JP7016713B2 - Powder magnetic core and powder for magnetic core - Google Patents

Powder magnetic core and powder for magnetic core Download PDF

Info

Publication number
JP7016713B2
JP7016713B2 JP2018017948A JP2018017948A JP7016713B2 JP 7016713 B2 JP7016713 B2 JP 7016713B2 JP 2018017948 A JP2018017948 A JP 2018017948A JP 2018017948 A JP2018017948 A JP 2018017948A JP 7016713 B2 JP7016713 B2 JP 7016713B2
Authority
JP
Japan
Prior art keywords
powder
magnetic
soft magnetic
dust core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018017948A
Other languages
Japanese (ja)
Other versions
JP2019135735A (en
Inventor
正史 宇都野
ジョンハン ファン
将士 大坪
将敬 三富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2018017948A priority Critical patent/JP7016713B2/en
Publication of JP2019135735A publication Critical patent/JP2019135735A/en
Application granted granted Critical
Publication of JP7016713B2 publication Critical patent/JP7016713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、絶縁された軟磁性粒子からなる圧粉磁心等に関する。 The present invention relates to a dust core or the like made of insulated soft magnetic particles.

変圧器、電動機、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、電磁気を利用した製品が多い。これらは、交番磁界を利用したものが多く、局所的に大きな交番磁界を効率的に得るために、通常、磁心(軟磁石)をその交番磁界中に設けている。 There are many products that use electromagnetics, such as transformers, motors, generators, speakers, induction heaters, and various actuators. Many of these utilize an alternating magnetic field, and in order to efficiently obtain a locally large alternating magnetic field, a magnetic core (soft magnet) is usually provided in the alternating magnetic field.

磁心には、交番磁界中における高磁気特性のみならず、交番磁界中で使用したときの高周波損失(以下、磁心の材質に拘らず単に「鉄損」という。)が少ないことが求められる。鉄損には、渦電流損失、ヒステリシス損失および残留損失があり、中でも交番磁界の周波数の2乗に比例して高くなる渦電流損失の低減が重要である。 The magnetic core is required to have not only high magnetic properties in an alternating magnetic field but also low high frequency loss (hereinafter, simply referred to as "iron loss" regardless of the material of the magnetic core) when used in an alternating magnetic field. The iron loss includes eddy current loss, hysteresis loss, and residual loss. Among them, it is important to reduce the eddy current loss that increases in proportion to the square of the frequency of the alternating magnetic field.

このような磁心として、絶縁被覆された軟磁性粒子(磁心用粉末の各粒子)からなる圧粉磁心が用いられている。圧粉磁心は、渦電流損失が小さく、形状自由度が高いため、種々の電磁機器に利用されている。但し、隣接する軟磁性粒子間(粒界)にある絶縁層が非磁性材からなると、その絶縁層の分だけ、圧粉磁心の磁気特性(磁束密度や透磁率等)が低下し得る。そこで、磁性材であるスピネル型フェライトを絶縁層とした圧粉磁心が提案されており、下記の特許文献に関連する記載がある。 As such a magnetic core, a powder magnetic core composed of insulatingly coated soft magnetic particles (each particle of a magnetic core powder) is used. The dust core has a small eddy current loss and a high degree of freedom in shape, and is therefore used in various electromagnetic devices. However, if the insulating layer between adjacent soft magnetic particles (grain boundaries) is made of a non-magnetic material, the magnetic characteristics (magnetic flux density, magnetic permeability, etc.) of the dust core may decrease by the amount of the insulating layer. Therefore, a dust core having a spinel-type ferrite as an insulating layer as an insulating layer has been proposed, and there is a description related to the following patent documents.

特開2003-151813号公報Japanese Unexamined Patent Application Publication No. 2003-1518113 特開2014-183199号公報Japanese Unexamined Patent Publication No. 2014-183199

特許文献1、2のように、スピネル型フェライト(MFe/M:2価の陽イオンとなる金属元素)を絶縁層として用いると、高磁束密度な圧粉磁心が得られるが、その比抵抗は必ずしも十分に高いものではなかった。 When spinel-type ferrite (MFe 2 O 4 / M: a metal element that becomes a divalent cation) is used as an insulating layer as in Patent Documents 1 and 2, a dust core having a high magnetic flux density can be obtained. The resistivity was not always high enough.

本発明はこのような事情に鑑みて為されたものであり、高磁束密度のみならず、高比抵抗を確保できる新たな圧粉磁心等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a new dust core or the like that can secure not only a high magnetic flux density but also a high specific resistance.

本発明者はこの課題を解決すべく鋭意研究した結果、ガーネット型フェライトから絶縁層を軟磁性粒子の粒界に設けることにより、高磁束密度と高比抵抗をより高次元で両立できる圧粉磁心を得ることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has made a dust core capable of achieving both high magnetic flux density and high resistivity at a higher level by providing an insulating layer from garnet-type ferrite at the grain boundaries of soft magnetic particles. Succeeded in getting. By developing this result, the present invention described below was completed.

《圧粉磁心》
(1)本発明の圧粉磁心は、純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子の隣接間にある粒界層とからなる圧粉磁心であって、前記粒界層は、ガーネット型フェライトの結晶構造をした絶縁層を有する。
《Powdered magnetic core》
(1) The dust core of the present invention is a powder magnetic core composed of soft magnetic particles made of pure iron or an iron alloy and a grain boundary layer between adjacent soft magnetic particles, and the grain boundary layer is a dust core. It has an insulating layer having a garnet-type ferrite crystal structure.

(2)本発明の圧粉磁心によれば、従来よりも遙かに高次元で、高磁束密度と高比抵抗を両立できる。本発明は次の理由により画期的といえる。 (2) According to the dust core of the present invention, it is possible to achieve both high magnetic flux density and high resistivity at a much higher dimension than before. The present invention can be said to be epoch-making for the following reasons.

スピネル型フェライトもガーネット型フェライトも酸化鉄の一種であり、それぞれの磁気特性や電気特性は物性値として知られている。それによると、ガーネット型フェライトは、スピネル型フェライトよりも磁気特性が大幅に劣る。例えば、スピネル型フェライトの飽和磁化は、(Mn,Zn)Fe:80emu/g、Fe:92emu/gであるが、ガーネット型フェライトの飽和磁化は、YFe12:27emu/gである。つまり、ガーネット型フェライトはスピネル型フェライトに対して、飽和磁化が1/3~1/4程度であり、磁気特性が大幅に劣っていた。このため、磁性材で軟磁性粒子を絶縁する場合、スピネル型フェライトは多用されてきたが、ガーネット型フェライトが用いられることはこれまでなかった。 Both spinel-type ferrite and garnet-type ferrite are a type of iron oxide, and their magnetic and electrical characteristics are known as physical property values. According to it, the garnet type ferrite is significantly inferior in magnetic properties to the spinel type ferrite. For example, the saturation magnetization of spinel-type ferrite is (Mn, Zn) Fe 2 O 4 : 80 emu / g, Fe 3 O 4 : 92 emu / g, while the saturation magnetization of garnet-type ferrite is Y 3 Fe 5 O 12 . : 27 emu / g. That is, the garnet-type ferrite has a saturation magnetization of about 1/3 to 1/4 that of the spinel-type ferrite, and the magnetic characteristics are significantly inferior. For this reason, spinel-type ferrite has been widely used when insulating soft magnetic particles with a magnetic material, but garnet-type ferrite has never been used.

しかし、本発明者がガーネット型フェライトを絶縁材とした圧粉磁心を製作し、その磁気特性(例えば、所定の印加磁場中で得られる磁束密度/単に「磁束密度」ともいう。)と電気特性(例えば、体積比抵抗/単に「比抵抗」ともいう。)とを測定したところ、予想に反する結果が得られた。すなわち、その磁束密度はスピネル型フェライトを用いた圧粉磁心と同等に高く、しかも、その比抵抗はスピネル型フェライトを用いた圧粉磁心よりも遙かに高い結果となった。このように従来の技術常識に反する結果が得られた理由は現状定かではないが、その発見は画期的である。 However, the present inventor has produced a dust core using garnet-type ferrite as an insulating material, and its magnetic characteristics (for example, magnetic flux density obtained in a predetermined applied magnetic field / simply referred to as "magnetic flux density") and electrical characteristics. (For example, volume specific resistance / also simply referred to as "specific resistance") was measured, and an unexpected result was obtained. That is, the magnetic flux density was as high as the powder magnetic core using the spinel type ferrite, and the specific resistance was much higher than that of the powder magnetic core using the spinel type ferrite. The reason why the results contrary to the conventional wisdom of technology were obtained is not clear at present, but the discovery is epoch-making.

《磁心用粉末》
本発明は、圧粉磁心の他、その原料となる磁心用粉末としても把握できる。すなわち本発明は、純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子を被覆する絶縁材とを有する磁心用粒子からなり、前記絶縁材は、ガーネット型フェライトの結晶構造をしている磁心用粉末でもよい。
《Powder for magnetic core》
The present invention can be grasped not only as a powder magnetic core but also as a powder for a magnetic core as a raw material thereof. That is, the present invention comprises particles for a magnetic core having soft magnetic particles made of pure iron or an iron alloy and an insulating material for coating the soft magnetic particles, and the insulating material has a magnetic core having a garnet-type ferrite crystal structure. It may be a powder for use.

《製造方法》
(1)本発明は、上述した圧粉磁心の製造方法としても把握できる。すなわち本発明は、ガーネット型フェライトの結晶構造を有する絶縁材で被覆された軟磁性粒子からなる磁心用粉末を、所望形状に加圧成形する成形工程を備える圧粉磁心の製造方法でもよい。なお、軟磁性粒子に導入された加工ひずみを除去して圧粉磁心のヒステリシス損失を低減するために、成形工程後の成形体を焼鈍する焼鈍工程(例えば、非酸化雰囲気中で400~750℃で加熱)がなされてもよい。
"Production method"
(1) The present invention can also be grasped as the above-mentioned method for manufacturing a dust core. That is, the present invention may be a method for producing a dust core including a molding step of pressure-molding a magnetic core powder made of soft magnetic particles coated with an insulating material having a garnet-type ferrite crystal structure into a desired shape. An annealing step (for example, 400 to 750 ° C. in a non-oxidizing atmosphere) of annealing the molded body after the molding step in order to remove the processing strain introduced into the soft magnetic particles and reduce the hysteresis loss of the dust core. (Heating in) may be done.

(2)本発明は、上述した磁心用粉末の製造方法としても把握できる。すなわち本発明は、ガーネット型フェライトの結晶構造を有する絶縁材で軟磁性粒子の表面を被覆する被覆工程を備える磁心用粉末の製造方法でもよい。 (2) The present invention can also be grasped as the above-mentioned method for producing a magnetic core powder. That is, the present invention may be a method for producing a powder for a magnetic core, which comprises a coating step of coating the surface of soft magnetic particles with an insulating material having a garnet-type ferrite crystal structure.

《その他》
(1)ガーネット型フェライトは、基本的に、希土類元素(R)とFeの酸化物であり、一般式でいうとRFe12と表される。Rは、通常、Y、Sm、Eu、Gd、Tb、Dy、Ho、Tm、Er、YbまたはLuの一種以上である。代表的なガーネット型フェライトは、YFe12である。
"others"
(1) The garnet-type ferrite is basically an oxide of a rare earth element (R) and Fe, and is represented by a general formula of R 3 Fe 5 O 12 . R is usually one or more of Y, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Er, Yb or Lu. A typical garnet-type ferrite is Y 3 Fe 5 O 12 .

本発明でいう絶縁層・絶縁材は、RFe12で表されるガーネット型フェライトのみからなってもよいが、その結晶構造が維持される範囲で、Rの一部が他の元素(特に金属元素)に置換されたものでも、それらが混在したものでもよい。Rの置換元素として、例えば、Ca、Nd、Pr等(単に「R’」ともいう。)がある。より具体的にいうと、例えば、本発明に係る絶縁層・絶縁材は、代表例であるYFe12のみからなってもよいし、YFe12のYがCa、NdまたはPrの一種以上からなる置換元素(R’)で置換されたR’Fe12でもよいし、YFe12とR’Fe12が混在したものでもよい。 The insulating layer / insulating material referred to in the present invention may consist of only the garnet-type ferrite represented by R 3 Fe 5 O 12 , but a part of R may be another element as long as the crystal structure is maintained. It may be substituted with (particularly a metal element) or a mixture thereof. Examples of the substitution element of R include Ca, Nd, Pr and the like (also simply referred to as "R'"). More specifically, for example, the insulating layer / insulating material according to the present invention may consist of only the representative example Y 3 Fe 5 O 12 , or Y of Y 3 Fe 5 O 12 is Ca, Nd. Alternatively, it may be R'3 Fe 5 O 12 substituted with a substitution element (R') consisting of one or more of Pr, or a mixture of Y 3 Fe 5 O 12 and R'3 Fe 5 O 12 .

なお、圧粉磁心の粒界層は、上述した絶縁材のみからなってもよいし、他種の絶縁材や結合材等を含むものでもよい。また、本明細書では、ガーネット型フェライトを構成する希土類元素が単種でも複数種でも、便宜的に「R」または「R’」と略記する。希土類元素が複数種の場合、ガーネット型フェライトの結晶構造となる組成割合(原子比率)は、含有する各希土類元素の合計量による。 The grain boundary layer of the dust core may be made of only the above-mentioned insulating material, or may contain other kinds of insulating materials, binders, and the like. Further, in the present specification, regardless of whether the rare earth element constituting the garnet-type ferrite is a single species or a plurality of species, it is abbreviated as "R" or "R'" for convenience. When there are a plurality of rare earth elements, the composition ratio (atomic ratio) of the garnet-type ferrite crystal structure depends on the total amount of each rare earth element contained.

(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "a to b" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

各試料(圧粉磁心)に係る密度と磁束密度(B5k)の関係を示すグラフである。It is a graph which shows the relationship between the density and the magnetic flux density (B 5k ) which concerns on each sample (the dust core). 各試料に係る密度と比抵抗の関係を示すグラフである。It is a graph which shows the relationship between the density and the resistivity about each sample. 各試料に係る比抵抗と磁束密度(B5k)の関係を示すグラフである。It is a graph which shows the relationship between the specific resistance and the magnetic flux density (B 5k ) which concerns on each sample. 圧粉磁心の粒界近傍を観察したSEM像である。It is an SEM image which observed the vicinity of the grain boundary of a dust core.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の圧粉磁心や磁心用粉末のみならず、それらの製造方法にも適宜該当し得る。方法に関する内容も、物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification may appropriately apply not only to the powder magnetic core and the powder for magnetic core of the present invention, but also to the method for producing them. Content about methods can also be a component of things. Which embodiment is the best depends on the target, required performance, and the like.

《軟磁性粒子(軟磁性粉末)》
本発明に係る軟磁性粒子は純鉄または鉄合金からなり、軟磁性粉末として純鉄粉または鉄合金粉末を用いると好ましい。純鉄粉を用いると、圧粉磁心の磁気特性(磁束密度)の向上を図れる。鉄合金粉として、例えば、SiやAlを含有した鉄合金(Fe-Si合金、Fe―Al―Si合金)粉を用いると、圧粉磁心の比抵抗の向上(渦電流損失の低減)を図れる。鉄合金粉は、Feと同族(8属)元素であるNiおよび/またはCoを含むものでもよい。さらに、Fe-49Co-2V(パーメンジュール)粉、センダスト(Fe-9Si-6Al)粉等を用いてもよい。軟磁性粉末は、二種以上の粉末を混合したものでもよく、例えば、純鉄粉と鉄合金粉の混合粉末等でもよい。
<< Soft magnetic particles (soft magnetic powder) >>
The soft magnetic particles according to the present invention are made of pure iron or an iron alloy, and it is preferable to use pure iron powder or iron alloy powder as the soft magnetic powder. When pure iron powder is used, the magnetic characteristics (magnetic flux density) of the dust core can be improved. When, for example, an iron alloy (Fe-Si alloy, Fe-Al-Si alloy) powder containing Si or Al is used as the iron alloy powder, the specific resistance of the dust core can be improved (reduction of eddy current loss). .. The iron alloy powder may contain Ni and / or Co, which are elements of the same family (genus 8) as Fe. Further, Fe-49Co-2V (permendur) powder, sendust (Fe-9Si-6Al) powder and the like may be used. The soft magnetic powder may be a mixture of two or more kinds of powder, and may be, for example, a mixed powder of pure iron powder and iron alloy powder.

軟磁性粒子の粒度は、圧粉磁心の仕様に応じて調整され得るが、軟磁性粉末の粒度は50~500μm、75~250μmさらには106~212μmであると好適である。粒度が過大では圧粉磁心の低密度化や渦電流損失の増大を招き易く、粒度が過小では圧粉磁心の磁束密度の低下やヒステリシス損失の増大を招き易い。 The particle size of the soft magnetic particles can be adjusted according to the specifications of the dust core, but the particle size of the soft magnetic powder is preferably 50 to 500 μm, 75 to 250 μm, and more preferably 106 to 212 μm. If the particle size is too large, the density of the dust core tends to be low and the eddy current loss tends to increase, and if the particle size is too small, the magnetic flux density of the dust core tends to decrease and the hysteresis loss tends to increase.

なお、本明細書でいう「粒度」は、軟磁性粒子のサイズを指標し、篩い分けにより特定される。具体的には、篩い分けに用いたメッシュサイズの上限値(d1)と下限値(d2)の中央値[(d1+d2)/2]を、粒度(D)とする。なお、μm単位で表示して、小数点以下は四捨五入して表示する。 The "particle size" referred to in the present specification is an index of the size of soft magnetic particles and is specified by sieving. Specifically, the median value [(d1 + d2) / 2] of the upper limit value (d1) and the lower limit value (d2) of the mesh size used for sieving is defined as the particle size (D). In addition, it is displayed in μm units, and the numbers after the decimal point are rounded off.

軟磁性粉末の製造方法は問わず、例えば、アトマイズ法、機械的粉砕法、還元法等がある。アトマイズ粉は、水アトマイズ粉、ガスアトマイズ粉、ガス水アトマイズ粉のいずれでもよい。粒子が略球状であるアトマイズ粉は、圧粉磁心の成形時に絶縁層(材)が破壊等され難く、圧粉磁心の高比抵抗化に寄与する。 The method for producing the soft magnetic powder is not limited, and examples thereof include an atomizing method, a mechanical pulverization method, and a reduction method. The atomizing powder may be any of water atomizing powder, gas atomizing powder, and gas water atomizing powder. The atomized powder having substantially spherical particles does not easily break the insulating layer (material) during molding of the dust core, and contributes to increasing the specific resistance of the dust core.

《絶縁層・絶縁材》
本発明に係る絶縁層・絶縁材は、ガーネット型フェライトと同じ結晶構造を有する物質を少なくとも一部に含む。圧粉磁心の粒界層を構成する絶縁層は、軟磁性粒子の表面を被覆する膜状であると好ましい。磁心用粉末の被覆層を構成する絶縁材は、連続的な膜状でもよいし、粒状でもよい。なお、ガーネット型フェライトからなる絶縁材は、例えば、固相反応法や共沈法により製造され得る。
《Insulation layer / insulation material》
The insulating layer / insulating material according to the present invention contains at least a part of a substance having the same crystal structure as the garnet-type ferrite. The insulating layer constituting the grain boundary layer of the dust core is preferably in the form of a film covering the surface of the soft magnetic particles. The insulating material constituting the coating layer of the magnetic core powder may be a continuous film or granular. The insulating material made of garnet-type ferrite can be produced, for example, by a solid-phase reaction method or a coprecipitation method.

磁心用粉末は、例えば、ガーネット型フェライトからなるナノ粒子を軟磁性粒子の表面に付着させることにより得られる。ナノ粒子は、粒径が1μm未満の粒子であり、例えば、粒径が25~500nm、50~350nmさらには100~200nmであると好ましい。ここでいう粒径は、各粒子の最大長(径)を意味する。複数のナノ粒子の粒径は、各粒子の最大長の相加平均値とする。なお、粒径は、ナノ粒子を電子顕微鏡(SEM、TEM等)で観察することにより特定され、粒径の平均値は得られた観察像を、付属しているソフトウエアで画像解析することにより求められる。 The magnetic core powder is obtained, for example, by adhering nanoparticles made of garnet-type ferrite to the surface of soft magnetic particles. The nanoparticles are particles having a particle size of less than 1 μm, and are preferably particles having a particle size of, for example, 25 to 500 nm, 50 to 350 nm, and more preferably 100 to 200 nm. The particle size here means the maximum length (diameter) of each particle. The particle size of the plurality of nanoparticles shall be the arithmetic mean value of the maximum length of each particle. The particle size is specified by observing the nanoparticles with an electron microscope (SEM, TEM, etc.), and the average value of the particle size is obtained by image analysis of the obtained observation image with the attached software. Desired.

《製造方法》
(1)磁心用粉末
磁心用粉末は、例えば、各軟磁性粒子の表面を絶縁材で被覆する被覆工程を経て得られる。被覆工程には種々の方法がある。例えば、軟磁性粉末とガーネット型フェライト粉末(特にナノ粉末)とをボールミル等で混合する粉末混合法等により磁心用粉末を製造することができる。また、化学反応法によって被覆したガーネットフェライト前駆体を任意の温度で熱処理することでもガーネット型フェライト皮膜が得られる。例えば、軟磁性粉末を反応液(生成液)に浸漬する水溶液法(参照文献:特開2013-191839号公報)、軟磁性粉末に反応液を噴霧する噴霧法(参照文献:特開2014-183199号公報)、尿素を含む反応液を用いる一液法(参照文献:特開2016-127042号公報)等と同様な方法を採用し得る。
"Production method"
(1) Magnetic core powder The magnetic core powder is obtained, for example, through a coating step of coating the surface of each soft magnetic particle with an insulating material. There are various methods for the coating process. For example, a powder for a magnetic core can be produced by a powder mixing method in which a soft magnetic powder and a garnet type ferrite powder (particularly nanopowder) are mixed by a ball mill or the like. A garnet-type ferrite film can also be obtained by heat-treating the garnet ferrite precursor coated by the chemical reaction method at an arbitrary temperature. For example, an aqueous solution method in which a soft magnetic powder is immersed in a reaction solution (product liquid) (Reference: Japanese Patent Application Laid-Open No. 2013-191839), and a spraying method in which a reaction solution is sprayed on a soft magnetic powder (Reference: Japanese Patent Application Laid-Open No. 2014-183199). No.), a one-component method using a reaction solution containing urea (Reference: JP-A-2016-127042) and the like can be adopted.

(2)圧粉磁心
圧粉磁心は、磁心用粉末を加圧成形する成形工程を経て得られる。成形工程は、冷間成形でも温間成形でもよい。成形圧力は、所望する圧粉磁心の密度(ひいては磁束密度)にも依るが、例えば、800~1600MPaさらには1000~1500MPaとするとよい。なお、金型潤滑温間高圧成形法(参照文献:特許3309970号公報、特許4024705号公報)を用いると、内部潤滑剤を用いずに超高圧で成形が可能となり、高密度で高強度な圧粉磁心を得ることができる。
(2) Powder magnetic core The powder magnetic core is obtained through a molding step of pressure-molding a powder for a magnetic core. The molding step may be cold molding or warm molding. The forming pressure depends on the desired density of the dust core (and thus the magnetic flux density), but may be, for example, 800 to 1600 MPa or even 1000 to 1500 MPa. When the mold lubrication warm high-pressure molding method (reference documents: Japanese Patent No. 3309970, Japanese Patent No. 4024705) is used, molding can be performed at ultra-high pressure without using an internal lubricant, and high-density and high-strength pressure can be obtained. A powder core can be obtained.

成形工程で得られた成形体に、さらに焼鈍工程を施したものを圧粉磁心としてもよい。焼鈍工程は、例えば、非酸化雰囲気中で400~750℃さらには500~650℃で成形体を加熱するとよい。焼鈍工程により、成形工程で軟磁性粒子へ導入される歪みが除去され、その歪みに起因したヒステリシス損失が低減される。なお、非酸化雰囲気は、不活性ガス雰囲気、窒素ガス雰囲気、真空雰囲気等である。 A compact obtained by further subjecting an annealing step to a molded body obtained in the molding step may be used as a dust core. In the annealing step, for example, the molded product may be heated at 400 to 750 ° C. and further at 500 to 650 ° C. in a non-oxidizing atmosphere. The annealing step removes the strain introduced into the soft magnetic particles in the molding step and reduces the hysteresis loss due to the strain. The non-oxidizing atmosphere is an inert gas atmosphere, a nitrogen gas atmosphere, a vacuum atmosphere, or the like.

《圧粉磁心》
圧粉磁心は、比抵抗が500μΩm以上、750μΩm以上さらには1000μΩm以上であると好ましい。本発明の圧粉磁心は、絶縁層がスピネル型フェライトからなる従来の圧粉磁心に対して、比抵抗が顕著に増加している。
《Powdered magnetic core》
The dust core preferably has a specific resistance of 500 μΩm or more, 750 μΩm or more, and more preferably 1000 μΩm or more. The powder magnetic core of the present invention has a significantly increased specific resistance with respect to the conventional powder magnetic core whose insulating layer is made of spinel-type ferrite.

また本発明の圧粉磁心は、スピネル型フェライトからなる従来の圧粉磁心と同等な磁束密度が確保される。例えば、5kA/mの磁場を印加したとき、本発明の圧粉磁心は、1.45T以上、1.48T以上、1.5T以上さらには1.51T以上という高い磁束密度(B5K)を発揮し得る。 Further, the dust core of the present invention secures a magnetic flux density equivalent to that of the conventional dust core made of spinel-type ferrite. For example, when a magnetic field of 5 kA / m is applied, the dust core of the present invention exhibits a high magnetic flux density (B 5K ) of 1.45 T or more, 1.48 T or more, 1.5 T or more, and even 1.51 T or more. Can be.

なお、本発明の圧粉磁心は、絶縁層が非常に薄く、高密度である。その(嵩)密度は、例えば、7.65~7.8g/cmさらには7.7~7.7.78g/cmとなる。 The dust core of the present invention has a very thin insulating layer and a high density. The (bulk) density is, for example, 7.65 to 7.8 g / cm 2 and further 7.7 to 7.7.78 g / cm 2 .

圧粉磁心は、例えば、モータ、アクチュエータ、トランス、誘導加熱器(IH)、スピーカ、リアクトル等の電磁機器に利用され得る。特に電動機または発電機の電機子(回転子または固定子)を構成する鉄心に用いられると好ましい。 The dust core can be used in electromagnetic devices such as motors, actuators, transformers, induction heaters (IHs), speakers, and reactors. In particular, it is preferably used for an iron core constituting an armature (rotor or stator) of an electric machine or a generator.

粒界層の異なる複数の圧粉磁心を製造し、それらの特性を測定すると共に粒界層の組織も観察した。このような実施例に基づいて、本発明をより具体的に説明する。 Multiple powder magnetic cores with different grain boundary layers were produced, their characteristics were measured, and the structure of the grain boundary layer was also observed. The present invention will be described more specifically based on such examples.

《磁心用粉末の製造》
(1)軟磁性粉末(原料粉末)
純鉄からなるガスアトマイズ粉を軟磁性粉末として用いた。その粒度は、212~106μm→159μm(中央値)であった。粒度は前述の方法で特定した。
<< Manufacturing of powder for magnetic core >>
(1) Soft magnetic powder (raw material powder)
Gas atomized powder made of pure iron was used as the soft magnetic powder. The particle size was 212 to 106 μm → 159 μm (median). The particle size was specified by the method described above.

(2)被覆工程
ガーネット型フェライト粉末として、市販されているYFe12粉末(Sigma-Aldrich製)を用意した。YFe12粉末は、粒径が100~200nmのナノ粒子からなる。この粒径も前述の方法で特定した。
(2) Coating step As a garnet-type ferrite powder, a commercially available Y3 Fe 5 O 12 powder (manufactured by Sigma-Aldrich) was prepared. The Y 3 Fe 5 O 12 powder is composed of nanoparticles having a particle size of 100 to 200 nm. This particle size was also specified by the method described above.

軟磁性粉末とYFe12粉末の混合粉末を、回転ボールミルで100時間混合した。両粉末の混合比(重量比)は、軟磁性粉末:100gに対してYFe12粉末:0.1~3gとなる範囲で調整した。こうして、軟磁性粒子の表面がYFe12ナノ粒子で被覆された複数の磁心用粉末を得た。 The mixed powder of the soft magnetic powder and the Y 3 Fe 5 O 12 powder was mixed in a rotary ball mill for 100 hours. The mixing ratio (weight ratio) of both powders was adjusted in the range of Y 3 Fe 5 O 12 powder: 0.1 to 3 g with respect to 100 g of soft magnetic powder. In this way, a plurality of magnetic core powders having the surface of the soft magnetic particles coated with Y3 Fe 5 O 12 nanoparticles were obtained.

(3)比較例1
比較例1として、上述したガーネット型フェライト粉末を、市販されているスピネル型フェライト粉末(Mn0.5Zn0.5Fe粉末/粒径1μm以下/Sigma-Aldrich製)に替えた磁心用粉末も複数用意した。用いた軟磁性粉末と被覆工程(混合比および混合方法)は上述した場合と同様とした。
(3) Comparative Example 1
As Comparative Example 1, a magnetic core in which the above-mentioned garnet-type ferrite powder is replaced with a commercially available spinel-type ferrite powder (Mn 0.5 Zn 0.5 Fe 2 O4 powder / particle size 1 μm or less / manufactured by Sigma-Aldrich). We also prepared multiple powders for use. The soft magnetic powder used and the coating process (mixing ratio and mixing method) were the same as those described above.

(4)比較例2
上述した軟磁性粉末の各粒子表面を、非磁性材であるリン酸塩で被覆した磁心用粉末も複数用意した。具体的にいうと、先ず、モル比で、SrO:HBO:HPO=1.5:1:4となるように秤量した原料をイオン交換水に溶解したリン酸塩溶液を調製した。次に、軟磁性粉末:100gを入れたビーカーに、そのリン酸塩溶液を投入して、撹拌した。この混合物を大気雰囲気の乾燥炉に入れて、523K(約250℃)×30分間加熱した。溶液の揮発後に得られた乾燥した被覆処理粉末を磁心用粉末として用いた。なお、比較例2の磁心用粉末の製造に際して、特許第4060101号公報の記載を参照した。
(4) Comparative Example 2
We also prepared a plurality of powders for magnetic cores in which the surface of each particle of the above-mentioned soft magnetic powder was coated with phosphate, which is a non-magnetic material. Specifically, first, a phosphate solution was prepared by dissolving a raw material weighed so that the molar ratio was SrO: H 3 BO 3 : H 3 PO 4 = 1.5: 1: 4 in ion-exchanged water. Prepared. Next, the phosphate solution was put into a beaker containing 100 g of soft magnetic powder and stirred. The mixture was placed in a drying oven in an air atmosphere and heated at 523 K (about 250 ° C.) for 30 minutes. The dried coated powder obtained after volatilization of the solution was used as the powder for the magnetic core. In addition, in the production of the powder for the magnetic core of Comparative Example 2, the description of Japanese Patent No. 4060101 was referred to.

《圧粉磁心の製造》
各種の磁心用粉末を金型潤滑温間高圧成形法(参照文献:特許3309970号公報、特許4024705号公報)により、12~16t/cm(1176~1598MPa)で成形した(成形工程)。こうしてリング形状(40×30×4mm)の圧粉磁心(試料)を得た。
《Manufacturing of dust core》
Various powders for magnetic cores were molded at 12 to 16 t / cm 2 (1176 to 1598 MPa) by a mold lubrication warm high-pressure molding method (reference documents: Japanese Patent No. 3309970, Japanese Patent No. 4024705) (molding step). In this way, a powder magnetic core (sample) having a ring shape (40 × 30 × 4 mm) was obtained.

《測定》
(1)比抵抗(電気特性)
各圧粉磁心の比抵抗をデジタルマルチメータ(株式会社エーディーシー製R6581)を用いて4端子法(JIS K7194)により測定した。
"measurement"
(1) Specific resistance (electrical characteristics)
The specific resistance of each dust core was measured by a 4-terminal method (JIS K7194) using a digital multimeter (R6581 manufactured by ADC Co., Ltd.).

(2)磁束密度(磁気特性)
各圧粉磁心の磁束密度B5kを直流自記磁束計(メーカ:東英工業、型番:MODEL-TRF)により測定した。なお、磁束密度B5kは、5kA/mの磁界を印加したときに、圧粉磁心に生じる磁束密度である。
(2) Magnetic flux density (magnetic characteristics)
The magnetic flux density B 5k of each dust core was measured by a DC self-recording magnetic flux meter (manufacturer: Toei Kogyo, model number: MODEL-TRF). The magnetic flux density B 5k is the magnetic flux density generated in the dust core when a magnetic field of 5 kA / m is applied.

(3)密度
実測した質量と寸法(体積)に基づいて、各圧粉磁心の密度(嵩密度)を求めた。なお、軟磁性粒子(純鉄粒子)の真密度は7.87g/cmである。
(3) Density The density (bulk density) of each dust core was determined based on the measured mass and dimensions (volume). The true density of the soft magnetic particles (pure iron particles) is 7.87 g / cm 3 .

こうして得られた各圧粉磁心の特性値に基づいて、密度と磁束密度B5kの関係を図1Aに、密度と比抵抗の関係を図1Bに、比抵抗と磁束密度B5kの関係を図2に、それぞれ示した。 Based on the characteristic values of each dust core thus obtained, the relationship between the density and the magnetic flux density B 5k is shown in FIG. 1A, the relationship between the density and the specific resistance is shown in FIG. 1B, and the relationship between the specific resistance and the magnetic flux density B 5k is shown. 2 is shown respectively.

《観察》
Fe12粉末を用いた圧粉磁心の粒界層近傍を走査型電子顕微鏡(SEM)で観察すると共に、エネルギー分散型X線分光法(EDX)により分析した。これにより得られたSEM像と元素マッピング像とを併せて図3に示した。
"observation"
The vicinity of the grain boundary layer of the dust core using Y 3 Fe 5 O 12 powder was observed with a scanning electron microscope (SEM) and analyzed by energy dispersive X-ray spectroscopy (EDX). The SEM image and the element mapping image obtained by this are shown together in FIG.

《評価》
(1)粒界層
先ず、図3から明らかなように、軟磁性粒子の表面(粒界)に極薄い絶縁層が形成されており、その絶縁層はY-Fe-O(ガーネット型フェライト)からなることがわかる。
"evaluation"
(1) Grain boundary layer First, as is clear from FIG. 3, an ultrathin insulating layer is formed on the surface (grain boundary) of the soft magnetic particles, and the insulating layer is Y-Fe-O (garnet type ferrite). It turns out that it consists of.

(2)磁束密度
図1Aから明らかなように、先ず、いずれの絶縁層の場合でも、密度の上昇に伴い磁束密度(B5k)が増加傾向となる。しかし、絶縁層が磁性材であるフェライトからなる場合、絶縁層が非磁性材であるリン酸塩からなる場合よりも、磁束密度が顕著に増加している。
(2) Magnetic flux density As is clear from FIG. 1A, first, in any insulating layer, the magnetic flux density (B 5k ) tends to increase as the density increases. However, when the insulating layer is made of ferrite, which is a magnetic material, the magnetic flux density is significantly increased as compared with the case where the insulating layer is made of phosphate, which is a non-magnetic material.

そして、絶縁層がガーネット型フェライトからなる場合も絶縁層がスピネル型フェライトからなる場合と同等な高い磁束密度が得られることがわかった。 It was also found that when the insulating layer is made of garnet-type ferrite, a high magnetic flux density equivalent to that when the insulating layer is made of spinel-type ferrite can be obtained.

(3)比抵抗
図1Bから明らかなように、先ず、いずれの絶縁層の場合でも、密度の上昇に伴い比抵抗は低下傾向となる。しかし、絶縁層がガーネット型フェライトからなる圧粉磁心の比抵抗は、絶縁層がスピネル型フェライトやリン酸塩からなる圧粉磁心の比抵抗と比較して、圧粉磁心の全密度域で、正に桁違いに大きくなることがわかった。
(3) Specific resistance As is clear from FIG. 1B, first, in any insulating layer, the specific resistance tends to decrease as the density increases. However, the resistivity of the dust core whose insulating layer is made of garnet-type ferrite is higher than the specific resistance of the powder core whose insulating layer is made of spinel-type ferrite or phosphate in the entire density range of the powder core. It turned out to be just an order of magnitude larger.

(4)比抵抗と磁束密度
図2から明らかなように、絶縁層がガーネット型フェライトからなる圧粉磁心は、絶縁層がスピネル型フェライトやリン酸塩からなる圧粉磁心と比較して、全密度域に亘って、高比抵抗と高磁束密度が非常に高次元で両立されることがわかった。
(4) Specific resistance and magnetic flux density As is clear from FIG. 2, the powder magnetic core in which the insulating layer is made of garnet-type ferrite is more than the powder magnetic core in which the insulating layer is made of spinel-type ferrite or phosphate. It was found that high resistivity and high magnetic flux density are compatible at a very high level over the density range.

Claims (9)

純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子の隣接間にある粒界層とからなる圧粉磁心であって、
前記粒界層は、ガーネット型フェライトの結晶構造をしたナノ粒子を含む絶縁層を有し、
該ナノ粒子の粒径は、該軟磁性粒子よりも小さく、25~500nmである圧粉磁心。
A dust core composed of soft magnetic particles made of pure iron or an iron alloy and a grain boundary layer between adjacent soft magnetic particles.
The grain boundary layer has an insulating layer containing nanoparticles having a garnet-type ferrite crystal structure.
The particle size of the nanoparticles is smaller than that of the soft magnetic particles, and is 25 to 500 nm .
前記ナノ粒子は、RFe12(R:希土類元素)からなる請求項1に記載の圧粉磁心。 The dust core according to claim 1, wherein the nanoparticles are composed of R 3 Fe 5 O 12 (R: rare earth element). 前記Rは、Y、Sm、Eu、Gd、Tb、Dy、Ho、Tm、Er、YbまたはLuの一種以上である請求項2に記載の圧粉磁心。 The dust core according to claim 2, wherein R is one or more of Y, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Er, Yb or Lu. 前記絶縁層は、前記RFe12のRがCa、NdまたはPrの一種以上からなる置換元素(R’)で置換されたR’Fe12を含む請求項2または3に記載の圧粉磁心。 The insulating layer comprises claim 2 or 3 comprising R'3 Fe 5 O 12 in which R of the R 3 Fe 5 O 12 is substituted with a substituent (R') consisting of one or more of Ca, Nd or Pr. The described dust core. 前記絶縁層は、YFe12を含む請求項1~4のいずれかに記載の圧粉磁心。 The dust core according to any one of claims 1 to 4, wherein the insulating layer includes Y 3 Fe 5 O 12 . 5kA/mの磁場を印加したときに生じる磁束密度(B5K)が1.45T以上であり、
比抵抗が500μΩm以上である請求項1~5のいずれかに記載の圧粉磁心。
The magnetic flux density (B 5K ) generated when a magnetic field of 5 kA / m is applied is 1.45 T or more.
The dust core according to any one of claims 1 to 5, wherein the specific resistance is 500 μΩm or more.
純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子を被覆する絶縁材とを有する磁心用粒子からなり、
前記絶縁材は、ガーネット型フェライトの結晶構造をしたナノ粒子を含み、
該ナノ粒子の粒径は、該軟磁性粒子よりも小さく、25~500nmである磁心用粉末。
It is composed of particles for a magnetic core having soft magnetic particles made of pure iron or an iron alloy and an insulating material for coating the soft magnetic particles.
The insulating material contains nanoparticles having a garnet-type ferrite crystal structure.
The particle size of the nanoparticles is smaller than that of the soft magnetic particles and is 25 to 500 nm, which is a powder for a magnetic core.
前記軟磁性粒子は、粒度が50~500μmであ請求項7に記載の磁心用粉末。 The powder for a magnetic core according to claim 7, wherein the soft magnetic particles have a particle size of 50 to 500 μm . 前記絶縁材は、YFe12を含む請求項7または8に記載の磁心用粉末。 The powder for a magnetic core according to claim 7 or 8, wherein the insulating material contains Y 3 Fe 5 O 12 .
JP2018017948A 2018-02-05 2018-02-05 Powder magnetic core and powder for magnetic core Active JP7016713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018017948A JP7016713B2 (en) 2018-02-05 2018-02-05 Powder magnetic core and powder for magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017948A JP7016713B2 (en) 2018-02-05 2018-02-05 Powder magnetic core and powder for magnetic core

Publications (2)

Publication Number Publication Date
JP2019135735A JP2019135735A (en) 2019-08-15
JP7016713B2 true JP7016713B2 (en) 2022-02-07

Family

ID=67624194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017948A Active JP7016713B2 (en) 2018-02-05 2018-02-05 Powder magnetic core and powder for magnetic core

Country Status (1)

Country Link
JP (1) JP7016713B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024869A (en) 2004-07-09 2006-01-26 Toyota Central Res & Dev Lab Inc Dust core and manufacturing method thereof
JP2006128278A (en) 2004-10-27 2006-05-18 Toshiba Corp High-frequency magnetic material and high-frequency magnetic part using the same, and its manufacturing method
WO2007052809A1 (en) 2005-11-07 2007-05-10 Hitachi Metals, Ltd. Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same
JP2013191839A (en) 2012-02-17 2013-09-26 Toyota Central R&D Labs Inc Dust core and powder for magnetic core used therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153183A (en) * 1985-06-28 1987-07-08 Toshiba Corp Production of garnet ferrite single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024869A (en) 2004-07-09 2006-01-26 Toyota Central Res & Dev Lab Inc Dust core and manufacturing method thereof
JP2006128278A (en) 2004-10-27 2006-05-18 Toshiba Corp High-frequency magnetic material and high-frequency magnetic part using the same, and its manufacturing method
WO2007052809A1 (en) 2005-11-07 2007-05-10 Hitachi Metals, Ltd. Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same
JP2013191839A (en) 2012-02-17 2013-09-26 Toyota Central R&D Labs Inc Dust core and powder for magnetic core used therefor

Also Published As

Publication number Publication date
JP2019135735A (en) 2019-08-15

Similar Documents

Publication Publication Date Title
US11145448B2 (en) Soft magnetic alloy powder, dust core, and magnetic component
JP6075605B2 (en) Soft magnetic material and manufacturing method thereof
JP6495571B2 (en) Magnetic core of iron oxide and silica
JP5986010B2 (en) Powder magnetic core and magnetic core powder used therefor
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
EP1918943B1 (en) Method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core
EP1600987A2 (en) Soft magnetic material, powder metallurgy soft magnetic material and manufacturing methods therefor
JP6476989B2 (en) Method of manufacturing dust core
JP7128439B2 (en) Dust core and inductor element
Peng et al. Preparation and magnetic properties of Fe4N/Fe soft magnetic composites fabricated by gas nitridation
JP2019075566A (en) Powder magnetic core, powder for magnetic core and method for manufacturing the same
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
WO2018186006A1 (en) Compressed powder magnetic core and magnetic core powder, and production method therefor
JP7016713B2 (en) Powder magnetic core and powder for magnetic core
JPS63115309A (en) Magnetic alloy powder
JP2020045569A (en) Soft magnetic alloy powder, powder magnetic core and magnetic component
US7601229B2 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP2021036576A (en) Composite particles and dust core
CN111261358A (en) Insulating coated soft magnetic alloy powder
JP6225440B2 (en) Magnetic material, method for producing the same, and coating liquid used for the production
JP2011208184A (en) Magnetic composite powder, and method for producing the same
US20150017056A1 (en) Soft magnetic metal powder, method for preparing the same, and electronic components including the same as core material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126