gun for painting, an electrostatic gun, or the like.

なお、本発明者が高級脂肪酸系潤滑剤の塗布量と粉末成形体の抜出圧力との関係を実験により調べた結果、膜厚が0.5〜1.5μm程度となるように高級脂肪酸系潤滑剤を金型の内面に付着させると好ましいことが解った。   In addition, as a result of investigating the relationship between the coating amount of the higher fatty acid-based lubricant and the extraction pressure of the powder molded body, the present inventor has found that the higher fatty acid-based lubricant has a film thickness of about 0.5 to 1.5 μm. It has been found that it is preferable to apply a lubricant to the inner surface of the mold.

(b)成形工程
詳細は明らかではないが、この工程で、前述の金属石鹸皮膜がメカノケミカル反応によって生成されると考えられる。
(B) Molding process Although details are not clear, it is considered that the above-mentioned metal soap film is generated by a mechanochemical reaction in this process.

すなわち、その反応によって、磁心用粉末(特に、絶縁被膜)と高級脂肪酸系潤滑剤とが化学的に結合し、金属石鹸の被膜(例えば、高級脂肪酸の鉄塩被膜)が磁心用粉末の成形体表面に形成される。この金属石鹸の被膜は、その粉末成形体の表面に強固に結合し、金型の内表面に付着していた高級脂肪酸系潤滑剤よりも遙かに優れた潤滑性能を発揮する。その結果、金型の内面と粉末成形体の外面との接触面間での摩擦力が著しく低減し、高圧成形が可能になったと考えられる。   That is, by the reaction, the magnetic core powder (particularly, the insulating coating) and the higher fatty acid-based lubricant are chemically bonded, and the metal soap coating (for example, the higher fatty acid iron salt coating) is formed into the magnetic core powder. Formed on the surface. This metal soap film is firmly bonded to the surface of the powder molded body and exhibits a lubricating performance far superior to the higher fatty acid-based lubricant adhered to the inner surface of the mold. As a result, it is considered that the frictional force between the contact surfaces of the inner surface of the mold and the outer surface of the powder molded body is remarkably reduced, and high pressure molding is possible.

なお、磁心用粉末の各粒子は絶縁被膜で被覆されているが、絶縁被膜中に金属石鹸の被膜形成を促進する元素(例えば、磁性粉末の主成分であるFeや本発明でいう第2元素)を主成分として含有しているので、それらを基に高級脂肪酸の金属塩被膜(金属石鹸被膜)が形成されると考えられる。   Each particle of the magnetic core powder is coated with an insulating film, but an element that promotes the formation of a metal soap film in the insulating film (for example, Fe, which is the main component of the magnetic powder, or the second element referred to in the present invention). ) As a main component, it is considered that a metal salt film of higher fatty acid (metal soap film) is formed based on them.

成形工程における「温間」とは、各状況に応じた適切な加熱条件の下で成形工程を行うことを意味する。もっとも、磁心用粉末と高級脂肪酸系潤滑剤との反応を促進するために、概して成形温度を100℃以上とすると好ましい。また、絶縁被膜の破壊や高級脂肪酸系潤滑剤の変質を防止するために、概して成形温度を200℃以下とすると好ましい。そして、成形温度を120〜180℃とするとより好適である。   “Warm” in the molding process means that the molding process is performed under an appropriate heating condition according to each situation. However, in order to promote the reaction between the magnetic core powder and the higher fatty acid-based lubricant, it is generally preferable that the molding temperature is 100 ° C. or higher. Moreover, in order to prevent destruction of the insulating coating and alteration of the higher fatty acid-based lubricant, it is generally preferable that the molding temperature is 200 ° C. or lower. And it is more suitable when molding temperature shall be 120-180 degreeC.

成形工程における「加圧」の程度も、所望する圧粉磁心の特性、磁心用粉末、絶縁被膜、高級脂肪酸系潤滑剤の種類、金型の材質や内面性状等に応じて適宜決定されるものであるが、この製造方法を用いると、従来の成形圧力を超越した高圧力下で成形可能である。このため、例えば、成形圧力を700MPa以上、785MPa以上、1000MPa以上、さらには、2000MPaとすることもできる。成形圧力が高圧である程、高密度の圧粉磁心が得られる。もっとも、金型の寿命や生産性を考慮して、その成形圧力を2000MPa以下、より望ましくは1500MPa以下とするのが良い。   The degree of "pressurization" in the molding process is also appropriately determined according to the desired properties of the powder magnetic core, the magnetic core powder, the insulating coating, the type of the higher fatty acid-based lubricant, the mold material, the inner surface properties, etc. However, when this production method is used, molding can be performed under a high pressure exceeding the conventional molding pressure. For this reason, for example, the molding pressure can be set to 700 MPa or more, 785 MPa or more, 1000 MPa or more, or 2000 MPa. The higher the molding pressure, the higher the density magnetic core. However, in consideration of the life and productivity of the mold, the molding pressure is preferably 2000 MPa or less, more preferably 1500 MPa or less.

なお、本発明者は、この温間高圧成形法を用いた場合、成形圧力が約600MPaで抜出圧力が最大となり、それ以上ではむしろ抜出圧力が低下することを実験により確認している。そして、成形圧力を900〜2000MPaの範囲で変化させたときでさえ、抜出圧力が5MPa程度と、非常に低い値を維持した。このことからも、本発明の製造方法の一つである温間高圧成形法によって形成される金属石鹸被膜が、如何に潤滑性に優れるかが解る。この温間高圧成形法は、高圧成形による高密度化が要求される圧粉磁心の製造方法として最適であることが解る。このような現象は、高級脂肪酸系潤滑剤として、ステアリン酸リチウムを用いた場合に限らず、ステアリン酸カルシウムやステアリン酸亜鉛を用いた場合でも同様に生じ得る。   In addition, when this inventor used this warm high-pressure shaping | molding method, it has confirmed by experiment that a shaping | molding pressure is about 600 Mpa, and the extraction pressure becomes the maximum, and if it exceeds it, it will rather fall. And even when the molding pressure was changed in the range of 900 to 2000 MPa, the extraction pressure was maintained at a very low value of about 5 MPa. This also shows how the metal soap film formed by the warm high pressure forming method, which is one of the production methods of the present invention, is excellent in lubricity. It can be seen that this warm high-pressure forming method is optimal as a method for manufacturing a dust core that requires high density by high-pressure forming. Such a phenomenon can occur not only when lithium stearate is used as the higher fatty acid-based lubricant but also when calcium stearate or zinc stearate is used.

(c)加熱工程、焼鈍工程
本発明の圧粉磁心の製造方法は、さらに、上記成形工程後に得られた粉末成形体を加熱する加熱工程または焼鈍温度を備えると好適である。加熱工程や焼鈍温度の加熱温度や加熱時間は、圧粉磁心の仕様に応じて適宜選択されば良い。この点で加熱工程と焼鈍温度との間に本質的な相違はないが、両者は、その目的が異なる。
(C) Heating process, annealing process It is suitable for the manufacturing method of the powder magnetic core of this invention to be further equipped with the heating process or annealing temperature which heats the powder compact obtained after the said shaping | molding process. The heating temperature and heating time of the heating process and annealing temperature may be appropriately selected according to the specifications of the dust core. In this respect, there is no essential difference between the heating process and the annealing temperature, but both have different purposes.

加熱工程は、絶縁被膜をシリコーン樹脂被膜とした場合に、成形工程後に得られた粉末成形体を加熱して、そのシリコーン樹脂被膜をSiO2被膜とするための工程である。一方、焼鈍工程は、保磁力やヒステリシス損失の低減を目的として、成形工程後に得られた粉末成形体内部に蓄積された歪み(残留歪み)や応力(残留応力)を除去するための工程である。もっとも、加熱温度、加熱時間および加熱雰囲気を適切に選択して、加熱工程が焼鈍温度を兼ねても良いし、焼鈍工程が加熱工程を兼ねても良い。 The heating step is a step for heating the powder molded body obtained after the molding step to make the silicone resin coating a SiO 2 coating when the insulating coating is a silicone resin coating. On the other hand, the annealing process is a process for removing strain (residual strain) and stress (residual stress) accumulated in the powder molded body obtained after the molding process for the purpose of reducing coercive force and hysteresis loss. . However, the heating process may also serve as the annealing temperature by appropriately selecting the heating temperature, the heating time, and the heating atmosphere, and the annealing process may also serve as the heating process.

なお、リン酸塩被膜からなる第1絶縁層と第1絶縁層を被覆するシリコーン樹脂からなる第2絶縁層とを備える多層構造の絶縁被膜は、前述したように耐熱性に著しく優れる。この絶縁被膜を備えた粉末成形体に焼鈍工程を行うと、渦電流損失の低減を抑制しつつもヒステリシス損失が十分に低減されて好ましい。この絶縁被膜が形成される磁性粉末の組成は特に限定される訳ではないが、前述したとおり、磁性粉末中のSi量が0.8%以下の純鉄粉の場合に特に有効である。   In addition, the insulating film having a multilayer structure including the first insulating layer made of a phosphate film and the second insulating layer made of a silicone resin that covers the first insulating layer is remarkably excellent in heat resistance as described above. It is preferable to perform an annealing step on the powder compact provided with this insulating film, since hysteresis loss is sufficiently reduced while suppressing reduction in eddy current loss. The composition of the magnetic powder on which this insulating film is formed is not particularly limited, but as described above, it is particularly effective when the amount of Si in the magnetic powder is pure iron powder of 0.8% or less.

加熱・焼鈍工程は、300〜900℃さらには500〜700℃で0.1〜10時間さらには0.5〜2.0時間加熱するのが好ましい。このときの雰囲気は不活性雰囲気が好ましい。繰り返すが、このような加熱工程または焼鈍工程を行うことで絶縁被膜は当初の状態から少なくとも部分的に変化し得る。しかし、このような加熱工程や焼鈍工程後の圧粉磁心であっても、本発明の圧粉磁心である。   In the heating / annealing step, heating is preferably performed at 300 to 900 ° C., further 500 to 700 ° C. for 0.1 to 10 hours, and further 0.5 to 2.0 hours. The atmosphere at this time is preferably an inert atmosphere. Again, the insulating coating can change at least partially from its original state by performing such a heating or annealing step. However, even the dust core after such a heating step or annealing step is the dust core of the present invention.

(5)圧粉磁心
本発明の圧粉磁心は、上述した磁心用粉末を高密度成形したものであり、磁性粉末の真密度(ρ0)に対する、圧粉磁心の嵩密度(ρ)の比である密度比(ρ/ρ0)が96%以上である。このような高密度の圧粉磁心は非常に高い磁束密度を発生する。これは、高性能モータ等に使用されていた従来の電磁鋼板と同等以上である。その密度比が97%以上、98%以上さらに99%以上と高くなる程、より高い磁束密度が得られるので好ましい。さらに、本発明の圧粉磁心を構成する磁性粉末は、含有Si量が比較的少ない。その分、一般的なFe−3%Si等の磁性粉末を使用した圧粉磁心と比較して、本発明の圧粉磁心はより高い磁束密度を発揮する。
(5) Powder magnetic core The powder magnetic core of the present invention is obtained by molding the above-described magnetic core powder at a high density, and the ratio of the bulk density (ρ) of the powder magnetic core to the true density (ρ 0 ) of the magnetic powder. The density ratio (ρ / ρ 0 ) is 96% or more. Such a high-density dust core generates a very high magnetic flux density. This is equivalent to or better than conventional electromagnetic steel sheets used for high performance motors and the like. The higher the density ratio is 97% or more, 98% or more, and 99% or more, it is preferable because a higher magnetic flux density can be obtained. Further, the magnetic powder constituting the dust core of the present invention has a relatively small amount of Si. Accordingly, the dust core of the present invention exhibits a higher magnetic flux density compared to a dust core using a general magnetic powder such as Fe-3% Si.

本発明では、圧粉磁心の磁気特性をその密度比によって間接的に指標しているが、例えば、特定強さの磁界中においたときの磁束密度で、その圧粉磁心の磁気特性を直接的に特定しても良い。なお、圧粉磁心の磁気特性を指標するものとして透磁率があるが、透磁率は一般的なB−H曲線からも解るように一定ではないので、本明細書では、特定磁界中で生じる磁束密度により圧粉磁心の磁気特性を評価している。   In the present invention, the magnetic properties of the dust core are indirectly indicated by the density ratio. For example, the magnetic properties of the dust core are directly measured by the magnetic flux density when placed in a magnetic field of a specific strength. You may specify. In addition, although there is a magnetic permeability as an index for indicating the magnetic characteristics of the dust core, the magnetic permeability is not constant as understood from a general BH curve. The magnetic properties of the dust core are evaluated by the density.

上記特定磁界は、1〜20kA/mから適当に選定すれば良い。例えば、2kA/m、5kA/m、8kA/m、10kA/m、16kA/m、20kA/m等である。それらの磁界中に圧粉磁心を置いたときにできる磁束密度をそれぞれ、B2k、B5k、B8k、B10k、B16k、B20k等と表して、本発明の圧粉磁心を評価できる。本発明の圧粉磁心の場合、例えば、B20k≧1.7T、1.8T、1.9Tさらには2.0T、B10k≧1.5T、1.6T、1.7Tさらには1.8Tといった高い磁束密度を発揮する。 The specific magnetic field may be appropriately selected from 1 to 20 kA / m. For example, 2 kA / m, 5 kA / m, 8 kA / m, 10 kA / m, 16 kA / m, 20 kA / m, and the like. The magnetic flux density generated when the dust core is placed in these magnetic fields can be expressed as B 2k , B 5k , B 8k , B 10k , B 16k , B 20k, etc., respectively, and the dust core of the present invention can be evaluated. . In the case of the dust core of the present invention, for example, B 20k ≧ 1.7T, 1.8T, 1.9T or even 2.0T, B 10k ≧ 1.5T, 1.6T, 1.7T or 1.8T. High magnetic flux density is demonstrated.

なお、飽和磁化Msが小さいと、高磁場中で大きな磁束密度が得られないが、本発明の圧粉磁心では、例えば、1.6MA/mの磁場中における飽和磁化Ms≧1.9Tさらには2.0T以上ともなり、高磁界中でも安定した高磁束密度が得られる。   Note that if the saturation magnetization Ms is small, a large magnetic flux density cannot be obtained in a high magnetic field. However, in the dust core of the present invention, for example, the saturation magnetization Ms ≧ 1.9T in a 1.6 MA / m magnetic field. Since it is 2.0 T or more, a stable high magnetic flux density can be obtained even in a high magnetic field.

さらに、圧粉磁心の磁気特性を指標するものとして保磁力がある。その保磁力が小さい程、交流磁界に対する圧粉磁心の追従性が良くなり、そのヒステリシス損失も小さくなる。本発明の圧粉磁心の場合、その保磁力bHcは150A/m以下、130A/m以下さらには100A/m以下ともなり得る。なお、本明細書でいう保磁力bHcは、最大磁場2kA/mでの磁化曲線から測定した値と定義する。   Further, there is a coercive force as an index of the magnetic characteristics of the dust core. The smaller the coercive force, the better the followability of the dust core to the AC magnetic field, and the smaller the hysteresis loss. In the case of the dust core of the present invention, the coercive force bHc can be 150 A / m or less, 130 A / m or less, or even 100 A / m or less. The coercive force bHc in this specification is defined as a value measured from a magnetization curve at a maximum magnetic field of 2 kA / m.

ちなみに、磁性粉末中のSi量が増加する程、圧粉磁心の保磁力が低下する傾向となる。この観点から、本発明に係る磁性粉末のSi量は0.8〜1.5質量%が好ましい。   Incidentally, the coercive force of the dust core tends to decrease as the amount of Si in the magnetic powder increases. From this viewpoint, the amount of Si in the magnetic powder according to the present invention is preferably 0.8 to 1.5% by mass.

次に、圧粉磁心の電気特性(すなわち、比抵抗)について説明する。比抵抗は、原則として形状に依存しない圧粉磁心ごとの固有値であり、同形状の圧粉磁心であれば比抵抗が大きいほど、渦電流損失の低減を図れる。比抵抗は、絶縁被膜の種類、絶縁被膜の量(膜厚)、焼鈍の有無等によって異なるが、比抵抗が50μΩm以上、100μΩm以上、300μΩm以上さらには1000μΩm以上であれば、十分な渦電流損失の低減を図れる。   Next, electrical characteristics (that is, specific resistance) of the dust core will be described. The specific resistance is, in principle, an eigenvalue for each dust core that does not depend on the shape, and if the dust core has the same shape, the larger the specific resistance, the more the eddy current loss can be reduced. The specific resistance varies depending on the type of insulating film, the amount of insulating film (film thickness), the presence or absence of annealing, etc., but if the specific resistance is 50 μΩm or more, 100 μΩm or more, 300 μΩm or more, or even 1000 μΩm or more, sufficient eddy current loss Can be reduced.

なお、圧粉磁心全体に対する絶縁被膜量によって、圧粉磁心の比抵抗と磁束密度との関係は変化する。具体的には絶縁被膜量が多くなれば、比抵抗が増加して磁束密度が減少する。逆に、絶縁被膜量が少なくなれば、比抵抗が減少して磁束密度が増加する。この傾向は焼鈍した圧粉磁心であっても基本的に同様である。耐久性、耐熱性等に優れた前述したような絶縁被膜を使用して、その使用量を少なくすることで、磁気特性および電気特性の両方に優れた圧粉磁心が得られる。   Note that the relationship between the specific resistance of the dust core and the magnetic flux density varies depending on the amount of the insulating coating on the entire dust core. Specifically, as the amount of insulating coating increases, the specific resistance increases and the magnetic flux density decreases. On the contrary, if the amount of the insulating coating is reduced, the specific resistance is decreased and the magnetic flux density is increased. This tendency is basically the same even with an annealed powder magnetic core. By using the above-described insulating coating excellent in durability, heat resistance and the like and reducing the amount of use, a dust core excellent in both magnetic characteristics and electrical characteristics can be obtained.

圧粉磁心の機械的特性(特に、強度)も、実際の使用を考えると重要である。圧粉磁心は、鋳造品や焼結品とは異なり、絶縁被膜で被覆された構成粒子が塑性変形によって主に機械的に結合されているだけであり、その強度は高くない。但し、本発明の圧粉磁心は、その密度比が96%以上と高密度であるので、実際上、十分な強度を有する。例えば、4点曲げ強度σで50MPa以上さらには100MPa以上という高強度を発揮する。この4点曲げ強度σは、JISに規定されていないが、圧粉体の試験方法により求めることができる。   The mechanical properties (particularly strength) of the dust core are also important when considering actual use. Unlike the cast product and the sintered product, the dust core is mainly mechanically bonded by the plastic deformation of the constituent particles covered with the insulating film, and its strength is not high. However, since the density ratio of the present invention is as high as 96% or higher, it has practically sufficient strength. For example, a high strength of 50 MPa or more, further 100 MPa or more is exhibited at a four-point bending strength σ. The four-point bending strength σ is not defined in JIS, but can be obtained by a green compact test method.

(6)圧粉磁心の用途
本発明の圧粉磁心は、各種の電磁機器、例えば、モータ、アクチュエータ、トランス、誘導加熱器(IH)、スピーカ、リアクトル等に利用できる。中でも、2000Hz以下(例えば、100〜2000Hz)といった低周波数域で作動する電磁機器に使用されると好ましい。本発明の圧粉磁心は、そのような低周波数域で使用された際に、特に、鉄損を著しく抑制しつつ高い磁気特性を発現する。そのような低周波数域で使用される電磁機器として、電動機(モータ)や発電機がある。すなわち、本発明の圧粉磁心は、電動機または発電機の界磁または電機子を構成する鉄心であると好ましい。特に、低損失で高出力(高磁束密度)が要求される駆動用モータ用に本発明の圧粉磁心は好適である。このような駆動用モータは、例えば、ハイブリッド自動車や電気自動車等に用いられる。本発明の圧粉磁心の鉄損の一例を挙げておく。使用周波数が800Hzで磁束密度が1.0Tの交番磁界中で本発明の圧粉磁心を使用したとき、その鉄損は、55W/kg以下、53W/kg以下さらには38W/kg以下と小さい。この鉄損は、従来の圧粉磁心よりも遙かに小さく、モータに使用される高性能電磁鋼板(20JNEH1200(JFEスチール製))と同等かそれ以下である。上記鉄損の内、ヒステリシス損失は37W/kg以下、34W/kg以下さらには32W/kg以下と十分に小さい。勿論、上記鉄損の内、渦電流損失は21W/kg以下、16W/kg以下、さらには6W/kg以下である。
(6) Use of dust core The dust core of the present invention can be used for various electromagnetic devices such as motors, actuators, transformers, induction heaters (IH), speakers, reactors, and the like. Especially, it is preferable when it is used for the electromagnetic equipment which operate | moves in a low frequency region, such as 2000 Hz or less (for example, 100-2000 Hz). When used in such a low frequency range, the dust core of the present invention exhibits high magnetic properties while remarkably suppressing iron loss. As an electromagnetic device used in such a low frequency range, there are an electric motor (motor) and a generator. That is, the dust core of the present invention is preferably an iron core constituting a field or armature of an electric motor or generator. In particular, the dust core of the present invention is suitable for a drive motor that requires low loss and high output (high magnetic flux density). Such a driving motor is used in, for example, a hybrid vehicle or an electric vehicle. An example of the iron loss of the dust core of the present invention will be given. When the dust core of the present invention is used in an alternating magnetic field having a working frequency of 800 Hz and a magnetic flux density of 1.0 T, the iron loss is as small as 55 W / kg or less, 53 W / kg or less, or 38 W / kg or less. This iron loss is much smaller than that of a conventional dust core and is equal to or less than that of a high performance electrical steel sheet (20JNEH1200 (manufactured by JFE Steel)) used in a motor. Among the above iron losses, the hysteresis loss is sufficiently small, 37 W / kg or less, 34 W / kg or less, and further 32 W / kg or less. Of course, among the iron losses, the eddy current loss is 21 W / kg or less, 16 W / kg or less, and further 6 W / kg or less.

実施例を挙げて、本発明をより具体的に説明する。
(第1実施例)
(1)絶縁被膜の形成(磁心用粉末の製造)
原料粉末(磁性粉末)として、純Fe(純度:99.8%、ヘガネス社製ABC100.30)、Fe−1%SiおよびFe−3%Siの組成をもつ市販のアトマイズ粉を用意した。単位は質量%である(以下、同様)。各粉末の商品名および製造メーカは次のとおりである。
The present invention will be described more specifically with reference to examples.
(First embodiment)
(1) Formation of insulating coating (manufacture of magnetic core powder)
As the raw material powder (magnetic powder), a commercially available atomized powder having a composition of pure Fe (purity: 99.8%, ABC100.30 manufactured by Höganäs), Fe-1% Si and Fe-3% Si was prepared. The unit is mass% (hereinafter the same). The trade names and manufacturers of each powder are as follows.

各粉末の体積平均粒径は、純鉄粉80μm、Fe−1%Si粉末80μmおよびFe−3%Si粉末80μmであった。   The volume average particle diameter of each powder was 80 μm of pure iron powder, 80 μm of Fe-1% Si powder, and 80 μm of Fe-3% Si powder.

これらの各粉末にシリコーン樹脂被膜(絶縁被膜)を次のようにコーティングした。   Each of these powders was coated with a silicone resin film (insulating film) as follows.

市販のシリコーン樹脂(東レ・ダウコーニング・シリコーン社製、「SR−2400」)を5倍の有機溶媒(トルエン)に溶解した被覆処理液を用意した。この被覆処理液を上記磁性粉末に添加した後、混合および撹拌を行い、その後にそれらを150℃で2時間乾燥させた。 こうしてシリコーン樹脂被膜で表面が被覆された磁性粉末(磁心用粉末)が得られた。被覆処理液の添加は、磁性粉末100質量%に対してシリコーン樹脂量が0.2質量%となるようにした。なお、このシリコーン樹脂の質量%は僅かであるので、コーティング後の磁心用粉末(または圧粉磁心)全体を100質量%と考えても、上記割合は殆ど変化ない(以下同様)。ちなみに、上記シリコーン樹脂は、750℃まで加熱すると分解し、磁性粉末の表面にSiO2の酸化被膜(絶縁被膜)を形成する。 A coating treatment solution in which a commercially available silicone resin (“SR-2400” manufactured by Toray Dow Corning Silicone Co., Ltd.) was dissolved in 5 times the organic solvent (toluene) was prepared. After this coating treatment liquid was added to the magnetic powder, mixing and stirring were performed, and then they were dried at 150 ° C. for 2 hours. Thus, a magnetic powder (magnetic core powder) whose surface was coated with a silicone resin coating was obtained. The coating treatment solution was added so that the amount of the silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder. In addition, since the mass% of this silicone resin is very small, the above ratio hardly changes even when the entire powder (or dust core) for magnetic core after coating is considered to be 100 mass% (the same applies hereinafter). Incidentally, the silicone resin decomposes when heated to 750 ° C., and forms an oxide film (insulating film) of SiO 2 on the surface of the magnetic powder.

(2)圧粉磁心の製造
各磁心用粉末に金型潤滑温間高圧成形法を適用して、リング状(外径:φ39mm×内径φ30mm×厚さ5mm)および板状(5mm×10mm×55mm)の2種の試験片をそれぞれ製作した。このリング状試験片は磁気特性評価用であり、板状試験片は電気抵抗評価用である。各試験片(圧粉磁心)の成形に際して、内部潤滑剤や樹脂バインダー等は、一切使用しなかった。
(2) Manufacture of dust cores By applying a die-lubricating warm high pressure molding method to each core powder, a ring shape (outer diameter: φ39 mm × inner diameter φ30 mm × thickness 5 mm) and plate shape (5 mm × 10 mm × 55 mm) ) 2 types of test pieces were produced. This ring-shaped test piece is for evaluating magnetic properties, and the plate-shaped test piece is for evaluating electric resistance. No internal lubricant, resin binder, or the like was used at the time of molding each test piece (dust core).

金型潤滑温間高圧成形法は、具体的には次のようにして行った。   Specifically, the die lubrication warm high pressure molding method was performed as follows.

(a)各試験片形状に応じたキャビティを有する超硬製の金型を用意した。この金型をバンドヒータで予め150℃に加熱しておいた。また、この金型の内周面には、予めTiNコート処理を施し、その表面粗さを0.4Zとした。 (A) A cemented carbide mold having a cavity corresponding to each test piece shape was prepared. This mold was preheated to 150 ° C. with a band heater. Further, the inner peripheral surface of this mold was previously subjected to TiN coating treatment, and the surface roughness was set to 0.4Z.

加熱した金型の内周面に、水溶液に分散させたステアリン酸リチウムをスプレーガンにて、10cm3/分程度の割合で均一に塗布した(塗布工程)。ここで用いた水溶液は、水に界面活性剤と消泡剤とを添加したものである。界面活性剤には、ポリオキシエチレンノニルフェニルエーテル(EO)6、(EO)10及びホウ酸エステルエマルボンT−80を用い、それぞれを水溶液全体(100体積%)に対して1体積%づつ添加した。また、消泡剤には、FSアンチフォーム80を用い、水溶液全体(100体積%)に対して0.2体積%添加した。 Lithium stearate dispersed in an aqueous solution was uniformly applied to the inner peripheral surface of the heated mold with a spray gun at a rate of about 10 cm 3 / min (application process). The aqueous solution used here is obtained by adding a surfactant and an antifoaming agent to water. As the surfactant, polyoxyethylene nonylphenyl ether (EO) 6, (EO) 10 and boric acid ester Emulbon T-80 were used, and each was added by 1% by volume with respect to the entire aqueous solution (100% by volume). did. As the antifoaming agent, FS Antifoam 80 was used and 0.2% by volume was added to the entire aqueous solution (100% by volume).

また、ステアリン酸リチウムには、融点が約225℃で、粒径が20μmのものを用いた。その分散量は、上記水溶液100cm3に対して25gとした。そして、これをさらにボールミル式粉砕装置で微細化処理(テフロンコート鋼球:100時間)し、得られた原液を20倍に希釈して最終濃度1%の水溶液として、上記塗布工程に供した。 Further, lithium stearate having a melting point of about 225 ° C. and a particle size of 20 μm was used. The dispersion amount was 25 g with respect to 100 cm 3 of the aqueous solution. Then, this was further refined with a ball mill type pulverizer (Teflon-coated steel balls: 100 hours), and the obtained stock solution was diluted 20 times to give an aqueous solution having a final concentration of 1%, which was used in the coating step.

(b)ステアリン酸リチウムが内面に塗布されたその金型へ、それと同温の150℃に加熱しておいた磁心用粉末を充填した(充填工程)。 (B) A magnetic core powder that had been heated to 150 ° C., the same temperature as that of which the lithium stearate was coated on the inner surface was filled (filling step).

(c)金型を150℃に保持したまま、基本的に1568MPaの成形圧力で、その金型内に充填された磁心用粉末を温間加圧成形した(成形工程)。
なお、この温間高圧成形に際して、いずれの磁心用粉末も金型とかじり等を生じることがなく、5MPa程度の低い抜圧で粉末成形体をその金型から取出すことができた。
(C) While maintaining the mold at 150 ° C., the core powder filled in the mold was basically warm-pressed at a molding pressure of 1568 MPa (molding step).
In this warm high-pressure molding, none of the magnetic core powders galling with the mold, and the powder molded body could be taken out from the mold with a low depressurization of about 5 MPa.

(d)得られた各粉末成形体に、窒素雰囲気中で750℃x30分間の加熱処理(焼鈍処理)を行った(加熱工程または焼鈍工程)。これにより、シリコーン樹脂被膜がSiO2被膜になると共に粉末成形体内部に残留した歪みや応力が除去される。 (D) Each obtained powder compact was subjected to heat treatment (annealing treatment) at 750 ° C. for 30 minutes in a nitrogen atmosphere (heating step or annealing step). As a result, the silicone resin film becomes a SiO 2 film, and strain and stress remaining in the powder molded body are removed.

(第2実施例)
前述のFe−1%Si磁性粉末(体積平均粒径:80μm)に、第1実施例の場合と同様にシリコーン樹脂被膜(絶縁被膜)のコーティング処理を行なった。但し、シリコーン樹脂量は磁性粉末100質量%に対して0.1質量%、0.2質量%および0.5質量%とした。こうして絶縁被膜量の異なる3種の磁心用粉末を得た。
(Second embodiment)
The above-described Fe-1% Si magnetic powder (volume average particle size: 80 μm) was coated with a silicone resin coating (insulating coating) in the same manner as in the first example. However, the amount of the silicone resin was 0.1% by mass, 0.2% by mass and 0.5% by mass with respect to 100% by mass of the magnetic powder. Thus, three kinds of magnetic core powders having different amounts of insulating coating were obtained.

得られた各磁心用粉末を用いて、第1実施例と同様の温間高圧成形をし、得られた各粉末成形体に、前述した加熱処理(窒素雰囲気中で750℃x30分間)を施した。   Each of the obtained magnetic core powders was subjected to warm high pressure molding similar to that of the first example, and the obtained powder compacts were subjected to the heat treatment described above (750 ° C. × 30 minutes in a nitrogen atmosphere). did.

(第3実施例)
篩い分け法によって8段階に分級したFe−1%Si磁性粉末を用意した。具体的には(a)45〜63μm(b)63〜74μm、(c)74〜105μm、(d)105〜150μm、(e)150〜212μm、(f)212〜250μm、(g)250〜300、(h)300〜355μmに分級した。これを本発明の体積平均粒径でいうと、それぞれ、(a)50〜60μm(b)65〜70μm、(c)80〜100μm、(d)120〜140μm、(e)170〜190μm、(f)220〜240μm、(g)270〜290μm、(h)320〜340μmとなる。なお、使用したFe−1%Si磁性粉末は第1実施例のものと同様のアトマイズ粉である。
(Third embodiment)
Fe-1% Si magnetic powder classified into 8 stages by a sieving method was prepared. Specifically, (a) 45-63 μm (b) 63-74 μm, (c) 74-105 μm, (d) 105-150 μm, (e) 150-212 μm, (f) 212-250 μm, (g) 250- 300, (h) 300-355 μm. In terms of the volume average particle diameter of the present invention, (a) 50 to 60 μm (b) 65 to 70 μm, (c) 80 to 100 μm, (d) 120 to 140 μm, (e) 170 to 190 μm, ( f) 220-240 μm, (g) 270-290 μm, (h) 320-340 μm. The Fe-1% Si magnetic powder used is an atomized powder similar to that of the first embodiment.

これら各磁性粉末に第1実施例と同様にして、シリコーン樹脂被膜を形成した。シリコーン樹脂量は磁性粉末100質量%に対して0.2質量%とした。こうして、粒径の異なる8種の磁心用粉末を得た。
得られた各磁心用粉末を用いて、第1実施例と同様の温間高圧成形をし、得られた各粉末成形体に、前述した加熱処理(窒素雰囲気中で750℃x30分間)を施した。
A silicone resin film was formed on each of these magnetic powders in the same manner as in the first example. The amount of the silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder. Thus, eight kinds of magnetic core powders having different particle diameters were obtained.
Each of the obtained magnetic core powders was subjected to warm high pressure molding similar to that of the first example, and the obtained powder compacts were subjected to the heat treatment described above (750 ° C. × 30 minutes in a nitrogen atmosphere). did.

(第4実施例)
篩い分け法によって11段階に分級したFe−1%Si磁性粉末を用意した。これらの分級は、第3実施例で示した8段階の分級である。使用したFe−1%Si磁性粉末は第1実施例のものと同様のアトマイズ粉である。
(Fourth embodiment)
Fe-1% Si magnetic powder classified into 11 stages by a sieving method was prepared. These classifications are the 8-stage classifications shown in the third embodiment. The Fe-1% Si magnetic powder used is an atomized powder similar to that of the first embodiment.

これらの各種粉末をそれぞれ、小型圧延機(DBR−50S(大東製作所製))で、厚さが0.05mmおよび0.1mmになるように圧延した(扁平処理工程)。こうして、粒径または厚みの異なる略小判型をした扁平粒子を得た。この圧延前の分級で8段階、圧延後の厚みで2段階に分れる。よって合計で22種の磁性粉末を得た。   These various powders were each rolled with a small rolling mill (DBR-50S (manufactured by Daito Seisakusho)) so that the thicknesses were 0.05 mm and 0.1 mm (flat processing step). In this way, oblate flat particles having different particle sizes or thicknesses were obtained. The classification before rolling can be divided into 8 stages, and the thickness after rolling can be divided into 2 stages. Therefore, 22 kinds of magnetic powders were obtained in total.

これらの各磁性粉末に第1実施例と同様にしてシリコーン樹脂被膜を形成した。シリコーン樹脂量は磁性粉末100質量%に対して0.2質量%とした。
得られた各磁心用粉末を用いて、第1実施例と同様の温間高圧成形をし、得られた各粉末成形体に、前述した加熱処理(窒素雰囲気中で750℃x30分間)を施した。
A silicone resin film was formed on each of these magnetic powders in the same manner as in the first example. The amount of the silicone resin was 0.2% by mass with respect to 100% by mass of the magnetic powder.
Each of the obtained magnetic core powders was subjected to warm high pressure molding similar to that of the first example, and the obtained powder compacts were subjected to the heat treatment described above (750 ° C. × 30 minutes in a nitrogen atmosphere). did.

(第5実施例)
(1)磁心用粉末の製造
磁性粉末として市販されている2種の純鉄粉を容易した。一方は水アトマイズ粉(川崎製鉄のKIP−304AS)であり、他方はガスアトマイズ粉(山陽特殊鋼製)である。これらの粉末は分級等を特に行わず、入手した状態のままで使用した。その粒径は100〜200μmであった。これを本発明の体積平均粒径でいうと130〜170μmとなる。
(5th Example)
(1) Manufacture of powder for magnetic cores Two types of pure iron powder commercially available as magnetic powders were facilitated. One is water atomized powder (KIP-304AS from Kawasaki Steel), and the other is gas atomized powder (manufactured by Sanyo Special Steel). These powders were not used for classification and used as received. The particle size was 100-200 μm. This is 130 to 170 μm in terms of the volume average particle size of the present invention.

(a)磁性粉末への第1絶縁層のコーティング処理を次の方法で行なった。
市販されている試薬であるSrCO3(アルカリ土類金属元素の酸化物):11gと、ホウ酸(H3BO3):3g、リン酸(H3PO4)::19gを、200mlのイオン交換水に投入し撹拌溶解してコーティング液(第1被覆処理液)を得た。これらの混合割合は、モル比でSr:B:P=1.5:1:4となる。
(A) The first insulating layer was coated on the magnetic powder by the following method.
Commercially available reagents SrCO 3 (alkaline earth metal oxide): 11 g, boric acid (H 3 BO 3 ): 3 g, phosphoric acid (H 3 PO 4 ): 19 g, 200 ml of ions The solution was added to the exchanged water and dissolved by stirring to obtain a coating solution (first coating treatment solution). These mixing ratios are Sr: B: P = 1.5: 1: 4 in molar ratio.

100mlのビーカに入れた各磁性粉末100gの上へ、上記コーティング液を20ml滴下した(第1接触工程)。これを電気炉に入れて、200℃、30min間、大気中で加熱乾燥した(第1乾燥工程)。こうして、磁性粉末の表面に第1絶縁層(Sr−B−P−O系絶縁層、ストロンチウムリン酸塩系のガラス状絶縁層)を定着、形成させた(第1絶縁層形成工程)。なお、この第1絶縁層の割合は、処理前の磁性粉末全体(100質量%)に対して、水アトマイズ粉の場合が3質量%、ガスアトマイズ粉の場合が2質量%とした。   20 ml of the coating solution was dropped onto 100 g of each magnetic powder placed in a 100 ml beaker (first contact step). This was put into an electric furnace and dried by heating in the atmosphere at 200 ° C. for 30 minutes (first drying step). Thus, the first insulating layer (Sr—B—P—O-based insulating layer, strontium phosphate-based glassy insulating layer) was fixed and formed on the surface of the magnetic powder (first insulating layer forming step). In addition, the ratio of this 1st insulating layer was 3 mass% in the case of water atomized powder, and 2 mass% in the case of gas atomized powder with respect to the whole magnetic powder (100 mass%) before a process.

(b)第1絶縁層が形成された磁性粉末(以下、単に「第1磁性粉末」という。)への第2絶縁層のコーティング処理を次の方法で行なった。
シリコーン樹脂溶液(東レダウコーニング社製SR2400)と、酸化物粒子であるシリカ(SiO2)粒子(アドマテックス社製、粒径50nm)とを用意した。なお、シリコーン樹脂溶液(SR2400)は、溶剤であるトルエン中にシリコーン樹脂を50質量%の割合で溶解させたものである。
(B) The coating process of the second insulating layer onto the magnetic powder on which the first insulating layer was formed (hereinafter simply referred to as “first magnetic powder”) was performed by the following method.
A silicone resin solution (SR2400 manufactured by Toray Dow Corning Co., Ltd.) and silica (SiO 2 ) particles (manufactured by Admatechs Co., Ltd., particle size 50 nm) as oxide particles were prepared. The silicone resin solution (SR2400) is obtained by dissolving a silicone resin at a ratio of 50% by mass in toluene as a solvent.

第1磁性粉末上に第2絶縁層(または第3絶縁層)を次のようにして形成した。
シリコーン樹脂からなる第2絶縁層の形成に際しては、100mlのビーカに各第1磁性粉末50gを入れ、それらの上から上記シリコーン樹脂溶液を、シリコーン樹脂量が表2に示す割合となるように添加した(第2接触工程)。また、シリコーン樹脂とシリカ粒子との複合絶縁層の形成に際しては、さらに上記シリコーン樹脂溶液を添加した上からシリカ粒子を表2に示す割合となるように添加した(第2接触工程)。
A second insulating layer (or third insulating layer) was formed on the first magnetic powder as follows.
When forming the second insulating layer made of silicone resin, add 50 g of each first magnetic powder into a 100 ml beaker, and add the silicone resin solution from above to the silicone resin amount so that the amount of silicone resin is as shown in Table 2 (Second contact step). Moreover, when forming the composite insulating layer of the silicone resin and the silica particles, the silicone resin solution was further added, and then the silica particles were added so as to have the ratio shown in Table 2 (second contact step).

第1磁性粉末と種々の割合のシリコーン樹脂溶液等が添加されたそれぞれのビーカに、エタノール30mlを入れて、60℃以上の大気中で30分間撹拌を行い、エタノールを完全に揮発させた(第2接触工程)。   In each beaker to which the first magnetic powder and various proportions of the silicone resin solution and the like were added, 30 ml of ethanol was added and stirred for 30 minutes in an atmosphere of 60 ° C. or more to completely volatilize the ethanol (first 2 contact process).

こうして、Sr−B−P−O系絶縁層からなる第1絶縁層が形成された磁性粉末上に、シリコーン樹脂からなる第2絶縁層またはシリコーン樹脂およびシリカ粒子からなる第2絶縁層(複合絶縁層)を形成した(第2絶縁層形成工程)。こうして、第1絶縁層および第2絶縁層で被覆された各種の磁心用粉末を得た。   Thus, on the magnetic powder on which the first insulating layer composed of the Sr—B—P—O-based insulating layer is formed, the second insulating layer composed of the silicone resin or the second insulating layer composed of the silicone resin and the silica particles (composite insulation). Layer) was formed (second insulating layer forming step). Thus, various magnetic core powders coated with the first insulating layer and the second insulating layer were obtained.

(2)圧粉磁心の製造
これら各磁心用粉末を用いて、第1実施例と同様の温間高圧成形をした。得られた粉末成形体に、大気中で、焼鈍温度:500℃または600℃、焼鈍時間:30分の焼鈍を適宜施した。なお、一部の試験片は、焼鈍温度を650℃として酸化防止雰囲気(Arガス雰囲気)中で焼鈍を行った。
(2) Manufacture of dust core Using these respective core powders, warm high pressure molding similar to that of the first example was performed. The obtained powder compact was appropriately subjected to annealing in the air at an annealing temperature of 500 ° C. or 600 ° C. and an annealing time of 30 minutes. Some test pieces were annealed at an annealing temperature of 650 ° C. in an antioxidant atmosphere (Ar gas atmosphere).

(測定)
(1)板状試験片を用いて比抵抗を測定した。比抵抗の測定は、マイクロオームメータ(メーカ:ヒューレットパカード(HP)社、型番:34420A)を用いて4端子法により測定した(以下、同様)。
(Measurement)
(1) Specific resistance was measured using a plate-shaped test piece. The specific resistance was measured by a four-terminal method using a micro-ohm meter (manufacturer: Hewlett-Packard (HP), model number: 34420A) (hereinafter the same).

(2)リング状試験片および板状試験片を用いて、それらの磁気特性および密度を測定した。
磁気特性の内、静磁場特性は直流自記磁束計(メーカ:東英工業、型番:MODEL−TRF)により測定した。交流磁場特性は交流B−Hカーブトレーサ(メーカ:岩崎通信機(株)、型番:SY−8232)により測定した。各表中の交流磁場特性は、圧粉磁心を400Hzまたは800Hzで1.0Tの磁場中に置いたときの鉄損を測定したものである。表中のPhはヒステリシス損失、Peは渦電流損失、Pcは鉄損(Pe+Ph)であり、Pcmは重量比鉄損である。
(2) Using a ring-shaped test piece and a plate-like test piece, their magnetic properties and density were measured.
Among the magnetic characteristics, the static magnetic field characteristics were measured with a direct current magnetic flux meter (manufacturer: Toei Kogyo, model number: MODEL-TRF). The AC magnetic field characteristics were measured with an AC BH curve tracer (manufacturer: Iwasaki Tsushinki Co., Ltd., model number: SY-8232). The AC magnetic field characteristics in each table are obtained by measuring the iron loss when the dust core is placed in a magnetic field of 1.0 T at 400 Hz or 800 Hz. In the table, Ph is hysteresis loss, Pe is eddy current loss, Pc is iron loss (Pe + Ph), and Pcm is weight specific iron loss.

また、静磁場中の磁束密度は、その磁界の強さを順次2、5、8、10、16、20kA/mと順次変更していったときにできる磁束密度を示したものである。各表中では、それぞれB2k、B5k、B8k、B10k、B16k、B20kと示した。表中のμmは最大透磁率である。本明細書中で保磁力bHcは、最大磁場2kA/mでの磁化曲線から測定した値である。なお、密度は、アルキメデス法により測定した。 The magnetic flux density in the static magnetic field indicates the magnetic flux density that can be obtained when the magnetic field strength is sequentially changed to 2, 5, 8, 10, 16, 20 kA / m. In each table, they are shown as B 2k , B 5k , B 8k , B 10k , B 16k , and B 20k , respectively. The μm in the table is the maximum magnetic permeability. In this specification, the coercive force bHc is a value measured from a magnetization curve at a maximum magnetic field of 2 kA / m. The density was measured by the Archimedes method.

こうして得られた結果を表1〜4および表5A、5Bに併せて示した。表1は第1実施例の結果を、表2は第2実施例の結果を、表3は第3実施例の結果を、表4は第4実施例の結果を、表5Aおよび表5Bは第5実施例の結果をそれぞれ示す。   The results thus obtained are also shown in Tables 1 to 4 and Tables 5A and 5B. Table 1 shows the results of the first example, Table 2 shows the results of the second example, Table 3 shows the results of the third example, Table 4 shows the results of the fourth example, and Tables 5A and 5B show the results. The result of 5th Example is shown, respectively.

(評価)
(1)第1実施例
表1に示す結果から分るように、磁性粉末中のSi量が増加する程、保磁力bHcが低下してヒステリシス損失Phも低下している。また、磁性粉末中のSi量が増加する程、比抵抗は増加して渦電流損失Peも低下している。よって、磁性粉末中のSi量が多い試験片ほど、鉄損が小さくなっている。一方、Si量が増加するにつれて、磁束密度が全体的に低下している。従って、低鉄損と高磁束密度とのバランスを高次元で達成する上で、磁性粉末中にSiが1質量%程度(1.5質量%以下)含まれているのが良い。
(Evaluation)
(1) First Example As can be seen from the results shown in Table 1, as the amount of Si in the magnetic powder increases, the coercive force bHc decreases and the hysteresis loss Ph also decreases. Further, as the amount of Si in the magnetic powder increases, the specific resistance increases and the eddy current loss Pe also decreases. Therefore, the iron loss is smaller as the test piece has a larger amount of Si in the magnetic powder. On the other hand, as the amount of Si increases, the magnetic flux density decreases as a whole. Therefore, in order to achieve a high balance between low iron loss and high magnetic flux density, it is preferable that Si is contained in the magnetic powder by about 1% by mass (1.5% by mass or less).

なお、磁性粉末として純鉄粉を用いた場合、試験片の比抵抗および渦電流損失が比較的大きいのは、成形中や加熱中にその絶縁被膜が破壊、分解、消失等し易かったからではないかと思われる。言換えるなら、純鉄粉の表面を被覆するシリコーン樹脂被膜の安定性が弱かったためと思われる。   Note that when pure iron powder is used as the magnetic powder, the specific resistance and eddy current loss of the test piece are relatively large because the insulating coating was easily broken, decomposed, or lost during molding or heating. I think. In other words, it seems that the stability of the silicone resin film covering the surface of the pure iron powder was weak.

(2)第2実施例
表2に示す結果から分るように、シリコーン樹脂量が増加する程、比抵抗は増加して渦電流損失Peは低下している。このとき保磁力bHcおよびヒステリシス損失Phは、ほぼ一定の値を示している。結果的に、シリコーン樹脂量が増加する程、鉄損は低減している。一方、シリコーン樹脂量が増加するにつれて、磁束密度が全体的に低下している。従って、低鉄損と高磁束密度とのバランスを高次元で達成する上で、シリコーン樹脂量は0.1〜0.3質量%が好ましい。
(2) Second Example As can be seen from the results shown in Table 2, as the amount of silicone resin increases, the specific resistance increases and the eddy current loss Pe decreases. At this time, the coercive force bHc and the hysteresis loss Ph are substantially constant values. As a result, the iron loss decreases as the amount of silicone resin increases. On the other hand, as the amount of silicone resin increases, the magnetic flux density decreases as a whole. Therefore, in order to achieve a high balance between low iron loss and high magnetic flux density, the amount of the silicone resin is preferably 0.1 to 0.3% by mass.

(3)第3実施例
表3に示す結果から分るように、磁性粉末の粒径が大きくなる程、渦電流損失は増加し、ヒステリシス損失は減少した。交流磁場1.0Tで周波数が800Hzの場合、渦電流損失とヒステリシス損失の和である鉄損は、磁性粉末の粒径が80〜300μmのときに安定的に低い値であった。この様子を図1に示す。
(3) Third Example As can be seen from the results shown in Table 3, as the particle size of the magnetic powder increases, the eddy current loss increases and the hysteresis loss decreases. When the frequency was 800 Hz with an AC magnetic field of 1.0 T, the iron loss, which is the sum of eddy current loss and hysteresis loss, was a stable low value when the particle size of the magnetic powder was 80 to 300 μm. This is shown in FIG.

(4)第4実施例
表4に示す結果から分るように、扁平粒子(厚さ0.05mm)からなる磁性粉末を使用した場合、渦電流損失が大きく低下した。低下割合は、磁性粉末の粒径が大きい場合ほど顕著であった。鉄損も同様の傾向を示した。逆にいえば、ヒステリシス損失自体は、粉末の構成粒子の形状によって殆ど変化しなかったといえる。この様子を図1に重ねて示した。
(4) Fourth Example As can be seen from the results shown in Table 4, when magnetic powder composed of flat particles (thickness 0.05 mm) was used, eddy current loss was greatly reduced. The decreasing rate was more remarkable as the particle size of the magnetic powder was larger. Iron loss showed a similar trend. Conversely, it can be said that the hysteresis loss itself hardly changed depending on the shape of the constituent particles of the powder. This is shown superimposed on FIG.

また、粒径と渦電流損失との関係に及す、磁性粉末の粒子形状および組成の影響を図2に示した。磁性粉末が扁平粒子からなる程、また、その厚さが小さい程、渦電流損失は小さくなることが分った。   The influence of the particle shape and composition of the magnetic powder on the relationship between the particle size and eddy current loss is shown in FIG. It was found that the eddy current loss becomes smaller as the magnetic powder is made of flat particles and the thickness is smaller.

(5)第5実施例
表5Aおよび表5Bに示す結果から分るように、多層構造の絶縁被膜を備える圧粉磁心の場合、500℃焼鈍した後でも比抵抗が100μΩm超と大きかった。この絶縁被膜で被覆した磁性粉末を用いれば、その磁性粉末が純鉄粉であっても、ヒステリシス損失のみならず渦電流損失も同時に低減できることが分った。つまり、低鉄損の圧粉磁心が得られることが分った。
(5) Fifth Example As can be seen from the results shown in Tables 5A and 5B, in the case of a dust core having an insulating coating having a multilayer structure, the specific resistance was as large as more than 100 μΩm even after annealing at 500 ° C. It has been found that if magnetic powder coated with this insulating film is used, even if the magnetic powder is pure iron powder, not only hysteresis loss but also eddy current loss can be reduced at the same time. That is, it was found that a dust core having a low iron loss can be obtained.

特に、その絶縁被膜がシリカ粒子を含む場合の試験片の比抵抗は、500℃焼鈍後は勿論のこと、600℃焼鈍後であっても十分に高い値を示した。   In particular, the specific resistance of the test piece when the insulating coating contains silica particles showed a sufficiently high value not only after annealing at 500 ° C. but also after annealing at 600 ° C.

交流周波数を400Hzとした場合と800Hzとした場合とを比較すると、周波数が低い場合(400Hz)の方がヒステリシス損失の影響が大きく、焼鈍温度上昇(500℃→600℃)による鉄損の減少割合も大きかった。   Comparing the case where the AC frequency is 400 Hz and the case where the frequency is 800 Hz, when the frequency is low (400 Hz), the effect of hysteresis loss is larger, and the reduction rate of iron loss due to the annealing temperature rise (500 ° C → 600 ° C) Was also big.

ガスアトマイズ粉からなる試験片は、第1絶縁層量が少ないにも拘らず、水アトマイズ粉からなる試験片よりも比抵抗は概して大きかった。従って、ガスアトマイズ粉を用いれば、絶縁被膜量を少なくしつつ、低鉄損で高磁束密度の圧粉磁心が得られることが分った。   The test piece made of gas atomized powder generally had a larger specific resistance than the test piece made of water atomized powder, although the amount of the first insulating layer was small. Therefore, it has been found that if a gas atomized powder is used, a dust core having a low magnetic loss and a high magnetic flux density can be obtained while reducing the amount of insulating coating.

(6)その他
結晶粒径と保磁力との関係について付言しておく。純Fe磁性粉末、Fe−1Si磁性粉末を各々900℃、1250℃で熱処理を行い、結晶粒径と保磁力の関係を調査した。この結果を図3に示す。
(6) Others Additional comments will be made on the relationship between crystal grain size and coercive force. Pure Fe magnetic powder and Fe-1Si magnetic powder were heat-treated at 900 ° C. and 1250 ° C., respectively, and the relationship between crystal grain size and coercive force was investigated. The result is shown in FIG.

また、各結晶粒径は所定数(N=100)の構成粒子について求めた結晶粒径の平均値である。   Each crystal grain size is an average value of crystal grain sizes obtained for a predetermined number (N = 100) of constituent particles.

図3から明らかなように、結晶粒径が大きくなる程、保磁力は小さくなった。従って、結晶粒径の大きな磁性粉末(例えば、冷却速度の比較的遅いガスアトマイズ粉)を使用することで、ヒステリシス損失を一層低減し得る。但し、結晶粒径が200μmを超えると、保磁力の低下は飽和状態に近づく。渦電流損失を考慮すると、結晶粒径が50〜250μmの磁性粉末を使用するのが好ましい。   As is clear from FIG. 3, the coercive force decreased as the crystal grain size increased. Therefore, hysteresis loss can be further reduced by using magnetic powder having a large crystal grain size (for example, gas atomized powder having a relatively low cooling rate). However, when the crystal grain size exceeds 200 μm, the decrease in coercive force approaches a saturated state. Considering eddy current loss, it is preferable to use magnetic powder having a crystal grain size of 50 to 250 μm.

これまで交流周波数が800Hzの場合について示したが、それ以外の周波数(2000Hz以下)についても同様である。   Although the case where the AC frequency is 800 Hz has been described so far, the same applies to other frequencies (2000 Hz or less).

Figure 2006024869
Figure 2006024869

Figure 2006024869
Figure 2006024869

Figure 2006024869
Figure 2006024869

Figure 2006024869
Figure 2006024869

Figure 2006024869
Figure 2006024869

Figure 2006024869
Figure 2006024869

Figure 2006024869
Figure 2006024869

磁性粉末の粒径と鉄損との関係を示すグラフである。It is a graph which shows the relationship between the particle size of a magnetic powder, and an iron loss. 磁性粉末の粒径と渦電流損失との関係を示すグラフである。It is a graph which shows the relationship between the particle size of magnetic powder, and eddy current loss. 磁性粉末の結晶粒径と保磁力との関係を示すグラフである。It is a graph which shows the relationship between the crystal grain diameter of magnetic powder, and a coercive force.

Claims (20)

鉄(Fe)を主成分とする磁性粉末を絶縁被膜で被覆した磁心用粉末を加圧成形してなる圧粉磁心において、
前記磁性粉末は、ケイ素(Si)を1.5質量%以下含み、体積平均粒径が80〜300μmであり、
該磁性粉末の真密度(ρ0)に対する該圧粉磁心の嵩密度(ρ)の比である密度比(ρ/ρ0:%)が96%以上であり、
周波数が100〜2000Hzの交番磁界中で使用されることを特徴とする圧粉磁心。
In a powder magnetic core formed by press-molding a magnetic core powder in which a magnetic powder mainly composed of iron (Fe) is coated with an insulating coating,
The magnetic powder contains 1.5% by mass or less of silicon (Si), has a volume average particle size of 80 to 300 μm,
The density ratio (ρ / ρ 0 :%), which is the ratio of the bulk density (ρ) of the dust core to the true density (ρ 0 ) of the magnetic powder, is 96% or more,
A dust core characterized by being used in an alternating magnetic field having a frequency of 100 to 2000 Hz.
20kA/mの磁界中で生じる磁束密度B20kが1.7T以上である請求項1に記載の圧粉磁心。 The dust core according to claim 1, wherein a magnetic flux density B 20k generated in a magnetic field of 20 kA / m is 1.7 T or more. 前記磁性粉末は、平均厚みが20〜100μmの略小判状をした扁平粒子からなる請求項1に記載の圧粉磁心。   2. The dust core according to claim 1, wherein the magnetic powder is formed of flat particles having a substantially oval shape with an average thickness of 20 to 100 μm. 前記磁性粉末は、構成粒子の単位質量あたりの表面積である比表面積を平均した平均比表面積が5x10-32/g以下である請求項1に記載の圧粉磁心。 2. The dust core according to claim 1, wherein the magnetic powder has an average specific surface area of 5 × 10 −3 m 2 / g or less, which is obtained by averaging a specific surface area that is a surface area per unit mass of the constituent particles. 前記磁性粉末は、構成粒子の平均結晶粒径が50μm以上である請求項1に記載の圧粉磁心。   The powder magnetic core according to claim 1, wherein the magnetic powder has an average crystal grain size of constituent particles of 50 μm or more. 前記磁性粉末は、ガスアトマイズ粉である請求項1、3、4または5のいずれかに記載の圧粉磁心。   The powder magnetic core according to claim 1, wherein the magnetic powder is a gas atomized powder. 前記絶縁被膜は、シリコーン樹脂被膜または二酸化ケイ素(SiO2)被膜である請求項1に記載の圧粉磁心。 The dust core according to claim 1, wherein the insulating coating is a silicone resin coating or a silicon dioxide (SiO 2 ) coating. 前記磁性粉末は、Siが0.8%以下の純鉄粉であり、
前記絶縁被膜は、リン酸塩被膜からなる第1絶縁層と、該第1絶縁層を被覆するシリコーン樹脂からなる第2絶縁層とからなる請求項1に記載の圧粉磁心。
The magnetic powder is pure iron powder having Si of 0.8% or less,
2. The dust core according to claim 1, wherein the insulating coating includes a first insulating layer made of a phosphate coating and a second insulating layer made of a silicone resin that covers the first insulating layer.
前記第2絶縁層は、前記シリコーン樹脂中に酸化物粒子が分散した複合絶縁層である請求項8に記載の圧粉磁心。   The dust core according to claim 8, wherein the second insulating layer is a composite insulating layer in which oxide particles are dispersed in the silicone resin. さらに、前記第2絶縁層上に設けられ、酸化物粒子から主になる第3絶縁層を有する請求項8に記載の圧粉磁心。   The dust core according to claim 8, further comprising a third insulating layer provided on the second insulating layer and mainly made of oxide particles. 前記酸化物粒子は、平均粒径が10〜100nmである請求項9または10に記載の圧粉磁心。   The dust core according to claim 9 or 10, wherein the oxide particles have an average particle diameter of 10 to 100 nm. 前記絶縁被膜は、前記圧粉磁心全体を100質量%としたときに、0.1〜0.3質量%である請求項1に記載の圧粉磁心。   2. The dust core according to claim 1, wherein the insulating coating is 0.1 to 0.3 mass% when the entire powder magnetic core is 100 mass%. 保磁力が150A/m以下であり、
体積比抵抗値が20μΩm以上である請求項1に記載の圧粉磁心。
The coercive force is 150 A / m or less,
The dust core according to claim 1, wherein the volume resistivity value is 20 μΩm or more.
電動機または発電機の界磁または電機子を構成する鉄心である請求項1に記載の圧粉磁心。   2. The dust core according to claim 1, which is an iron core constituting a field or armature of an electric motor or a generator. 前記電動機は、ハイブリッド自動車用または電気自動車用である請求項14に記載の圧粉磁心。   The dust core according to claim 14, wherein the electric motor is for a hybrid vehicle or an electric vehicle. (圧粉磁心の製造方法)
Feを主成分としSiが1.5質量%以下であると共に体積平均粒径が80〜300μmである磁性粉末を絶縁被膜で被覆した磁心用粉末を金型に充填する充填工程と、
該金型内の磁心用粉末を加圧成形する成形工程とからなり、
請求項1に記載の圧粉磁心が得られることを特徴とする圧粉磁心の製造方法。
(Production method of dust core)
A filling step of filling a mold with a magnetic core powder in which a magnetic powder having Fe as a main component and Si of 1.5% by mass or less and a volume average particle size of 80 to 300 μm is coated with an insulating coating;
A molding step of pressure molding the magnetic core powder in the mold,
A method for producing a dust core, wherein the dust core according to claim 1 is obtained.
前記充填工程は、高級脂肪酸系潤滑剤を内面に塗布した前記金型へ前記磁心用粉末を充填する工程であり、
前記成形工程は、該磁心用粉末と該金型の内面との間に金属石鹸被膜を生成させる温間高圧成形工程である請求項16に記載の圧粉磁心の製造方法。
The filling step is a step of filling the magnetic core powder into the mold coated with a higher fatty acid-based lubricant on the inner surface,
The method of manufacturing a dust core according to claim 16, wherein the forming step is a warm high-pressure forming step of forming a metal soap film between the magnetic core powder and the inner surface of the mold.
前記絶縁被膜は、シリコーン樹脂被膜であり、
さらに、前記成形工程後に得られた粉末成形体を加熱して該シリコーン樹脂被膜をSiO2被膜とする加熱工程を備える請求項16に記載の圧粉磁心の製造方法。
The insulating coating is a silicone resin coating,
Moreover, method for producing a dust core according to claim 16, comprising a heating step of the silicone resin coating film and SiO 2 film by heating the powder compact obtained after the molding process.
前記磁性粉末は、Siが0.8%以下の純鉄粉であり、
前記絶縁被膜は、リン酸塩被膜からなる第1絶縁層と該第1絶縁層を被覆するシリコーン樹脂からなる第2絶縁層とからなり、
さらに、前記成形工程後に得られた粉末成形体を焼鈍する焼鈍工程を備える請求項16に記載の圧粉磁心の製造方法。
The magnetic powder is pure iron powder having Si of 0.8% or less,
The insulating coating consists of a first insulating layer made of a phosphate coating and a second insulating layer made of a silicone resin that covers the first insulating layer,
Furthermore, the manufacturing method of the powder magnetic core of Claim 16 provided with the annealing process which anneals the powder compact obtained after the said shaping | molding process.
請求項18または19のいずれかに記載の圧粉磁心の製造方法によって得られたことを特徴とする圧粉磁心。   A dust core obtained by the method for producing a dust core according to claim 18.
JP2004203969A 2004-07-09 2004-07-09 Dust core and manufacturing method thereof Withdrawn JP2006024869A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004203969A JP2006024869A (en) 2004-07-09 2004-07-09 Dust core and manufacturing method thereof
PCT/JP2005/012717 WO2006006545A1 (en) 2004-07-09 2005-07-04 Dust core and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203969A JP2006024869A (en) 2004-07-09 2004-07-09 Dust core and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006024869A true JP2006024869A (en) 2006-01-26

Family

ID=35783886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203969A Withdrawn JP2006024869A (en) 2004-07-09 2004-07-09 Dust core and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2006024869A (en)
WO (1) WO2006006545A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034615A1 (en) * 2005-09-21 2007-03-29 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core, process for producing soft magnetic material, and process for producing dust core
WO2007052411A1 (en) * 2005-11-02 2007-05-10 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core produced therefrom
JP2008072854A (en) * 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Multi-phase claw pole-type motor
JP2008118840A (en) * 2006-10-12 2008-05-22 Toyota Motor Corp Motor stator, motor stator manufacturing method, and motor
JP2008153611A (en) * 2006-11-20 2008-07-03 Denso Corp Ignition coil and manufacturing method thereof
JP2008262940A (en) * 2007-04-10 2008-10-30 Hitachi Ltd Powder magnetic core, manufacturing method of powder magnetic core, and motor using the core
JP2008270539A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Dust core, manufacturing method thereof, motor, and reactor
JP2008305823A (en) * 2007-06-05 2008-12-18 Tamura Seisakusho Co Ltd Dust core and manufacturing method therefor
WO2009013979A1 (en) * 2007-07-26 2009-01-29 Kabushiki Kaisha Kobe Seiko Sho Iron-based soft magnetic powder for dust core and dust core
JP2009032880A (en) * 2007-07-26 2009-02-12 Kobe Steel Ltd Iron-based soft magnetic powder for dust core for high frequency, and dust core
JP2009038107A (en) * 2007-07-31 2009-02-19 Diamond Electric Mfg Co Ltd Ignition coil for internal combustion engine
JP2009070885A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Core for reactor, its production process, and reactor
JP2009070914A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Soft magnetic material, powder magnetic core, manufacturing method of soft magnetic material, and manufacturing method of powder magnetic core
JP2009071948A (en) * 2007-09-12 2009-04-02 Denso Corp Stator for rotary electric machine and method of manufacturing the same
JP2009077534A (en) * 2007-09-20 2009-04-09 Denso Corp Stator for dynamo-electric machine and its manufacturing method
EP2060344A1 (en) * 2006-09-11 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho Powder magnetic core and iron-base powder for powder magnetic core
JP2009117484A (en) * 2007-11-02 2009-05-28 Tamura Seisakusho Co Ltd Method of manufacturing dust core and dust core
JP2010011669A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Powder-compressed molding
JP2010062217A (en) * 2008-09-01 2010-03-18 Toda Kogyo Corp Soft magnetic particle powder, method for manufacturing the same, and powder magnetic core containing soft magnetic particle powder
WO2011126119A1 (en) * 2010-04-09 2011-10-13 日立化成工業株式会社 Powder magnetic core and process for production thereof
WO2011126120A1 (en) * 2010-04-09 2011-10-13 日立化成工業株式会社 Coated metal powder, dust core and method for producing same
JP2012049203A (en) * 2010-08-24 2012-03-08 Toyota Central R&D Labs Inc Powder magnetic core, powder for magnetic core and manufacturing method for the same
US8236420B2 (en) 2008-03-20 2012-08-07 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
JP2012238866A (en) * 2012-07-12 2012-12-06 Sumitomo Electric Ind Ltd Core for reactor, method of manufacturing the same, and reactor
JP2012248619A (en) * 2011-05-26 2012-12-13 Sumitomo Electric Ind Ltd Molding method of green compact
JP2013062515A (en) * 2012-10-15 2013-04-04 Tamura Seisakusho Co Ltd Powder compact magnetic core, and method of manufacturing the same
US8445105B2 (en) 2006-09-11 2013-05-21 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core, method for production thereof, and dust core
JP2014114487A (en) * 2012-12-10 2014-06-26 Sumitomo Electric Ind Ltd Powder-compressed molded body, manufacturing method of powder-compressed molded body, heat-treated body, and coil component
WO2014171065A1 (en) * 2013-04-19 2014-10-23 Jfeスチール株式会社 Iron powder for dust core
WO2015019576A1 (en) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 Composite magnetic material, coil component using same, and power supply device
JP2015095598A (en) * 2013-11-13 2015-05-18 トヨタ自動車株式会社 Powder for powder-compact magnetic cores
JP2016201484A (en) * 2015-04-10 2016-12-01 戸田工業株式会社 Soft magnetic particle powder and dust core containing the soft magnetic particle powder
US9640306B2 (en) 2009-09-18 2017-05-02 Hoganas Ab (Publ) Ferromagnetic powder composition and method for its production
JP2017098484A (en) * 2015-11-27 2017-06-01 株式会社オートネットワーク技術研究所 Soft magnetic powder, magnetic core, manufacturing method of soft magnetic powder, and manufacturing method of magnetic core
JP2018152382A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Dust core
JP2019081946A (en) * 2017-10-31 2019-05-30 日立化成株式会社 Method for manufacturing a sintered magnetic core, green compact and sintered magnetic core
JP2019135735A (en) * 2018-02-05 2019-08-15 株式会社豊田中央研究所 Dust core and powder for magnetic core
US10741316B2 (en) 2010-02-18 2020-08-11 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
JP2021034460A (en) * 2019-08-21 2021-03-01 Dowaエレクトロニクス株式会社 Silicon oxide-coated soft magnetic powder, and method for manufacturing the same
WO2022196315A1 (en) 2021-03-19 2022-09-22 愛知製鋼株式会社 Powder for magnetic core, method for manufacturing same, and dust core
JPWO2022202085A1 (en) * 2021-03-24 2022-09-29

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132361B (en) * 2008-09-02 2015-03-25 丰田自动车株式会社 Powder for powder magnetic core, powder magnetic core, and methods for producing those products
JP5027945B1 (en) * 2011-03-04 2012-09-19 住友電気工業株式会社 Dust compact, manufacturing method of compact compact, reactor, converter, and power converter
US20140002219A1 (en) * 2011-03-11 2014-01-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Iron base soft magnetic powder for powder magnetic cores, fabrication method for same, and powder magnetic core
JP2013138159A (en) * 2011-12-28 2013-07-11 Diamet:Kk Composite soft magnetic material and production method therefor
JP5916392B2 (en) * 2012-01-17 2016-05-11 株式会社日立産機システム Powdered soft magnetic material, method for producing powdered magnetic material, and motor
CN118800581A (en) * 2023-04-14 2024-10-18 日亚化学工业株式会社 Coated magnetic material and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154111A (en) * 1984-12-27 1986-07-12 Toshiba Corp Iron core and manufacture thereof
JPH06275452A (en) * 1993-03-19 1994-09-30 Tdk Corp Manufacture of dust core
JP2003303711A (en) * 2001-03-27 2003-10-24 Jfe Steel Kk Iron base powder and dust core using the same, and method of manufacturing iron base powder
JP2003142310A (en) * 2001-11-02 2003-05-16 Daido Steel Co Ltd Dust core having high electrical resistance and manufacturing method therefor
JP4060101B2 (en) * 2002-03-20 2008-03-12 株式会社豊田中央研究所 Insulating film, magnetic core powder and powder magnetic core, and methods for producing them
JP4849500B2 (en) * 2002-04-02 2012-01-11 株式会社豊田中央研究所 Powder magnetic core and manufacturing method thereof

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706411B2 (en) * 2005-09-21 2011-06-22 住友電気工業株式会社 Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
WO2007034615A1 (en) * 2005-09-21 2007-03-29 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core, process for producing soft magnetic material, and process for producing dust core
US7622202B2 (en) 2005-09-21 2009-11-24 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core, method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core
JP2007088156A (en) * 2005-09-21 2007-04-05 Sumitomo Electric Ind Ltd Soft magnetic material, manufacturing method thereof, powder magnetic core, and manufacturing method thereof
JP2007129045A (en) * 2005-11-02 2007-05-24 Sumitomo Electric Ind Ltd Soft magnetic material and dust magnetic core manufactured using the same
US7887647B2 (en) 2005-11-02 2011-02-15 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core produced therefrom
WO2007052411A1 (en) * 2005-11-02 2007-05-10 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core produced therefrom
JP4654881B2 (en) * 2005-11-02 2011-03-23 住友電気工業株式会社 Dust core manufactured using soft magnetic material
EP2060344A1 (en) * 2006-09-11 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho Powder magnetic core and iron-base powder for powder magnetic core
US8445105B2 (en) 2006-09-11 2013-05-21 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core, method for production thereof, and dust core
US8236087B2 (en) 2006-09-11 2012-08-07 Kobe Steel, Ltd. Powder core and iron-base powder for powder core
EP2060344B1 (en) * 2006-09-11 2018-07-11 Kabushiki Kaisha Kobe Seiko Sho Powder magnetic core and iron-base powder for powder magnetic core
JP2008072854A (en) * 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Multi-phase claw pole-type motor
JP2008118840A (en) * 2006-10-12 2008-05-22 Toyota Motor Corp Motor stator, motor stator manufacturing method, and motor
JP2008153611A (en) * 2006-11-20 2008-07-03 Denso Corp Ignition coil and manufacturing method thereof
JP2008262940A (en) * 2007-04-10 2008-10-30 Hitachi Ltd Powder magnetic core, manufacturing method of powder magnetic core, and motor using the core
JP4650450B2 (en) * 2007-04-10 2011-03-16 株式会社日立製作所 Dust core, method for manufacturing dust core, and motor using the same
JP2008270539A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Dust core, manufacturing method thereof, motor, and reactor
JP2008305823A (en) * 2007-06-05 2008-12-18 Tamura Seisakusho Co Ltd Dust core and manufacturing method therefor
US8409707B2 (en) 2007-07-26 2013-04-02 Kobe Steel, Ltd. Iron-based soft magnetic powder for dust core and dust core
WO2009013979A1 (en) * 2007-07-26 2009-01-29 Kabushiki Kaisha Kobe Seiko Sho Iron-based soft magnetic powder for dust core and dust core
JP2009032880A (en) * 2007-07-26 2009-02-12 Kobe Steel Ltd Iron-based soft magnetic powder for dust core for high frequency, and dust core
JP2009038107A (en) * 2007-07-31 2009-02-19 Diamond Electric Mfg Co Ltd Ignition coil for internal combustion engine
JP2009070914A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Soft magnetic material, powder magnetic core, manufacturing method of soft magnetic material, and manufacturing method of powder magnetic core
JP2009070885A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Core for reactor, its production process, and reactor
JP2009071948A (en) * 2007-09-12 2009-04-02 Denso Corp Stator for rotary electric machine and method of manufacturing the same
JP2009077534A (en) * 2007-09-20 2009-04-09 Denso Corp Stator for dynamo-electric machine and its manufacturing method
JP2009117484A (en) * 2007-11-02 2009-05-28 Tamura Seisakusho Co Ltd Method of manufacturing dust core and dust core
US8236420B2 (en) 2008-03-20 2012-08-07 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
US8647743B2 (en) 2008-03-20 2014-02-11 Hoganas Ab (Publ) Ferromagnetic powder composition and method for its production
JP2010011669A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Powder-compressed molding
JP2010062217A (en) * 2008-09-01 2010-03-18 Toda Kogyo Corp Soft magnetic particle powder, method for manufacturing the same, and powder magnetic core containing soft magnetic particle powder
US9640306B2 (en) 2009-09-18 2017-05-02 Hoganas Ab (Publ) Ferromagnetic powder composition and method for its production
US10741316B2 (en) 2010-02-18 2020-08-11 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
CN102917818A (en) * 2010-04-09 2013-02-06 日立化成工业株式会社 Coated metal powder, powder magnetic core and method for producing same
JP2011233860A (en) * 2010-04-09 2011-11-17 Hitachi Chem Co Ltd Dust core and manufacturing method thereof
JP5565595B2 (en) * 2010-04-09 2014-08-06 日立化成株式会社 Coated metal powder, dust core and method for producing them
WO2011126119A1 (en) * 2010-04-09 2011-10-13 日立化成工業株式会社 Powder magnetic core and process for production thereof
WO2011126120A1 (en) * 2010-04-09 2011-10-13 日立化成工業株式会社 Coated metal powder, dust core and method for producing same
JP2012049203A (en) * 2010-08-24 2012-03-08 Toyota Central R&D Labs Inc Powder magnetic core, powder for magnetic core and manufacturing method for the same
JP2012248619A (en) * 2011-05-26 2012-12-13 Sumitomo Electric Ind Ltd Molding method of green compact
JP2012238866A (en) * 2012-07-12 2012-12-06 Sumitomo Electric Ind Ltd Core for reactor, method of manufacturing the same, and reactor
JP2013062515A (en) * 2012-10-15 2013-04-04 Tamura Seisakusho Co Ltd Powder compact magnetic core, and method of manufacturing the same
JP2014114487A (en) * 2012-12-10 2014-06-26 Sumitomo Electric Ind Ltd Powder-compressed molded body, manufacturing method of powder-compressed molded body, heat-treated body, and coil component
CN105142823B (en) * 2013-04-19 2017-07-28 杰富意钢铁株式会社 Iron powder for dust core
CN105142823A (en) * 2013-04-19 2015-12-09 杰富意钢铁株式会社 Iron powder for dust core
WO2014171065A1 (en) * 2013-04-19 2014-10-23 Jfeスチール株式会社 Iron powder for dust core
US10410780B2 (en) 2013-04-19 2019-09-10 Jfe Steel Corporation Iron powder for dust core
JP2014210966A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Iron powder for dust core
KR101783255B1 (en) * 2013-04-19 2017-10-23 제이에프이 스틸 가부시키가이샤 Iron powder for dust core
WO2015019576A1 (en) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 Composite magnetic material, coil component using same, and power supply device
US10207323B2 (en) 2013-08-07 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic material, coil component using same, and power supply device
JPWO2015019576A1 (en) * 2013-08-07 2017-03-02 パナソニックIpマネジメント株式会社 Composite magnetic material, coil component using the same, and power supply device
JP2015095598A (en) * 2013-11-13 2015-05-18 トヨタ自動車株式会社 Powder for powder-compact magnetic cores
JP2016201484A (en) * 2015-04-10 2016-12-01 戸田工業株式会社 Soft magnetic particle powder and dust core containing the soft magnetic particle powder
WO2017090430A1 (en) * 2015-11-27 2017-06-01 株式会社オートネットワーク技術研究所 Soft magnetic powder, magnetic core, method for producing soft magnetic powder, and method for producing magnetic core
JP2017098484A (en) * 2015-11-27 2017-06-01 株式会社オートネットワーク技術研究所 Soft magnetic powder, magnetic core, manufacturing method of soft magnetic powder, and manufacturing method of magnetic core
US10770209B2 (en) 2015-11-27 2020-09-08 Autonetworks Technologies, Ltd. Soft magnetic powder, magnetic core, method for manufacturing soft magnetic powder, and method for manufacturing magnetic core
JP2018152382A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Dust core
JP2019081946A (en) * 2017-10-31 2019-05-30 日立化成株式会社 Method for manufacturing a sintered magnetic core, green compact and sintered magnetic core
JP7217856B2 (en) 2017-10-31 2023-02-06 株式会社レゾナック Manufacturing method of sintered magnetic core, green compact, and sintered magnetic core
JP2019135735A (en) * 2018-02-05 2019-08-15 株式会社豊田中央研究所 Dust core and powder for magnetic core
JP7016713B2 (en) 2018-02-05 2022-02-07 株式会社豊田中央研究所 Powder magnetic core and powder for magnetic core
JP2021034460A (en) * 2019-08-21 2021-03-01 Dowaエレクトロニクス株式会社 Silicon oxide-coated soft magnetic powder, and method for manufacturing the same
JP7433808B2 (en) 2019-08-21 2024-02-20 Dowaエレクトロニクス株式会社 Silicon oxide coated soft magnetic powder and its manufacturing method
JP7542714B2 (en) 2019-08-21 2024-08-30 Dowaエレクトロニクス株式会社 Silicon oxide coated soft magnetic powder
WO2022196315A1 (en) 2021-03-19 2022-09-22 愛知製鋼株式会社 Powder for magnetic core, method for manufacturing same, and dust core
JPWO2022202085A1 (en) * 2021-03-24 2022-09-29
WO2022202085A1 (en) * 2021-03-24 2022-09-29 Jfeスチール株式会社 Battery-driven motor and motor-driven system

Also Published As

Publication number Publication date
WO2006006545A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP2006024869A (en) Dust core and manufacturing method thereof
JP5062946B2 (en) Powder for magnetic core, powder magnetic core and method for producing them
JP4278147B2 (en) Powder for magnetic core, dust core and method for producing the same
US7887647B2 (en) Soft magnetic material and dust core produced therefrom
JP4044591B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
JP4024705B2 (en) Powder magnetic core and manufacturing method thereof
JP2004143554A (en) Coated iron based powder
JP5580725B2 (en) Manufacturing method of dust core and dust core obtained by the manufacturing method
KR20100135830A (en) Ferromagnetic powder composition and method for its production
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP2006202956A (en) Soft magnetic material and powder magnetic core
KR20090102687A (en) Iron-based soft magnetic powder for dust core, production method thereof, and dust core
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
WO2007077689A1 (en) Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
WO2012173239A1 (en) Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
WO2013175929A1 (en) Powder core, powder core manufacturing method, and method for estimating eddy current loss in powder core
US7029769B2 (en) Insulation film, powder for magnetic core and powder magnetic core and processes for producing the same
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP4750471B2 (en) Low magnetostrictive body and dust core using the same
JP3656958B2 (en) Powder magnetic core and manufacturing method thereof
JP2011171346A (en) Iron-based soft magnetic powder for dust core, method of manufacturing the same, and dust core
JP4849500B2 (en) Powder magnetic core and manufacturing method thereof
JP2009235517A (en) Metal powder for dust core and method for producing dust core
JP2005093350A (en) Insulation coating, powder for magnetic core, and dust core, and manufacturing method of those

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070404